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Abstract
This paper presents the findings of the vehicle occupant injury severity model, particularly focusing on the collisions involving
distracted driving. The study develops a latent segmentation-based logit model for analyzing crash injury severity utilizing
police-reported collision data from 2007 to 2011 in Nova Scotia, Canada. A segment allocation model is estimated to capture
latent heterogeneity based on individual victims’ and drivers’ profiles, and collision attributes including vehicle type, vehicle
trajectory, collision object, and collision type. The segment allocation model results suggest the existence of high-risk and
low-risk injury severity segments. This study extensively tests the effects of built environment characteristics. The model
results suggest that rain, curved road, freeway, and mid-block collisions aggravate vehicle occupant injury severity; whereas,
higher land use mix, longer length of sidewalk, and higher population density mitigate injury severity. Significant heterogeneity
is found across the high- and low-risk segments. For instance, straight road alignment is found to yield higher injury severity
in the high-risk segment and lower severity in the low-risk segment. Moreover, the model unveils the interplay between built
environment and distraction type. Driver distraction by communication device increases injury severity at a curved road
intersection. Additionally, distraction because of inattentiveness increases injury severity. The findings of this study assist road
safety engineers and planners to identify effective countermeasures and awareness programs for reducing the crash injury
severity or consequences for vehicle occupants.

Injuries and fatalities in roadway collisions involving dis-
tracted driving are increasingly presenting road safety-
related concerns and challenges. The National Highway
Traffic Safety Association (NHTSA) reported that 16%
of the total fatalities and 21% of the total injuries in the
United States in 2008 involved distracted drivers (1).
Fatalities from distracted driving increased by 28% in
2008 compared with 2005 (2). Distracted driving includes
inattention to driving and performing non-driving activi-
ties during driving, such as texting, talking over the
phone, use of in-vehicle technologies, eating, drinking,
applying makeup, and so forth (3–5). Most of the previ-
ous studies related to distracted driving have examined
crash occurrence and crash types (6, 7). Although injury
severity is one of the crucial dimensions in transportation
safety literature, limited studies have focused on the
injury severity of crashes involving distracted driving.
Among the few, Liu and Donmez investigated the rela-
tionship between distracted driving and injury severity;
however, they only considered collisions concerning

police drivers (8). Further effort is required to under-
stand the interplay between distracted driving and injury
severity of road users.

This study investigates vehicle occupants’ injury sever-
ity in collisions involving distracted driving. The study
utilizes 2007 to 2011 police-reported collision data from
the Nova Scotia Collision Record Database (NSCRD).
A latent segmentation-based ordered logit (LSOL) model
is developed that addresses the ordered nature of the
reported injury severity levels and captures heterogeneity
or variation based on the characteristics of the involved
parties and collisions. The LSOL model endogenously
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allocates victims into discrete latent segments based on
the individual victims’ and drivers’ characteristics, and
collision attributes. One of the key features of this study
is to extensively examine the effects of built environment,
including land use, neighborhood characteristics, road
design, road configuration, and environmental factors.
This study examines some fundamental hypotheses with
regard to the effects of built environment on injury sever-
ity, such as how injury severity varies by distraction type,
collision type, and individual victim and driver charac-
teristics. Such findings provide insights toward under-
standing the factors affecting injury severity of crashes
involving distracted driving, as well as assist in targeting
and prioritizing effective road safety countermeasures
and awareness programs for the road users.

Literature Review

Distracted driving is a major road safety concern as it is
a significant contributing factor to roadway collisions
(10). Driver’s distraction can be cognitive or noncogni-
tive. Cognitive distraction refers to inattention or loss of
focus on the road while driving, such as daydreaming
(11). Non-cognitive distraction can include performing
non-driving activities while driving, such as use of com-
munication devices (3), in-vehicle technologies (4), and
eating or drinking (5). As drivers are distracted, the risk
of collision (11), as well as severity of injury (8), increases.
As a result, several policies are adopted to reduce dis-
tracted driving, which mainly focus on prohibiting the
use of cell phones. For example, the NHTSA recom-
mended restricting cell phone use during driving (12). In
Canada, many provinces such as Quebec, Nova Scotia,
and Newfoundland and Labrador have banned the use
of handheld cellular phones while driving. In the case of
reducing other distraction types, such as drowsiness, stra-
tegies include limited number of passengers, and gradu-
ated driver’s licensing provisions (12). However, more
efforts are required to develop effective awareness pro-
grams that address specific distraction types among cer-
tain high-risk populations (12). Donmez et al. argued
that policy interventions are required to provide feedback
to inattentive drivers, which might encourage the drivers
to improve their performance (13).

