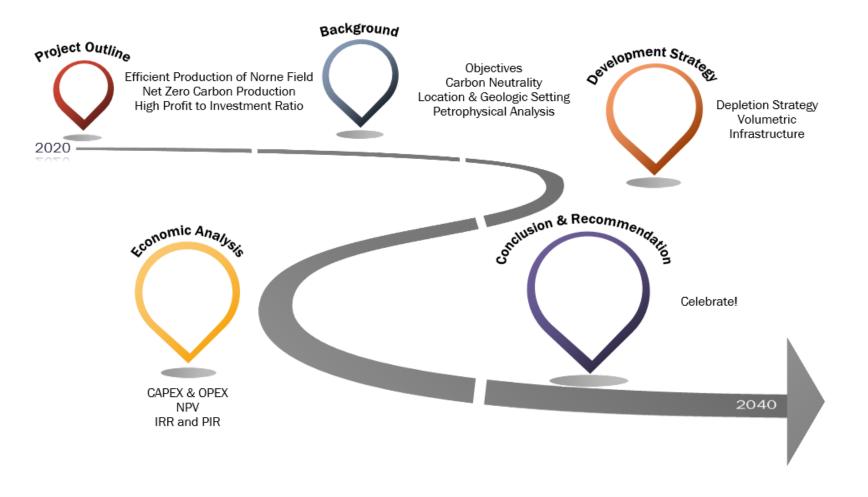


Project Execution Plan for the Norne Oil Field Presenters: Jennifer Lee, Ryan Taylor, Sarima Vahrenkamp

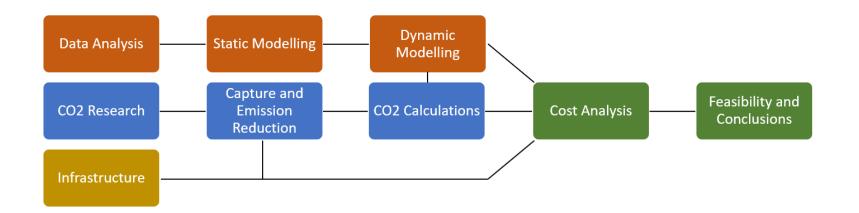
Executive Summary

- Located ~200km offshore in North Sea, water depth 380m
- Lower Jurassic Reservoir in horst block (2500m 2700m below sea level)
- STOIIP ~1056 MBbls, GIIP ~408 BCF, EUR ~560 MBO with CO2 EOR
- Recommend Development with 16 producers and 14 injectors via FPSO
- CAPEX (USD) = \$7.15 Billion, NPV10 (USD) = \$6.94 Billion, DCFR ~30.5%
- Carbon neutrality achieved by CO2 EOR continued into CCS
- Simulated CO2 sequestered ~420 Mtonnes over 5 years
- Additional ~600 Mtonnes could be sequestered
- Recommend purchasing cement factory at Kjopsvik (~170M USD)
- CO2 transported via pipeline and compressed at well site (~2 Billion USD)
- Recommend considering using facility for commercial CCS



Outline

equinor 👬

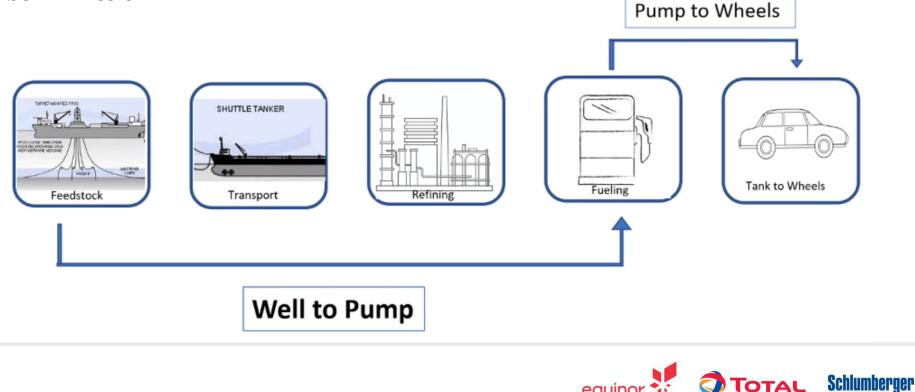


Objectives

1) Maximize hydrocarbon production from the Norne Field

2) Achieve zero net emissions of CO2 during production and transport of hydrocarbons

