Integrated Precision Harvesting System: A Promising Technology to Improve Berry Yield and Quality

Precision Agriculture Research Team

Objectives

 Develop improved integrated harvesting management systems = coupling of mechanical, biological and environmental processes

Increase the berry picking efficiency of blueberry harvester = LOWER cost of production

Improved Integrated Harvesting System

- ➤ Sensor Fusion System to Identify Sources of Error
- **▶** Quantification of Multiple Fruit Losses During Harvesting
- ► Effect of Crop Characteristics and Machine Parameters on Berry Losses
- **▶**Effect of Harvest Timings and Climatic Condition on Fruit Losses Design
- **Analysis and Comparison of Different Harvester Heads**
- ➤ Impact of Relative Velocity and Different Header Forces on Fruit Picking
- **Efficiency**
- ➤ Development of Bio-System Modeling for Coupling of Biological, Environmental and Mechanical Processes
- **➤On-Line Computer Program for Precise Berry Harvesting Recommendations**

Faculty of Agriculture

Precision Agriculture Research Team

Quantification of Losses

Pre-Harvest Loss

Fruit Yield

Fruit on the Ground

Fruit on the shoot

Fruit in Debris from blower

3 m Fruit on Pan (Back side of head)

Plant Height

Fruit Zone

Plant Density

Stem Diameter

Berry Sizes

Leaf wetness

Soil moisture

Plant pull

Slope

GPS Location

Quantification of Losses

Experiment Design Parameters

Speed (mile/hr)	Revolutions (rpm)	Sample Collection	
0.75, 1.0,	26		
1.25	26		
	26		
0.75, 1.0,	28		
1.25	28		
	28		
0.75, 1.0,	30		
1.25	30		
	30		

Variables/Treatments:

Ground Speed: 0.75, 1.0 and 1.25 mph

Header Rotations: 26, 28 and 30 rpm

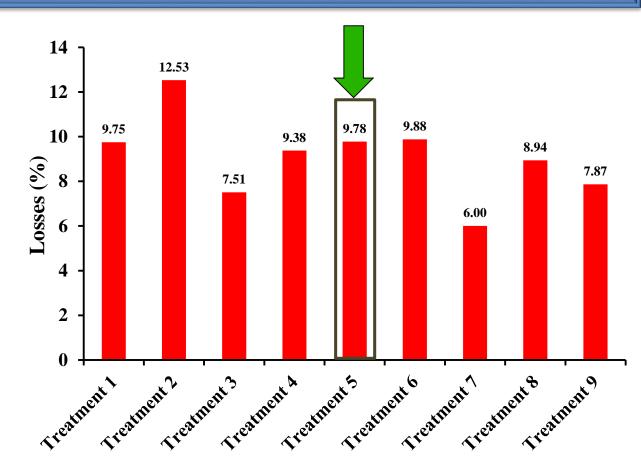
Quantification of Losses – Small Scott

Trt. 1: 0.75 mph and 26 rpm

Trt. 2: 0.75 mph and 28 rpm

Trt. 3: 0.75 mph and 30 rpm

Trt. 4: 1.0 mph and 26 rpm


Trt. 5: 1.0 mph and 28 rpm

Trt. 6: 1.0 mph and 30 rpm

Trt. 7: 1.25 mph and 26 rpm

Trt. 8: 1.25 mph and 28 rpm

Trt. 9: 1.25 mph and 30 rpm

Avg. Plant Height = 23 cm Avg. Density = 560 plants m⁻² Area = 4.6 acres Fruit Yield = 2600 lb acre⁻¹

