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Abstract

This paper analyzes the nature of technology shocks and documents important
changes in their propagation over time. We employ a vector-autoregression and identify
a shock that explains the maximum variation in total factor productivity (TFP) at
a long finite horizon. This agnostic identification suggests that the dominant shock
driving TFP is not necessarily a surprise shock, but exhibits features consistent with
a shock that is anticipated or diffuses over time: GDP and consumption rise prior to
any significant increase in TFP. We further find that shock transmission has changed
over time. In a sample that ends in the mid 1980s, the shock triggers a decline in
hours-worked and inventories, and a rise in credit spreads. In a post-Great Inflation
sample the response of these variables is reversed and the shock generates an outright
expansion in hours, inventories, GDP and consumption that is accompanied by a decline
in credit spreads. We find that the importance of technology shocks as a major driver
of aggregate fluctuations has increased over time — they play a dominant role in the
second subsample, but much less so in the first. We then turn to a rich structural
model to study potential causes of the changing impact of technology. Using an IRF-
matching feature, we find that a change in the stance of monetary policy and the
nature of intangible capital accumulation both played dominant roles in accounting for
the changing impact of technology over time.
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1 Introduction

Since at least the onset of the era of modern macroeconomics, the idea of stochastic

shifts in the technological frontier of the economy as driver of business cycles has had a

very prominent role in macroeconomics. These so-called “technology shocks” have remained

controversial since their inception, and in tandem with work studying their role in theoretical

models, empirical researchers have sought out evidence about their potential prominence

and role in the data. Do shifts in technology trigger a response that resembles business

cycles? If so, how important are such disturbances for explaining aggregate fluctuations?

Does it matter if these technological shifts are surprise shocks or anticipated in advance?

Not surprisingly, the empirical literature addressing these questions has at times arrived at

dramatically different answers.

While much of the literature has focused on exploring implications of different time-series

treatments and identifications, in this paper we take a step back and explore the role of

technological era. Using a standard VAR-based Max Share technology shock identification,

we show that analyzing two separate subsamples created by splitting the data around the

generally considered onset of the Great Moderation yields dramatically different results, and

these results are remarkably robust to identification method and data treatment. We can

characterize the general results over these two subsamples as follows: (i) the most relevant

shock driving TFP is not necessarily a surprise shock as assumed in many models, but rather

a news/diffusion shock; (ii) the transmission of technology shocks has changed over time,

and, (iii) the importance of technology shocks in terms of business cycles has increased over

time.

With respect to our first general result above, following Kurmann and Sims (2021),

our Max Share empirical shock identification seeks out the shock that “best explains” the

variance in TFP at some long but finite horizon, and makes no attempt to impose any sort of

additional short-run restriction in order to separately identify the surprise versus anticipated

(“news”) component of the technology shocks. The identification thus remains agnostic about
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the presence of surprise or news components in technology shocks, allowing us to address

more generally the debate on the nature of technology shocks. Nevertheless, in line with the

results of Kurmann and Sims (2021) over a single sample, in each of our subsamples TFP

only rises with statistical significance after several periods, and then grows gradually beyond

that, consistent with the idea of “anticipated/news” shocks, or technological diffusion. In

this sense we conclude that anticipated/diffused technological growth is the dominant form

of the technological shock over both samples.

With respect to our second general result above, the change in the transmission of tech-

nology shocks is best reflected in the striking difference in the response of hours-worked

across the two subsamples: in the first subsampple hours falls on impact; in the second

subsample it rises. Yet consumption and stock prices rise consistently in both samples.

Moreover, although hours responds differently in both samples, it co-moves positively with

investment, inventories, the real wage and negatively with the BAA spread in both samples.

As a group then, the response of hours, investment, inventories, the real wage and the BAA

spread flips over the two samples relative to the consistent rise in consumption and stock

prices over both subsamples. Interestingly, this connection between hours and inventories in

particular is consistent with the literature that suggests a tight relationship between hours

and inventories (and other variables, e.g. spreads) and argues for these to be assessed in

conjunction.

Finally, with respect to our third general result above, about the increase in importance

of TFP shocks over time, our forecast error variance decompositions show that while the

identified shock explains a large and similar share of TFP over the two subsamples, the

shock explains a substantially larger share of output variations in the second subsample

than the first. This result is also related to our finding that the response of hours and other

key variables in the second subsample, conditional on the identified shocks, is consistent with

the unconditional correlations of those variables in the data. Said another way, the negative

comovement of hours and consumption in the first subsample makes it difficult for the shock

to account for a large proportion of business cycle activity when unconditionally hours and
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consumption co-move positively.

To attempt to isolate the source of the change in the response over the sub-samples in the

VAR, we perform a counterfactual exercise that “re-recovers” the technology shocks in the

first subsample using the polynomial lag coefficients estimated from the first subsample but

the variance-covariance matrix estimated from the second sample. Similarly, we re-recover

the shocks in the second subsample using the polynomial lag coefficients estimated from

the second subsample but variance-covariance matrix estimated from the first. The results

are striking: the impulse response functions are largely unchanged from our core results,

suggesting that potential structural change in the variance-covariance matrix is not driving

change in the results over the sample. Rather, the exercise points toward changes in the

polynomial lag coefficients of the underlying VAR.

Next we turn to a rich structural model to study the potential causes of the changing

impact of technology. In order to consider various different possibilities for the sources of

the change, we augment a New Keynesian framework with a banking sector and financial

frictions based on Gertler and Karadi (2011), inventory holding by firms as in Lubik and

Teo (2012), intangible capital as an additional input into production, which we refer to as

knowledge capital, as in Gunn and Johri (2011a), as well as various other standard real

rigidities. Using the same data subsample split as in our VAR analysis, we then estimate

values for key parameters seprately for each subsample using an impulse response matching

procedure which minimizes a function of the distance between the empirical VAR and model-

generated impulse response functions, conditional on an anticipated shock to the growth rate

of non-stationary Total Factor Productivity. Using the results of this procedure and a series

of model-based experiments, we then evaluate various candidate hypothesises for the source

of the change through the lens of the model. Our results suggest that the change in the

response of technology over time was likely some combination of a change in the stance of

monetary policy, a change in the nature of knowledge capital accumulation, and a change in

the cost of utilizing capital.

With respect to the change in the stance of monetary policy, our results suggest a move
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towards tighter monetary policy in response to inflation and looser response to the output

gap in a Taylor-type rate-setting rule. This change in stance then works through real-interest

rate effects on labour and inventory decisions, and a powerful channel discussed in Christiano

et al. (2007) through which under nominal wage rigidities, an inflation-targeting central bank

influences the path of the real wage. With respect to the change in the nature of knowledge

capital accumulation, our results suggest a change in the elasticity in which hours-worked in

production contributes to the accumulation of new knowledge capital, causing firms increase

labour demand and lower markups as they seek to acquire valuable new knowledge capital

in the face of expanding future technology. Finally, with respect to the change in the cost

of utilizing capital, our results suggest an increase in this cost working through general

equilibrium effects though the credit sector by the influence of this cost on on the return to

capital and associated increase in demand for new capital.

Our work links to an ongoing literature that focuses on the importance of the long run

to identify technology shocks in VARs. Galí (1999) employs long-run restrictions on labor

productivity to identify technology shocks and finds a decline in hours-worked. Technology

shocks account just for a very small part of total fluctuations in output and hours-worked

at business cycles frequencies which is taken as evidence against the Real Business Cycle

paradigm.1 Others including Christiano et al. (2004) find the opposite result with regards

to the response of hours-worked and the importance of technology shocks for aggregate

fluctuations, which was attributed to differences in the specification of hours in the VAR.2

Following this debate, another strand of the literature emerged which focused on alternative

identification. Francis et al. (2014) propose the so-called, Max Share identification which

identifies a technology shock as the one that that maximizes the forecast-error variance of

labor productivity at some long by finite horizon, and which addresses some of the short-

comings of long-run identification. In particular, Francis et al. (2014) show that the Max

Share identification outperforms standard long-run restrictions by significantly reducing the
1See also Shea (1998), Ramey (2005), Pesavento and Rossi (2005) and Basu et al. (2006).
2See also Uhlig (2004) and Dedola and Neri (2007).
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bias in the short-run impulse responses and raising their estimation precision. They find —

independently of the data specification considered for hours-worked — that hours respond

negatively. Notably, Francis et al. (2014) derive their results from a single sample using

1948Q2-2009Q4.3 We build on the insights of this debate and employ the Max Share iden-

tification but focus on the analysis of two distinct subsamples for which the literature has

documented differences in unconditional time series behavior. While we use TFP instead

of labor productivity for our core analysis, we also show that our split-sample result for

hours-worked holds using labor productivity instead of TFP.

Our work also connects with the ongoing empirical literature that studies anticipated

shocks to technology, typically framed as TFP news shocks. This literature has for several

years debated the response of key economics variables to TFP news, and as with the Galí

(1999) debate discussed above, the response of hours-worked to the identified news shock

has been a key feature of this debate. Some studies, e.g. Kurmann and Sims (2021) and

Barsky and Sims (2011) (both with sample period 1960q1 to 2007q3), find that hours-

worked do not co-move with output and consumption but decline in response to favorable

anticipated technology shocks. Others document a broad-based expansion of macroeconomic

aggregates — see e.g. Görtz et al. (2021) and Görtz et al. (2019) who consider 1984:Q1–

2017:Q1 and 1983Q1-2018Q2 samples, respectively, which closely correspond to the second

subsample in our paper. The differences in findings with regards to the response of hours-

worked is important as it speaks to the notion of whether anticipated technology shocks are

potentially important drivers of aggregate fluctuations. In relation to this, co-movement of

macroeconomic aggregates has also been an important criterion for news-shock models.

We also speak to the large literature that documents differences in time series behavior

across the Great Inflation/Great Moderation samples.4 While this literature documents

the data unconditionally, we point to important changes conditional on technology shocks.
3For a further contribution to the methodological debate on shock identification, see also Feve and Guay

(2009) who document a decline in hours-worked over a 1948Q1–2003Q4 sample.
4We cannot do justice here to this extensive literature, see e.g. McCarthy and Zakrajsek (2007), Kahn

et al. (2002) and Sarte et al. (2015).
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This literature and our work has implications for the estimation of structural models —

in particular in relation to technology shocks. We speak to the relevance of subsample

estimation or estimation with time varying parameters. See e.g. Fuentes-Albero (2019) who

documents that contemporaneous to the Great Moderation there was a widespread increase

in the volatility of financial variables. She comments on changes in the transmission of

financial shocks. Cúrdia and Finocchiaro (2013) show that ignoring regime changes leads to

spurious estimates.

