## PRECISION AGRICULTURE TECHNOLOGIES FOR WILD BLUEBERRY

Qamar Zaman, PhD





Farm Meeting – Farming To Maximize Crop February 2<sup>nd</sup>, 2011



# Outline

- Precision Agriculture Objectives
  - Overview of Precision Agriculture Research (On-Going Projects)
  - Site-Specific Fertilization
  - Spot-Application of Pesticides

# PA covers a research area with the goal to optimize agricultural production systems in both time and spatial dimensions.

In practice, PA changes the way a farmer works

Wild Blueberry fields need to be managed site-specifically using Sensors, DGPS, Digital photography, GIS, VRT .....



Reduce the amounts of inputs required to grow cropsLOWER COST

Increase the efficiency of agrochemical utilization by crops = LOWER ENVIRONMENTAL IMPACT

•Automate and log farm operations = DATA ANALYSIS, EFFICIENCY & CONVENIENCE

## **Background of PARP and On-Going Research Projects**

## **PARP have been developing:**

- **Cost-Effective Automated Variable Rate Sprayer for Spot-Applications**
- >Automated Variable Rate Spreader for Site-Specific Fertilization
- Cost-Effective Automated Yield Monitoring System
- >An Automated Slope Sensing System
- **Cost-Effective Automated Machine Vision Systems to Map Bare Spot/Vegetation**
- Site-specific Technologies using Electromagnetic Induction Methods
- Evaluate Environmental Impact of VR Technologies
- Assess the Cost/benefit of the New PA Systems



## **Limiting Factor Restricts Yields**

- Find Limiting Factors
- Remove Their
  Restrictions



## **Photographic Technique for Fruit Yield Estimation**



## **Blue Pixels Ratio vs Fruit Yield**



## **Automated Real-Time Yield Monitoring System**



## **Fruit Yield and Bare Spot Map**



## Yield Monitoring System µEye for Double Head Harvester

#### **Custom Software**



## **Cost-effective automated slope sensing system**



## Automated Slope Sensing System - Video



## Sensed-slope and manually measured slope



#### **Electromagnetic Induction Method for Soil Properties Mapping**

#### DualEM-2



Soil Sensing: ≻3 m below soil surface ≻I m horizontal

## **Soil Properties and Nutrient Maps using DualEM**









## Soil Properties, Nutrients Fruit Yield in Different Slope Zones



## Automated Machine Vision System for Bare Spot Mapping



## **Slope and Elevation Map for Site-Specific Fertilization**



#### VRA Can Reduce Agrochemical Usage and Environmental Impacts



## Video- Prototype VR Spreader





#### **Testing/Evaluation Sensors/Cameras – Custom Software Development**





#### **Custom Software - 2 cameras**



## **Testing/Evaluation of Controllers - VR Sprayer Technology**

#### **Dickey-john Controller Flow Test**



#### Computerized 8-Channel VR Controller- Response Time Test







## **Cost-Effective Prototype Variable Rate Sprayer**

- Boom width = 20 ft
- Boom sections = 8, each = 2.5 ft
- Boom height = 30 in.
- Each section = one ultrasonic
- 8-channel computerized controller
- DJ Land Manager II controller



## Video- Prototype Sprayer Test in Hay Field



#### Water Sensitive Papers in Uniform and VR side of the field



## **Commercial Prototype VR Sprayer**



## Weed and Spray Maps (Goldenrod)



## **Chemical Saving with Spot-Application**



#### **April-May**



#### **June- August**



#### **October-November**





#### Customized Software for Weed, Bare Spot and Plant Detection



## Sheep sorrel, Fescue Grasses, Moss and Spray Maps



## Video-Spray on Sheep sorrel, Fescue grasses and Moss



## Spot-Application of Bravo – VR Sprayer with µEye Cameras



## Spot Application of Bravo with Prototype VR Sprayer

## Foliage (SA) VRP-1 VRP-2 VRP-3 VRP-4 VRP-5 Foliage (UA) UNP-1 UNP-2 UNP-3 UNP-4 UNP-5 UNP-6

#### **Bare Spot (SA)**







| Plot | Total Area        | B. S. Area | Saving |
|------|-------------------|------------|--------|
| No.  | (m <sup>2</sup> ) | $(m^2)$    | (%)    |
| 1    | 523.67            | 188.21     | 35.94  |
| 2    | 497.25            | 102.13     | 20.53  |
| 3    | 502.39            | 44.86      | 8.92   |
| 4    | 505.96            | 86.00      | 16.99  |
| 5    | 489.40            | 189.53     | 38.71  |
| 6    | 480.32            | 53.57      | 11.15  |

