

Effect of Soil Variability on Wild Blueberry Fruit Yield

By Aitazaz Farooque

Introduction

- Wild blueberry is a unique crop
- Native to Northeastern North America
- Situated in naturally acidic soils
- Total area = $86,000 \text{ ha}^1$
- Yield = 112 million kg and value = 470 million^1

1 Yarborough, D. E. 2009. Available at: www.wildblueberries.maine.edu/

- The increase in yield requires precise agricultural inputs
- Complex interactions occur among topography, climate, cultivation, crop, and agricultural inputs
- Substantial variability can cause yield variability

Introduction....

- Factors causing variation in crop yield include:
 - Soil type and topography
 - Man-related
 - Biological
 - Meteorological
- Management of agricultural inputs results in farm profitability and environmental protection

Grasses and Weeds

Bare spots: 30%-50% of total field area

Soil and crop variability

Site-specific application:

✓ Reduce chemical use

✓ Increase input use efficiency and yield

✓ Increase horticultural profitability

✓ Decrease environmental pollution

Zaman et al. 2008. Transactions of the ASABE 51(5): 1539-1544

Objectives

- To quantify the spatial patterns of variability in soil properties, leaf nutrient and fruit yield
- To identify the soil properties affecting the wild blueberry yield
- To develop management zones for site-specific fertilization

Material and Methods

Carmal Site

North River Site

Parameters Determined

Soil : NH_4^+ -N, NO_3^- -N, SOM, texture, moisture content, pH, and EC

Slope: ASMMS

Ground Conductivity: Dual EM

Leaf: % Nitrogen and other nutrients.

Growth Parameters: Height, plant density, no of buds, and branches

- **Crop:** Fruit yield
- Soil texture, and pH were measured once. Other soil properties were measured twice in sprout year and once in crop year

Methods....

- Hydrometer method for texture
- Loss on ignition method for SOM

- pH and EC meter
- NH₄⁺-N, NO₃⁻-N were analyzed using Auto Analyzer

- Moisture content was determined using TDR

Methods....

- Leaf samples were collected at tip dieback stage in 2009 and 1st week of June in 2010.
 - ICPES for leaf nutrients

 Plant growth parameters were determined in mid December, 2009

Methods....

• Fruit yield was mapped in 1st week of August, 2010

Zaman et al. 2008. Transactions of the ASABE 51(5): 1539-1544

Statistical Analysis

- Classical statistics
- Geostatistics was performed to quantify variability
- Regression analysis
- Cluster analysis

- Development of maps in Arc GIS 9.3
 - Soil, leaf nutrients, fruit yield and slope
- Kriging interpolation of data sets
- Development of management zones based on clustered data in Arc GIS 9.3

Characterization and Quantification of Variability in Soil Properties, Leaf Nutrients and Fruit Yield

- The coefficient of variation (CVs) is normally used to demonstrate the variability
- Soil properties are least variable if the CVs< 15%, moderate with CVs ranging from 15 to 35% and most with CVs > 35%¹

¹Wilding, L. 1985. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys. pp. 166-189

Descriptive Statistics (Carmal Site)

Parameters	Sampling Time	Min	Max	Mean	S.D	C.V (%)
	May, 2009	1.60	10.90	5.81	2.01	34.52
HCP (mS m^{-1})	July, 2009	1.2	11.0	5.82	2.06	35.52
	June, 2010	2.76	12.06	6.93	2.26	38.77
	May, 2009	0.20	8.40	3.98	1.89	47.47
PRP (mS m^{-1})	July, 2009	0.90	9.3	4.97	1.86	37.40
	June, 2010	1.35	9.43	5.14	1.89	36.76
	May, 2009	16.25	36.42	27.77	4.64	16.72
θ_{v}	July, 2009	17.60	38.15	28.01	5.03	17.97
	Jun , 2010	18.48	38.65	30.01	4.64	19.48
рН	May, 2009	5.05	6.03	5.52	0.19	3.43
	May, 2009	22.65	67.57	41.06	11.04	26.89
EC (μ S cm ⁻¹)	July, 2009	18.26	56.45	38.37	9.01	23.47
	June, 2010	27.88	55.70	28.14	7.18	22.35
SOM (%)	May, 009	5.02	17.67	11.36	2.62	23.12
	June, 2010	5.10	16.67	11.40	2.47	24.71

Conti...