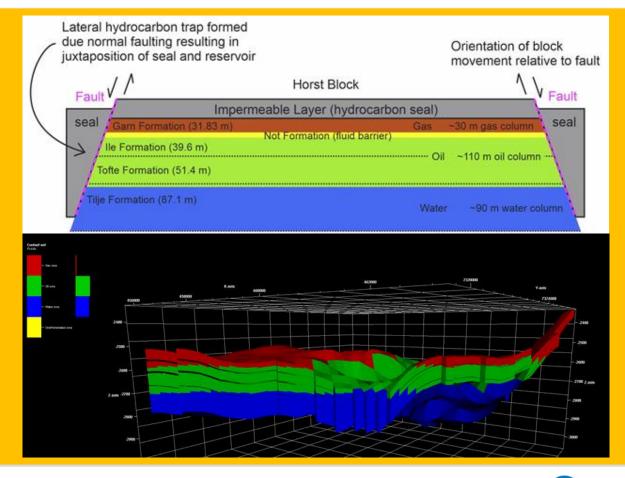
3) Obtain a profitable production



What is Carbon Neutrality?

EAGI

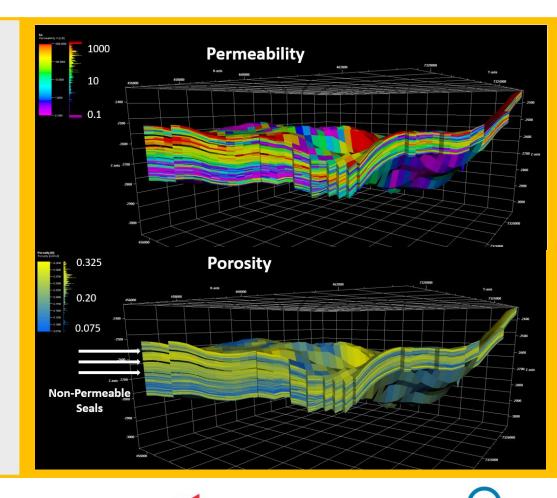
- Well to Pump (What we will be doing) ٠
- Pump to Wheels ٠
- Zero Net Carbon Emission ٠



equinor

Background - Geologic Setting

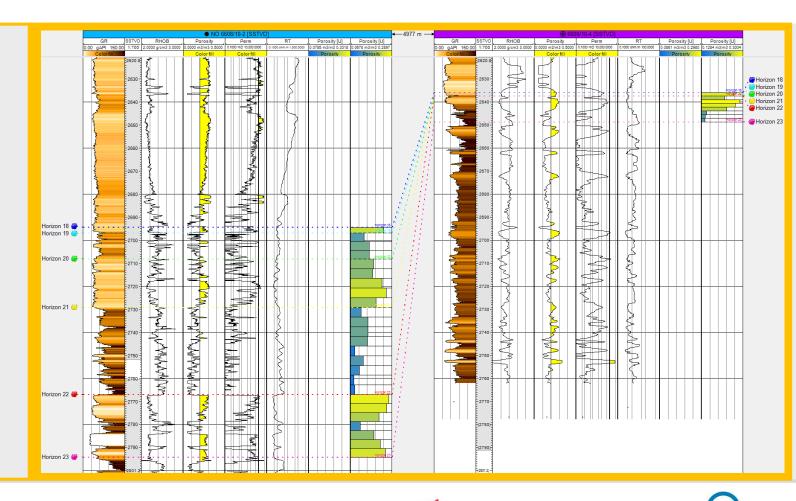
- Lower and Middle Jurassic reservoirs
 - Properties populated from wells
- Low Relief Structure
- Hydrocarbons trapped in a horst structure
 - Structural framework from NTNU website
- Three-way structural fault closure and with a limited downdip aquifer
- Not Formation acts as a fluid barrier, separating oil bearing formations and the gas cap
- Also, barriers due to calcareous zones


Petrophysical Analysis

Schlumberge

Reservoir Properties:

- Porosity ranging 7.5 32.5%, calculated from density logs
- Permeability ranging 0.1 1000 mD, calculated
 from porosities using K=pow(0.3516 + 21.69*Phi): (NTNU)
- Pressure of 273 bar and Temperature of 98 degrees Celsius at 2639m below sea level
- Oil Viscosity of 0.5 cP and Specific Gravity of 0.7
- Oil-Gas Ratio of 111 Sm³/Sm³



