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KAUST Conference Objectives

 Maturing Geothermal Energy in Saudi Arabia

* Amongst highest per capita power consumption

* Ambitious goals have been set by governments

* Expectations of increased renewable capacity (and jobs!)

* Entire cities are under development that will run on 100% renewables
(NEOM and the Red Sea Development) Vision 2030 plan



KAUST Conference Challenges

* Can geothermal energy be matured economically to become a 3"
alternative for renewables (after solar and wind)

* Can life-sustaining water and desalination and air-conditioning be run
on Geothermal power?

* Can Geothermal help to lower our environmental footprint?

* |s Geothermal Power a sleeping giant among renewable power
sources?



Geothermal in Canada- What policy makers
need to know

Proceedings World Geothermal Congress 2020
Reykjavik, Iceland. April 26 — May 2. 2020

Geothermal Energy in Canada — Kickstarting an Industry

Catherine J. Hickson!. Fran Noone. Jasmin Raymond. Maurice Dusseault, Tiffani Fraser. Katie Huang. Kirsten
Marcia. Mafalda Miranda. Bastien Poux. Kathryn Fiess, John Ebell. Grant Ferguson. Jamis Dale, Leo Groenewoud.
Jonathan Banks., Martyn Unsworth, Brian Brunskill., Steve Grasby and Jeff Witter

Paper submitted on behalf of Geothermal Canada. 1503-4194 Maywood Street. Burnaby. British Columbia.
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Geothermal in Canada- What policy makers
need to know- 25 points

* 21- What is the role of universities and provincial/ federal research
centres in establishing and developing geothermal energy

e 22- Can geothermal help achieve sustainable development in Canada,
especially in remote communities that are currently carbon-fuel
dependent

» 23/24 How can the oil and gas and mining sectors expertise be
harnessed to advance geothermal energy use.



Outline

* Renewable opportunities in the Maritimes

* Tidal and Marine Geothermal
* Bay of Fundy and Halifax Harbour

e Geothermal from Coal Mines
* Springhill case study

* Compressed Air Storage (CAES)
* Cumberland Basin and the Energy Corridor Case Study

* CCS in offshore Saline Aquifers
* Case study of the Sable development

* Geothermal potential in the High Arctic



GEOTHERMAL IN THE MARITIMES
Sea Water Cooling System

Furdy's Wharf has a unigue, energy-efficient cooling
system that works by circulating sea water through
a heat exchanger system with the building’s cooling
water. The colder sea water chills the building’s
cooling water, which is then circulated through the
buildings.
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(1) Sea water intake
(2) Cold sea water
@ Sea water pump
(@) Titanium heat exchanger
(8) Warmed sea water outlet
(€) Buliding circulating pump
Air conditioning unit @ Cooled fresh water
One per floor
Cooling coll
| (8) Warmed fresh water
™M 40 Warm air
(i1 Air circulation fan

/ (2 Cool air

Sea water

Purdy's Wharf Project




Sustainable Marine Energy (SME) and Minas Tidal LP (MTLP)
have agreed to co-develop their adjacent berths at the Fundy
Ocean Research Center for Energy (FORCE) and will utilise
SME’s PLAT-I floating in-stream tidal energy technology to
deliver up to 9IMW of tidal energy to the Nova Scotia grid.



NEW TECHNOLOGY DOES HAVE GROWING
PAINS

capesharptidal.com

LINK
is a totally awesome idea still being worked on.

fundyforce.ca

Check back later.
Status: in Development

In October 2014, Atlantis signed a sublease agreement for a

tidal turbine berth at the FORCE facility, together with a project

agreement with the Nova Scotia Department of Energy. Subsea

electrical cables were laid at the FORCE facility in October 2014. Q
In December 2014, Atlantis was awarded a feed-in tariff for up

to 4.5 megawatts of tidal generation to be deployed at FORCE.

The Developmental Feed-In-Tariff award of C$530 (£292) per

megawatt hour (MWh) provides revenue support for Atlantis to

deploy and operate up to three state-of-the art AR-1500

turbines at FORCE.



Springhill Mine Geothermal

-Mine openings flooded by groundwater inflow, and warmed
below surface

-Warmed water offers a potential valuable geothermal energy
source

-Since the early 1990’s ~25 geothermal wells have been drilled,
of which 17 are currently used by businesses/facilities. 6 wells
maintained and operated by Town of Springhill, remaining 11
wells owned and maintained by private operators for heating,
cooling and production purposes.