	Parameters	Sampling Time	Min	Max	Mean	S.D	C.V (%)	
	Sand (%)	May, 2009	35.98	58.31	49.52	4.46	9.01	
	Silt (%)	May, 2009	0.99	14.04	8.24	2.85	34.71	
	Clay (%)	May, 2009	35.53	52.63	41.88	4.43	10.58	
		May, 2009	1.07	24.85	8.57	4.60	53.70	
	$NH_4^+ - N (mg L^{-1})$	July, 2009	0.13	23.64	5.53	4.06	74.01	
		June, 2010	0.13	18.42	4.39	3.89	55.26	
•		May, 2009	0.82	8.07	4.05	1.69	41.75	
	NO ₃ ⁻ -N (mg L ⁻¹)	July, 2009	1.39	9.50	3.59	2.16	47.09	
		June, 2010	1.40	7.89	3.10	1.17	49.42	

Descriptive Statistics (N. River Site)

- The HCP, PRP, clay, EC, NH_4^+ -N, and NO_3^- -N were highly variable with CVs > 35%
- The percent sand, silt, SOM and θ_v were found to be moderately variable with the CVs ranging from 15% to 35%
- Soil pH was less variable with CV of 5.60%
- The CVs of soil properties for the 2^{nd} and 3^{rd} sampling exhibited the large variation except soil EC during the crop year, and θ_v for 2^{nd} soil sampling

Summary Statistics of Leaf Nutrients (Carmal Site)

Parameters	Sampling Time	Min	Max	Mean	S.D	C.V (%)
Nitrogen (%)	July, 2009	1.03	3.68	1.89	0.51	27.24
Nitrogen (%)	June, 2010	1.12	2.46	1.58	0.16	19.12
Phosphorous (%)	July, 2009	0.10	0.53	0.20	0.12	60.29
Phosphorous (%)	June, 2010	0.11	0.18	0.15	0.01	30.41
Potassium (%)	July, 2009	0.14	0.53	0.45	0.08	20.86
Potassium (%)	June, 2010	0.30	0.53	0.41	0.05	17.05
Calcium (%)	July, 2009	0.41	0.66	0.53	0.06	11.13
Calcium (%)	June, 2010	0.33	0.50	0.43	0.04	10.63
Magnesium (%)	July, 2009	0.15	0.25	0.18	0.02	11.58
Magnesium (%)	June, 2010	0.13	0.21	0.17	0.01	10.97
Iron (mg L ⁻¹)	July, 2009	30.03	127.47	45.96	20.20	43.96
Iron (mg L ⁻¹)	June, 2010	32.25	76.95	42.68	9.99	31.05

Conti...

Parameters	Sampling Time	Min	Max	Mean	S.D	C.V (%)
Manganese (mg L ⁻¹)	July, 2009	1175.60	2237.30	1712.50	288.1	16.82
Manganese (mg L ⁻¹)	June, 2010	624.7	2458.60	1465.60	381.42	26.02
Copper (mg L ⁻¹)	July, 2009	4.58	11.60	7.62	1.75	23.02
Copper (mg L ⁻¹)	June, 2010	3.99	7.93	5.75	0.83	24.50
Zinc (mg L ⁻¹)	July, 2009	14.07	22.02	17.62	1.99	11.30
Zinc (mg L ⁻¹)	June, 2010	13.42	21.01	16.45	1.67	10.20
Boron (mg L ⁻¹)	July, 2009	13.32	29.14	19.88	3.55	17.90
Boron (mg L ⁻¹)	June, 2010	7.79	17.70	12.78	1.94	15.18

• Leaf N, P, and K were observed lower by 18%, 25% and 10%, respectively

• The reduction in the leaf N during crop year was in agreement with the findings of Penney and McRae (2000)

Summary Statistics of Leaf Nutrients (N. River Site)

