

Dynamic Modeling of Buoyant Fluids in the Sable Subbasin: What's Next?

Bill Richards

Presenter:

Darragh O'Connor (darragh.oconnor@dal.ca) Basin and Reservoir Lab Dalhousie University October 2019 Max Angel

Grant Wach

-

HRM Climate Emergency

R	equest for Council's Considera	ation	
ded on Agenda nitted to Municipal 's Office by Noon iday)	Added Item (Submitted to Municipal Clerk's Office by Noon Monday)		Request from the Floor
ouncil Meeting: Janua	ary 29, 2019		
limate Emergency			
Council to Consider dations and return to C	: That Halifax Regional Council re council within 90 days with respec	equest t t to:	hat staff prepare a report a
ognition by HRM Council t lization developed constit	that the breakdown of the stable clim tutes an emergency for HRM.	ate and :	sea levels under which
nities to increase ambitior	ns and/or accelerate timelines to:		
d new actions to help HF	RM achieve its climate targets; and		
d new actions that would imate targets.	help reduce GHG emissions beyond	the sco	pe of HRM's current
poration into the Municipa efore 2050 and net negat	lity's climate targets and actions the ive carbon emissions in the second h	need to a alf of the	achieve net zero carbon e century.
ishment of a remaining ca warming to 1.5oC and an arbon budget.	arbon budget for corporate and comn a annual reporting process with respe	nunity en	nissions commensurate expenditure HRM's
ishment of a "Climate and s efforts to transition off o most in need of support	d Equity" working group to provide gu of fossil fuels in ways that prioritize th in transitioning to renewable energy.	idance a ose mos	and support for the t vulnerable to climate
ere is a climate emergend at this issue.	cy declared by other Canadian Cities	and it is	time for Halifax to take a
ere at	is a climate emergen this issue.	is a climate emergency declared by other Canadian Cities this issue.	is a climate emergency declared by other Canadian Cities and it is this issue.

Outcome Sought: Council approve this request for consideration.

Councillor Richard Zurawski

District 12

Key Points / Outline

- Commercial hydrocarbon production in the Sable Subbasin has been, or is being, decommissioned
- Numerous discovered and undiscovered hydrocarbon opportunities are small and likely non-commercial
- There is a strong legacy of subsurface and surface expertise that will dissipate without future activity
- Carbon Capture and Storage in underground reservoirs / aquifers is proven technology globally,
 - Most extensively onshore as Enhanced Oil Recovery projects in hydrocarbon traps
 - > Also as pilot CCS projects offshore and onshore into 'deep saline aquifers' that do not rely on conventional trapping
 - > Has been achieved offshore, entirely using buried pipelines and facilities ('overtrawlable')
- CO2 is trapped in deep saline aquifers largely due to:
 - Residual trapping 'micro trapping' due to small heterogeneities (drainage / imbibition hysteresis)
 - > Dissolution with associated water density increase and sinking of CO2
- The Scotian Margin has world class potential for CCS in deep saline aquifers (IPCC 2005 report on CCS) and significant potential in depleted hydro-pressured reservoirs. Onshore Nova Scotia lacks suitable reservoirs.
- In this study we integrate static & dynamic modeling (Petrel / Eclipse courtesy Schlumberger)
 - CH4 injection (to understand trap integrity / adequacy)
 - > CO2 injection above traps to scope out migration & timing in deep saline aquifers
 - Plus scoping economics poster

'State-of-Play' - Sable Subbasin

Only commercial hydrocarbon subbasin offshore Nova Scotia

- Exploration since 60's, ~all shelf prospects mapped by NSPD in 1999
 - ~4 TCF proven resources (~150 TCF Southern N. Sea)
- > Undiscovered estimates as high as 120 TCF ignore well-known risks
- > 8 commercial fields now depleted (~2.3 TCF & ~45 MBO)
- > 15 undeveloped fields, ~33 wet structures, ~100 undrilled closures
- Extensive public data bases and interpretations: GSC, DOE, CNSOPB
- Geology is well understood except source rocks

Why?