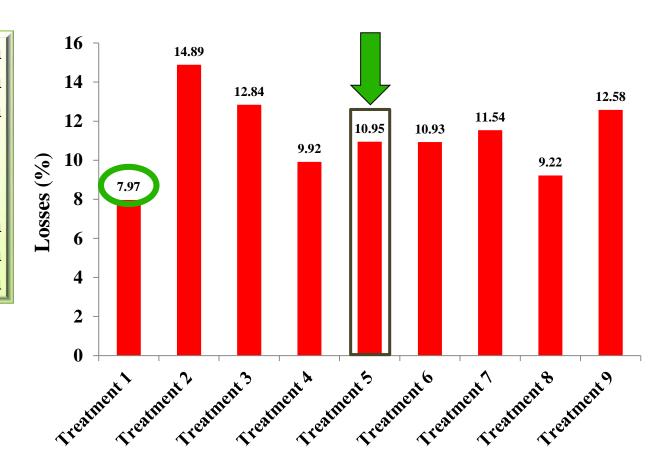
Quantification of Losses – Cooper Site

Trt. 1: 0.75 mph and 26 rpm

Trt. 2: 0.75 mph and 28 rpm

Trt. 3: 0.75 mph and 30 rpm

Trt. 4: 1.0 mph and 26 rpm


Trt. 5: 1.0 mph and 28 rpm

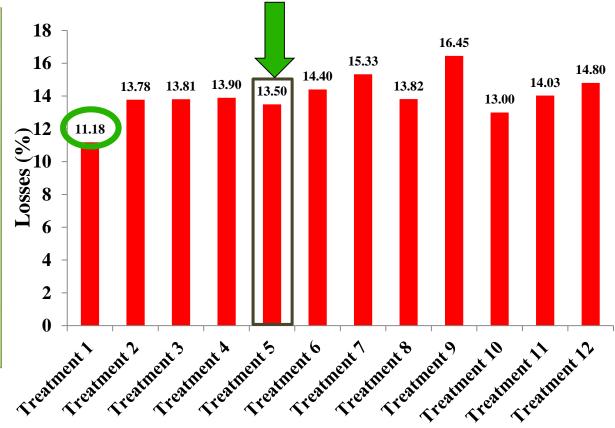
Trt. 6: 1.0 mph and 30 rpm

Trt. 7: 1.25 mph and 26 rpm

Trt. 8: 1.25 mph and 28 rpm

Trt. 9: 1.25 mph and 30 rpm

Avg. Plant Height = 24 cm Avg. Density = 560 plants m⁻² Area = 47.9 acres Fruit Yield = 3700 lb acre⁻¹


Quantification of Losses – Tracdie site

Trt. 1: 0.75 mph and 26 rpm
Trt. 2: 0.75 mph and 28 rpm
Trt. 3: 0.75 mph and 30 rpm
Trt. 4: 1.0 mph and 26 rpm
Trt. 5: 1.0 mph and 28 rpm
Trt. 6: 1.0 mph and 30 rpm
Trt. 7: 1.25 mph and 26 rpm
Trt. 8: 1.25 mph and 28 rpm
Trt. 9: 1.25 mph and 30 rpm

Trt. 10: 0.6 mph and 18 rpm

Trt. 11: 0.6 mph and 20 rpm

Trt. 12: 0.6 mph and 22 rpm

Avg. Plant Height = 27 cm Avg. Density = 474 plants m⁻² Area = 4.0 acres Fruit Yield = 5500 lb acre⁻¹

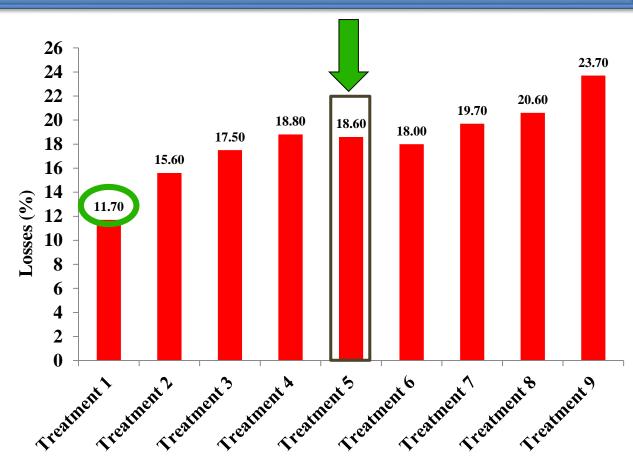
Quantification of Losses – Frankweb site