- Descriptive statistics showed that tissue Fe and N were highly variable with CVs of 55.37% and 35.24%, respectively
- Tissue Mg and Cu were found to be least variable
- All other tissue nutrients were moderately variable with CVs ranging from 15% to 30%
- Similar pattern of variation during the crop year
- The mean values for tissue nutrients were in agreement with the standards set by Trevett (1972)

Plant Growth Parameters and Yield

Parameters	Min	Max	Mean	S.D	C.V (%)
Plant Density	7.00	25.00	12.89	3.86	29.94
Height	14.00	31.00	19.55	3.67	18.79
Buds	114.00	274.00	179.82	33.24	18.48
Branches	10.00	38.00	20	6.53	32.63
Yield (Kg ha ⁻¹)	800.00	6344.00	2689.00	1332.00	49.52
Blue Pixel (%)	0.30	9.98	2.67	1.22	43.02
		North River	Site		
Plant Density	6.00	20.00	11.24	3.17	28.23
Height	10.00	23.00	15.16	3.10	20.44
Buds	95.00	232.00	154.24	33.29	21.58
Branches	12.00	52.00	21.48	6.86	31.97
Yield (Kg ha ⁻¹)	68.00	5600.00	2583.00	1430.00	55.36
Blue Pixel (%)	0.12	7.00	2.48	1.89	56.17

Semivariogram

Nugget: 0.48 Sill: 5.57 Range: 13.10 m

 $NO_3^{-}N$

Geostatistical Analysis of Soil Properties (Carmal Site)

	Parameters	Sampling Time	Nugget	Sill	Range	Nugget Sill	R ²	
					(m)	ratio		
						(%)		
		May, 2009	1.77	3.95	28.30	44.86	0.63	
	HCP (mS m ⁻¹)	July, 2009	1.35	4.15	28.10	32.53	0.70	
· · · ·	June, 2010	0.10	3.95	20.50	2.50	0.88		
		May, 2009	0.07	3.93	70.80	1.78	0.74	
	PRP (mS m^{-1})	July, 2009	0.68	3.51	65.60	19.37	0.68	
		June, 2010	0.23	3.92	45.93	5.86	0.95	
		May, 2009	1.03	21.42	12.60	4.80	0.31	
	$\theta_{\rm v}$	July, 2009	8.97	26.96	16.70	33.27	0.77	
		Jun , 2010	10.46	21.39	48.90	48.90	0.74	
	pН	May, 2009	0.02	0.06	76.40	33.33	0.57	
		May, 2009	9.80	125.10	24.90	7.8	0.23	
	EC (μ S cm ⁻¹)	July, 2009	4.00	80.70	26.50	4.95	0.93	
		June, 2010	27.80	96.60	28.56	28.77	0.92	

Conti...

Parameters	Sampling Time	Nugget	Sill	Range	Nugget Sill	R ²
				(m)	ratio	
					(%)	
SOM (%)	May, 009	3.37	6.74	76.10	50	0.65
	June, 2010	3.27	6.32	70.23	51.74	0.72
Sand (%)	May, 2009	18.75	18.75	85.86	100	0.37
Silt (%)	May, 2009	7.62	7.62	81.66	100	0.10
Clay (%)	May, 2009	0.01	19.16	23.70	0.05	0.30
	May, 2009	0.01	17.36	20.30	0.05	0.50
NH_4^+ -N (mg L ⁻¹)	July, 2009	12.10	43.86	31.90	27.58	0.54
	June, 2010	3.23	16.25	27.80	19.87	0.62
	May, 2009	0.84	2.87	19.00	29.26	0.44
$NO_3^{-}-N (mg L^{-1})$	July, 2009	0.52	4.89	16.30	10.63	0.40
	June, 2010	0.79	4.28	18.30	18.45	0.54

Geostatistical Analysis of Soil Properties (N. River Site)

- All the soil properties were highly variable within field except θ_v , sand, silt and clay indicating moderate variability with the range of influence 45 to 70 m
- HCP for 2nd sampling and PRP for 3rd sampling were moderately variable
- The spatial pattern of the variability for soil properties during crop year was similar to 1st and 2nd soil sampling
- The θ_v during the crop year was moderate to highly variable within field with the range of influence 14 to 51 m