Most distracted driving studies have concentrated on
the relationship between distraction factors and occur-
rence of crash (6) and crash types (7). Limited studies
have investigated the interplay between driver’s distrac-
tion and injury severity. However, most of these studies
have focused on a specific segment of population (8, 14).
For instance, Neyens and Boyle developed an ordered
logit model to investigate the effects of distraction on
injury severity of teenage drivers and their passengers
(14). Liu and Donmez developed an ordered logit model

to investigate the crash injury severity of distracted police
drivers (8). Further research is required to examine the
effects of driver’s distraction on injury severity.

Crash injury severity is one of the major areas of
research in the road safety literature. A wide array of
modeling methods is employed to analyze injury severity
levels, ranging from ordered modeling techniques, such as
ordered logit (15), ordered probit (16) and random coeffi-
cients heteroscedastic ordered logit (17) models, to unor-
dered modeling approaches, such as multinomial logit
(18), mixed multinomial logit (19), and latent class logit
(20) models. One of the major advantages of the tradi-
tional ordered approach is to capture the ordinal nature
of the reported injury severity levels. On the other hand,
the disadvantage is the monotonic assumption that the
effect of an exogenous factor does not vary across indi-
viduals or crashes. Although unordered models relax such
restrictive assumptions, these models ignore the inherent
ordinality of the injury severity. To address the ordinal
nature as well as the heterogeneity, traditional ordered
models are extended to random parameter ordered logit
(21) and latent class ordered logit (22) models.

In the injury severity research paradigm, most of the
previous studies have found that injury severity is influ-
enced by sociodemographic characteristics of the road
users, time of day, roadway design, and vehicular charac-
teristics, among others (22–24). For example, Wang and
Kockelman developed a heteroscedastic ordered logit
model to examine the influence of vehicle type, roadway
design, environment, and characteristics of drivers and
passengers on the injury severity of vehicle occupants
(23). They argued that older and female vehicle occu-
pants are more injury prone and are more often the fatal
victims. They also revealed that occupants of heavier
vehicles are less vulnerable to injury. However, heavier
vehicles were found to pose the risk of severe injury to
the vehicle occupants of the collision partner. Eluru et al.
developed a latent class ordered logit model to investigate
the factors influencing driver injury severity at highway
and railway crossings (22). The model allows the effects
of the exogenous parameters to vary by probabilistically
assigning drivers into different latent segments based on
highway–railway crossing characteristics. The results sug-
gest the existence of a high-risk and a low-risk segment.
They also concluded that driver age, time of day, and
weather condition are key determinants of drivers’ injury
severity. Yasmin et al. developed a latent segmentation-
based generalized ordered logit model to examine the
effects of a comprehensive set of variables on drivers’
injury severity level (25). They varied injury severity level
across drivers by assigning the levels into different seg-
ments based on crash characteristics. They revealed that
older drivers of age 65 and above and collisions in higher
speed zones are associated with severe injury for the
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drivers. The study also argued that driving a large vehicle
(e.g., panel van), unpaved road, and the presence of pas-
sengers reduce injury severity.

Recently, few studies have focused on the role of land
use and built environment of crash locations on injury
severity levels. For example, Kim et al. developed a hier-
archical ordered model in which built environment charac-
teristics are examined at the municipality level (26). The
hierarchical model has two levels, which include crash
characteristics at the lower level and municipality charac-
teristics at the upper level. The results of the lower level
suggest that drunk drivers, heavy vehicles, darkness, and
fog increase injury severity. The upper-level results reveal
that severity increases in the municipalities with low popu-
lation density and a high proportion of older adults. Prato
et al. developed a linearized spatial logit model with an
emphasis on built environment and spatial correlation
across crashes during injury severity estimation (27). They
found that industrial, shopping, and residential areas are
associated with a lower injury severity. On the other hand,
several studies found that an urban environment with a
higher proportion of commercial areas and mixed land
uses increases injury severity (28, 29). Nevertheless, further
research is required to investigate the effects of land use
and built environment, which are important variables in
identifying countermeasures to reduce injury severity, par-
ticularly of those collisions that involve distracted driving.