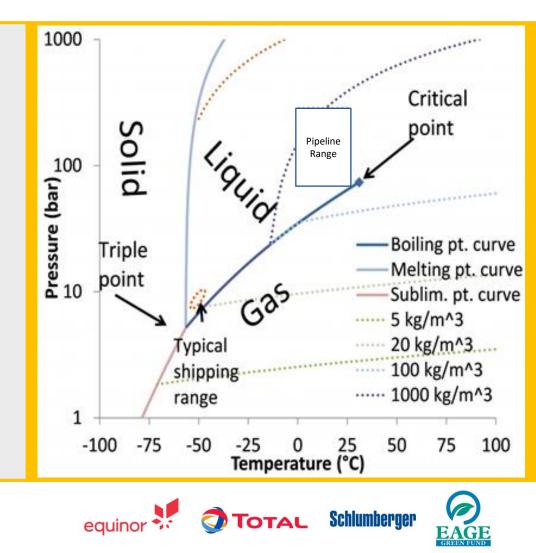
Schlumberger

Petrophysics – Porosity Upscaling

Reservoir Properties:

- Porosity ranging 7.5 32.5%, calculated from density logs
- Permeability ranging 0.1 1000 mD, calculated from porosities using K=pow(0.3516 + 21.69*Phi): (NTNU)
- Data used to propagate porosity and permeability through the model

Properties of CO2



Super Critical Fluid state of CO2

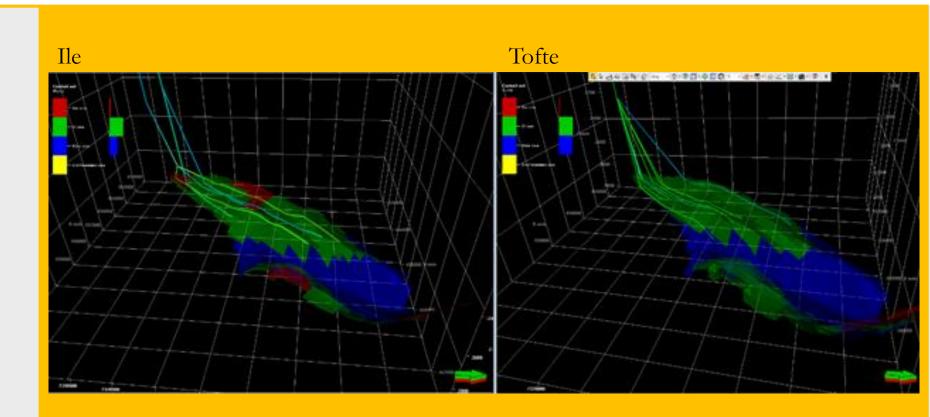
- Density of Brine Water (approximately 0.615 g/cm3)
- Viscosity like Gas

CO2 EOR

- CO2 acts like a solvent
- Oil expands and flows easily to production wells

Development Strategy

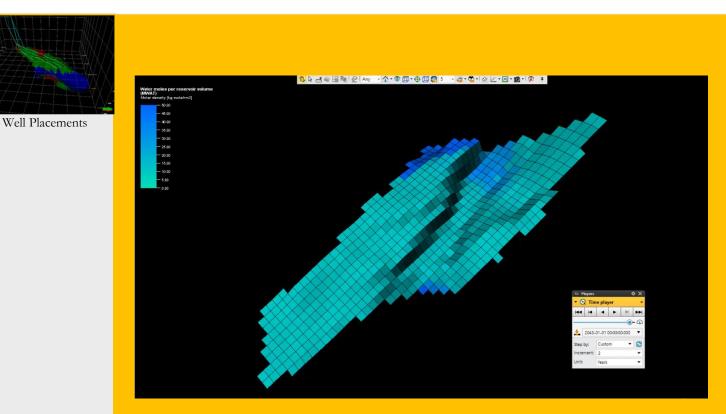
Case 1 Case 2 **Carbon Credit Purchase (No EOR) Carbon Sequestration (CO2 EOR)** Large Environmental Higher Recovery Factor • Lower CAPEX **Higher CAPEX** ٠ ٠ ٠ Store higher volume of • Less CO2 Emission Footprint Complexity of ٠ ٠ Significantly lower CO2 vs CO2 emitted Shorter Production Infrastructure ٠ EUR Need consistent source Smaller Environmental Time • Lower Recovery Factor of CO2 Less Infrastructure Footprint ٠ . Lower Internal Rate of Higher IRR ٠ ٠ Return (IRR)