Trt. 1: 0.75 mph and 26 rpm

Trt. 2: 0.75 mph and 28 rpm

Trt. 3: 0.75 mph and 30 rpm

Trt. 4: 1.0 mph and 26 rpm


Trt. 5: 1.0 mph and 28 rpm

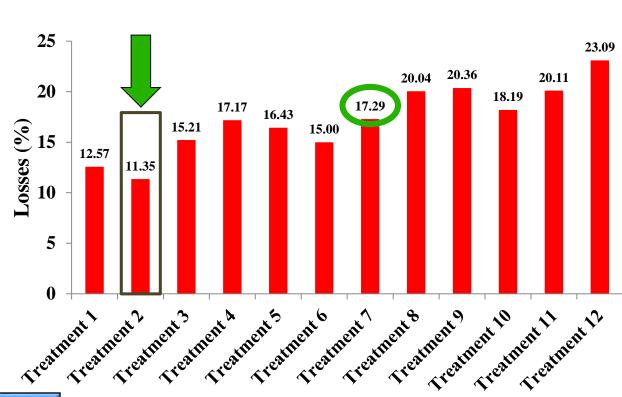
Trt. 6: 1.0 mph and 30 rpm

Trt. 7: 1.25 mph and 26 rpm

Trt. 8: 1.25 mph and 28 rpm

Trt. 9: 1.25 mph and 30 rpm

Avg. Plant Height = 22 cm Avg. Density = 646 plants m⁻² Area = 11.4 acres Fruit Yield = 8100 lb acre⁻¹


Quantification of Losses – Joe Slack's Site

Trt. 1 0.75 mph and 24 rpm
Trt. 2 0.75 mph and 26 rpm
Trt. 3 0.75 mph and 28 rpm
Trt. 4 0.75 mph and 30 rpm
Trt. 5 1.0 mph and 24 rpm
Trt. 6 1.0 mph and 26 rpm
Trt. 7 1.0 mph and 28 rpm
Trt. 8 1.0 mph and 30 rpm
Trt. 8 1.0 mph and 30 rpm
Trt. 9 1.25 mph and 24 rpm

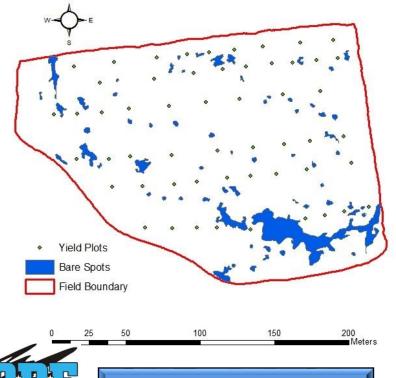
Trt. 10 1.25 mph and 26 rpm

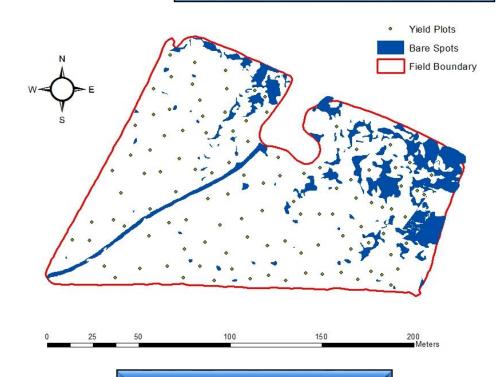
Trt. 11 1.25 mph and 28 rpm

Trt. 12 1.25 mph and 30 rpm

Fruit yield increased = 474 lb acre-1

Avg. Plant Height = 20 cm Avg. Density = 603 plants m⁻² Area = 9.6 acres Fruit Yield = 7900 lb acre⁻¹


16 Bar Head vs. 12 Bar Head



Site Selection

Robie Glenn Site

Hardwood Hill Site

16 Bars vs. 12 Bars – Total Losses

Trt. 1: 0.75 mph and 26 rpm

Trt. 2: 0.75 mph and 28 rpm

Trt. 3: 0.75 mph and 30 rpm

Trt. 4: 1.0 mph and 26 rpm


Trt. 5: 1.0 mph and 28 rpm

Trt. 6: 1.0 mph and 30 rpm

Trt. 7: 1.25 mph and 26 rpm

Trt. 8: 1.25 mph and 28 rpm

Trt. 9: 1.25 mph and 30 rpm

Avg. Plant Height = 19 cm Avg. Density = 646 plants m⁻² Area = 5.1 acres Fruit Yield = 6973 lb acre⁻¹