Key Features of the Current Study

The contributions of this study to the road safety litera-
ture are threefold: 1) investigating the crash injury sever-
ity of vehicle occupants when collisions involve
distracted driving; 2) developing an LSOL model to
address the ordinal nature of injury severity and capture
latent heterogeneity by allocating victims into discrete
latent segments; and 3) examining the influence of the
built environment of the collision location. This study
focuses on the injury severity of vehicle occupants. The
severity of injury experienced by an individual might
vary by the characteristics of the road user, vehicle
involved, and type of collision. Such heterogeneity is
accommodated within the model formulation by endo-
genously allocating individual victims into discrete seg-
ments based on the victim and driver profile, and
collision characteristics. The interplay between injury
severity and built environment is comprehensively exam-
ined, including the effects of land use, neighborhood
characteristics, roadway design and configuration, and
collision location. A wide array of hypotheses is tested to
explore the relationships. These include how the impact
of the built environment varies in different segments by
the characteristics of the victims and collision types, and
whether the effect of the built environment varies by dis-
traction types or not, among other factors.

Data

Data Sources

The primary data source for this study is the NSCRD
collected from the Service Nova Scotia and Municipal
Relations. The database includes all police-reported col-
lisions that occurred between 2007 and 2011 in the prov-
ince of Nova Scotia, Canada. The database contains
details with regard to the time, location, and characteris-
tic of the individuals (e.g., age, gender, road user type)
involved in the collision. Further information includes
vehicle type, road classification and design characteris-
tics, weather condition, lighting condition, driver condi-
tion, and crash configuration. In addition, land use, and
location information of major activity points and trans-
portation services are collected from the Desktop
Mapping Technologies Inc. (DMTI). Neighborhood
characteristics at the dissemination area (DA) level are
collected from the 2011 Canadian Census.

Data Description and Preparation

The NSCRD data include distraction type information
of drivers in the following categories: distracted by com-
munication device; distracted by entertainment device;
distracted by vehicle display; distracted because of inat-
tention; and others. Following data processing, 8,864 col-
lisions involving 11,247 individuals are identified to have
a distracted driver. Among these individuals, around
10,502 individuals are vehicle occupants (auto driver and
auto passenger). The NSCRD provides injury severity of
each individual in the following five-point ordinal scales:
1) no injury; 2) minor injury; 3) moderate injury; 4) major
injury; and 5) fatal injury. The distribution of injury
severity levels among the vehicle occupants is as follows:
81.0% no injury; 7.9% minor injury; 9.7% moderate
injury; 1.2% major injury; and 0.2% fatal injury.

Built environment variables are generated to capture
the context of the collision area. For instance, a 250-m
road network-based buffer from each collision location
is generated using the Network Analyst tool in the
ArcMap program by Esri. A buffer of 250 m is used to
avoid correlations between the micro-level built environ-
ment attributes within this buffer and the macro-level
location characteristics of crashes such as urban or rural
areas. The frequency of activity points and transporta-
tion services is computed within this 250-m buffer.
Further, the length of sidewalk and transit line is calcu-
lated within this buffer. In addition, distance of colli-
sion locations from the closest regional center is
determined using the Network Analyst tool in
ArcMap. Finally, land use information is utilized to
determine the land use mix index at the DA level.
Details of the land use mix index calculation can be
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found in Bhat and Gossen (30). The index value ranges
from 0 to 1, where a value of 0 refers to perfect homo-
geneity and 1 indicates perfect heterogeneity.