Geostatistical Analysis of Leaf Nutrients (Carmal Site)

Carmal Site (Sprout Year)										
Parameters	Nugget	Sill	Range	Nugget	\mathbb{R}^2	Model				
			(m)	Sill ratio						
				(%)						
N (%)	0.01	0.02	60.21	50.00	0.47	Linear				
P (%)	0.007	0.09	21.10	7.77	0.28	Exponential				
K (%)	0.006	0.006	67.10	100.00	0.37	Linear				
Ca (%)	0.001	0.004	23.70	25.00	0.49	Spherical				
Mg (%)	0.003	0.006	70.40	50.00	0.58	Spherical				
Fe (mg L ⁻¹)	235.00	803.00	63.40	29.26	0.81	Gaussian				
Mn (mg L ⁻¹)	57.00	1587.36	77.10	3.59	0.93	Gaussian				
Cu (mg L ⁻¹)	0.18	3.05	14.90	5.91	0.30	Gaussian				
Zn (mg L ⁻¹)	3.02	7.75	74.20	38.96	0.45	Exponential				
B (mg L ⁻¹)	4.01	12.25	27.80	32.65	0.35	Spherical				

• Similar pattern of variation during crop year (Range 14 to 86 m)

Geostatistical Analysis of Leaf Nutrients (N. River Site)

- The semivariogram analysis showed that the leaf P, K, Ca, Fe, B and Zn, were highly variable with the range of variability less than 30 m
- Leaf N, Mg, Mn and Cu showing moderate variability with the range of influence ranging from 45 to 62 m
- Leaf nutrients exhibited the similar pattern of variation during crop year

Interpolation and Mapping

Slope Maps

Variation of Soil Properties with Slope

Slope (Degrees)

Slope (Degrees)

Slope (Degrees)

Conclusions (Objective 1)

- The CVs suggested moderate to high variation of soil properties, leaf nutrients and fruit yield except soil pH for both fields
- Geostatistical results also indicated moderate to high variability
- The maps developed in Arc GIS 9.3 also indicated the substantial variability of soil properties and leaf nutrients across the field

Conclusions (Objective 1)

- Planning future soil sampling in the fields having soil and crop variability
- Based on these results 15 to 20 m grid size would be appropriate for future sampling
- These results would help in ameliorating the unproductive areas based on proper soil sampling, soil variability characterization, and identification of the soil properties responsible for yield variability

Identification of Soil Properties Affecting Wild Blueberry Fruit Yield

Fruit Yield VS. Soil Properties (Carmal Site)

2 nd Sampling (2009)									
Soil property	Regression Model	R ²	P-Value						
HCP (mS m^{-1})	Yield (Kg ha ⁻¹)= 178.6 + 477.3 HCP	0.58	0.000						
PRP (mS m^{-1})	Yield (Kg ha ⁻¹)= 457.3 + 497.7 PRP	0.48	0.000						
$ heta_{ m v}$	Yield (Kg ha ⁻¹)= -2056 + 177.5 θ_{v}	0.46	0.000						
EC (μ S cm ⁻¹)	Yield (Kg ha ⁻¹)= 151.2 + 71.3 EC	0.25	0.002						
NH_4^+ -N (mg L ⁻¹)	Yield (Kg ha ⁻¹)= $1248 + 1951 \text{ NH}_4^+ \text{-N}$	0.50	0.000						
NO ₃ ⁻ -N (mg L ⁻¹)	Yield (Kg ha ⁻¹)= $1179 + 2693 \text{ NO}_3$ -N	0.46	0.000						
3 rd Sampling (2010)									
Soil property	Regression Model	R ²	P-Value						
HCP (mS m^{-1})	Yield (Kg ha ⁻¹) = $-559.4 + 506.2$ HCP	0.64	0.000						
PRP (mS m^{-1})	Yield (Kg ha ⁻¹) = $1166 + 326.9$ PRP	0.23	0.003						
$ heta_{ m v}$	Yield (Kg ha ⁻¹) = $-2172 + 169.2 \theta_{v}$	0.38	0.000						
EC (μ S cm ⁻¹)	Yield (Kg ha ⁻¹) = $154.2 + 69.7 \text{ EC}$	0.24	0.002						
SOM (%)	Yield (Kg ha ⁻¹) = $-653.9 + 306.1$ SOM	0.40	0.000						
NH ₄ ⁺ -N (mg L ⁻¹)	Yield (Kg ha ⁻¹) = $1438 + 277.3 \text{ NH}_4^+ - \text{N}$	0.52	0.000						
NO ₃ ⁻ -N (mg L ⁻¹)	Yield (Kg ha ⁻¹) = $1142 + 370.5 \text{ NO}_3^{-1}$ -N	0.38	0.000						