The remainder of the paper proceeds as follows. In Section 2.1 we discuss our empirical

methodology and the data. Sections 2.2-2.4 analyze impulse response functions based on

two separate subsamples using a minimally specified VAR framework, explore robustness

along a number of dimensions and perform various empirical exercise to try and isolate and

understand the source of this technology change in the role of technology. Section 3.1 outlines

a structural model. This model points in Section 4 to potential channels that may drive the

differences across subsamples. In Sections 5 and 7 we employ an IRF matching procedure

to investigate the empirical relevance of these channels. Section 8 concludes.

2 A tale of two eras

We begin by providing some VAR-based evidence about the importance of subsample

era to the role and response of the macroeconomy to technology shocks. To make our point

most clearly, we keep our analysis as simple and direct as possible, focusing on a small VAR

with a relatively agnostic identification using two different subsamples. We then discuss the

implications of these results, and provide an initial first-pass analysis of the source of the

changes over subsample era.

2.1 Empirical Methodology and Data

Our identification objective is to isolate broadly-defined technology shocks and to be

agnostic about whether technology instantaneously reacts to the shock or with a lag.

6



Like much of the literature, we focus on a identification condition at a long horizon based

on the idea that a distinguishing feature of a technology shock is its ability to influence the

behaviour of the macro-economy at long-horizons. As such, we identify the technology shock

using the Max Share methodology as suggested in Francis et al. (2014), who maximize the

forecast error variance share of a productivity measure at a long but finite horizon.5 As

in Francis et al. (2014), we consider this horizon h at which the forecast error variance is

maximised to be 10 years. This approach is consistent with suggestions in Uhlig (2003) and

in the spirit of Angeletos et al. (2020). Following Kurmann and Sims (2021), we use TFP as

the target variable, such that identification isolates the shock that best-explains TFP at a

long horizon. As in Kurmann and Sims (2021), we do not impose any additional restrictions

intended to separate anticipated from surprise shocks to technology (such as a no-impact

orthogonality restriction). As argued by Kurmann and Sims (2021), doing so helps to avoid

measurement issues that may arise with a variable like TFP in the short-run. Moreover, it

also allows us to put the least possible restrictions on our identification, thereby increasing

the scope of our subsample dependence result. As such, the identification allows us to remain

agnostic about the type of technology shock being identified (anticipated vs. surprise), and

does not require us to make the strong identification assumption that TFP is completely

exogenous at all horizons and comprised of just surprise and news shocks.

We include five variables in our baseline VAR model: TFP, GDP, consumption, hours-

worked and the S&P500. A key measure to identify the shock that moves productivity is

an observable for TFP. We use the TFP measure provided by Fernald (2014) which is based

on the growth accounting methodology in Basu et al. (2006) and corrects for unobserved ca-

pacity utilization. GDP, consumption and hours-worked serve as our measures of economic

activity, and the S&P500 serves as a forward-looking capturing information available to eco-

nomic agents about future macroeconomic developments, helping to avoid non-invertibility

issues. The GDP, consumption and hours-worked are all seasonally adjusted and in real
5Francis et al. (2014) show that in comparison to other long-run identification schemes, the Max Share

approach’s focus on a long and finite horizon helps reducing small-sample bias in VARs.
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per-capita terms (except for hours-worked which are not deflated). Appendix C provides

details on the data sources and all used time series. The time series included in the VAR

enter in levels, consistent with the practice in the empirical VAR literature (e.g. Barsky and

Sims (2011), Francis et al. (2014)). To estimate the VAR we use three lags with a Minnesota

prior and compute confidence bands by drawing from the posterior.6

There is wide agreement in the literature that the structure of the US economy changed

during the 1980s — what we now call the end of the Great Inflation and the onset of the

Great Moderation — which resulted in substantial unconditional changes in time series

behavior. We frame our investigation around the two subsamples on either side of the

onset of the Great Moderation, estimating a VAR on U.S. data separately for each of two

subsamples spanning the periods 1954Q2–1983Q4 and 1984Q1–2019Q4. This subsample

horizon is guided by the literature that documents differences in cross-correlation patterns of

several macro-aggregates in samples before and after the mid-1980s. In particular, McConnell

and Perez-Quiros (2000) and Kim and Nelson (1999) document a structural break at the

first quarter of 1984 (see also e.g. Galí and Gambetti (2009) and Stock and Watson (1999)

for further evidence on this structural break).

2.2 Evidence from Two Eras

Figure 1 shows impulse response functions (IRFs) to our identified technology shock with

the red and blue lines corresponding to the first and second subsamples respectively. There

are several important points to note. First, while our agnostic shock identification does

not exclude the possibility that TFP jumps on impact, in both subsamples, the dominant

effect on TFP is one that grows over time. In particular, in both subsamples TFP only

rises significantly with a lag of eleven quarters and after the other variables in the VAR.

This is consistent with a diffusion-based or anticipated (news) technology shock. Second,

there is a striking difference in the co-movement of the key aggregate variables between the
6Further details about the VAR model, the Max Share identification and prior specifications are provided

in Appendix A.
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two subsamples. Whereas in the more recent subsample we see a broad-based and positively

co-moving expansion of GDP, consumption and hours-worked, in the earlier subsample hours-

worked fall.7 Consumption rises also in the first subsample, yet its short- and medium-run

expansion is less pronounced than that in the second subsample. For GDP this disparity

is even more apparent as output rises in the first subsample significantly only after seven

quarters. Finally, stock prices rise in both subsamples. This rise in stock prices along

with that of consumption over the two subsamples is generally consistent with a “good

news” technological expansion, despite the differential response of hours-worked between the

subsamples. Overall, we observe for almost identical TFP responses a marked difference in

the response of the other variables over the two episodes.8

Figure 1: IRF to TFP shock. First subsample 1954Q2-1983Q4 (red), second subsample
1984Q1-2019Q4 (blue). The solid line is the median and the shaded colored areas are the
16% and 84% posterior bands generated from the posterior distribution of VAR parameters.
The units of the vertical axes are percentage deviations.

Figure 2 shows the forecast error variance decompositions relating to the estimated VARs

for the two subsamples. While the identified shock explains a substantial and very similar

share of variation in TFP across the two episodes, in the first subsample the shock is of

substantially lower importance for fluctuations in GDP at business cycle frequencies (red

lines, approximately 10-55%) than in the second subsample (blue lines, approximately 70-

85%). The rise in the shock’s importance for business cycle fluctuations in the second
7The qualitative differences across subsamples with respect to hours-worked is reflected in the labor

market overall. Consistent with the decline in hours during the first subsample, Appendix B documents a
decline in the labor force participation rate and a rise in the unemployment rate. In contrast, for the second
subsample, the labor force participation rate increases and the unemployment rate declines.

8These impulse response functions are robust to using labor productivity as an alternative measure for
productivity. Details are documented in Appendix B. Our results are also robust to alternating the number
of lags and to variations in the Max Share horizon h. Results are available upon request.
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subsample is consistent with the IRF evidence from Figure 1, where we observed a stronger

shock propagation and comovement across all macroeconomic aggregates, including hours-

worked. The opposite sign response of hours-worked – relative to GDP and consumption

– is consistent with the notion that the technology shock in the first subsample is of lesser

importance for business cycle fluctuations.

Figure 2: Forecast Error Variance Decomposition — share explained by the TFP
shock. First subsample 1954Q2-1983Q4 (red), second subsample 1984Q1-2019Q4 (blue).
The solid line is the median and the shaded colored areas are the 16% and 84% posterior
bands generated from the posterior distribution of VAR parameters. The units of the vertical
axes are percentage deviations.

In summary, the above results suggest that: (1) The importance of technology shocks has

increased over time — as a major driver of aggregate fluctuations they play a dominant role

in the second subsample but less so in the first; (2) the transmission of technology shocks

has changed over time, especially with regards to the qualitative response of hours-worked;

(3) the most relevant shock driving TFP is not necessarily a surprise shock as assumed in

many models, but rather a news/diffusion shock. We will discuss the implications of these

findings further in the next section which investigates the shock transmission in more detail.

2.3 Digging Deeper: Subsample Differences in Shock Transmission

The above section documents differences in the transmission of TFP shocks over two

subsample eras, most significantly manifested in the response of hours-worked. Developments

in the labor market are often tightly linked to other key margins. In this section, we inspect

these to gain a deeper understanding for differences in the shock transmission across the two

subsamples.
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Figure 3 shows responses of multiple variables of interest for the transmission of TFP

shocks. Subplots in this figure are from a VAR with TFP, GDP, consumption, hours-worked,

the S&P 500 and one of the plotted variables of interest at a time. The plotted response for

hours is from the VAR that includes inventories. The variables not shown are very similar

to those in Figure 1.

In addition to the responses of hours-worked, a number of other variables also display

remarkable differences across the two subsamples in their response to a TFP shock. In

particular, inventories, investment and the real wage fall, and the BAA spread rises in the

first subsample, whereas in the second subsample, the behaviour is reversed. In addition,

there is a short-lived decline in inflation in both subsamples. The patterns of the remaining

two variables are less certain: the federal funds rate doesn’t respond significantly in either

subsample, and capital utilization rises in the second subsample, but is insignificant in the

first.

Figure 3: IRF to TFP shock. First subsample 1954Q2-1983Q4 (red), second subsample
1984Q1-2019Q4 (blue). The solid line is the median and the shaded colored areas are the
16% and 84% posterior bands generated from the posterior distribution of VAR parameters.
The units of the vertical axes are percentage deviations. Subplots are based on a VAR with
TFP, GDP, consumption, hours-worked, the S&P 500 and one of the plotted variables at a
time.

Taken together, the results from Figures 1 to 3 suggest the following with regards to the

behaviour of the key variables in response to the technological shock. First, consumption and

stock prices rise and inflation falls in both subsamples. This rise in consumption and stock

prices in tandem with the delayed rise in TFP is consistent with the idea of “good news”
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associated with a rise in lifetime wealth due to expected TFP growth (see e.g. Beaudry and

Portier (2006)). Moreover the short-lived decline in inflation is a widely reported response

to technology news shocks (see e.g. Barsky and Sims (2011) Kurmann and Sims (2021),

Görtz et al. (2022)). Second, hours-worked, investment, inventories, the real wage and the

BAA spread co-move in a consistent way with each other over both samples – and indeed,

consistent with their unconditional correlations in the data – however, as a group, their

response flips between the two subsamples. In particular, as a group, these variables respond

in the short run in a “contractionary” way in the first subsample, and “expansionary” in the

second subsample. This is also consistent with the somewhat more muted response of output

in the first subsample relative to that in the second subsample, reported in Figure 1.

2.3.1 Group mentality: Labour, inventories, investment and credit spreads

The second observation made in the paragraph above is suggestive of a potential connec-

tion between developments on the labor market, inventories, investment and credit spreads.

The close relationship between hours and inventories has been stressed for example by Mac-

cini and Rossana (1984) and Galeotti et al. (2005), who point out the need for a joint

understanding of the dynamics of inventories and hours-worked. Also Chang et al. (2009)

emphasize this point and document the co-movement of inventories and employment condi-

tional on (unanticipated) technology shocks. They further stress the connection between the

sign of the employment response to technology shocks and the cost of holding inventories.