Modeling Approach

This paper develops an LSOL model to investigate the
injury severity of vehicle occupants when collisions
involve distracted driving. One of the major purposes for
developing an LSOL modeling framework is to relax the
homogeneity assumption of standard ordered logit mod-
els by assigning individual victims into discrete latent
segments. Assume that individual j assigned to segment s
sustains injury severity level i. Here, i is in an ordinal
scale and can take values of 0 (no injury), 1 (minor
injury), 2 (moderate injury), 3 (major injury), and 4 (fatal
injury). The continuous latent propensity function can
be written as:

Yjs
�=bsZj + eis ð1Þ

where
Yjs
� = the latent propensity,

Zj = the environmental and built environment charac-
teristics of the collision location,

bs = the coefficient parameter to be estimated, and
eis = the random error term assumed to follow an

identical and independent standard logit distribution.
Latent propensity Yjs

� corresponds to the actual injury
severity Yj through a threshold parameter m in the follow-
ing form:

Yj = i if mi�1, s\Yj
�\mis

where m0s = �‘ and mis =‘. The probability of individ-
ual j sustaining injury severity i can be written as:

Pj(ijs)=L(mis � bsZj)� L(mi�1, s � bsZj) ð2Þ

where L(:) is the standard logistic cumulative distribution
function.

Now, the allocation of individual j into discrete latent
segment s is probabilistically determined by formulating
a latent segment allocation model within the LSOL
framework. The segment allocation model is defined
using the observed attributes of the involved parties and
collisions. The model follows a standard multinomial
logit form. The utility function of the segment allocation
component can be written as:

Ujs
�= gsXj +uis ð3Þ

where
Xj = the observed attributes that determine the alloca-

tion of individuals into segment s,
gs = the coefficient parameter to be estimated, and

uis = the random error term. uis is assumed to be
identically and independently distributed with Type 1
extreme value.
The probability of individual j assigned to segment s can
be written in the following logit form:

Pjs =
egsXj

PS

s= 1

egsXj

ð4Þ

The unconditional probability function can be expressed as:

Pj(i)=
XS

s= 1

(Pj(i)js)(Pjs) ð5Þ

The log likelihood function is given below:

LL=
XN

n= 1

ln
XS

s= 1

(Pj(i)js)(Pjs) ð6Þ

where N is the total number of observations. The model
estimates segment specific parameters bs for s segments,
and segment membership parameter gs for s-1 segments.
In addition, a traditional ordered logit model is devel-
oped for comparison purposes. The goodness of fit of the
models is evaluated on the basis of McFadden’s pseudo-
R2 and Bayesian Information Criteria (BIC) measures.

Variables Considered

The model considers a wide array of variables, including
the profile of involved individuals, collision characteris-
tics, distraction types, environmental factors, and built
environment attributes. The injury severity component
of the LSOL model is estimated based on a wide range
of environmental factors and built environment charac-
teristics of the collision location. Environmental factors
include time of day, weather, and light conditions. The
effect of built environment is considered in two broad
categories: roadway design and configuration, and land
use and neighborhood characteristics. Road design and
configuration refers to the alignment of roads, speed lim-
its, road types, collision locations, and others. Land use
and neighborhood variables are derived at the 250-m
buffer level from the collision location. These variables
include density of transit stations, schools, health ser-
vices, park areas, food stores, groceries, restaurants,
shopping centers, etc. The length of sidewalk and transit
line within the buffer is considered as well. A variable
representing distance to the closest regional center is
tested in the model. In addition, neighborhood attributes
at the DA level are considered, which include, but are
not limited to, population density, dwelling density, com-
mute mode share, percentages of different land uses, and
land use mix index. To evaluate the effects of distraction,
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different distraction types, such as inattentiveness, use of
a communication device, and use of vehicle display,
among others, are interacted with the environmental fac-
tors and built environment attributes.

The latent segmentation component is defined using per-
son profile and collision characteristics. Person profile
includes individual victims’ and drivers’ characteristics,
such as age, gender, use of alcohol and drugs. Note that
individual victims’ characteristics include drivers’ attributes.
Collision characteristics include vehicle trajectory (e.g.,
going straight, negotiating curve, changing lanes), collision
object (e.g., non-moving object, moving object, stationary
object), collision type (e.g., head on, rear end, sideswipe),
and vehicle type (e.g., car, sport utility vehicle [SUV], van,
panel/cargo van). The summary statistics of the variables
retained in the final model are presented in Table 1.