Schlumberger

Well Placements in Tofte and Ile

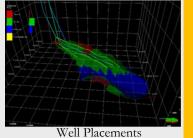
76% of Oil is in Ile and Tofte formations:

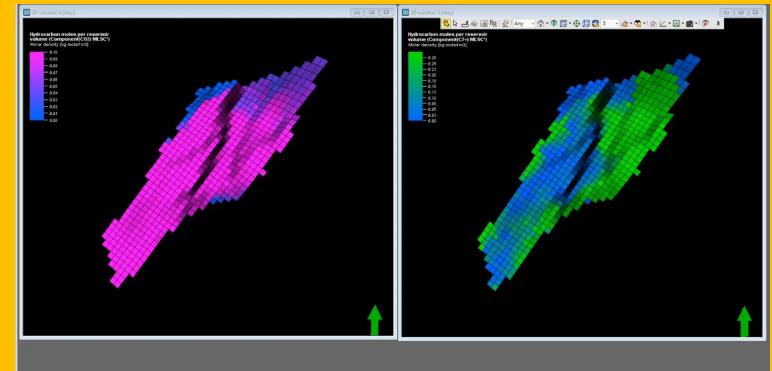
- Ile: 4 Producers, 4 Injectors
- Tofte: 5 producers, 4 Injectors



Simulation Video Tijle – Change in Sw (23yrs)

Water Saturation:


- No natural refilling aquifer
- Water mainly in the Tofte and Tilje formations (lower reservoir units)
- Pore space will not be recharged by water but rather by injected CO2

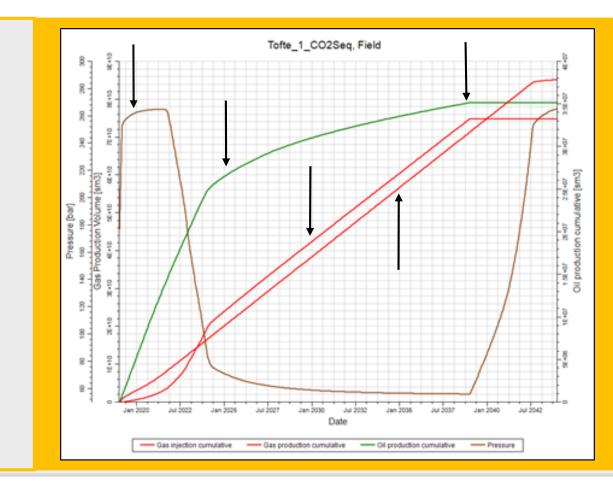


Simulation Video – Ile and Tofte Production

Simulations show CO2 depletion during production and CO2 saturation during post-production sequestration (Left).

The simulations show areas of residual oil within the reservoir after 20 years of production.

Production, Injection, and Pressure



Depletion:

- Simulated production over 18 years
- CO2 is used to create a miscible flood

Sequestration:

- Production halted
- CO2 injection continued for and additional 5 years

Volume Summary

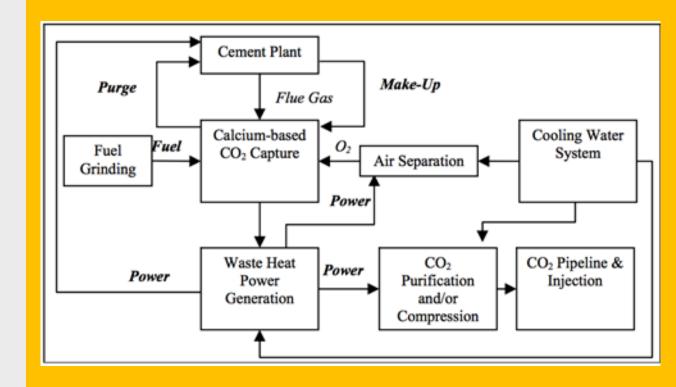
Formation	STOIIP [MBO]	STOIIP [*10^6 sm3]	EUR [*10^6 sm3]	RF	GIIP [*10^6 sm3]	GIIP [BcF]	HCPV [*10^6 10^6 rms]
Garn	169.83	27	5.4	20%	10550	372.56	33
lle	352.24	56	36.4	65%	867	30.62	67
Tofte	434.01	69	41.5	60%	0	0.00	83
Tilje	100.64	12	4.41	37%	0	4.91	14
Total	1,056.72	164	87.71	53%	11,556	408.09	197