dal.ca

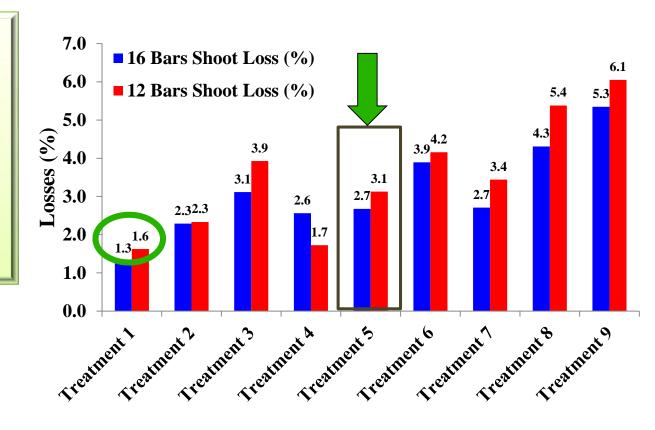
16 Bars vs. 12 Bars – Shoot Loss

Trt. 1: 0.75 mph and 26 rpm

Trt. 2: 0.75 mph and 28 rpm

Trt. 3: 0.75 mph and 30 rpm

Trt. 4: 1.0 mph and 26 rpm


Trt. 5: 1.0 mph and 28 rpm

Trt. 6: 1.0 mph and 30 rpm

Trt. 7: 1.25 mph and 26 rpm

Trt. 8: 1.25 mph and 28 rpm

Trt. 9: 1.25 mph and 30 rpm

dal.ca

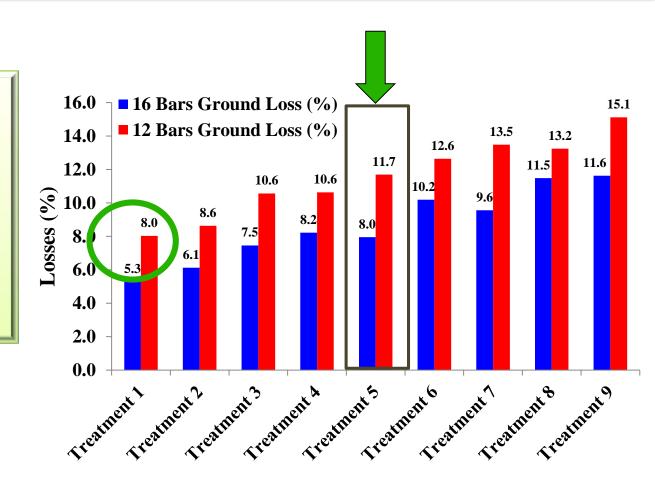
16 Bars vs. 12 Bars – Ground Loss

Trt. 1: 0.75 mph and 26 rpm

Trt. 2: 0.75 mph and 28 rpm

Trt. 3: 0.75 mph and 30 rpm

Trt. 4: 1.0 mph and 26 rpm


Trt. 5: 1.0 mph and 28 rpm

Trt. 6: 1.0 mph and 30 rpm

Trt. 7: 1.25 mph and 26 rpm

Trt. 8: 1.25 mph and 28 rpm

Trt. 9: 1.25 mph and 30 rpm

dal.ca

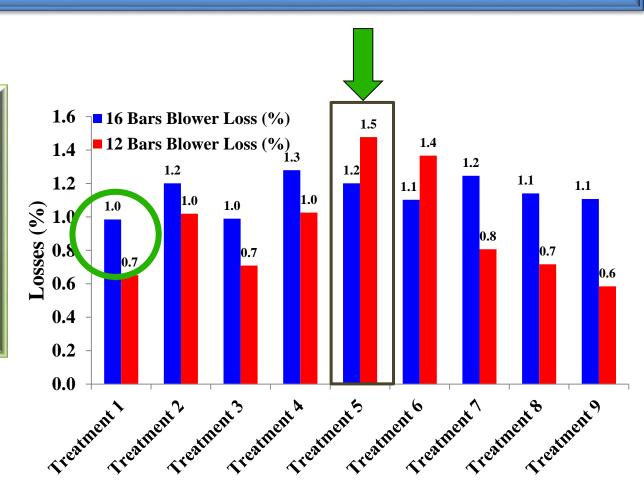
16 Bars vs. 12 Bars – Blower Loss