Model Results

The latent segment allocation component of the LSOL
model captures heterogeneity by assigning individual

victims into discrete latent segments s. The model is
estimated for a specific number of segments. The num-
ber of segments is determined on the basis of BIC mea-
sures because of the hierarchical nature of the LSOL
model structure. To identify the most fitting number of
segments, the model is estimated for increasing values
of s (e.g., s = 2,3, .). The model is tested for an addi-
tional segment until the inclusion of a segment does
not improve the model fit. The model results suggest a
BIC value of 12,924.61 and 13,108.44 for models with
two and three segments, respectively. As a lower BIC
value for the two-segment model indicates a better fit,
the final LSOL model assumes two segments. For com-
parison purposes, a traditional ordered logit model is
developed as well. The results suggest that the LSOL
model outperforms the ordered logit model with a
higher McFadden pseudo-R2 value of 0.11 than that of
the ordered logit model (0.04). Therefore, the LSOL
model with two segments is considered as the final
vehicle occupant injury severity level model for further
discussion.

Table 1. Summary Statistics of Explanatory Variables Retained in the Model

Variables Mean/proportion SD

Person profile
Male 55.45% na
Age above 75 years 5.79% na
Driver under influence of alcohol 7.2% na

Driver distraction type
Inattentive 94.69% na
Communication device 1.34% na

Collision characteristics
Vehicle type—car 68.95% na
Vehicle type—sport utility vehicle 7.44% na
Vehicle going straight 52.84% na
Vehicle negotiating a curve 5.74% na
Vehicle hit non-moving object 26.92% na
Head-on collision 1.12% na

Environmental factors
Weather—rain 8.85% na
Weather—snow 2.28% na
Time of day—evening and overnight 20.88% na

Built environment
Roadway design and configuration

Road alignment curved 1.74% na
Road alignment straight 77.74% na
Road type—arterial 6.06% na
Road type—freeway 12.84% na
Collision location— nonintersection 48.51% na
Collision location—intersection with parking lot 9.92% na

Land use and neighborhood
Land use mix index 0.21 0.11
Length of sidewalk within 250-m buffer 5.02 km 7.44 km
Density of school within 250-m buffer 3.44 per km2 8.14 per km2

Population density 795.63 person/km2 1,743.06 person/km2

Population commuting by car in the dissemination area 77.76% na

Note: SD = standard deviation; na = not applicable.
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Model Results of the Latent Segment Allocation
Component

The latent segment allocation model identifies Segment 1
as the low injury severity risk segment and Segment 2 as
the high-risk segment. The model is estimated based on
person profile and collision characteristics (see Table 2).
Person profile refers to the victims’ and drivers’ age, gen-
der, and influence of alcohol and drugs. The collision

characteristics include vehicle type, vehicle trajectory,
collision object, and collision type. The model assumes
Segment 2 as the reference segment. The model results
suggest a positive relationship for male victims in
Segment 1, which indicates a higher likelihood for males
to be included in this segment. The negative coefficient
of males 75 years or older reveals that older victims have
a lower likelihood to be assigned to Segment 1. This

Table 2. Parameter Estimation Results of the Model

Segment 1 Segment 2

Variables coefficient (t-stat) coefficient (t-stat)

Latent segment allocation component

Constant 2.003 (13.31) na
Person profile

Male 0.609 (7.58) na
Age above 75 years –0.175 (1.10) na
Driver under influence of alcohol –1.269 (7.25) na

Collision characteristics
Vehicle type—car –0.464 (4.67) na
Vehicle type—sport utility vehicle –0.427 (2.56) na
Vehicle going straight –0.693 (8.14) na
Vehicle negotiating a curve –1.022 (5.90) na
Vehicle hit non-moving object –1.466 (14.56) na
Head-on collision –2.247 (4.85) na

Injury severity component

Environmental factors
Weather—rain 0.870 (4.21) na
Weather—snow na –0.255 (1.66)
Time of day—evening and overnight 0.207 (1.12) –0.232 (3.66)

Built environment
Roadway design and configuration

Road alignment curved 0.443 (0.70) 0.539 (3.57)
Road alignment curved 3 communication device 1.417 (2.61) na
Road alignment straight –0.384 (0.60) 0.257 (1.80)
Road type—arterial 0.896 (3.86) 0.061 (0.60)
Road type—freeway 0.429 (2.08) 0.254 (3.55)
Collision location—nonintersection 1.149 (2.60) 0.227 (3.75)
Collision location—intersection with parking lot 3 inattentive 1.210 (2.45) na