53% Recovery Factor EUR 559.68 MBO

EUR 87.71 *10^6 sm3

equinor

Emission Reduction Strategies



Carbon Sequestration:

- Provides the most reduction but also highest cost
- CO2 Sources:
 - Recycling from reservoir
 - Cement plant
 - Garbage burning
 - Fertilizer (purest form of CO2 to capture)

Other Reduction Strategies:

- Alternative power during production
 - Tidal Energy
 - Platform Wind Turbines
- Reforestation projects

Project Infrastructure

- Floating Production Storage and Offloading System (FPSO)
- Subsea Production
 System
- Teekay E-Shuttle Tanker for oil Transportation
- Source of CO2: Cement Plant

Economic Analysis

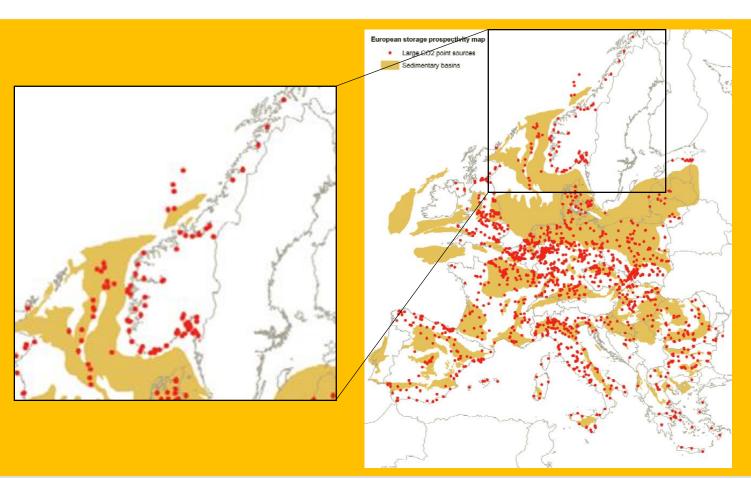
TOTAL

equino

Economic Analysis

- Capital Expenditure (CAPEX): \$7.15 Billion USD
- Net Present Value at 10% Discount Rate (NPV10):
 \$6.94 Billion USD after 20 years of Production
- Internal Rate of Return (IRR): 30.53%
- NB: Well Costs are Front Loaded

		2020	2021	2022	2023	2024	2025	2036	2037	2038	2039	2040
Year		0	1	2	3	4	5	16	17	18	19	20
Oil production - av. daily prod bbls/day		0	50	100	200	200	175	25	25	25	10	10
Oil production in year- MBO (millions barrels)		0	18.25	36.5	70	70	63.875	9.125	9.125	9.125	3.65	3.65
Cumulative oil prod- MBO		0	18.25	54.75	124.75	194.75	258.625	470.325	479.45	488.575	492.225	495.875
To scale up muliply by:	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Oil prod MBO / year			21.9	43.8	84.0	84.0	76.7	11.0	11.0	11.0	4.4	4.4
CO2 m tonnes- full cycle at 0.4 tonne /bbl	0.7		15.3	30.7	58.8	58.8	53.7	7.7	7.7	7.7	3.1	3.1
Cum Oil Prod- MBO			21.9	65.7	149.7	233.7	310.4	564.4	575.3	586.3	590.7	595.1
Oil Price \$/bbl	70	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0
Oil Revenue \$m			1533.0	3066.0	5880.0	5880.0	5365.5	766.5	766.5	766.5	306.6	306.6
Gas production av. daily- mmcfpd			30.000	40.000	45.000	50.000	50.000	35.000	30.000	30.000	25.000	20.000
Gas production in year- BCF			10.950	14.600	16.425	18.250	18.250	12.775	10.950	10.950	9.125	7.300
Cum gas BCF			10.950	25.550	41.975	60.225	78.475	224.475	235.425	246.375	255.500	262.800
Gas revenue \$m, at \$x per mcf	10		109.500	146.000	164.250	182.500	182.500	127.750	109.500	109.500	91.250	73.000
CO2 m tonnes- at 53000 tonnes / BCF	0.053		0.6	0.8	0.9	1.0	1.0	0.7	0.6	0.6	0.5	0.4
Gross Revenue \$m (million)			1642.5	3212.0	6044.3	6062.5	5548.0	894.3	876.0	876.0	397.9	379.6
Cum Gross Revenue \$m			1642.5	4854.5	10898.8	16961.3	22509.3	41752.1	42628.1	43504.1	43901.9	44281.5
Capex: FPSO \$m		-750										
Capex: 30 Wells Estimate 100 \$m each		-3000										
Capex: Subsea completions \$m		-1000										
Capex: Pipelines		-200										
Capex: Carbon Compression		-2000										
Capex: Cement Plant		-200										
Opex: tanker costs \$m			-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
Opex: running FPSO \$m	30		-30	-30	-30	-30	-30	-30	-30	-30	-30	-30
Opex:												
Opex:												
Cost of CO2 onshore \$ per tonne	20		-307	-613	-1176	-1176	-1073	-153	-153	-153	-61	-61
			-12	-15	-17	-19	-19	-14	-12	-12	-10	-8
Decommisioning fund \$m			-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
Net Cash Flow each year \$m BTAX			\$ 1,279.29									\$ 265.54
Cum net cash flow		\$ (7,150.00)	\$ (5,870.71)	\$(3,332.38)	\$ 1,473.46	\$ 6,295.61	\$10,706.17	\$25,742.65	\$26,408.74	\$27,074.83	\$27,356.69	\$27,622.23
Tax 30% after payout	0.3	0.0	0.0	0.0	-1441.8	-1446.6	-1323.2	-204.7	-199.8	-199.8	-84.6	-79.7
Tax2												
Tax3												
Net Cash Flow each year ATAX		-7150.0	1279.3	2538.3	3364.1	3375.5	3087.4	477.7	466.3	466.3	197.3	185.9
NPV \$m at 10% discount rate (XL function)	0.1		-5442.7	-3535.7	-1237.9	858.0	2600.7	6723.2	6807.1	6883.3	6912.7	6937.8
IRR (DCFR) (Excel Function)			-82.11%	-31%	0%	15%	23%	30.47%	30.50%	30.51%	30.52%	30.53%