Trt. 1: 0.75 mph and 26 rpm

Trt. 2: 0.75 mph and 28 rpm

Trt. 3: 0.75 mph and 30 rpm

Trt. 4: 1.0 mph and 26 rpm


Trt. 5: 1.0 mph and 28 rpm

Trt. 6: 1.0 mph and 30 rpm

Trt. 7: 1.25 mph and 26 rpm

Trt. 8: 1.25 mph and 28 rpm

Trt. 9: 1.25 mph and 30 rpm

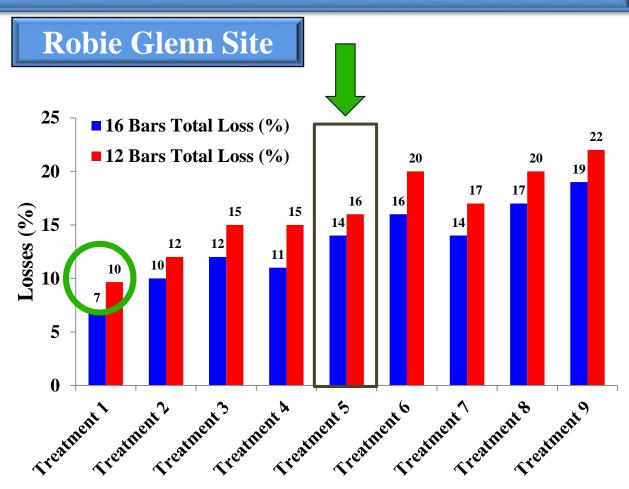
16 Bars vs. 12 Bars – Total Losses

Trt. 1: 0.75 mph and 26 rpm

Trt. 2: 0.75 mph and 28 rpm

Trt. 3: 0.75 mph and 30 rpm

Trt. 4: 1.0 mph and 26 rpm


Trt. 5: 1.0 mph and 28 rpm

Trt. 6: 1.0 mph and 30 rpm

Trt. 7: 1.25 mph and 26 rpm

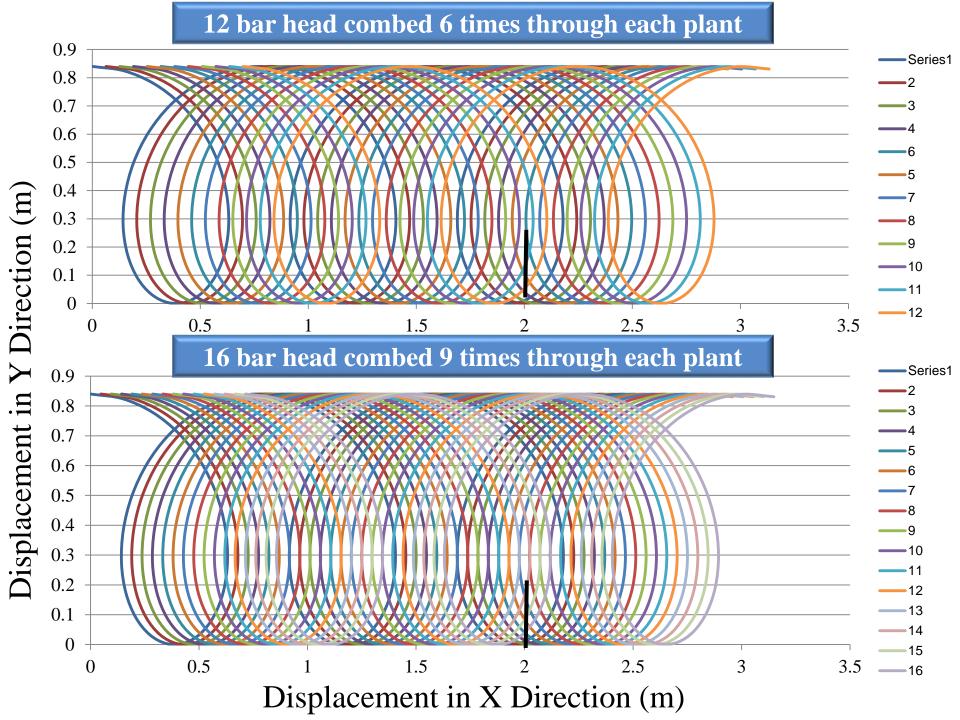
Trt. 8: 1.25 mph and 28 rpm

Trt. 9: 1.25 mph and 30 rpm

Avg. Plant Height = 23 cm Avg. Density = 560 plants m⁻² Area = 8.0 acres Fruit Yield = 3385 lb acre