Land use and neighborhood
Land use mix index –2.401 (2.41) na
Length of sidewalk within 250-m buffer (km) –0.057 (1.56) –0.014 (2.63)
Density of school within 250-m buffer (per km2) na –7.884 (2.18)
Population density (person/km2) –2.488 (1.54) –0.037 (1.73)
Population commuting by car in the dissemination area (%) –2.803 (3.48) –0.043 (–0.30)

Threshold parameters
Threshold 1 0 (–) 0 (–)
Threshold 2 0.328 (4.41) 0.666 (13.0)
Threshold 3 1.294 (6.83) 2.04 (21.13)
Threshold 4 2.254 (2.56) 2.80 (22.86)

Goodness-of-fit measures
Log likelihood at convergence –6,249.339
Log likelihood at constant –6,989.675
Number of observations 10,502
McFadden’s pseudo-R2 0.106
Bayesian information criteria 12,924.61

Note: 3= variable interaction; na = not applicable.
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implies that older victims are more likely to be assigned
to Segment 2. Older victims tend to be more severely
injured in a collision than their younger counterparts.
Drivers under the influence of alcohol are less likely to
belong to Segment 1. Collisions involving sober drivers
are more likely to result in lower injury severity (31).
Consequently, Segment 1 has a higher propensity to
include lower risk collisions. Among the collision charac-
teristics, the negative signs for the variables representing
vehicle types (e.g., SUV), vehicles going straight, vehicles
negotiating a curve, vehicles hitting a stationary object,
and head-on collisions reveal a lower risk of severe injury
in Segment 1. For example, in the case of vehicles going
straight, a negative sign for Segment 1 means that colli-
sions involving such a vehicle trajectory are more likely
to be included in Segment 2. Vehicles going straight
ahead are likely to be at a higher speed and might cause
severe injury, which further confirms the higher risk of
injury in Segment 2. Therefore, Segment 1 can be identi-
fied to include vehicle occupants involved in collisions
with lower injury severity risk. In contrast, Segment 2
can be identified to include vehicle occupants with higher
injury severity risk.

Discussion of Parameter Estimation Results

The model results are presented in Table 2. The results
suggest that adverse weather such as rain increases the
probability of higher injury severity. This is a deviation
from earlier findings by Eluru and Bhat, who argued
that rain might decrease crash injury severity as drivers
are more cautious during rain (32). As this study ana-
lyzes collisions involving distracted driving, the adverse
weather condition coupled with distracted driving might
increase the severity of injury. Snowy weather is found
to have a negative impact. Snowy conditions might influ-
ence the driver to drive slowly, which results in less
severe injury. Collisions occurring in evening and over-
night show a higher probability for severe injury in
Segment 1. Lower traffic at night encourages drivers to
drive faster, and reduced visibility because of darkness
might increase the likelihood of higher injury severity.
On the other hand, the same variable shows a negative
relationship in Segment 2.

Among the road design and configuration attributes,
collisions in curved sections of the roads are found to
increase injury severity. The effect of curved roads is
found to be higher for the high-risk collisions in Segment
2 than for low-risk Segment 1. The manner of collisions
(e.g., vehicle negotiating a curve) along with vehicle types
(e.g., larger vehicles like SUVs) might contribute to the
higher level of injury in Segment 2. The impact of curved
road sections for the low-risk segment significantly
increases injury severity if the driver is distracted by a

communication device. Collisions in straight roads are
associated with a higher risk of injury in Segment 2. The
characteristics of Segment 2 that include impaired drivers
under the influence of alcohol coupled with higher speed
of vehicles on straight roads increase the severity of
injury. On the other hand, straight road sections show a
lower probability for severe injury in low-risk Segment 1.
The low-risk manner of collision along with a sober
driver might contribute to the lower injury level for
Segment 1. Variables representing collisions in the arter-
ials and freeways reveal a higher likelihood for severe
injury. This aligns with the findings of Yasmin and
Eluru, as the higher speed of vehicles in these mid to high
speed road segments might aggravate injury severity
(31). Collisions in the mid-block sections of roads also
show a positive relationship. Where parking lot intersec-
tions interact with distraction type inattentiveness, a pos-
itive relationship is found.