Springhill Geothermal Resource Area

Geothermal Well Locations

s
e

Legend
B Springhill Geothermal Resource Area
+  Gecthermal Wells
Al Buildings
Municipal Boundary
—— NSRN Roads
Mine Workings Composite

Coordinate System: NAD 83 CSRS98 UTM Zone 20 North




Overview of the Mine

-Series of overlying coal seams that outcropped on surface
-Began large-scale mining activity in 1884

-Seams have a maintained thickness between 1.4-3m, dipping ~30deg at
surface to ~11deg at depth

-Mined a distance of 4,400m to the west and reached vertical depth of
1,320m

Continuous large-scale production until 1958 (Springhill Mine Disaster)

Abandoned underground mine workings for No. 2 Mine (No.
2 Seam) with Town of Springhill municipal area overlain

I * Springhill Geothermal Resource Area

Springhill Geothermal Resource Area Location
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Borehole Tests

Geothermal Boreholes Drilling and Pump Test Temperature
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Summary

Springhill Mine Water Geothermal has been used since early 1990’s.

 Numerous wells drilled and technical data reported however data and reporting
lack

 uniformity
e completeness
e quality control
 compilation
* Mine Water Geothermal resource is currently accessed and used with no control.

* Generally users have experienced economic benefits and good reliability.



Moving Forward

Working relationship with the NSCC - Springhill Campus (Refrigeration and Geothermal
Program)

NSCC Springhill currently utilizes some of the geothermal technology to instruct students
in their Refrigeration and Air Conditioning Program.

Sharing of technical data associated with well pump tests and analysis of mine water.

Some areas of the campus utilize the Springhill mine for heating.

Special Mineral Lease for Springhill Geothermal Resource Area Acquired

Town of Springhill now has ownership of the Geothermal Mine Water Resource.

Allows Town to control the development and usage of the mine water geothermal
resource.

Permit “Green Industrial Park” development and provide direct economic benefits to the
Town.

Concept design for Springhill Geothermal Business Park underway



ENERGY STORAGE IN THE MARITIMES

Energy Storage

The thing about renewable energy is that the sun doesn’t always shine, the wind doesn’t always blow, and
tides don’t always flow.
There are many storage and reconversion options available for electricity. These include:
*electrochemical —conventional batteries (lead acid, lithium ion, and others), flow batteries
echemical—hydrogen storage and fuel cell systems
eelectrical—large capacitors
*mechanical
* Flywheel—energy is stored in rotating mass and released back to the grid when needed
« Compressed air energy systems—air is compressed and stored, then later released to turn a turbine
that produces electricity
* Pumped-hydro storage—water is pumped to a higher elevation and stored in a hydro reservoir
* Hydroelectric systems that include large dams where water can be trapped and stored until it is
needed

*thermal—electric thermal storage units, phase change materials, underground seasonal thermal storage
systems, district heating, and hot water storage tanks

NOVAS(\(')IIA{ —

Energy and Mines



Compass Minerals

Geologic Setting of
| the Cumberland gz =
__Basin, NS DALHOUSIE

K UNIVERSITY

Gramt

Chronostratigraphic Subdivisions
Cumberland Basin
(Millions of years)

Horton Group (Basement)




Caverns...
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Base of cavern

SALT

http://saltecintl.com/operations-test/operations-about-

storage-in-salt-cavern-creation-test/ (Courtesy SalTec Int

Inc)
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Typical Dimensions**
GW base

50-70 m
Surface casing shoe 100-
150 m
Prod casing shoe ~50 m below salt top
Rat hole length 20-30 m
Cavern height - H 150-250 m
Cavern diameter - D 35-50 m
Surface casing size 13%" in a 16" dia hole
Prod. casing size 10%" in a 12%" dia hole

**Caveat: this is not a design, it is for conceptual purposes.


http://saltecintl.com/operations-test/operations-about-storage-in-salt-cavern-creation-test/
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CAES and Heat Geostorage
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‘State-of-Play’ - Sable Subbasin

y

Only commercial hydrocarbon subbasin offshore Nova Scotia
 Exploration since 60’s, ~all shelf prospects mapped by NSPD in 1999
~4 TCF proven resources (~150 TCF Southern N. Sea)

Undiscovered estimates as high as 120 TCF ignore well-known risks

8 commercial fields now depleted (~2.3 TCF & ~45 MBO)
15 undeveloped fields, ~33 wet structures, ~100 undrilled closures

 Extensive public data bases and interpretations: GSC, DOE, CNSOPB
* Geology is well understood - except source rocks

>
>
>
>

Why?
* Only sub-basin with evidence of a significant source rock (ie: fields)
» Deltaic / marginal marine gas-prone source rocks inferred

» No evidence of prolific restricted basin source rocks that generate world class oil
reserves on other Atlantic margins — function of sediment influx, plate tectonics

& oceanic circulation
* ‘Leaky system’: low-relief traps that leak updip towards Nova Scotia

.....
.........

