Evaluation of Cost-Effective Real-Time Slope Sensing System for Wild Blueberry

Q. Zaman, A. Schumann, K. Swain, D. Percival, T. Esau

Joint International Agricultural Conference

Wageningen, July 06 - 09, 2009

Wild Blueberry fields need to be managed site-specifically using VRT, Sensors, DGPS, Digital photography, Aerial images, GIS.....

- •WBB- Unique Crop
- Native- Northeastern
 North America
- Crop-Never cultivated
- Deforested Farmland
- Production cycle = 2 Years
- Total area = 79,000 ha
 Fruit yield = 82 million kg
 Value = \$352 million

Gentle to Severe Slope

Bare spots: 30%-50%

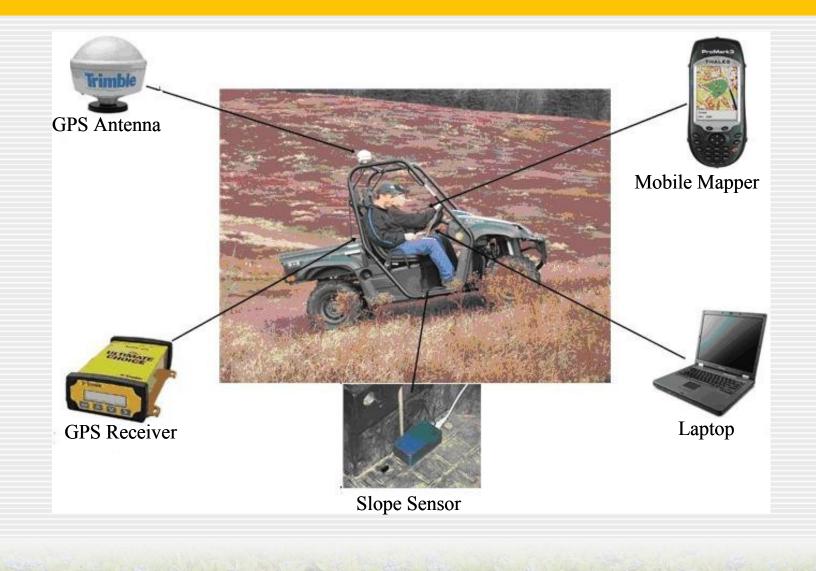
<u>Site-specific -</u> Agrochemicals can:

- ✓ Reduce chemical use
- ✓Increase input use efficiency and yield

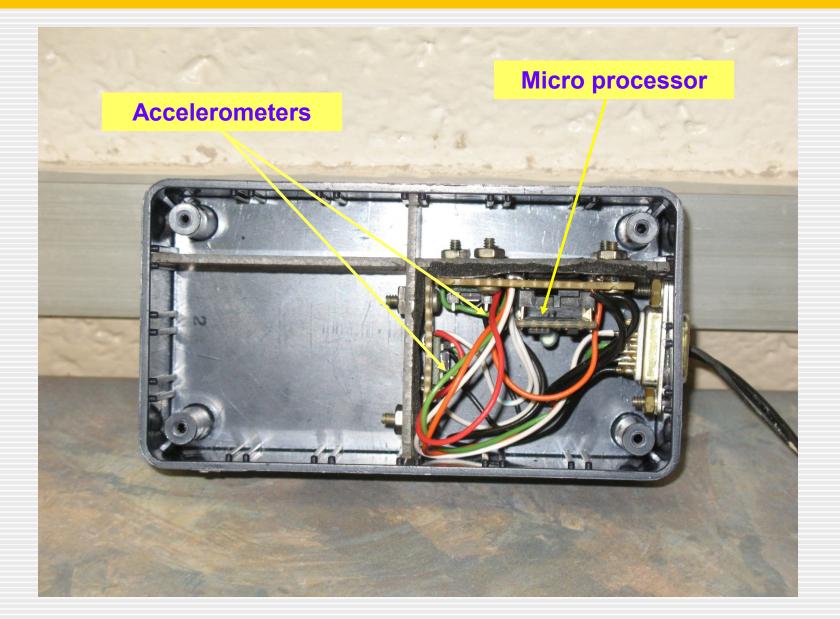
Grasses and Weeds

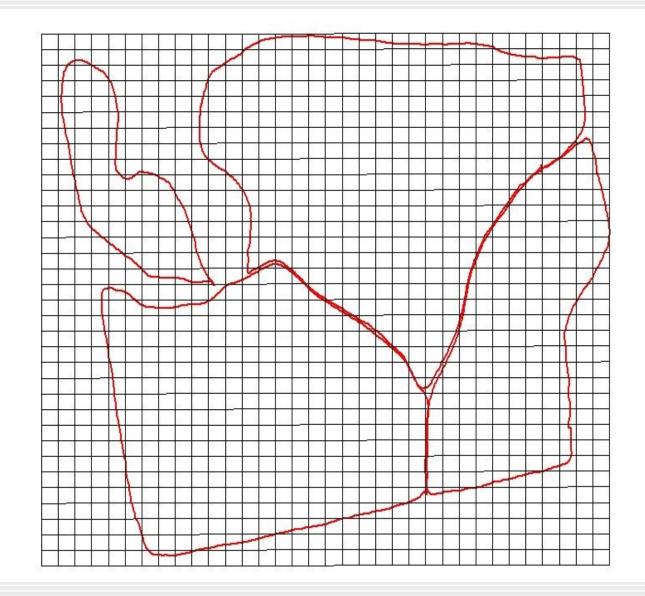
- ✓increase horticultural profitability
- ✓ decrease environmental pollution

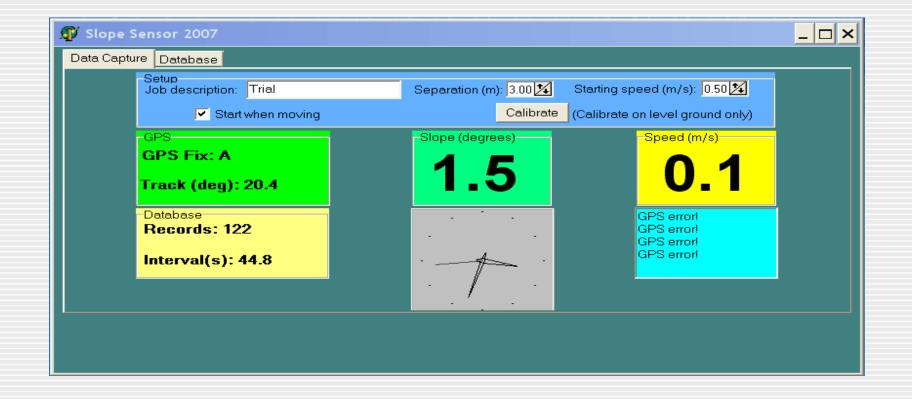
OBJECTIVES


•To develop cost-effective automated slope measurement and mapping system

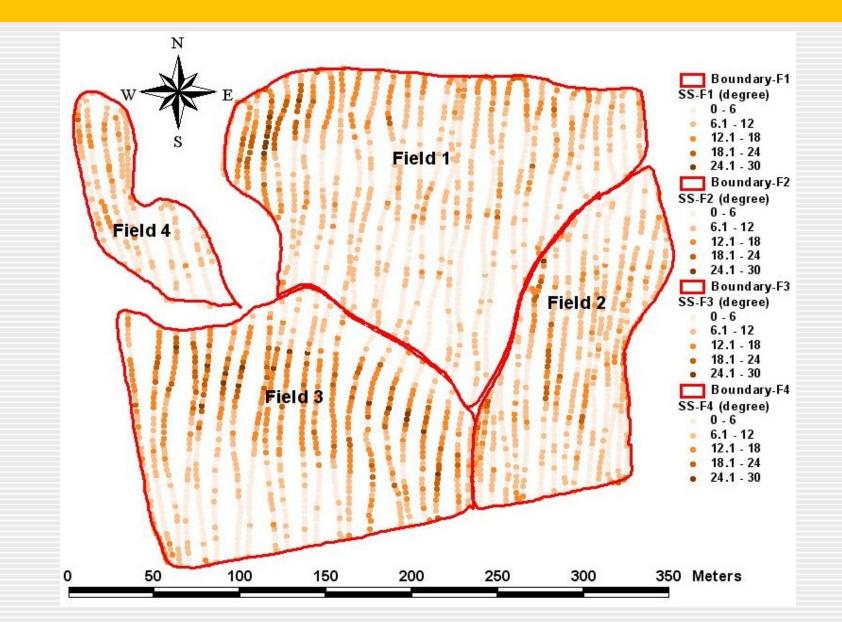
•To evaluate performance of slope system in commercial wild blueberry fields