Their notion that a positive response of hours-worked is more likely the less costly it is to

hold inventories, is consistent with the patterns we document in Figure 3 on inventories,

hours and credit spreads. Risk premia, such as credit spreads, have been recognised in the

literature also as a measure for the opportunity cost of holding inventories. See for example

Jones and Tuzel (2013) who document this relationship between risk premia and inventories

unconditionally and Görtz et al. (2019) who stress the importance of credit spreads as oppor-

tunity cost for inventory holdings conditional on anticipated technology shocks. Hence, the

decline (rise) in inventories shown in Figure 3 for the first (second) subsample is consistent
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with a rise (fall) in their opportunity cost captured by credit spreads.

A vast body of research finds that financial markets are characterized by frictions that

lead to credit spreads and hence affect the financing of investment projects.9 In particular,

Görtz and Tsoukalas (2018) and Görtz et al. (2021) emphasize that the empirical relevance

of technology news shocks hinges crucially on the shock’s transmission being amplified by

frictions in financial markets. The responses of investment and the BAA spread shown in

Figure 3 are consistent with this finding in so far as the response of the BAA spread indicates

a much stronger transmission via financial markets in the second subsample. This and the

relaxation of credit frictions, as indicated by the decline of the BAA spread, is consistent with

the strong expansion in investment we document for the second subsample.10 In contrast, the

somewhat muted rise of credit spreads in the first subsample is indicative of tighter lending

conditions which is consistent with the somewhat less pronounced rise in investment.

Changes in the nature of US business cycles during the mid-1980s are a widely doc-

umented phenomenon. By considering two separate subsamples we take account of this

finding and avoid masking differences in shock transmission across the two subsamples. Es-

timating the VAR over the entire sample (1954Q2-2019Q4) yields responses that are similar

to those of the second subsample. Details are provided in Appendix B.

2.3.2 Conditional Evidence and Unconditional Dynamics in the Data

Our sample split coincides with the end of the Great Inflation and the literature has

documented a number of structural changes in the economy that occurred around this time.

Interestingly, these structural changes would be reflected in some of those variables that we

find to depict the most substantial differences in responses across subsamples, i.e. inven-

tories, hours-worked and credit spreads. McCarthy and Zakrajsek (2007) and Kahn et al.

(2002) document that significant changes in inventory dynamics occur in the mid-1980s due
9See for example Philippon (2009) and Gilchrist and Zakrajsek (2012).

10Görtz et al. (2021) stress the importance of movements in credit spreads for the propagation of anticipated
technology shocks. They show that such a favorable shock is amplified via financial markets since an
endogenous strengthening of banks’ balance sheets relaxes lending conditions associated with a decline in
credit spreads.
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to improvements in inventory management. Sarte et al. (2015) document that time-series

properties of inventories and hours have changed with the onset of the Great Moderation

and attribute this, at least partly, to variations in credit market frictions. Adrian et al.

(2010) and Jermann and Quadrini (2012) argue that the importance of the financial sector

for the determination of credit and asset prices has risen significantly from the mid-1980s.

Further, Jermann and Quadrini (2009) discuss a variety of financial innovations that were

taking place or intensified in the 1980s — including banking liberalization, and flexibility

in debt issuance through the introduction of the Asset Backed Securities market — and

stress their role for a slowdown in output volatility. Fuentes-Albero (2019) documents that

contemporaneous to the onset of the Great Moderation there was a widespread increase in

the volatility of financial variables. This literature studies the unconditional dynamics of

inventories, hours and credit spreads in relation to potential sources for the end of the Great

Inflation. While our paper does not aspire to speak to the reasons for the onset of the Great

Moderation, we note that there might potentially be a link between the sources of struc-

tural change — i.e. improvements in inventory management and developments in financial

markets — that have been attributed to be potential sources of the Great Moderation and

our documented changes in the transmission of technology shocks.11 The following section

builds on our econometric setup to provides some first insights on potential sources of the

subsample differences conditional on technology shocks.

Before we do so, we want to shed some more light into the timing of when impulse

responses flip sign. For this purpose, we estimate our VAR model over rolling windows of

119 quarters. This choice implies that the first rolling window is consistent with our first

subsample and we shift this window forward until its end corresponds to the end of the second

subsample. Figure 4 displays the maximum or minimum (whichever is larger in absolute

terms) of IRF responses within the first ten quarters.12 For hours worked, it is evident that
11Other factors that have been suggested to contribute to the end of the Great Inflation are changes in

monetary policy making and smaller shocks. While this paper does not attempt to speak to this debate on
unconditional changes in time series behavior, it is interesting to note that our results suggest that the trans-
mission of technology shocks actually resulted in larger, rather than smaller, fluctuations in macroeconomic
aggregates in response to technology shocks in the second subsample.

12In Appendix B, we report corresponding statistics for the impact responses of IRFs. Results are consistent
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six quarters after the rolling window shifts beyond the end of the first subsample, the largest

(in absolute terms) median response within the first ten quarters turns positive. Once the

end of the rolling estimation window includes the year 2000 the positive response is almost

always significant. For inventories the picture is similar, although here the response flips into

positive significant territory already for a sample end at around 1994. Also investment moves

very quickly from a negative response to an insignificant one before it becomes significant and

positive once the sample end includes 1999. Also the response of the BAA spread becomes

insignificant very soon once estimation windows move away from the first subsample. The

spread response remains insignificant somewhat longer than those of the other variables and

flips to be negative and significant once the sample includes observations after the financial

crisis.

Overall, Figure 4 shows that as soon as the sample includes observations that are con-

sidered part of the Great Moderation period, the negative response of hours, investment

and inventories, and the positive response of the spread become insignificant. Once samples

include more post 1984 observations the IRFs flip sign and remain in this territory. This

rolling window exercise illustrates that the findings discussed in relation to Figure 1 are not

solely related to the two specific subsamples under consideration but reflect a broader feature

in the data. It also shows that the transmission of technology shocks has been affected for

some variables by significant events — such as the financial crisis for the BAA spread and

investment, the Great Moderation for inventories, investment and hours, and the late 1990’s

technology booom for investment and hours.

2.4 Exploring the Source of Subsample Differences: Impulse or

Propagation?

Our results above suggest that not only have technology shocks played more of a role

in accounting for aggregate fluctuations over time, but their impact on the macroeconomy

with those of Figure 4. The same holds for corresponding figures with a shorter window length, which are
also provided in this appendix.
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Figure 4: Maximum/minimum (whichever is largest in absolute terms) IRF re-
sponse within the first ten quarters to a TFP shock for rolling window. First rolling
window sample is 1954Q2-1983Q4 (119 quarters). The window is shifted up to 2019Q4. We
display the median (red dot) and the 16% and 84% posterior bands generated from the
posterior distribution of VAR parameters. The units of the vertical axes are percentage
deviations. Subplots are based on a VAR with TFP, GDP, consumption, hours-worked, the
S&P 500 and one of the plotted variables at a time.

has also changed. While the former effect on its own could simply reflect some change in

a feature of the technology shock itself, the latter result however is more suggestive of a

change in some underlying feature of the macroeconomy. We now take a first-pass at trying

to understand the reason for this change within the context of our econometric setup.

As we show in detail in Appendix A, our econometric approach considers the following

vector autoregression (VAR), which describes the joint evolution of an n×1 vector of variables

yt:

yt = A(L)ut.

A(L) = I + A1L + ... + ApL
p is a lag polynomial of order p over conformable coefficient

matrices {Ap}pi=1. ut is an error term with n × n covariance matrix Σ. We assume a linear

mapping between the reduced form errors ut and the structural shocks εt:

ut = B0εt,

where B0 is an identification matrix. We can then write the structural moving average

representation of the VAR:

yt = C(L)εt,
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where C(L) = A(L)B0, εt = B−1
0 ut, and the matrix B0 satisfies B0B

′
0 = Σ. B0 can also

be written as B0 = B̃0D, where B̃0 is any arbitrary orthogonalization of Σ and D is an

orthonormal matrix such that DD′ = I.

Thus through the lens of our structural moving-average representation in equation (3),

the subsample differences can be driven by: (i) differences in the polynomial lag matrix

C(L), (ii) differences in the variance-covariance matrix associated with εt, which in turn

results from differences in the estimates in the variance-covariance matrix Σ. We test for

this as follows: We draw from the posterior coefficient matrix based on the reduced form

VAR estimated for each of the two subsamples (we use the same seed for the random number

generator). We then identify the TFP shock for the first subsample (as outlined in Section

2.1 and Appendix A.1) using the second-subsample polynomial-lag coefficients and the first-

subsample variance-covariance matrix. Similarly, we identify a TFP shock for the second

subsample, using the first-subsample polynomial-lag coefficents and the second-subsample

variance-covariance matrix.

Figure 5 shows the results of this exercise. The red shaded areas shown in the first row are

the IRFs based on the first subsample. The blue shaded areas in the second row are the IRFs

based on the second subsample. These shaded areas are congruent with those shown in Figure

1 and are used as a point of reference. The blue dashed and dotted lines in the first row show

the median and posterior bands if the VAR is run on the second subsample but the shock

is identified using the first-subsample polynomial-lag coefficients and the second-subsample

variance co-variance matrix. Similarly, the red lines in the second row of Figure 5 show

the responses if the VAR is run on the first subsample and the shock is identified using the

second-subsample polynomial-lag coefficients and the first-subsample variance co-variance

matrix. It is striking from the first row that if we identify the shock using polynomial-lag

coefficients that are consistent with the first subsample and a second-subsample variance

co-variance matrix, the resulting IRFs are extremely similar to the original first subsample

responses. The same holds vice versa for the second row. This implies that the documented

differences across subsamples are driven to a large extent by differences in the polynomial-lag
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coefficients, rather than differences in the variance co-variance matrices. This is indicative

of a role for differences in the shock’s transmission through the economy across the two

subsamples.

Figure 5: IRF to TFP shock. The solid red (blue) line is the median and the shaded red
(blue) areas are the 16% and 84% posterior bands generated from the posterior distribution
of VAR parameters on the first (second) subsample. First subsample is subsample 1954Q2-
1983Q4, second subsample is 1984Q1-2019Q4. The blue (red) dashed and dotted lines in the
subplots in row one (two) are the median and posterior bands when running the VAR on
the second (first) subsample, but identifying the shock using the polynomial lag coefficients
implied by the first (second) subsample and the variance co-variance matrix implied by the
second (first) subsample.