Fruit Yield VS Soil Properties (N. River Site)

2 nd Sampling (2009)								
Soil property	Regression Model	R ²	P-Value					
HCP (mS m^{-1})	Yield (Kg ha ⁻¹) = $545.1 + 319.7$ HCP	0.56	0.000					
PRP (mS m^{-1})	Yield (Kg ha ⁻¹) = $1187 + 320.1$ PRP	0.30	0.000					
$\theta_{ m v}$	Yield (Kg ha ⁻¹) = $-1267 + 152 \theta_{v}$	0.28	0.000					
EC (μ S cm ⁻¹)	Yield (Kg ha ⁻¹) = $-342.3 + 63.6$ EC	0.55	0.002					
NH4 ⁺ -N (mg L ⁻¹)	Yield (Kg ha ⁻¹) = $1494 + 232.8 \text{ NH}_4^+ - \text{N}$	0.29	0.000					
$NO_3^{-}-N (mg L^{-1})$	Yield (Kg ha ⁻¹) = $1395 + 343.9 \text{ NO}_3$ -N	0.31	0.000					
3 rd Sampling (2010)								
Soil property	Regression Model	R ²	P-Value					
HCP (mS m^{-1})	Yield (Kg ha ⁻¹) = $-844.4 + 357.7$ HCP	0.64	0.000					
PRP (mS m^{-1})	Yield (Kg ha ⁻¹) = $-1479 + 464.2$ PRP	0.50	0.003					
$\theta_{ m v}$	Yield (Kg ha ⁻¹) = $-1958 + 151.5 \theta_v$	0.29	0.000					
EC (μ S cm ⁻¹)	Yield (Kg ha ⁻¹) = $-361.9 + 68.3$ EC	0.51	0.000					
SOM (%)	Yield (Kg ha ⁻¹) = $-352.7 + 341.7$ SOM	0.30	0.000					
$NH_4^+ - N (mg L^{-1})$	Yield (Kg ha ⁻¹) = $2010 + 12.6 \text{ NH}_4^+ \text{-N}$	0.12	0.015					
NO ₃ ⁻ -N (mg L ⁻¹)	Yield (Kg ha ⁻¹) = $1395 + 343.9 \text{ NO}_3^{-1}$ -N	0.27	0.000					

• Fruit yield having non-significant correlations with sand, silt and pH for N. R. Site

Multiple and Stepwise Regression

Carmal Site

Fruit yield (Kg ha⁻¹) = 18028 + 916 HCP_(S) - 3.8 PRP_(S) - $93.3 \theta_{v(S)} + 111 \text{ pH}_{(S)} - 20.4$ EC _(S) - 326 SOM _(S) - 153 Sand _(S) - 235 Silt _(S) - 182 Clay _(S) + 33.1 NH₄⁺-N _(S) - 32NO₃⁻-N _(S) + 273 SOM _(c) + 59.8 NH₄⁺-N_(c) - 70 NO₃⁻-N _(c) (R² = 0.78, p < 0.001)

Fruit yield (Kg ha⁻¹) = 1134 + 723 HCP_(c) - 38 $\theta_{v(c)}$ - 101 SOM_(s) + 14 NH₄⁺-N_(c) - 70 NO₃⁻-N_(c)