In the case of the land use and neighborhood charac-
teristics, collisions occurring in the higher mix land use
areas decrease the probability for severe injury. Higher
mix land use areas facilitate improved and safer transport
infrastructure, reducing the injury severity level. A vari-
able representing the length of sidewalk within a 250-m
buffer from the collision location is found to reduce
injury severity. Higher density of schools within the prox-
imity of collision locations shows a negative relationship
in the high-risk segment. This implies that collision loca-
tions within 250m of schools have a lower likelihood to
yield severe injury. Lower speed limits in school zones
might contribute to the lower probability of injury sever-
ity. A higher population density decreases the probability
of injury severity in both the segments. The negative
effect is substantially higher in the low-risk Segment 1
compared with the high-risk Segment 2. The low-risk
characteristics of the crashes and drivers explain the rela-
tively lower level of crash injury severity in Segment 1.

Marginal Effects

The marginal effects of determinants of the vehicle occu-
pant injury severity model are presented in Table 3. The
marginal effects refer to the magnitude of impact of the
determinants on the probability of injury severity levels.
The results suggest that collisions occurring in the eve-
ning and overnight have a substantial positive impact for
fatal injury. Rain, freeway, curved road, and mid-block
road section have a significant positive impact on moder-
ate injury. However, higher mixed land use, longer length
of sidewalk, and higher population density show a sub-
stantial positive impact on no injury, implying a reduc-
tion of injury severity. The segmentation variables are
found to have considerable magnitude of influence on
the injury severity level. For example, head-on collision
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has a significant positive impact on major and fatal
injury. Driver under the influence of alcohol, vehicle hit-
ting stationary object, negotiating curve, and age of the
victim significantly increase the probability for severe
injury.

Conclusions

This study presents the findings of modeling vehicle
occupants’ injury severity in collisions involving dis-
tracted driving. The study utilizes 2007 to 2011 collision
data from the NSCRD. Injury severity is modeled on a
five-point ordered scale: 1) no injury; 2) minor injury; 3)
moderate injury; 4) major injury; and 5) fatal injury. To
address the ordinal nature of injury severity as well as
latent heterogeneity within the modeling framework, an
LSOL model is developed. Individual victims are allo-
cated into discrete latent segments based on the victims’
and drivers’ profile, and collision characteristics. This
study extensively tests the effects of built environment
attributes.

The segment allocation model results suggest that
individuals are allocated into two segments, which can
be identified as high-risk and low-risk injury severity seg-
ments. Vehicle occupants are assigned to the segments
on the basis of gender and age of the individual victim,
driver under the influence of alcohol, vehicle hitting a
stationary object, going straight, negotiating a curve,
head-on collision, and vehicle type (i.e., car and SUV).
The model results of the injury severity component sug-
gest that built environment and environmental factors
significantly influence collision injury severity. For exam-
ple, curved roads, freeways, and mid-block road sections
are positively associated with injury severity. Higher
mixed land use, higher population density, and longer
sidewalk reduce the probability of injury severity. The
model results reveal that significant heterogeneity exists
between the latent segments. For instance, straight road
alignment increases the probability of higher severity in
the high-risk segment; in contrast, it decreases the likeli-
hood of higher severity in the low-risk segment. The
model confirms the interplay between built environment
and distraction type. For example, inattentive driving is

Table 3. Marginal Effects

Variables
No

injury
Minor
injury

Moderate
injury

Major
injury

Fatal
injury

Person profile
Male .067 –.024 –.037 –.004 –.0007
Age above 75 years –.031 .011 .017 .002 0.0003
Driver under influence of alcohol –.146 .045 .084 .013 .002

Collision characteristics
Vehicle type—car –.026 .009 .014 .001 .0002
Vehicle type—sport utility vehicle –0.018 0.006 0.010 0.001 0.0002
Vehicle going straight –.057 .021 .031 .003 .0006
Vehicle negotiating a curve –.093 .030 .053 .007 .001
Vehicle hit non-moving object –.145 .048 .082 .011 .002
Head-on collision –.320 .073 .191 .044 .011

Environmental factors
Weather—rain –.025 .009 .014 .001 .0002
Weather—snow .039 –.015 –.021 –.002 –.0003
Time of day—evening and overnight –.012 –.018 –.002 –.0003 .033