3 Differences in Shock Transmission through the Lens of

a Structural Model

Our empirical results above document the changes in the response of the economy to tech-

nological shocks over time, yet the analysis remains agnostic about the underlying source of

these changes. We now use use a structural model to provide some interpretation to potential

underlying causes. As we discussed above, the extensive literatures studying changes in the

structure of the macroeconomy over the 1970’s – 1990’s have suggested several important

changes over this period, including: (1) changes in inventory management (2) changes in

labour market rigidities (3) changes in monetary policy (4) emergence of the information
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and communications technology (ICT) era. While the focus of these studies has not been

the changing effect of technology shocks, our rich structural model allows us to provide some

insight into whether these potential underlying changes in the economy could also be behind

the changing impact of technology.

Our structural framework is a medium scale New Keynesian model of augmented with

inventories, a financial sector with financial frictions, and knowledge capital accumulation by

firms. We model inventories as in Lubik and Teo (2012), based on the stock-elastic demand

model of Bils and Kahn (2000), where finished goods inventories are sales-enhancing. The

financial side of the model uses the setup of Gertler and Karadi (2011). Finally, knowl-

edge capital accumulation by firms follows the approach of Gunn and Johri (2011b), Chang

et al. (2002) and Cooper and Johri (2002) whereby firms accumulate productivity-enhancing

knowledge through an internalized learning-by-doing process in labor.

Our results above focus on the response of the economy to an identified exogenous tech-

nology shock, and thus our core analysis in our theoretical model focuses on the conditional

response of the model economy to an exogenous technological shock. Additionally, our re-

sults above suggest that dominant technological shock in both subsamples is an anticipated

or diffused shock where the 16% lower posterior band of TFP impulse response only rises

above zero in the range of 12 periods out, and thus our exogenous technological shock takes

the form of a ”news” or anticipated shock to TFP received 12 periods in advance of the actual

change in TFP. Nevertheless, in documenting our model, we include a full suite of shocks to

facilitate additional analysis.

3.1 Model description

The model consists of a large number of identical infinitely-lived households, a com-

petitive intermediate goods-producing firm, a continuum of monopolistically competitive

distributors, a competitive final goods producer, a continuum of competitive financial in-

termediaries, a competitive capital services firm, a competitive capital goods producer, a

continuum of monopolistically competitive labour unions, a competitive employment agency
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and a monetary policy authority. The intermediate goods firm produces a homogeneous

good that it sells to distributors. This good is then differentiated by the distributors into

distributor-specific varieties that are sold to the final-goods firm. The varieties are aggre-

gated into final output, which then becomes available for consumption or investment. House-

holds are comprised of a fraction 1− f of workers and f of bankers. Workers supply labor,

bankers manage financial intermediaries, and both return their earnings to the household.

Since this particular decentralization of wage stickiness implies that choices on consumption

and hours-worked are identical across households, for simplicity we will refer to a stand-in

representative household. The model economy contains several stationary stochastic shock

processes as well as non-stationary TFP and IST shocks and a suite of shocks that are

standard in the literature to facilitate estimation.

3.2 Households and Government

The stand-in household’s lifetime utility is defined over sequences of consumption Ct and

hours worked Nt and is given by

E0

∞∑
t=0

βtΓt

(
V 1−σ
t − 1

)
1− σ

, (1)

where 0 < β < 1, σ > 0, and where Γt is a stationary stochastic preference shock process.

The argument Vt is given by

Vt = Ct − bCt−1 − ψN ξ
t Ft, where Ft = (Ct − bCt−1)γf F

1−γf
t−1 , (2)

is a preference component that makes consumption and labor non-time-separable and is

consistent with the balanced-growth path in a growing economy. This preference structure,

which follows Schmitt-Grohe and Uribe (2012) and is based on Jaimovich and Rebelo (2009),

nests the no-income effect structure of Greenwood et al. (1988) in the limit as the parameter

0 < γf ≤ 1 tends toward zero. The parameter 0 ≤ b < 1 allows for habits in consumption;
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and ξ > 1 is related to the Frisch elasticity of labour supply.

The household enters each period with real financial securities, Bt, which serve as deposits

with the financial intermediaries, and nominal bonds, Bn
t , earning risk-free gross real rate

of return, Rt, and risk-free gross nominal rate of return, Rn
t , respectively, receiving nominal

wage, W h
t , for supplying hours, Nh

t , to the labour union, and receiving a share of real profits

from the various other entities in the model, denoted collectively as Πt. At the end of the

period, the household chooses its consumption Ct, its holdings of financial deposits Bt+1 and

nominal nominal bonds Bn
t+1. The household’s period t budget constraint is given by

Ct +Bt+1 +
Bn
t+1

Pt
+ Tt = RtBt +Rn

t

Bn
t

Pt
+
W h
t

Pt
Nh
t + Πt, (3)

where Pt is the price of the final good in terms of the nominal unit under the control of

the central bank and Tt denotes lump-sum taxes. The household’s problem is to choose

sequences of Ct, Nh
t , Bt+1 and Bn

t+1 to maximize equation (1) subject to equations (2)–(3),

resulting in standard first-order conditions.

Government spending follows the process Gt =
(

1− 1
εt

)
Yt, where εt is a stationary

stochastic government spending shock.

3.3 Financial intermediaries

Our financial intermediary framework follows that of Gertler and Karadi (2011) and so

we show only the core elements here. In period t, the jth financial intermediary obtains

deposit funds, Bjt+1, from households. The intermediary uses those funds and their own

net-worth, Njt, to make state-contingent loans, Sjt, to non-financial capital services firms,

such that the intermediary’s financing satisfies the balance sheet identity

QtSjt = Njt +Bjt+1,
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where Qt is the price of the state-contingent loan. The intermediary’s net-worth then evolves

as

Njt+1 = Rkt+1QtSjt −Rt+1Bjt+1,

where Rt+1 is the non-contingent rate paid on household deposits (determined in t), and

Rkt+1 is the state-contingent return on loans.

An intermediary this period stays an intermediary next period with exogenous probability

θb, at which point they will have been deemed to exit, a feature that insures an intermediary

will not grow so large as to be able to self-finance all its loans. The intermediary will continue

to operate and build wealth until exiting as long as the risk adjusted premium on making

loans over borrowing is positive. The intermediary thus maximizes expected terminal wealth,

given by

Vjt = max
{Sjt+i,Njt+1+i}

Et

∞∑
i=0

(1− θb)θibΛt,t+1+iNjt+1+i,

where Λt,t+i = βi λt+i
λt

is the household’s stochastic discount factor.

The financial friction takes the form of a moral hazard/cost enforcement problem where

each period, the intermediary can divert the fraction λb of assets back to the household,

at which point the intermediary is forced into bankruptcy and the depositors recover the

fraction 1 − λb. Thus for depositors to be willing to supply funds to the intermediary, the

following enforcement constraint

Vit ≥ λbQtSjt

must hold, such that the value to the intermediary of continuing to operate is at least as

large as the value of absconding funds. Conjecturing and subsequently verifying that the

solution is linear in its balance sheets components in the form

Vjt = νbtQtSjt + ηbtNjt,
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and that leverage, φbt, defined as

φbt =
QtSjt
Njt

,

is not dependent on intermediary-specific factors, we can then solve for νbt and ηbt. Under

the case that the enforcement constraint is binding (as in Gertler and Karadi (2011)),

φbt =
ηt

λb − νbt
,

and νbt and ηbt are then given by

νbt = Etβ
λt+1

λt
Γt+1δbt+1 and ηbt = Etβ

λt+1

λt
Γt+1Rt+1,

where Γt = 1− θb + θb(νbtφbt + ηbt) and δbt = Rk
t −Rt.

3.4 Employment unions and employment agency

Our sticky-wage framework follows the decentralization of Schmitt-Grohe and Uribe

(2012) and Smets and Wouters (2007) with a continuum of monopolistically competitive

labor unions on a unit mass indexed by j ∈ [0, 1], and a competitive employment agency.

Monopolistic unions buy homogeneous labor from households, transform it into differenti-

ated labor inputs, and sell it to the employment agency who aggregates the differentiated

labor into a composite which it then sells to the intermediate goods producer. The unions

face frictions in setting wages for each labor type. The unions face Calvo frictions in setting

their wages for each labour type, and re-set their wage according to an indexation rule when

unable to reoptimize.

Labor unions acquire homogeneous labor, Nh
t , from the household at wage W h

t , differ-

entiate it into labor types Njt, j ∈ [0, 1], and then sell the differentiated labor it to the

employment agency for wage, Wjt. The unions have market power, and can thus choose the

wage for each labor type subject to the labor demand curve for that labor type. In partic-

ular, the unions face Calvo frictions in setting their wages, such that each period they can
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re-optimize wages with probability 1−ζw. A union that is unable to re-optimize wages re-sets

it according to the indexation rule Wjt = Wjt−1π
ιw
t−1π

1−ιw , 0 ≤ ιw ≤ 1, where πt = Pt/Pt−1

and π is its steady state, and where 0 ≤ ιw ≤ 1. A union that can re-optimize its wage in

period t chooses its wage W ∗
jt to maximize

Et

∞∑
s=0

ζswβ
sλt+sPt
λtPt+1

[
W ∗
jt(Π

s
k=0π

ιw
t+k−1π

1−ιw)−W h
t+s

]
njt+s,

subject to the demand curve for Njt.

The employment agency acquires each jth intermediate labor type Njt, j ∈ [0, 1], at

wage Wjt from the labor unions, and combines the differentiated labor into a composite nt

according to

nt =

[∫ 1

0

nνwjt dj

] 1
νw

, 0 < νw ≤ 1.

The agency sells the composite labor to the intermediate goods producers for wage Wt. The

agency chooses njt ∀j to maximize profits Wtnt −
∫ 1

0
Wjtnjtdj, yielding a demand function

njt for the jth labor type,

Njt =

[
Wjt

Wt

] 1
νw−1

Nt,

and wage index Wt, given respectively by

Wt =

[∫ 1

0

W
νw/(νw−1)
jt dj

] (νw−1)
νw

.

The sticky wage framework results in a time-varying markup µwt between the wage Wt

paid by the intermediate goods firm and the wage W h
t paid to the household, such that

µwt =
wt
wht

, (4)

where wt = Wt

Pt
and wht =

Wh
t

Pt
. The dynamics of µwt is captured by a resulting equilibrium

wage Phillips curve derived from imposing equilibrium on the combination of the employment

agency and union’s problem.
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3.5 Intermediate goods firm

The competitive intermediate goods firm produces the homogeneous good Yt with tech-

nology

Yt = zt (ΩtNt)
αn K̃αk

t (ΩtHt)
1−αn−αk ,

where zt is a stationary exogenous stochastic productivity process, Ωt is a non-stationary

exogenous stochastic productivity process, and Ht is stock of intangible capital that resides

within the firm and that we refer to as knowledge capital.