Low-cost Slope Measurement and Mapping System

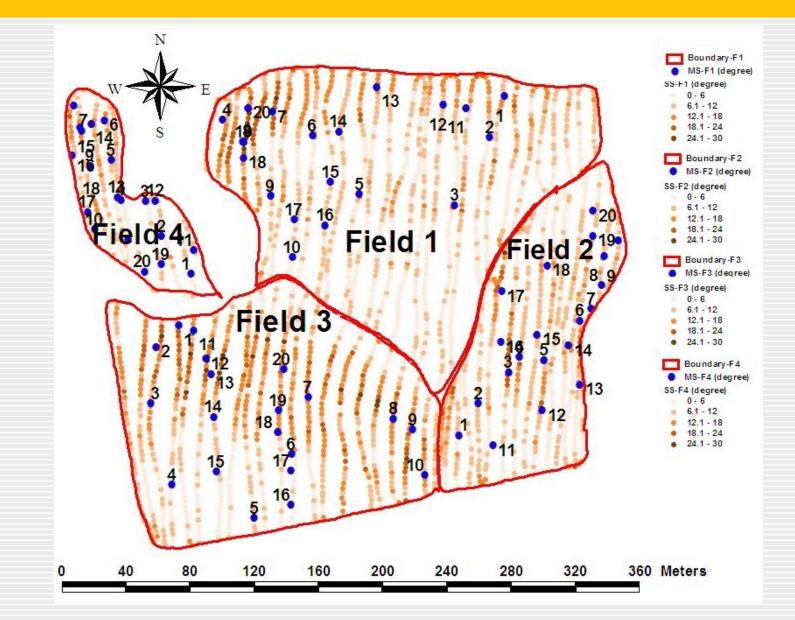

SMMS-Integration


Accelerometers Configuration

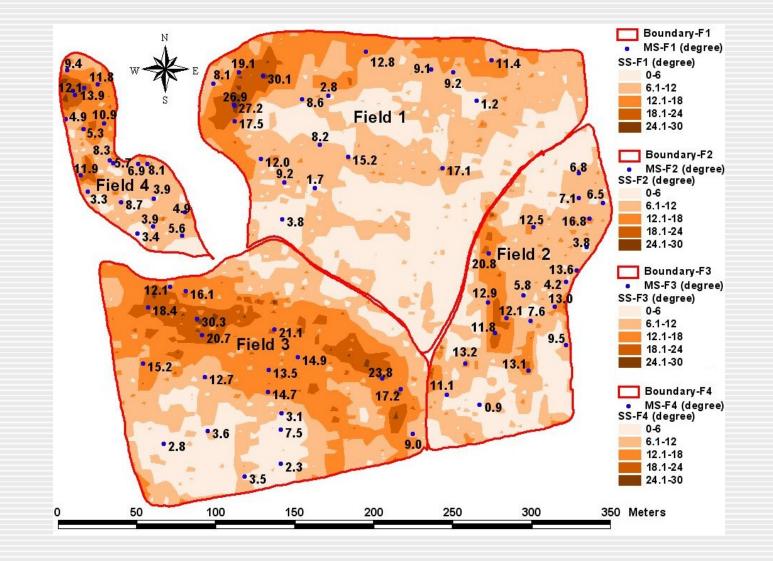
Gridlines for Field Tracking



Software Development

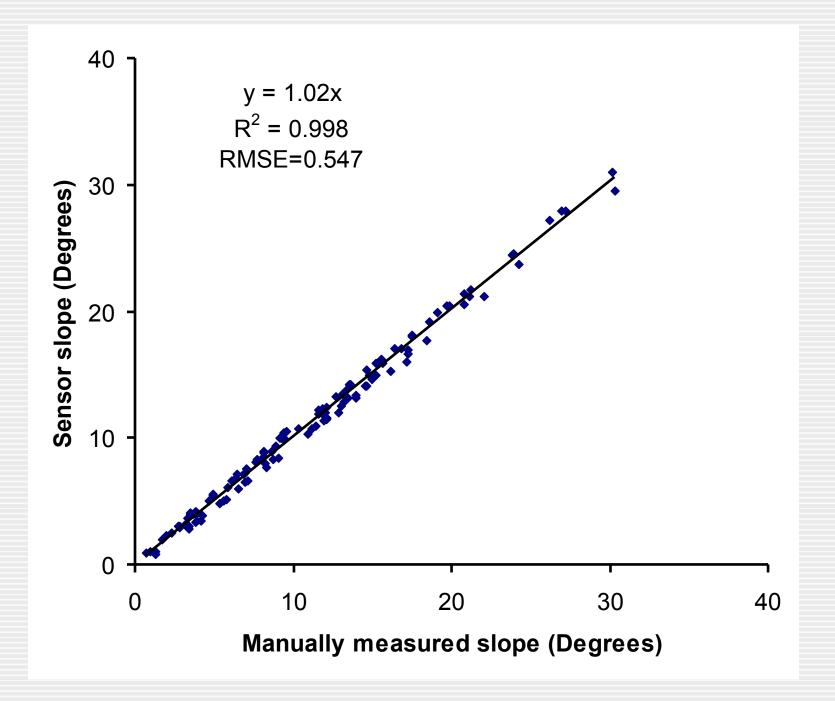


GIS map of slope angle raw data measured with SMMS


Points for Manual Slope Measurements

Craftsman SmartTool Plus digital level

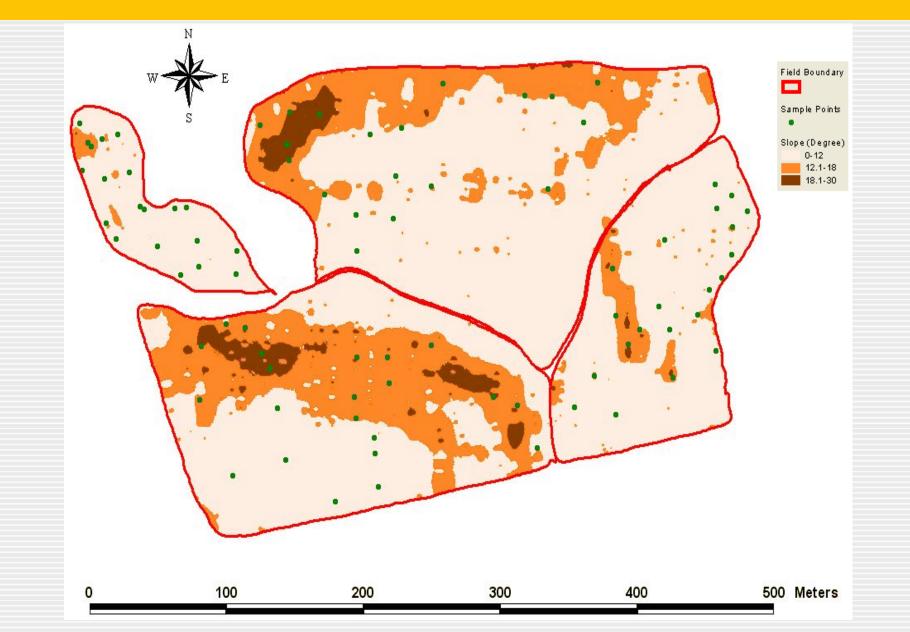
Interpolated maps of slope measured with SMMS and manually at selected points



Relationship between Sensor Data and Manual Data

Field 1 (n)	Mean	Max.	Min.	R ²	RMSE	t(d.f.) F-probability
MSF1 (20)	12.56	30.1	1.2	0.995	0.57	-0.108(38)
SSF1(20)	12.85	31.0	1.0			0.914
MSF2 (20)	10.12	20.8	0.9	0.990	0.135	-0.059(38)
SSF2 (20)	10.21	21.4	1.1			0.953
MSF3 (20)	12.81	30.3	1.3	0.995	0.111	-0.005(38)
SSF3 (20)	12.83	29.5	0.8			0.996
MSF4 (20)	7.82	13.9	3.3	0.981	0.165	0.072(38)
SSF4 (20)	7.98	13.4	3.5			0.942