Built environment
Roadway design and configuration

Road alignment curved –0.024 0.008 0.013 0.001 0.0002
Road alignment curved 3 communication device 0.046 –0.018 –0.025 –0.002 –0.001
Road alignment straight .046 –.016 –.025 –.003 –.0005
Road type—arterial –.054 .018 .031 .004 .0007
Road type—freeway –.060 .020 .033 .004 .0007
Collision location—nonintersection –.042 .015 .023 .002 .0004
Collision location—intersection with parking lot 3 inattentive 0.0007 –0.001 –0.0004 –.0001 –.0001

Land use and neighborhood
Land use mix index .188 –.069 –.104 –.012 –.001
Length of sidewalk within 250-m buffer (km) .004 –.001 –.002 –.0003 –.0001
Density of school within 250-m buffer (per km2) 2.476 –.914 –1.372 –.164 –.025
Population density (person/km2) .017 –.006 –.009 –.001 –.0001
Population commuting by car in the dissemination area (%) .276 –.102 –.153 –.0183 –.002

Note: 3= variable interaction.
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found to aggravate vehicle occupants’ injury at the inter-
sections of parking lots. The use of a communication
device is also positively associated with a higher level of
injury at curved road sections.

The findings of this study offer important insights for
policy making that focuses on mitigating the injury
severity from crashes involving distracted driving. For
example, this study identifies that inattentiveness at the
parking lot aggravates injury severity. This finding has
important implications as many of the existing policies
mainly mitigate the effects of distractions because of the
use of cell phones. Developing policies for inattentive
driving is a challenging task. One of the beneficial policy
interventions might be to provide feedback to inattentive
drivers with regard to where they should be more careful,
for instance, at parking lots. Another important implica-
tion is with regard to the use of communication devices.
The findings suggest that the drivers need to be more
careful in using communication devices when negotiating
curved road alignments. The heterogeneity captured
across the discrete latent segments of individual victims
needs to be addressed when making the road safety poli-
cies. For example, straight road segments are found to
pose a higher injury risk in the high-risk segment, and a
lower injury risk in the low-risk segment. Road safety
policy interventions should address such heterogeneity.
The marginal effect analysis assists road safety engineers
and planners in identifying the factors that reduces the
crash injury severity of vehicle occupants. For example,
older victims, and drivers under the influence of alcohol
are found to be more likely to experience severe injury.
This finding sheds light on the need for policies that tar-
get specific segments of the populations. Additionally,
collisions occurring in the evening and overnight and
head-on collisions substantially affect the probability of
moderate and fatal injury. Rain, freeways, curved roads,
mid-block road sections, vehicle hitting stationary
objects, and negotiating curves are found to aggravate
injury severity. On the other hand, higher mixed land
use, longer length of sidewalk, and higher population
density are found to mitigate the severity of injury.

This study has certain limitations. It derives land use
and neighborhood variables at a 250-m buffer distance
from the collision locations. One of the reasons for
adopting a buffer of 250 m is to avoid correlations with
the macro-level location attributes of crashes such as
urban or rural areas. However, the 250-m buffer might
introduce some correlations, which is a limitation of this
study. In the case of collisions involving multiple victims,
the unobserved factors influencing injury severity across
multiple involved parties might be correlated. This study
does not consider such correlation among multiple vic-
tims involved in one collision. One of the restrictive
assumptions of the models developed in this study is the

constant estimation of parameters across the injury
severity levels, which is known as the parallel regression
assumption. This restrictive assumption might also attri-
bute to the low pseudo-R2 value of the models.
Alternative model structures, such as the generalized
LSOL model, should be tested to relax the parallel
regression assumption and improve the goodness-of-fit
measures (25). Another limitation of this study is the
unbalanced distribution of the dependent variable (injury
severity level), which might result in biased estimation.
Future research should address this skew in the data by
reducing the multicategory injury severity level into
series of two-category phenomenon. Artificial neural net-
work (ANN) is a potential modeling approach to tackle
this skewness, as ANN accommodates such conversion
and yields a significantly improved model fit (33). In
summary, this study provides important insights toward
the interplay between distraction types and built environ-
ment for different population groups and collision pro-
files, which will be beneficial to identify and prioritize
road safety strategies and plans.
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