Following Gunn and Johri (2011a), Chang et al. (2002) and Cooper and Johri (2002) we

assume that the stock of knowledge capital, Ht, evolves as an internalized learning-by-doing

process to capture the idea that agents acquire new technological knowledge through their

experiences in engaging labor in the production process.13 Accordingly, Ht evolves as

Ht+1 = (1− δh)Ht +Hγh
t N

1−γh
t , where 0 ≤ δh ≤ 1, 0 ≤ γh < 1, νh > 0. (5)

The accumulation (5) nests a log-linear specification for δh = 1 common in the literature

such as in Chang et al. (2002), Cooper and Johri (2002) and d’Alessandro et al. (2019), but

also allows for a more general linear formulation for 0 < δh < 1.

Each period, the firm acquires labor, Nt, at wage, wt, from the labor market, and capital

services, K̃t, at rental rate rt from the capital services market. It then sells its output, Yt, at

real price, τt, to the distributors. Additionally, we find it convenient to define the marginal

cost of production for intermediate goods, mct = wt
MPN t

= wt
αnYt/Nt

, where MPN t = FNt

is the marginal product of labor. It then follows that the output price, τt, is equal to the

marginal cost of production, mct.

The firm’s optimization problem involves choosing Nt, K̃t and Ht+1 to maximize its

stream of profits, E0

∑∞
t=0

βtλt
λ0

Πy
t , subject to the production function and knowledge capital

accumulation equation, where Πy
t = τtYt − wtNt − rtK̃t.

13See Görtz et al. (2022), Gunn and Johri (2011a), Chang et al. (2002) and Cooper and Johri (2002) for
detailed discussions of learning-by-doing as a business cycle mechanism.
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3.6 Capital services firm

At the end of each period, the competitive capital services firm buys capital, Kt+1, from

the capital producer at price qkt , financing it with loans from the financial intermediaries in

the form of state-contingent claims, Sbt , equal to the number of units of capital, and pricing

each claim at the price of a unit of capital. At the beginning of t+ 1, the firm rents services

of the capital, K̃t+1 = utKt+1, to intermediate goods firms at price rt. At the end of the

period, the firm incurs utilization costs of a(ut+1)Kt+1Υt+1, sells the undepreciated capital

back to capital goods producers at price qkt+1, and pays out state-contingent profits Πk
t+1 to

financial intermediaries, where

Πk
t+1 = rt+1ut+1Kt+1 − a(ut+1)Kt+1Υt+1 + qkt+1Kt+1.

After observing the aggregate state in t + 1, the firm the faces the problem to choose ut+1

to maximize Πk
t+1, yielding the optimality condition a′(ut+1)Υt+1 = rt+1.

Letting Rk
t+1 be the state-contingent gross real return on the on claims issued in t, then

Πk
t+1 = Rk

t+1q
k
t S

b
t = Rk

t+1q
k
tKt+1, such that using the firm’s optimality conditions for ut+1,

Rk
t+1 =

rt+1ut+1 − a(ut+1)Υt+1 + qkt+1

qkt
.

3.7 Capital-producer

The competitive capital-goods producer operates a technology that combines existing

capital with new investment goods to create new installed capital. At the end of each period

it purchases existing capital Kk
t from entrepreneurs at price q̄t, combining it with investment

It to yield new capital stock Knk
t , which it sells back to entrepreneurs in the same period

at price qt. The capital-producer faces investment adjustment costs in the creation of new

capital, and incurs depreciation in the process, so that

Knk
t = (1− δ)Kk

t + It

[
1− S

(
mtIt
It−1

)]
. (6)

where mt is a stationary exogenous stochastic process for marginal efficiency of investment,

and S(x) is an investment adjustment cost function with the properties S(x) = 0, S ′(x) = 0,
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and S ′′(x) = s′′, where s′′ is a parameter. The capital producer’s period t profits are given

by Πk
t = qtK

nk
t − q̄tK

k
t − It/Υt, where Υt captures non-stationary exogenous stochastic

investment-specific technological change. Since the capital producer faces intertemporal

investment adjustment costs, it solves a dynamic problem, choosing Knk
t , Kk

t and It to

maximize E0

∑∞
t=0

βtλt
λ0

Πk
t subject to equation (6).

3.8 Final goods firm

The competitive final goods firm produces goods for sale, St, by combining distributor-

specific varieties Sit, i ∈ [0, 1], according to the technology

St =

[∫ 1

0

ν
1
θ
itS

θ−1
θ

it di

] θ
θ−1

, with νit =

(
Ait
At

)ζ
, and θ > 1, ζ > 0.

where νit is a taste shifter that depends on the stock of goods available for sale Ait. The

latter is composed of current production and the stock of goods held in inventory.14 We

assume that νit is taken as given by the final goods producer and At is the economy-wide

average stock of goods for sale, given by At =
∫ 1

0
Aitdi. The parameters θ and ζ capture,

respectively, the elasticity of substitution between differentiated goods and the elasticity of

demand with respect to the relative stock of goods.

The firm acquires each variety i from the distributors at relative price pit = Pit/Pt,

where Pt =
[∫ 1

0
vitP

1−θ
it di

] 1
1−θ is the aggregate price index. It sells the final good for use in

consumption or as an input into the production of investment goods. The firm maximizes

the profit function Πs
t = St −

∫ 1

0
Pit
Pt
Sitdi by choosing Sit, ∀i. This results in demand for Sit

for the ith variety

Sit = νitp
−θ
it St. (7)

An increase in νit shifts the demand for variety i outwards. This preference shift is influenced

by the availability of goods for sale of variety i, which thereby provides an incentive for firms

to maintain inventory to drive customer demand and avoid stockouts.
14This structure follows Bils and Kahn (2000) and is standard in modeling demand for goods drawn from

inventories. It also supports a convenient decentralization of production.
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3.9 Distributors

We follow Bils and Kahn (2000) in modeling inventories as a mechanism that helps

generate sales, while at the same time implying a target inventory-sales ratio that captures

the idea of stockout avoidance. Distributors acquire the homogeneous good Yt from the

intermediate goods firms at real price τt. They differentiate Yt into goods variety Yit at zero

cost, with a transformation rate of one-to-one. Goods available for sale are the sum of the

differentiated output and the previous period’s inventories subject to depreciation

Ait = (1− δx)Xit−1 + Yit, (8)

where the stock of inventories Xit are the goods remaining at the end of the period

Xit = Ait − Sit, (9)

and 0 < δx < 1 is the rate of depreciation of the inventory stock.

The distributors have market power over the sales of their differentiated varieties. The

ith distributor sets price pit for sales Sit of its variety subject to its demand curve (7).

Distributors face frictions in setting their prices, and as in Lubik and Teo (2012) , we assume

that the ith distributor faces convex adjustments costs in the form κ
2

[
Pit+k

π
ιp
t−1π

1−ιpPit+k−1
−1
]2

St.

Each period, a distributor faces the problem of choosing pit, Sit, Yit, and Ait to maximize

profits

Et

∞∑
k=0

βk
λt+k
λt

{
Pit+k
Pt+k

Sit+k − τtYit+k −
κ

2

[ Pit+k
π
ιp
t−1π

1−ιpPit+k−1

− 1
]2

St

}
,

subject to the demand curve (7), the law of motion for goods available for sale (8), and the

definition of the inventory stock (9), and where λt is household’s marginal utility of wealth.

3.10 Monetary policy

We close the model with a standard monetary policy rule where the interest rate, Rn
t+1,

is set by the monetary authority according to a feedback rule,

Rn
t+1

Rn
=

(
Rn
t

Rn

)ρr ((Πt

Π

)φπ ( Yt
Y ∗t

)φy)(1−ρr)

eηt ,
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where Πt is the gross inflation rate, ηt is a monetary policy shock, and Y ∗t is level of output

that would preside under flexible prices and without wage or price markup shocks.

3.11 Non-stationary TFP Stochastic Process

The non-stationary exogenous stochastic TFP process Ωt, with growth rate gΩ
t is given

by:15

ln

(
gΩ
t

gΩ

)
= ρgΩ ln

(
gΩ
t−1

gΩ

)
+ ug

Ω

t , with ug
Ω

t = ε0gΩt + ε4gΩt−4 + ε8gΩt−8 + ε12
gΩt−12,

where ε0gΩt is an unanticipated shock and εp
gΩt−p is a news shock that agents receive in

period t about the innovation in time t+ p.

4 Understanding the response of hours

The primary qualitative change in the response to a technology shock evidenced in our

empirical analysis was the change in the co-movement of hours-worked with consumption. In

addition, inventories maintained its comovement with hours over the subsamples. Moreover,

in both subsamples, productivity evolved in a diffused manner, consistent with the inter-

pretation of the technology shock as an anticipated or news shock. Before we confront the

model with the data to study these features, we first highlight some key mechanisms of the

model to understand the response of hours to such news shocks and frame our subsequent

analysis.

We examine the key equations of labour market equilibrium to develop an expression the

characterizes the response of hours-worked. We work with the linearizatons of the stationary

transformations of the underlying non-stationary system, and introduce wedges into the

model as stand-ins for several of the structural mechanisms in the model, where the wedges

can be interpreted as endogenous equilibrium objects that represent deviations of some from

a reference model. Additionally, in our linearizations we focus on a “news phase” where the
15We discuss details of the other shock processes in the appendix.
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model model economy has received a news-shock about an increase in future TFP, but where

the TFP shock has not yet materialized, and thus the linearized shocks are all zero.

We begin with the labor-supply equation

ξψΓtv
−σ
t nξ−1

t

ft
λ̄t

=
w̄t
φlst
, (10)

where we define φlst as a labour supply wedge between the marginal rate of substitution on

the left-hand side and the real wage, and which in this model is equal to the wage markup

term resulting from sticky wages which we discuss more below. Next we write the labor

demand equation as

w̄tφ
ld
t = ατt

yt
nt
, (11)

where φldt is a labor demand wedge, equal to the knowledge capital markup wedge which we

will discuss more below, and τt is the relative price of output, which itself acts as a wedge

through its link to the inventory stocking equation. Finally we write the production function

as

yt = (nt)
α

(
ut
kt
gkt

)1−α

φet , (12)

where φet is an efficiency wedge, equal to the input of knowledge capital in production,

h
(1−αn−αk)
t . Linearizing (10), (11) and (12), eliminating the real wage and isolating hours-

worked gives

n̂t =
1

(ξ − αn)

[
ψ̂nt − φ̂lst

]
+

1

(ξ − αn)

[
τ̂t + φ̂et − φ̂ldt + αkût + αkk̂t

]
, (13)

where “hat’s” denote percent-deviations of the transformed stationary variables from

steady state, and ψ̂nt = λ̂t + σv̂t − f̂t is a stand-in for the preference elements from the

Jaimovich-Rebelo class of preferences.

Equation (13) describes the response of hours during the news-phase when no shocks

other than the news shock are present. The terms in the first set of square brackets on

the right hand side are labor supply shifters, and those in the second set of square brackets

are labor demand shifters. Movements in the former and latter that are associated with

an increase in the response of hours will tend to lower and raise the real wage respectively.
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The coefficient term on both sets of brackets is a function of ξ − αn which contribute to the

relative slopes of the linearized labor supply and demand curves. Through the lens of the

model, any change in the response of hours over the subsamples must show up somehow in

the elements of this equation, and thus we use it to summarize the main possibilities for a

change in the response of hours over the two subsamples.