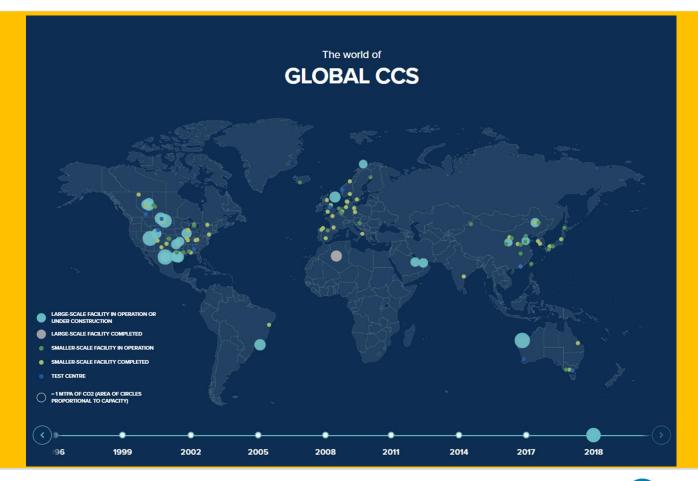

Potential CO2 Capture Areas

The identification of storage potential:

This begins with:

- Identifying sedimentary basins suitable for geologic storage of CO2
- Identifying point sources of CO2 in the regional areas of the North Sea

Comparative Projects


There are only a few active sequestration projects active in the world

Snohvit, Norway:

• ~0.7 Mtonnes CO2 per year

Alberta Carbon Trunk Pipeline Project, Alberta Canada (world's largest):

~14.6 Mtonnes CO2 per year (max capacity)

Schlumberger

Assumptions and Exclusions

Exclusions:

- Excluded segment G, contained less than 5% of oil in the field
- Garn and Tilje Simulations for purposes of presentation

Assumptions:

- 70\$/bbl and 70\$/tonne of CO2
- Faults are sealing and not migratory paths

Conclusions and Recommendations

- •Norne Field Production using Carbon EOR
- •EUR 560 MBO with CO2 EOR and 216 BCF of gas
- •Sequester ~420 Mtonnes over 5 years, with additional voidage for ~600 Mtonnes of CO2
- •Purchase Cement Factory at Kjopsvik (~170M USD) for source of CO2
- •CAPEX (USD) = \$7.15 Billion, NPV10 (USD) = \$6.94 Billion, DCFR ~30.5%
- •Utilize facility for commercial CCS after oil and gas production
- •Ongoing well monitoring and 4D seismic monitoring after completion

Questions & Answers