 $(R^2 = 0.66, p < 0.001)$

Fruit Yield VS. Leaf Nutrients

Carmal Site											
Coefficient of correlation (r)											
Sampling Time	N	Р	K	Ca	Mg	Fe	Mn	Cu	Zn	В	
July, 2009	0.53***	0.66***	0.46***	0.30*	0.16 ^{NS}	0.09 ^{NS}	0.21 ^{NS}	-0.11 ^{NS}	0.33*	-0.07 NS	
June, 2010	0.58***	0.49***	0.39**	0.32*	$0.11^{ m NS}$	$0.05^{ m NS}$	$0.24 {}^{ m NS}$	-0.15 ^{NS}	0.35**	-0.11 ^{NS}	
				No	orth River	Site					
Sampling Time	N	Р	K	Ca	Mg	Fe	Mn	Cu	Zn	В	
July, 2009	0.55***	0.40**	0.33*	0.12 ^{NS}	-0.19 ^{NS}	-0.05 ^{NS}	0.18 ^{NS}	0.32*	0.30*	0.16 ^{NS}	
June, 2010	0.48***	0.33*	0.29*	0.19^{NS}	-0.24^{NS}	-0.01 ^{NS}	$0.20^{\rm NS}$	0.30*	0.33*	$0.13^{ m NS}$	

Significance of correlations indicated by *, ** and ***, are equivalent to p = 0.05, p = 0.01 and p = 0.001.

NS, non significant at p = 0.05

Conclusions (Objective 2)

- The fruit yield was significantly correlated with soil SOM, θ_v , clay, EC, NH₄⁺-N, NO₃⁻-N, HCP and PRP
- Stepwise regression suggested that θ_v , HCP, NH₄⁺-N, NO₃⁻-N, SOM and EC were found to be major yield-limiting factor for both fields
- Major yield-limiting factors can be used to delineate management zones

Delineation of Management Zones for Site-Specific Fertilization

Cluster Analysis of Soil Variables and Fruit Yield (Carmal Site)

Cluster Variables Dendrogram

Cluster Analysis of Soil Variables and Fruit Yield (N. River Site)

Soil Variables

Observation Dendrogram (Carmal Site)

Management Zones

Comparison of Means (Carmal Site)

	Fruit Yield (Kg ha ⁻¹) Management Zone								
Soil Properties	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5				
	Yield <1500	Yield	Yield	Yield	Yield > 5000				
		1500-2500	2500-4000	4000-5000					
	(Very Poor)	(Poor)	(Medium)	(Good)	(Very Good)				
Fruit Yield (Kg ha ⁻¹)	1322.22 d	2413.20 c	3360e	4707.00 b	6032.00 a				
HCP (mSm^{-1})	3.66 b	4.96 b	5.60 c	8.4 b	10.05 a				
$PRP(mSm^{-1})$	2.68 b	3.49 b	3.47 b	4.54 ab	7.05 a				
$\theta_{\rm v}$	23.07 bc	26.19 b	27.88 c	34.10 a	30.34 ab				
pН	5.3 a	5.56 a	5.56 a	5.54 a	5.58 a				
EC (μ Scm ⁻¹)	32.83 b	36.64 b	37.89 b	51.47 a	61.18 a				
SOM (%)	8.83 b	11.09 b	11.07 c	13.81 ab	16.59 a				
Sand (%)	51.87 ab	49.70 ab	49.35 a	50.11 ab	45.94 b				
Silt (%)	9.07 a	8.39 a	7.22 a	5.61 a	8.22 a				
Clay (%)	38.21 a	41.70 a	42.02 b	45.28 a	46.34 a				
$NH_{4}^{+} - N (mgL^{-1})$	4.84 bc	7.51 b	8.42 c	9.66 b	16.62 a				
$NO_{3}^{-}-N (mgL^{-1})$	2.59 cd	3.46 bc	3.75 d	5.65 ab	6.36 a				

Comparison of Maps

Comparison of Maps

Management Zones (N. River Site)

Conclusions (Objective 3)

- The results of ANOVA suggested that fruit yield, HCP, inorganic nitrogen, SOM and EC were significantly different among the developed management zones
- Fruit yield, slope and HCP maps in combination can be used to delineate MZs
- Dual EM could be used to develop management zones for sitespecific fertilization