Preference hypothesis. In principle, a change in preferences over time could account

for the change in the response of hours over time, either through the parameter ξ which

parameterizes the Frisch elasticity of labor and thus the amount of labour households are

willing to supply for a given wage, or through the stand-in variable ψ̂nt , which itself depends

on the “wealth effect” parameter γf and consumption habits parameter b. The parameter γf

is a particularly strong potential channel given the strong link between the wealth effect of

expanding technology on consumption and the comovement of hours and consumption. As

has been studied extensively in the literature, when γf is large, the standard income-effect on

leisure means that while consumption rises in response to the the increase in lifetime wealth

from the increase in technology, leisure also rises, and thus consumption and hours negatively

co-move. When γf is near zero on the other hand, the income-effect on labor is minimal,

such that consumption can increase in response to an increase in wealth without implying

a corresponding drop in hours.16 While changes in preferences over time are possible, we

find large changes unlikely. Moreover, our empirical results suggest that consumption rises

even more in the second subsample that the first, suggesting an even larger wealth effect in

the second subsample than the first: if preferences where to change to account for this, they

would more to overcome in the second subsample than the first to increase the response of

hours. Nevertheless, in our quantitative analysis, we will allow for changes in ξ and γf , but

we will limit their range within common limits in the literature to limit the possibility that

large jumps in preferences alone explaining the change in hours.

Labor market frictions hypothesis. The direct effect of changes in labor market
16To see this most clearly, note that with γf = 0 and no consumption habits (b = 0), the stand-in variable

ψ̂nt = 0 and thus, it drops out of equation (13).
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frictions in equation (13) work through the labor supply wedge φlst , which equals the wage

markup from the wage Phillip’s curve. This occurs through the changes in the parameter

ω in the model, which measures the Calvo probability of not being able to optimally re-set

household wages in a given period. An increase in ω would imply a more sluggish response of

the real wage wht facing the household, and thus a larger drop in φlst putting upward pressure

on hours-worked.

Monetary policy hypothesis. A change in the stand of monetary policy in the model

impacts the response of hours through at least two main channels: the first through inter-

action sticky wages, and the second through the real interest rate. For the first channel, as

discussed extensively by Christiano et al. (2007), under sticky nominal wages, an inflation-

targeting central bank directly impacts the real wage through the impact of inflation. Like

the change in labor market frictions discussed above, this would manifest itself directly in

equation (13) through the labor supply wedge φlst . The second channel impacts equation (13)

indirectly through the general equilibrium impacts of the real interest rate on the variables in

this equation, such as the preference term ψct , capacity utilization ut, and the marginal cost

of output τt through the impact of the real interest rate on inventory. For our quantitative

analysis we allow for changes in the parameters ρr, φπ, and φy of the monetary policy rule.

Credit market hypothesis. Like the second channel of monetary policy above, changes

in credit market frictions in the model manifest themselves in equation (13) indirectly

through the general equilibrium impacts of the real interest rate on variables in this equa-

tion, as well as the impacts of the credit spread capacity utilization ut and choice of capital

kt. We note however that with capital predetermined on impact and sluggish in subsequent

periods relative to the other variables such as capacity utilization, variation in kt isn’t likely

to be a dominant factor in the response of hours in the initial few periods. Changes in credit

market frictions in the model occur through changes in the parameter λb, which captures

the proportion of capital a financial intermediary threatens to abscond. For our quantitative

analysis, we allow for changes in λb by estimating steady-state leverage, φb, which based on
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our model solution and partial calibration maps directly to λb.17

Inventory hypothesis. The equilibrium optimal stocking condition in the model im-

plies that the inventory sales ratio Xt
St

is given by

Xt

St
= χ(τt, µ

x
t ), (14)

where χτ (t) =
∂χ(τt,µxt )

∂τt
< 0 and χµx(t) =

∂χ(τt,µxt )

∂µxt
< 0, and where µxt is equal to the expected

discounted value of future marginal costs, µxt = (1− δx) βEt λt+1

λt
τt+1. Faced with an increase

in demand for sales triggered by the TFP news shock, distributors can satisfy the demand

by some combination of running down inventories or purchasing new output at real price τt.

The function χ(·) depends on the parameter ζ, which measures the elasticity of demand for

sales with respect to the relative stock of good varieties, and thus changes in ζ will impact

the equilibrium response of τt and the associated response of hours in equation (13).

We note here also our empirical results suggesting that in both subsamples, hours and

inventory co-move positively in both subsamples, no matter how hours and consumption

comove. In terms of equation (13), we see that all else equal, hours varies positively with

τt. A change in inventory management which implies meeting any increase in sales demand

with relatively more new production relative to existing stocks of inventory would drive up

the real price of output τt and thus hours-worked, implying upward force on both hours and

inventories.

Knowledge capital hypothesis. The Intermediate Goods Firm’s optimal labour choice

is given by

wt = τtα
Yt
Nt

+ qht (1− γh)
Hγh
t N

1−γh
t

Nt

, (15)

where qht as the Lagrange multiplier on equation the knowledge capital accumulation equation

(5) and has the interpretation as the marginal value of acquiring new knowledge capital in

terms of expected future lifetime profits. qht is in turn given by

qht = βEt
λt+1

λt

{
(1− αn − αh)τt+1

Yt+1

Ht+1

+ qht+1

(
1− δh + γh

Hγh
t+1N

1−γh
t+1

Ht

)}
. (16)

17Due to non-linearities in the steady-state relatons, estimating φb instead of λb reduces computational
complexity.
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The presence of internalized knowledge capital in the firm’s technology adds an additional

term into the firm’s hours-worked first order condition (15) that shifts labor demand. News

about future TFP increases the value of future knowledge through the impact of knowledge

in future production according to (16), increasing the value of knowledge today, qht , shifting

out the firm’s labor demand.

This manifests itself directly in equation (13) as a decrease in the labor demand wedge,

φldt as the firm increases hours today in order to increase future knowledge capital, thus

lowering its markup and current profits in the present in order to increase profits in the

future. In our quantitative analysis we study changes in knowledge capital accumulation in

the model occur through changes in the parameters δh, the depreciation rate of knowledge

capital, and 1− γh, the elasticity of labor in the production of new knowledge.

Other channels A change in the cost of adjusting capacity utilization, εu, directly

impacts equation (13) through its impact on ut. We can gain additional insight by using

the Capacity Utilization firm’s first-order condition for untilization, r̄t = δ′(ut) and the

Intermediate Goods Firm’s first-order condition for capital services r̄t = (1 − α)τt
yt

ut
kt
gkt

to

eliminate ut in equation (13), resulting in

n̂t =
1

(ξ − χuαn)

[
ψ̂nt − φ̂lst

]
+

1

(ξ − χuαn)

[
ˆχuτ t + χuφ̂

e
t − φ̂ldt + (1 + χu(αk − 1))αkk̂t

]
,

(17)

where χu = 1−εu
1−εu−αk

, where we can see that the primary role of capacity utilization in the

model is to increase the elasticity of the other components of labour demand.18 In addition

to the direct effect, a change in the cost of utilizaton can impact equation (17) indirectly

through the general equilibrium impacts of the real interest rate due to the influence of the

cost of utilization on the return to capital and thus real interest rate.

In additional to the cost of utilization, a change in the cost of adjusting investment
18We note that the relative price of capital, qkt does not play a role here as an independent shift factor for

utilization, as in Greenwood et al. (1988) or Jaimovich and Rebelo (2009). Unlike in those models where the
cost of utilization is incurred within the capital accumulation equation and this in terms of units of capital,
in this model decentralization with separate financial, capital services and production sectors that subdivide
this overall capital accumulation process, the utilization cost is incurred in terms of consumption units as in
Christiano et al. (2005).
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or capital, s′′, impacts equation (17) indirectly through the general equilibrium impacts of

the real interest rate on variables in this equation, working through the credit sector by

influencing the price of capital and thus the return on capital.

5 Quantitative approach

We now detail our approach for quantitatively studying how the model might account for

the changes in the response to technology shocks that we documented earlier in the empirical

section. The approach is a hybrid of calibration, econometric and counterfactural exercises

designed to illuminate candidate channels that could explain the changes in response across

subsamples.

As in the empirical section, we break the sample data into two subsamples, 1954Q2-

1983Q4 and 1984Q1-2019Q4, as an approximation for gradual or more abrupt structural

change over that period. We then estimate a subset of the model parameters independently

over the two subsamples, allowing the remaining subset of the parameters to remain fixed

over both subsample. Our estimation for each subsample follows the approach of Christiano

et al. (2005) such that the parameters are estimated by minimizing a measure of the dis-

tance between the model and empirical impulse response functions, conditional on a single

structural shock in the model that corresponds to the shock identified in the empirical VAR.

We use the results of the estimation over the two subsamples to highlight the key parameter

changes, and then perform counterfactual exercises to explore the potential role of each key

parameter in the change in impulse responses over the two subsamples.

5.1 Fixed parameters

The parameters that we hold fixed at calibrated value over both subsamples are detailed

in Table 1 along with their calibrated values. Our choice values for this subset of param-

eters is guided by the existing literature, where we maintain comparability with Jaimovich

and Rebelo (2009) and Schmitt-Grohe and Uribe (2012) for the aspects of the news shock
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mechanism and Lubik and Teo (2012) for the inventory component.

We set the household’s discount factor β to 0.9957, which is implied by the real interest

rate computed from average inflation and the federal funds rate over our sample period. We

set the elasticity of intertemporal substitution as in Jaimovich and Rebelo (2009), σ = 1,

and the consumption habits parameter b to 0.7.

On the firm side, we set the elasticity parameter in the production function to α = 0.64

as in Jaimovich and Rebelo (2009), and the degree of decreasing-returns-to-scale (DRS) to

labor and capital in production, 1− αn − αk, to 0.1, following Jaimovich and Rebelo (2009)

and Schmitt-Grohe and Uribe (2012). For the parameters related to physical capital, we fix

steady-state physical capital depreciation at δ = 0.025.

The parameters related to inventories are based on the empirical estimates in Lubik and

Teo (2012). The goods aggregator curvature parameter θ is set to 6.8, which results in a

steady-state goods markup of 10%.

For the parameters related to the banking sector, following Gertler and Karadi (2011), we

set θb, the determinant of a banker’s life horizon, to 0.972. We then set wb, the proportional

transfer to enter bankers to 0.0038, such that for a steady-state leverage ratio of 4 (which

we will estimate), the annualized steady state credit spread is about 100 basis points.

For the parameters related to the nominal side of the economy, we choose values consistent

with the literature, setting the steady state wage markup to 10%, and wage and price

indexation to 0.5.