- Only sub-basin with evidence of a significant source rock (ie: fields)
 - > Deltaic / marginal marine gas-prone source rocks inferred
- No evidence of prolific restricted basin source rocks that generate world class oil reserves on other Atlantic margins – function of sediment influx, plate tectonics & oceanic circulation
- 'Leaky system': low-relief traps that leak updip towards Nova Scotia
- "Rollover anticline" traps in Jurassic- Cretaceous Sable Island Delta contain high-NTG reservoirs prone to cross-fault leak
- "Drapes" and "reef margin" traps on downdip flank of Jurassic Abenaki Carbonate Bank have limited seals

Sedimentary Basins (after Williams & Keen, 1990) Fields and Closures (after NSPD, 1999) Scotian Basin Wells and Pipelines Closures: red / orange=developed / undeveloped,

yellow / dark blue = wet with & without shows, gray = undrilled.

Depleted g

Saple Island Delta

Missisauga % Sandstone & Siltstone

Depleted ga

Missisauga % Sandstone & Siltstone

Summary of Dynamic Modeling Presented Here

- Objective (1) to understand "fill & spill" fluid migration (leakage) in hydrocarbon traps
- Objective (2) to understand CCS migration paths and timing worst cases (large grid cells & dissolution not modeled)

Nova Scotia Offshore Public Data Base

GSC 'BASIN' Database

- Downloadable Excel files of well data
- Pressure, Geochem. Temp. Maturity,
- Lithostrat, Biostrat etc.

Atlas Series

+ Development Plan Applications: Panuke-Cohasset, Sable Offshore Energy Project, Deep Panuke available online

+ Academic Papers

CNSOPB & CNSOPB DMC

- Multiple reports and call for bids
- Point and click PDFs of:
- well data and reports
- 2D and 3D seismic data, associated maps and reports

Trapping Mechanisms at Sable

Base of prograding system - Low NTG

- High pressures due to HC generation
- Capillary leak, hydraulic fracturing
- Temporary opening of fractures / faults

James et al, 2004 AAPG v88

Faults Plane Profile

"Stair-stepping"

Illustrating Cross-Fault Leakage

Richards et al, 2008 Conjugate Margins Abstract, online

Trapping in Rollover Anticlines at Sable

- Deeper reservoirs at Sable commonly confined to 'expansion trends' controlled' by fault (and salt) movement
- Within these, NTG ratios increase upwards (reservoirs become more proximal upwards as shelf prograded)
- As a result, reservoir connectivity increases upwards, traps become less effective upwards, and overpressure (due to recent charge) is released in steps to the hydrostatic system until the system becomes equilibrated.

IPCC 2005: Mechanisms, Properties & Storage Options

Storage Mechanisms

different time and spatial scales over which these processes occur.

Ocean Storage

Figure SPM.5. Overview of ocean storage concepts. In "dissolution type" ocean storage, the CO, rapidly dissolves in the ocean water, whereas in "lake type" ocean storage, the CO, is initially a liquid on the sea floor (Courtesy CO2CRC).

CO2: Density versus Depth, Pressure and Temperature

Geologic Storage

igure SPM.4. Overview of geological storage options (based on Figure 5.3) (Courtesy CO2CRC)

CO2 Trap and Seal – Residual Trapping (Krevor, 2015)

Fig. 2. A schematic of the relative importance of various trapping mechanisms over time, from Benson et al. (2005, 2012). Residual trapping is significant both in the amount of trapping capacity it provides as well as for the speed over which residual trapping takes place, simultaneously with water influx into the migrating plume.