Teeth Bar Spacing

16 Bar Head


12 Bar Head

Spacing between the bars = 1.37 inches

Spacing between the bars = 1.83 inches

Head Capacity Comparison

16 Bar Head	
Max Yield Harvestable (Kg/Ha)	25568
5% Leaves by Volume	24290
10% Leaves by Volume	23011
15% Leaves by Volume	21733

12 Bar Head	
Max Yield Harvestable (Kg/Ha)	19176
5% Leaves by Volume	18217
10% Leaves by Volume	17259
15% Leaves by Volume	16300

The capacity for the 12 bars head is 25% lower than 16 bars head

Slow video of 16 Bars and 12 Bars (Back view)

16 bars vs. 12 bars

Aug.21 (1 mph/28 rpm)

Slow video of 16 Bars and 12 Bars (Front view)

16 bars

VS.

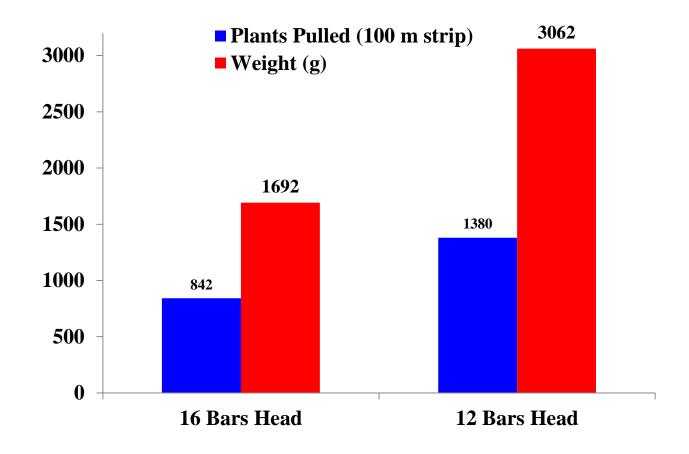
12 bars

Aug.21 (1 mph/28 rpm)

Slow video of 16 Bars and 12 Bars (Side view)

16 bars vs. 12 bars




Aug.21 (1 mph/28 rpm)

16 Bars vs. 12 Bars – Plants Pulled (Before Rain)

16 Bars and 12 Bars – Plants Pulled (After Rain)

Slow video of 16 Bars and 12 Bars (Before rain)

16 bars

VS.

12 bars

Aug.22 (1 mph/28 rpm)

Slow video of 16 Bars and 12 Bars (After rain)

Economic Impact

Additional Revenues	Additional Expenses					
Avg. yield per ha = 3360 kg	\$	No additional expenses will be	\$			
		required				
Avg. revenue per ha = $2.1/\text{kg}$	\$ 7056		\$			
improved yield/ha (say min. increase	\$		\$			
5%) =168 kg						
Increase in revenue/ha with improved	\$ 353		\$			
systems						
Increase in NS revenue = 16,000 ha*	\$ \$5.5 mill		\$			
\$353						
Total A:	\$ 5.5 mill	Total D:	\$			
Reduced Expenses		Reduced Revenues				
Labor expenses might be reduced with	\$	No reduction in revenue	\$			
automation						
	\$		\$			
	\$		\$			
	\$		\$			
	\$		\$			
Total B:	\$	Total E:	\$			
C: (Total A + Total B)	\$ 5.5 mill	F: (Total D + Total E)	\$			
Net Gain: C: \$ 5.5 mill - F: \$ = \$ 5.5 million						

Conclusions

- ✓ The 12 bar head provides more space for plants which causes the head to take bigger bites
- ✓ The 12 bar head combed through each plant 6 times, while the 16 bar head combed through each plant 9 times
- ✓ The capacity of the 12 bar head is 25% lower than 16 bar head
- ✓ The 16 bar head keep the berries more securely inside the header
- ✓ The 12 bar head pulled 12% and 39% more plants when compared with 16 bar head during dry and wet conditions, respectively
- ✓ Field experimentation, visual observations and video clips proved that there were significantly higher losses with 12 bar head

We propose harvester should be operated at a combination of 0.75 mph and 26 rpm in wild blueberry fields with yield over 3000 kg ha⁻¹ to reduce berry losses

ACKNOWLEDGEMENTS

Bragg Lumber Company Limited

P. O. Box 60 Collingwood, Nova Scotia BOM 1E0

Phone 686-3254 Fax 686-3734