Finally, a number of steady-state parameter values are implied by average values in the

data, such as the (quarterly) steady-state growth rates of GDP gy and the relative price

of investment (RPI) gRPI , which we find to be 0.43 and −0.58, respectively. We also set

the steady-state government-spending ratio to output to g/y = 0.18 following Smets and

Wouters (2007) and target a level of hours in steady state of 0.2, while steady-state capacity

utilization is targeted at one.
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Table 1: Calibrated model parameters

Description Parameter Value

Subjective discount factor β 0.9975
Household elasticity of intertemporal substitution σ 1
Habit persistence in consumption b 0.70
DRS to N and K in production 1− αn − αk 0.1
Labor elasticity in production αn 0.64
Capital depreciation δk 0.025
Goods aggregator curvature θ 6.8
Price indexation ιp 0.5
Wage indexation ιw 0.5
Inventory depreciation δx 0.05
Proportional transfers to entering bankers wb 0.0038
Survival rate of bankers θb 0.972
Steady state government spending over output g/y 0.18
Steady state hours n 0.2
Steady state capacity utilization u 1
Steady state wage markup λw 1.1
Steady state GDP growth rate (in %) gy 0.42545
Steady state RPI growth rate (in %) grpi -.58203

5.2 Estimated parameters

The parameters that we estimate and that will be the focus of our analysis correspond to

the parameters highlighted in our analytical analysis in Section 4 as being potentially impor-

tant for the response of hours-worked. Let ϑ = (ξ, γf , εu, s
′′, ζ, δh, νh, ρΩ, φπ, φy, ρr, κ, ζw, φb)

be the vector of these parameters. Then let ψ(ϑ) be the mapping from ϑ to the first ten

elements of the model impulse response functions for the particular target variables under

consideration, and ψ̂ be the median of the estimated posterior distribution of the correspond-

ing empirical impulse response functions. For each of the two subsamples, we then estimate

ϑ as the solution to the problem

Ji = min
ϑi

[
ψ̂i − ψ(ϑi)

]′
V −1
i

[
ψ̂i − ψ(ϑi)

]
, (18)

where Vi is a weighting matrix, and i = 1, 2 denotes the first or second subsample. We

construct Vi using the variances of the posterior distribution of empirical impulse response

functions along the diagonal for each subsample.
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Due to small size of the empirical VARs, we are somewhat limited in the set of target

variables. To best avoid issues resulting from arbitrary selection of these target variables,

we perform the matching exercise described above for three separate sets of target variables:

(i) consumption (C), output (Y ), hours-worked (N) and investment (I)) (ii) consumption

(C), output (Y ), hours-worked (N) and inventory (X), and (iii) consumption (C), output

(Y ), hours-worked (N), inventory (X) and investment (I).

Table 2: Estimated model parameters: IRF-match target variables C,Y,N,I

Description Parameter Range 1954-1983 1984-2019

Determinant of Frisch elasticity of labor supply ξ [1.1, 6] 2.02 1.1
Wealth elasticity parameter (GHH/KPR pref) γf [0.001, 0.5] 0.0089 0.031
Elasticity of capacity utilization εu [0.05, 5] 0.054 0.26
Investment adjustment cost s′′ [0.01, 2] 0.22 0.47
Inventory taste shifter curvature ζ [0.55, 0.7] 0.62 0.70
Knowledge capital depreciation δh [0.001, 0.999] 0.16 0.16
Labor elasticity in knowledge capital 1− γh [0.001, 0.9] 0.90 0.45
TFP growth process persistence ρΩ [0.001, 0.999] 0.25 0.48
Taylor rule inflation φπ [1.1, 2.5] 1.1 2.5
Taylor rule output φy [0.05, 0.1] 0.1 0.05
Taylor rule smoothing ρr [0.5, 0.95] 0.5 0.5
Price adjustment costs κ [75, 300] 100.40 100.5
Calvo wage parameter ζw [0.5, 0.95] 0.95 0.95
Steady state leverage φb [3.5, 6] 6 3.5

6 Quantitative Results

We now presents the results of the impulse response function matching as well as a series

of counterfactual experiments.

6.1 Parameter Estimates

Tables 2, 3 and 4 respectively show the estimated values from the impulse response

function matching exercise for the three sets of target variables, (i) C,Y,N,I, (ii) C,Y,N,X
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Table 3: Estimated model parameters: IRF-match target variables C,Y,N,X

Description Parameter Range 1954-1983 1984-2019

Determinant of Frisch elasticity of labor supply ξ [1.1, 6] 1.58 1.36
Wealth elasticity parameter (GHH/KPR pref) γf [0.001, 0.5] 0.001 0.001
Elasticity of capacity utilization εu [0.05, 5] 0.064 0.22
Investment adjustment cost s′′ [0.01, 2] 0.17 0.01
Inventory taste shifter curvature ζ [0.55, 0.7] 0.70 0.70
Knowledge capital depreciation δh [0.001, 0.999] 0.26 0.999
Labor elasticity in knowledge capital 1− γh [0.001, 0.9] 0.90 0.16
TFP growth process persistence ρΩ [0.001, 0.999] 0.001 0.001
Taylor rule inflation φπ [1.1, 2.5] 1.1 1.22
Taylor rule output φy [0.05, 0.1] 0.1 0.05
Taylor rule smoothing ρr [0.5, 0.95] 0.5 0.95
Price adjustment costs κ [75, 300] 99.7 99.2
Calvo wage parameter ζw [0.5, 0.95] 0.95 0.95
Steady state leverage φb [3.5, 6] 3.5 6

Table 4: Estimated model parameters: IRF-match target variables C,Y,N,X,I

Description Parameter Range 1954-1983 1984-2019

Determinant of Frisch elasticity of labor supply ξ [1.1, 6] 1.66 1.16
Wealth elasticity parameter (GHH/KPR pref) γf [0.001, 0.5] 0.0016 0.001
Elasticity of capacity utilization εu [0.05, 5] 0.07 3.35
Investment adjustment cost s′′ [0.01, 2] 0.22 0.01
Inventory taste shifter curvature ζ [0.55, 0.7] 0.70 0.70
Knowledge capital depreciation δh [0.001, 0.999] 0.31 0.999
Labor elasticity in knowledge capital 1− γh [0.001, 0.9] 0.90 0.13
TFP growth process persistence ρΩ [0.001, 0.999] 0.001 0.001
Taylor rule inflation φπ [1.1, 2.5] 1.1 2.5
Taylor rule output φy [0.05, 0.1] 0.1 0.05
Taylor rule smoothing ρr [0.5, 0.95] 0.5 0.5
Price adjustment costs κ [75, 300] 99.9 99.6
Calvo wage parameter ζw [0.5, 0.95] 0.95 0.95
Steady state leverage φb [3.5, 6] 3.5 6
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and (iii) C,Y,N,X,I19. In each table, Column 3 shows the search domain for each parameter

of the minimization procedure, and columns 4 and 5 show the estimated values for the first

and second subsamples respectively. While the estimates vary over the three tables, the

three exercises suggest a generally consistent pattern of results. We draw attention to some

key insights from the three tables.

First, several key parameter estimates change very little over the two substantials. Both

the wage and price rigidity parameters ωw and κ are nearly constant over the subsamples

in all three tables, implying a moderate degree of price stickiness and high degree of wage

stickiness. The very small value of γj over both samples in all three tables implies nearly

“zero income effect” on labour supply, and is consistent with very small values found in

studies such as in Bayesian estimation in Schmitt-Grohe and Uribe (2011) and Görtz et al.

(2022). Small values of this parameter are typically important in models where comovement

of hours-worked and consumption is important, as in many news-shock models, which is

interesting given that in our empirical results hours-worked and consumption positively co-

move in the second sample but negatively comove in the first. Taken together, the above

results suggest that a change in goods or labour market frictions, or changes in the wealth

effect component of preferences were not likely a factor in the change in the response to

technology shocks over the two samples.

Second, the estimates of several parameters changed substantially over the two subsam-

ples, and the direction of change over the subsamples was consistent in all three tables.

These include the disutility of working parameter ξ, knowledge capital depreciation δh, la-

bor elasticity in knowledge capital 1− γh, the Taylor rule inflation parameter φπ, the Taylor

rule output parameter φπ elasticity of utilization parameter εu. For each table, while the

disutility of working parameter ξ decreases in the second subsample implying a higher labor

supply elasticity, the values nevertheless imply a high labor supply elasticity in both sub-

samples. Additionally, Tables 3 and 4 that include inventory in the target variable set show

higher labor supply elasticities in the first subsample than in table 2 that does not contain,
19In this current current draft we are missing the standard errors in Tables 2, 3 and 4.
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potentially capturing the empirical regularity of positive inventory and hours co-movement

over both subsamples. The knowledge capital parameters δh and νh change substantially

over the two samples, implying a change in the dynamics of knowledge capital accumulation

in the second sample. The Taylor rule inflation parameter φy increases substantially in the

second subsample, implying tighter monetary policy, and the Taylor rule output parameter

φy decreases in the second subsample.

Finally, the pattern of estimates of a few parameters was inconsistent over the three

tables. Tables 3 and 4 that include inventory as a target variable suggest that the invest-

ment adjustment cost parameter s′′ decreased and steady state leverage φb increased in the

second subsample, whereas Table 2 that excludes inventory suggests the reverse. Both the

TFP growth process persistence parameter ρΩ and inventory taste shifter parameter ζ were

constant over the two subsamples in two of the tables, but increased in the other.

6.2 Impulse Response Functions

The first and second panels in each of Figures 6, 7 and 8 show the impulse response

functions exercise corresponding to the matching procedure for the first and second subsam-

ples respectively. In the top row of each figure, the red solid line and shading indicate the

median and 16% and 84% posterior bands respectively for the posterior distribution of VAR

parameters for the first subsample. The red dashed line is the model IRF obtained from the

IRF matching procedure over this period. In the second row of each figure, the blue solid

line and shading indicate the median and 16% and 84% posterior bands respectively for the

posterior distribution of VAR parameters for the second subsample. The blue dash-dotted

line is the model IRF obtained from the IRF matching procedure over this period.

The figures show that the estimation procedure over the two subsamples captures the

primary nature of the change in the empirical response over the two subsamples: in the

model IRFs like as in the empirical IRFs, consumption rises in both samples, whereas hours

and inventory fall in the first subsample and rise in the second. Implicit within this is that

the model captures the tendency discussed in our empirical analysis for hours to co-move
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with inventories, even when hours doesn’t co-move with consumption.

Figure 9 shows the IRFs to a larger set of variables using both the parameters estimated

from the first and second subsample, for each of the three target variable cases. The top

panel of the figure shows the C,Y,N,I target variable case, the middle panel the C,Y,N,X

target variable case, and the bottom panel the C,Y,N,X,I target variable case. For each case,

the red dotted line and blue dash-dottled line show the IRFs using parameters estimated on

the first and second subsamples respectively.