## **Spot-Application of Callisto- Prototype VR Sprayer**



## **Savings with Spot-Application (Callisto)**

| Plot #     | Total Area | Weed Area | Sprayed Area | Actual Savings |
|------------|------------|-----------|--------------|----------------|
|            | $(m^2)$    | $(m^2)$   | $(m^2)$      | (%)            |
| 1          | 476        | 40        | 45           | 90             |
| 5          | 462        | 32        | 58           | 87             |
| 7          | 488        | 170       | 177          | 64             |
| 10         | 466        | 3         | 5            | 98             |
| 13         | 500        | 4         | 35           | 93             |
| 18         | 442        | 16        | 54           | 88             |
| Total      | 2834       | 265(9.3%) | 374(13%)     |                |
| Ave. Savin | Ig         |           |              | 87             |

## **Commercial Prototype Variable Rate Sprayer**



#### Controllers



Solenoid Valve & Nozzle

Height Sensor

Camera

## **Commercial Prototype VR Sprayer during Field Operation**



Nozzle activated

Nozzle deactivated

## **Commercial Prototype VR Sprayer - Video**

![](_page_42_Picture_1.jpeg)

## Spot-Application of Kerb-Commercial Prototype VR Sprayer

![](_page_43_Figure_1.jpeg)

## Cost Analysis- Conventional vs Spot-Application (for one application only)

- Target: Sheep Sorrel
- Chemical: Kerb
- Area sprayed = 300 acres
- Assume weed cover = 25%
- Application cost = \$180/acre
- Total cost (Uniform application) = 300 X 180 = \$54,000
- Cost of Spot- application
- Chemical cost saving with Spot- application
- Fewer trips to set water for sprayer
- Saves time (10 hours) + fuel, and labor
- Less impact on ENVIROMENT

#### Additional cost of converting commercial to VR sprayer:

- Computerized variable rate 8-channel controller (Controller + Sensors/Cameras + GPS)
- Dickey John Land Manager II controller
- (Controller + GPS + linear flow control valve, flow meter)
- Wiring etc.
- Total initial cost: (Prototype Sprayer)
- <u>Commercial Prototype Sprayer</u>

![](_page_44_Picture_19.jpeg)

![](_page_44_Picture_20.jpeg)

- = \$2,600.00
- = <u>\$400.00</u>
- = \$7,000.00
- = \$14,000.00

## **Precision Agriculture Research Team - HQP**

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

![](_page_45_Picture_5.jpeg)

![](_page_45_Picture_6.jpeg)

![](_page_45_Picture_7.jpeg)

![](_page_45_Picture_8.jpeg)

![](_page_45_Picture_9.jpeg)

![](_page_45_Picture_10.jpeg)

# **ACKNOWLEDGEMENTS**

![](_page_46_Picture_1.jpeg)

![](_page_46_Picture_2.jpeg)

![](_page_46_Picture_3.jpeg)

Agriculture et Agriculture and Agroalimentaire Canada Agri-Food Canada

Hort, Cluster

Opportunities

Agency

![](_page_46_Picture_6.jpeg)

Natural Sciences and Engineering Research Council of Canada

![](_page_46_Picture_8.jpeg)

Atlantic Canada Agence de promotion économique du Canada atlantique

![](_page_46_Picture_10.jpeg)

![](_page_46_Picture_11.jpeg)

![](_page_46_Picture_12.jpeg)

![](_page_46_Picture_13.jpeg)

![](_page_46_Picture_14.jpeg)