Relationship between Sensor Data and Manual Data


Field 2 (n)	Mean	Max.	Min.	R^2	RMSE
	(degree)	(degree)	(degree)		
MSF5 (20)	11.97	26.2	1.3	0.994	0.207
SSF5 (20)	12.15	27.2	1.1		
MSF6 (20)	11.24	23.9	0.7	0.996	0.456
SSF6 (20)	11.66	24.6	1.0		

Percentage of field area under different slopes

Field	Total	Percentage of area in different slope classes				
	area (ha)	very low	low	moderate	steep	very steep
F1	2.97	32.6	43.4	15.5	7.2	1.3
F2	1.40	40.3	44.5	12.3	2.9	0
F3	2.54	26.1	32.3	30.3	9.4	1.9
F4	0.53	45.9	42.7	11.3	0	0
F5	3.09	25.0	45.5	22.5	1.0	0
F6	1.08	36.0	43.0	17.5	3.5	0

Sampling points in low, moderate and steep slope areas

Comparison of mean fruit yield, soil properties/leaf nutrients for different slope zones

Soil properties/	Site 1			Site 2		
Leaf nutrients/	Slope (degrees) Zones			Slope	(degrees)	Zones
Fruit yield	0-12	12-18	18-24	0-12	12-18	18-24
Yield (Mg ha⁻¹)	6.1 ^a	4.9 ^b	2.6 ^b	8.6 ^a	5.6 ^b	3.15 ^b
Soil Properties						
SOM (g kg⁻¹)	55.4 ^a	45.1 ^b	41.7 ^b	82.2 ^a	70.2 ^b	57.2 ^b
Soil pH	4.54 ^a	4.6 ^a	4.62 ^a	4.65 ^a	4.65 ^a	4.68 ^a
Leaf Nutrients						
N (g kg⁻¹)	16.3 ^a	16 ^a	13.2 ^b	18.1 ^{ab}	18.3 ^a	16.2 ^b
P (g kg ⁻¹)	1.3 ^a	1.2 ^{ab}	1.0 ^b	1.4 ^a	1.2 ^{ab}	1.0 ^b
K (g kg⁻¹)	4.1 ^a	4.2 ^a	3.8 ^a	4.4 ^a	4.3 ^a	4.1 ^a

Means followed by similar letter(s) in each row not significantly different from each other at the 5 % confidence level

Ranges for Wild Blueberry Leaf Nutrient in Nova Scotia

Leaf Nutrient	Minimum	Maximum
$N (g kg^{-1})$	16	20
$P(g kg^{-1})$	1.1	1.44
$K (g kg^{-1})$	4.1	5.2

Eaton et al. 2009. International Journal of Fruit Science

Conclusions

✓ The cheap, accurate, reliable, smaller size and light weight accelerometers could be used as tilt sensor to develop SMMS.

✓ The SMMS was sufficiently accurate to measure and map slope rapidly and reliably in selected wild blueberry fields.

The soil organic matter, leaf nutrients (N, P) and fruit yield were significantly different in steep slopes and low lying areas of each field

 This information could be used to generate prescription maps for site-specific application of agrochemicals to improve horticultural profitability and environmental protection.

The slope maps can also be used for safety reasons during field operations by adjusting the vehicle's speed at particular slopes.

 The operator can use slope maps as a guide for accurate application of agrochemicals by changing spray rates at particular slopes.

ACKNOWLEDGEMENTS

Bragg Lumber Company Limited

P. O. Box 60 Collingwood, Nova Scotia BOM 1E0

Nova Scotia Agricultural College

Nova Scotia's ACAAF Council

Advancing Canadian Agriculture and Agri-Food

and Agriculture et Canada Agroalimentaire Canada Canadä

UF FLORIDA

IFAS Research Citrus Research and Education Center

E-mail: qzaman@nsac.ca