Conclusions (Objective 3)

- Variation in soil properties and fruit yield with slope also suggested that slope/elevation maps can be used to develop MZs
- This information can be used to develop prescription maps to allocate fertilizer rate based on the productivity potential

Course Work

Start Date: January, 2009

Course No.	Course Title	University	Grade
AGRI. 5700	Communication Skills	NSAC	A-
AGRI. 5705	Introduction to C++ Programming Application of RTK GPS in PA Geoinformatics in Agriculture	NSAC	A ⁺
ERTH. 5600	Exploring GIS	Dalhousie	A +
ENGM. 6617	Applied Regression Analysis	Dalhousie	A
AGRI. 5710	-GPS & GIS application in Agriculture -Wild Blueberry culture, Classification and Production -Spreadsheet Programming	NSAC	A

Publications

- Farooque, A., Q. Zaman, F. Abbas, Madani, D. Percival, and T. Esau. 2010. Ecological impacts of the N-Viro biosolids land-application for wild blueberry (*Vaccinium angustifolium*.Ait) production in Nova Scotia. J. Envir. Sci. &Health, Part B. In Press
- Farooque, A., F. Abbas, Q. Zaman, A. Madani, D. Percival, M. Arshad. 2010. Soil Nutrient Availability, Plant Nutrients Uptake, and Wild Blueberry (*Vaccinium angustifolium*. Ait) Yield in Response to N-Viro Biosolids and Irrigation Applications. Pedosphere Journal. In Review
- Zaman, Q., T. Esau, A. Schumann, D. Percival, S. Read, Y. Chang and A. Farooque. 2010. Development of prototype variable rate spryer for real time spot application of agrochemicals in wild blueberry fields. Computer and Electronics in Agriculture. In Review
- **Farooque, A.,** Q. Zaman, A. Schumann, A. Madani, D. Percival. 2011. Characterization and Quantification of Spatial Variability of Soil Properties and Fruit Yield in Wild Blueberry Field. 8th European Conference on Precision Agriculture, Prague. July 11-14, 2011.
- Farooque, A., Q. Zaman, A. Schumann, A. Madani, D. Percival. 2011. Delineation of Management Zones for Site-specific Fertilization in Wild Blueberry Fields . Annual International Meeting ASABE, Louisville, Kentucky, USA. June 20-23, 2010.
- Zaman, Q, T. Esau, A. Schumann, D. Percival, Y. Chang, S. Read, and A. Farooque. 2010. Variable rate sprayer for spot-application of pesticides in wild blueberry. Annual Meeting WBPANS, Truro, Nova Scotia, Canada. November 17, 2010.
- Farooque, A., Q. Zaman, A. Schumann, A. Madani, D. Percival. 2009. Mapping soil Moisture Variability Using Electromagnetic Induction Methods. . In Proc. of 9th International Drainage Symposium, held jointly with CIGR and CSBE/SCGAB. Quebec City, Canada. Paper Number: IDS-CSBE100204.
- Farooque, A., Q. Zaman, A. Schumann, A. Madani, D. Percival. 2009. Prediction of soil Organic Matter and Clay Content Using Electromagnetic Induction Methods. In Proc. of 10th International, Conference on Precision Agriculture, Denver, Colorado, USA. Available online at: http://www.icpaonline.org/finalpdf/abstract_303.pdf.
- Farooque, A., Q. Zaman, A. Schumann, A. Madani, D. Percival. 2009. Effect of soil variability on wild blueberry fruit yield. Poster and oral presentation at Graduate Research Day, NSAC, Truro Nova Scotia Canada. March 27, 2009

Acknowledgements

- I would like to thank Oxford Frozen Foods, WBPANS, Agri. Futures and Nova Scotia Department of Agriculture for providing funds
- I am also thankful to Dr. Zaman, Dr. Percival, Dr. Schumann and Dr. Madani
- Thanks to Morgan, Kelsy, Travis, Young, Gashaw, Fahad and Shoaib.
- Druice, Darrel, Margi for lab facilities. Thanks to Marie Law
- Department of Engineering

Thanks