CO2 Trap and Seal – Residual Trapping

Relative Permeability Curves – Residual CO2 Saturation

CO2 Trap and Seal – Solution (Furnival, 2015)

Static and Dynamic Modeling_1 "Leaky" Structure at Penobscot

Injection of CH4

Static and Dynamic Modeling_1 "Leaky" Structure at Penobscot

CNSOPB Call For Bids NS13-1 Summary Document, p. 1-64

• Detailed depth mapping shows:

- B-41 trap is fault dependent
- L-30 is at the edge of a low relief 4-way dip closure

Implications

- In high NTG fluvio-deltaic section crossfault leak is prevalent in fault dependent traps
- Fault dependent hydrocarbon columns in undrilled structures will likely be short, sporadic and hard to predict
- Undrilled structures are likely 'leaky' and are poor candidates for CCS

• Tested these ideas by injecting gas:

- at high pressure (600 bars)
- for 50 years in 3 wells below Sand 7
- then ran model up to 9999 years.
- Used L-30 & B-41 'stratigraphies'
 - 'closest point' algorithm maximises topseal effectiveness and potential to trap hydrocarbons

2019: 0 years – start of model

2069: 50 years – end of injection period

2119: 100 years

2519: 500 years

3019: 1000 years

4019: 2000 years

5019: 3000 years

6019: 4000 years

7019: 5000years

8019: 6000 years

accumulation at maximum

9019: 7000 years

1250m

9999: ~7880 years

- L-30 still equilibrating at limit of simulation
 Simulation continued
- in separate model with shallower injection wells and younger stratigraphy

Static and Dynamic Modeling_2 "Leaky" Structure at Migrant

Injection of CH4
Static and Dynamic Modeling 2 "Leaky" Structure at Migrant

Migrant N-20: Mobil TetCo and PetroCanada (1978)

SSTVD Vshale 0000 % 1.250 Penobscot 4-way dip closure – with 'minor' crestal faulting ٠ Migrant N-20 High Net to Gross section ٠ Residual gas in hydro- & over-pressured zones Venture ٠ Short gas DST from fractured deep tight sand ٠ Sable Island Naskapi S.Venture Upper Dynamic modeling demonstrates cross-fault leak ٠ Thebaud Missisauga Deep Panuke (throws > shale thicknesses at minor crestal fault N.Triumph Overlying monocline modeled here for CCS O Marker Alma Missisauga KEGESHOOK MIGRANT I THEBAUD I-94 & MicMac Bounding faul BANQUEREAU N-20 LOGAN CANYON Dip Closu Hrz4/Segment ABENA 3550.0 -3600.00 -3650.00 3700.00 380 -3750.00

4200

Dip Closure Crestal fault Depth Structure Hrzn 4 Sable Project DPA Vol 2 Fia2.1.3.1(b)

3800.00

2500m

1:56798

Migrant Static Model

- Log Density with Vshale cut off
- ML Phi-K relationship from core analyses
- Injected CH4 into perfs near base hydropressured zones
- Model extends to top of structural closure

Sable well

Kx=POW(10,13*PHI-0.4)

Sven-1 OB corrected
Alma F-67
Adamant N-97

Penobscot B-41
 Kx=POW(10.16*PHI-1.5)

0.30

0.40

2000: 0 years – start of model

2050: 50 years – of injection

2100: 100 years - end injection

2200: 100 years injection – 100 years equilibration

2300: 100 years injection – 200 years equilibration

2400: 100 years injection – 300 years equilibration

2500: 100 years injection – 400 years equilibration

2600: 100 years injection – 500 years equilibration

3100: 100 years injection – 1000 years equilibration

4100: 100 years injection – 2000 years equilibration

5100: 100 years injection – 3000 years equilibration

6100: 100 years injection – 4000 years equilibration

7100: 100 years injection – 5000 years equilibration

8100: 100 years injection – 6000 years equilibration

9999: 100 years injection – 7899 years equilibration

Static and Dynamic Modeling_3 High Integrity (High Adequacy) Trap South Venture

Injection of CH4

Static and Dynamic Modeling_3 High Integrity Structure at S.Venture

South Venture 0_59: Mobil et al 1982. Plus 3 development wells produced 315 BCF gas (history matched in this study)