....

»  “Rollover anticline” traps in Jurassic- Cretaceous Sable Island Delta contain high-
NTG reservoirs prone to cross-fault leak
» “Drapes” and “reef margin” traps on downdip flank of Jurassic Abenaki Carbonate

Bank have limited seals

4
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Sable Subbasin — Shelf-Slope Geology & Play Elements
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6. Lean deltaic and marginal marine
source rocks are inferred, but no
confirmation through biomarkers

1

7. Deltaic source wanes in Logan Canyon
giving way to deep water mudstones and
marls — & prograding Cenozoic
mudstones. Topseal for system.

No further uplift at basin margins
producing deep water fan systems similar
to North Sea or Newfoundland
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Regional Upper Missisauga Model _ |

10Mt CO2 per year per well — for 100 years

2600: 100 years injection — 500 years equilibration
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CCS Potential: Comparison Sable, Utsira, Captain
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Summary of Dynamic Modeling

* Objective (1) to understand “fill & spill” fluid migration (leakage) in hydrocarbon traps
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Geothermal Perennial Springs in Axel

Heiberg

* Ground frozen to ~600 m (permafrost)

* Water coming out at ca. 5°C year-round despite
huge variations of air temperature

Zentilli et al 2019
Geofluids, Geofluids
Article ID 9502904,
33p
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What Next for Sable?

Drill more leaky ‘rollover anticlines’ & ‘carbonate drapes’?
Scotian Margin identified as having world class CCS potential in 2005 (IPCC)

CCS storage capacity could exceed estimates for Sleipner, Norway (ongoing 20
years) and the Captain Sandstone (planned project in the Moray Firth) which
similarly rise to the seabed (or within a few hundred meters) .

What physical mechanisms prevent buoyant CO2 from reaching seabed?

» migrating CO2 plume leaves about 30% residually trapped gas & over
thousands of years migrating CO2 dissolves in saline aquifers and sinks

What injection rates and pressures enable safe storage? Of how much CO2?
» Addressed through dynamic modeling, here and in N. Sea (Eclipse 300)

CCS investigated onshore Nova Scotia — lacks suitable reservoirs

Poster by Max Angel — scoping potential costs of CCS in the Sable Subbasin
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s - 0 A

torage prospectivity

Highly prospective sedimentary
LSS

o
=“Sleipner

Moray
Firth

Carbon Capture and
Storage could lower
carbon emissions in NS

by 20% in 4 years at the :

cost of $1.70/day per

person

Methods
suonto




Perennial Springs at 5°C at Colour Peak Diapir

Zentilli et al 2019
Geofluids, Geofluids
Article ID 9502904, 33 p



Zentilli et al 2019

Rotten Eggs Smell: Bacterial Activity brile 1D 502904, 33 p

Andrea Mosher-Harrington 2003



Fig. 6. Spring outlet discharge temperature data for springs at Gypsum Hill and Colour Peak compared with local air temperature. Note consistency of discharge

temperatures throughout the year.
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Geofluids, Geofluids
Article ID 9502904, 33 p



Zentilli et al 2019
Geofluids, Geofluids
Article ID 9502904, 33 p

Fig. 5. Spring outlet discharge rate vs. air temperature at Colour Peak.

2.0 +26-2C+ 20

1.9 1

1.8 )
Air temperature

1.7 1

16 1
15

1.5 1

Flow (L/s)

1.4 1

Temperature (°C)

1.3

198

Julian Day (1997)

Pollard et al. 1999



Zentilli et al 2019
Geofluids, Geofluids

Springs NOT a new phenomenon, started >40 million years ago  Geofuis ceofuias |
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Zentilli et al 2019
Geofluids, Geofluids
Article ID 9502904, 33 p
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Zentilli et al 2019
. . Geofluids, Geofluids
Possible Geothermal Heating Article ID 9502904, 33 p
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