

Automated Prototype Variable Rate Sprayer for Spot Application of Agrochemicals

Qamar Zaman, PhD

Associate Professor and Machinery Systems Research Chair Engineering Department

Wild Blueberry fields need to be managed site-specifically using VRT, Sensors, Controllers, DGPS, Digital photography,.....

Our solution – A variable rate sprayer

- Technology that automatically senses weeds
 - Activates specific nozzles only when necessary
 - Real-time detection versus GIS and prescription maps
 - Work developed with wild blueberry industry but many possible applications

Cost-Effective Prototype Variable Rate Sprayer

- Boom width = 20 ft
- Boom sections = 8, each = 2.5 ft
- Boom height = 30 in.
- Each section = one ultrasonic
- 8-channel computerized controller
- DJ Land Manager II controller

Look-Ahead Feature

Trial	Weed sensing time	Nozzle open time	Difference	Average look- ahead delay time (sec.)
1	6.30	6.33	.033	
2	10.033	10.10	.067	
3	13.866	13.933	.067	0.054 sec.
4	17.33	17.366	.033	
5	20.466	20.533	.067	

Flow Rate Measurements (Dickey John Land Manager II)

Flow Rate Measurements (Dickey John Land Manager II)

DJ Settings @ 20 gal/acre

Number of Nozzles											
Flow rate (litre)	All 8	1	1,2	1,2,3	1,2,3,4	1,2,3,4,5	1,2,3,4,5,6	1,2,3,4,5,6,7			
Measured	36.9	12.0	13.3	14.9	18.6	18.9	18.9	18.6			
DJ Controller	37.4	11.7	13.3	15.2	19.0	19.4	19.6	19.0			
Difference (%)	1.4	2.5	0	2.0	2.1	2.0	1.5	2.1			

Video- VR Sprayer Testing in Hay Field

VR Sprayer Evaluation in a WBB Field (Goldenrod)

VR Sprayer Evaluation Using Water Sensitive Papers in a WBB Field (Goldenrod)

Water Sensitive Papers in Uniform and VR side of the field

Real-Time Kinematic-DGPS

Base Station

Weed and Spray maps (Goldenrod)

Chemical Saving with Spot-Application

May

June

Early July

Up to this point, all work was done with ultrasonics to prove the controller. All new work is with imaging technology

Sheep sorrel, Fescue Grasses, Moss and Spray Maps

Commercial Sprayer Prototype

John Deere 6430 Tractor and MS P1135E Sprayer

Commercial Sprayer Prototype

Commercial Sprayer Prototype

Cost Analysis- Conventional vs Spot-Specific

(for one application only)

- Target: Sheep Sorrel
- Chemical: Kerb
- Area sprayed = 300 acres
- Assume weed cover = 20%
- Application cost = \$180/acre
- Total cost (Uniform application) = 300 X 180 = \$54,000
- Cost of Spot- application
- Chemical cost saving with spot- application = \$43,200 or \$144/acre

= \$10,800

- Currently about 100,000 acres in production
 - savings of \$14.4 million per application

Benefits

- Fewer trips to set water for sprayer
- Saves time (10 hours) + fuel, and labor
- Less impact on ENVIROMENT

VR Sprayer Costs

Additional cost of converting to VR sprayer (4 wheeler prototype):

- Computerized variable rate 8-channel controller (Controller + Sensors/Cameras + GPS) = \$3,700
- Dickey John Land Manager II controller (Controller + GPS + linear flow control valve, flow meter) = 3,500
- Wiring, etc. = <u>300</u>
- Total cost =

\$7,500.00

Tractor prototype:

Commercial sprayer (\$11,000) + VR modifications (\$15,000) = \$26,000

Technology advantages

- Easy user-friendly setup on a touch screen- no complicated switches.
- Wireless convenience- setup is possible some distance from the controller.
- Automatic compensation for changing ground speed no need to manually readjust sensors.
- Manual speed input is possible in case there is GPS signal outage.
- Adjustable front and back buffers for precise overlapping of agrochemical applications on targets.
- Accurate placement of agrochemical.
- Cost-Effective (Topcon, Green seekers, Holland Scientific)

Technology Benefits

- Precise application of pesticides reduces agrochemical use
- Lowers pressure on environment
- Reduces operating costs to producers
- Open new markets as only spraying the weeds
 - MRL (Maximum Residue Limits) is very important in many markets (e.g. Japan and Germany)
 - The technology sprays the weeds and not the fruit

Next Steps

- Identify the products we have
 - Software, consulting, design/redesign, customization
- Identify market potential multiple uses
- Identify potential licensees

 Doug Bragg Enterprises and Bragg Lumber is very interested
- Identify method of commercialization
- Other? help from Innovacorp to commercialize

ACKNOWLEDGEMENTS

Bragg Lumber Company Limited

P. O. Box 60 Collingwood, Nova Scotia B0M 1E0

Phone 686-3254 Fax 686-3734

Nova Scotia's ACAAF Council

Advancing Canadian Agriculture and Agri-Food

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Canadä