Depth Structure Sand SV3

South Venture Static Model

- Log Density with Vshale cut off
- ML Phi-K relationship from core analyses
- Injected CH4 into perfs near base hydropressured zones
- Model extends to top of structural closure

Vshale Porosity

2000: 0 years – start of model

Depth Structure Sand SV3

2100: 100 years - end injection

Depth Structure Sand SV3

2600: 100 years injection – 500 years equilibration

Depth Structure Sand SV3

3100: 100 years injection – 1000 years equilibration

Depth Structure Sand SV3

4100: 100 years injection – 2000 years equilibration

Depth Structure Sand SV3

5100: 100 years injection – 3000 years equilibration

Depth Structure Sand SV3

6100: 100 years injection – 4000 years equilibration

Depth Structure Sand SV3

7100: 100 years injection – 5000 years equilibration

Depth Structure Sand SV3

8100: 100 years injection – 6000 years equilibration

Depth Structure Sand SV3

9990: 100 years injection – 7890 years equilibration

Static and Dynamic Modeling_4 & 5 Regional Upper Missisauga model below Naskapi Shale Deep (unconfined) Saline Aquifers above South Venture and Migrant Injection of CO2

Regional CCS Model

- Structure based on GSC Missisauga maps
- Properties calculated from DivestCo wireline data & core lab data
- Injecting CO2 above structural traps

Regional Upper Missisauga Model Migrant Cross-Section

• Perf'd in Upper Missisauga below Naskapi Shale

Regional Upper Missisauga Model

South Venture Cross-Section

Perf'd in Upper Missisauga below Naskapi Shale

Inject 2.5 Mt / well / year for 50 years – then equilibrate for 5000 years

Regional Upper Missisauga Model

- 2.5Mt CO2 per year per well for 50 years
- Rate and Time Limit Based on Captain Sandstone Modeling in Moray Firth (Jin, 2012)
- This modeling does not include dissolution of CO2

2050: 50 years injection

3050: 50 years injection – 1000 years equilibration

4050: 1000 years injection – 2000 years equilibration

5050: 50 years injection – 3000 years equilibration

6050: 50 years injection – 4000 years equilibration

7050: 50 years injection – 5000 years equilibration

Sensitivity Inject 10 Mt / well / year for 100 years – then equilibrate for 500 years

2000: 0 years injection

2100: 100 years injection

2200: 100 years injection – 100 years equilibration

2300: 100 years injection – 200 years equilibration

2400: 100 years injection – 300 years equilibration

2500: 100 years injection – 400 years equilibration

2600: 100 years injection – 500 years equilibration

CCS Potential: Comparison Sable, Utsira, Captain

	Thickness Dimension		million tonnes		
	m	km	Low	High	
Captain	0-600	60 x 100	358	1668	2011 SCCS
Utsira & Skade	0-1000	90 x 450	500	1500	2011 NPD
Missisauga	0-5000	150 x 700	?	?	Calc he re
Sable depleted hydrostatic reservoirs			~50		
NS Power annual emissions			~8		2012 NSP
Canada Fossil CO2 emissions 2017			~600		Wikipedia
Global Fossil CO2 emissions 2017			~37,000		Wikipedia

What Next for Sable?

- Drill more leaky 'rollover anticlines' & 'carbonate drapes'?
- Scotian Margin identified as having world class CCS potential in 2005 (IPCC)
- CCS storage capacity could exceed estimates for Sleipner, Norway (ongoing 20 years) and the Captain Sandstone (planned project in the Moray Firth) which similarly rise to the seabed (or within a few hundred meters).
- What physical mechanisms prevent buoyant CO2 from reaching seabed?
 - migrating CO2 plume leaves about 30% residually trapped gas & over thousands of years migrating CO2 dissolves in saline aquifers and sinks
- What injection rates and pressures enable safe storage? Of how much CO2?
 > Addressed through dynamic modeling, here and in N. Sea (Eclipse 300)
- CCS investigated onshore Nova Scotia lacks suitable reservoirs
- Poster by Max Angel scoping potential costs of CCS in the Sable Subbasin