The top panel shows that the C,Y,N,I targeting procedure is able to capture the general

pattern of an initial fall in hours and investment and rise in credit spreads in the first

subsample, and the reswerve in the second subsample, as in our empirical results. The

model also captures the larger positive response of the real wage in the second subsample

compared to the first as in our empirical results, but not an initial drop in wages in the

first subsample. Without inventory as a target, the model is unable to match the rise in

inventory in the second subsample.

The middle panel shows that the C,Y,N,X targeting procedure is able to capture the

general pattern of a fall in inventory along with hours in the first subsample, and rise in

the second, but now investment falls and spreads rise in both subsamples, contrary to our

empirical results. The case does not capture the overall pattern of wages.

The lower panel shows the C,Y,N,X,I targeting procedure captures the general pattern of

hours, inventory, investment and spreads from the empirical results. Like the middle panel

however, the case does not captures the overall pattern of wages.

The above discussion reveals a tension in the model between matching the IRFs of in-

ventory and investment. In general, including inventory in the target variable set makes

it more difficult to capture the investment response (and thus spreads response also), and

vice versa. Adjustment costs to investment/capital and the interaction with the banking

sector play a key role in this. In general, higher adjustment costs increase net-worth during

a boom, increasing the demand for capital, and putting upward pressure on the real interest

rate. For investment, the optimal stocking equation depends on current marginal costs but
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also expected future marginal costs, discounted using the real interest rate. With marginal

costs growing during the boom, a higher real interest rate means a lower weight is placed on

expected future marginal costs in the inventory decision, providing less incentive to increase

inventories in the present to avoid having to build them up in a higher cost future.

Subsample 1: 1954Q2-1983Q4.

Subsample 2: 1984Q1-2019Q4.

Figure 6: VAR and model based IRF to permanent productivity shock: IRF match
target variables C,Y,N,I. Red (blue) solid line is the median VAR estimate on the first
(second) subsample and the shaded areas are the 16% and 84% posterior bands generated
from the posterior distribution of empirical VAR parameters. Red (blue) dashed (dash-
dotted) line is model IRF to 12 period ahead news shock using IRF-matching procedure on
the first (second) subsample. The units of the vertical axes are percentage deviations.
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Subsample 1: 1954Q2-1983Q4.

Subsample 2: 1984Q1-2019Q4.

Figure 7: VAR and model based IRF to permanent productivity shock: IRF
match target variables C,Y,N,X. Red (blue) solid line is the median VAR estimate on
the first (second) subsample and the shaded areas are the 16% and 84% posterior bands
generated from the posterior distribution of empirical VAR parameters. Red (blue) dashed
(dash-dotted) line is model IRF to 12 period ahead news shock using IRF-matching procedure
on the first (second) subsample. The units of the vertical axes are percentage deviations.
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Subsample 1: 1954Q2-1983Q4.

Subsample 2: 1984Q1-2019Q4.

Figure 8: VAR and model based IRF to permanent productivity shock: IRF
match target variables C,Y,N,X,I. Red (blue) solid line is the median VAR estimate
on the first (second) subsample and the shaded areas are the 16% and 84% posterior bands
generated from the posterior distribution of empirical VAR parameters. Red (blue) dashed
(dash-dotted) line is model IRF to 12 period ahead news shock using IRF-matching procedure
on the first (second) subsample. The units of the vertical axes are percentage deviations.
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IRF-match target variables: C,Y,N,I

IRF-match target variables: C,Y,N,X

IRF-match target variables: C,Y,N,X,I

Figure 9: Model based IRF to permanent productivity shock: IRF match target
variables as indicated for each of three panels. Red (blue) dashed (dash-dotted) line
is model IRF to 12 period ahead news shock using IRF-matching procedure on the first
(second) subsample. The units of the vertical axes are percentage deviations.
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6.3 Counterfactual Experiments

The above results reveal several parameter changes that together account for the general

nature of the change in model IRFs over the two subsamples. Was the empirical change in

the response of the IRFs due to change in a combination of underlying factors - captured

in the model by a change in multiple parameters - or could a few factors (parameters)

have been dominant? We now qualitatively explore this question through the lens of the

model, examining the role of each of the key parameter changes through counterfactual

experiments to determine if one or a small subset of these factors were dominant. To do

this, we calibrate the model to the parameterization obtained from the estimation results

for the first subsample, and then one-by-one we vary the parameters to study their role

delivering the change in IRF in the second subsample. In the process, we highlight several

important structural features of the model that are important for accounting for the changes.

Panels A to J in Figures 10 to 11 show this exercise for the group of parameters identified

in Section 6.1 whose estimates changed materially over the two subsamples in at least one of

the three cases: ξ, s′′, δh, 1− γh, φπ, φy, εy, s′′, φb, ρω, ζ. We note that the panels ordered A to

J are the parameters identified in 6.1 with consistent changes in the direction of estimatates

over the two subsamples over all three cases. In each panel, the blue solid line and shading

indicate the median and 16% and 84% posterior bands respectively for the posterior distri-

bution of VAR parameters for the second subsample, and the blue dash-dotted line is the

model IRF obtained from the IRF matching procedure over this same period (i.e. the blue

shading and blue dash-dotted line in each panel reproduces the blue shading and dash-dotted

line of Figure 8). The red dashed line in each panel is the model IRF obtained from the IRF

matching procedure over the first subsample (i.e. the red dashed line in each of these figures

reproduces the red dashed line of Figure 8). The black dotted line in each panel is then

the counterfactual model IRF using all parameters values obtained from the IRF matching

procedure over the first subsample, except for the parameter in question where the value

is set to the value obtained form the IRF matching procedure over the second subsample

(ie with no counterfactual change in the parameter of question, the black dotted line would
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coincide exactly with the red dashed line). In other words, the dotted black line shows the

extent to which the single parameter change in question can shift the model IRF from the

red dashed line to the blue dash-dot line.

Panel A of Figure 10 shows that the model IRFs from changing ξ to the value estimated

over the second subsample actually moves the black dotted line for all four variables further

below the red dash line, and thus further away from the targeted empirical IRFs. Panel B of

the same figure suggests the same for δh. These results suggest that while these parameter

changes may help the fit of the overall model over the second subsample when all variables

change also, on their own and given the direction of their change, they are not likely the

dominant factors in accounting for the change in the IRFs over the two samples.

Panel C Figure 10 show that in changes in νh moves the response of hours and inventory

substantially toward or beyond the blue dash-dotted line. Panels D and E show that changes

in φπ and φy also move the response of hours in this same direction, but have little impact

on inventory. These result suggest changes in νh, φπ and δb may be dominant factors in

accounting for the change in the IRFs over the two samples.

Panel F of Figure 11 shows that a change in the utilization cost moves the response of

both hours and investment towards second subsample response, but moves the response of

inventory slightly away from it. We note that the change here represents an increase in the

cost of utilization, and thus dominant channel of this changes is likely through the general

equilibrium effects in the banking sector whereby the increased cost of utilization drives up

the return to capital and increases investment demand, similar to the effect of an increase

in adjustment costs discussed earlier.

Panel G of Figure 11 shows mixed results for the investment adjustment cost parameter

s′′. While it moves the response of consumption, output and hours further from target, it

moves inventory closer, via the mechanism discussed earlier whereby adjustment costs work

through the banking sector and create a tension between inventory and investment. Thus

this factor may be important for helping to maintain the co-movement between hours and

inventories over the two samples. We note however that while the estimates of this parameter

48



decreased in the second subsample in the IRF matching exercises that included inventory

(as in the figure here), it increased in the matching exercise that excluded inventory. Our

results are thus somewhat inconclusive about the role of this parameter.

Panels H, I and J of Figure 11 show relatively small impact of changes in φb, ρΩ and and

ζ respectively over the two subsamples. This result suggests that on their own changes in

these three parameters are not likely dominant factors in accounting for the change in the

IRFs over the two samples.

Overall, our results from this exercise suggest that changes in the nature of knowledge

capital accumulation νh, tighter monetary policy in response to inflation (φπ), looser mone-

tary policy in response to output (φy), an increase in the cost of utilization (εu) all potentially

contributed to the change in the response of technology shocks over the two subsamples.

7 Re-visiting the model-based hypotheses

With our evidence in hand from the various model-based exercises above, we can now

circle back to the potential model-based hypotheses concerning the sources of the change in

the response to technology shocks that we outlined in Section 4.

Preference hypothesis Our estimates suggest that the wealth effect parameter γf did

not change materially over the subsamples, and while the disutility or working parameter ξ

changed over the subsamples, our experiments suggest that change did not move the response

in the correct direction. Thus our results suggest that a change in preferences was not likely

a dominant source of the change.

Labor Market Frictions Hypothesis Our estimates suggest a high degree of wage

rigidities that did materially change over both subsamples. While this rigidity is a key

propagation mechanism, the lack of a change suggests that a change in labor market frictions

where likely not a source of the change in the impact of technology.

Monetary Policy Hypothesis Our results suggest that changes in the stance of mone-

tary policy between the two subsamples was a likely contributor to the change in the impact
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Panel A: Frisch elasticity parameter, ξ, counterfactual.

Panel B: Knowledge capital depreciation, δh, counterfactual.

Panel C Labor elasticity in knowledge capital, νh, counterfactual.

Panel D: Taylor rule inflation, φπ, counterfactual.

Panel E: Taylor rule output, φy, counterfactual.

Figure 10: IRFs to 12 period out permanent TFP news shock. Blue solid line (shaded
blue areas) is the median (the 16% and 84% posterior bands generated from the posterior
distribution) of empirical VAR parameters using data on 1984Q1-2019Q4. Blue dash-dotted
line is model IRF using IRF-matching procedure on data sample 1984Q1-2019Q4. Red
dashed line is model IRF using IRF-matching procedure on data sample 1954Q2-1983Q4.
Black dotted line is counterfactual model IRF using all parameter values obtained from
IRF matching procedure on first subsample except for parameter in question which is set
subsample 2 value or otherwise indicated. The units of the vertical axes are percentage
deviations.

50



Panel F: Utilization cost, εu, counterfactual.

Panel G: Investment adjustment cost, s′′, counterfactual.

Panel H: Steady state leverage, φb, counterfactual.

Panel I: TFP growth process persistence, ρΩ, counterfactual: 0.001→ 0.23.

Panel J: Inventory taste shifter, ζ, counterfactual: 0.7→ 0.73

Figure 11: IRFs to 12 period out permanent TFP news shock. Blue solid line (shaded
blue areas) is the median (the 16% and 84% posterior bands generated from the posterior
distribution) of empirical VAR parameters using data on 1984Q1-2019Q4. Blue dash-dotted
line is model IRF using IRF-matching procedure on data sample 1984Q1-2019Q4. Red
dashed line is model IRF using IRF-matching procedure on data sample 1954Q2-1983Q4.
Black dotted line is counterfactual model IRF using all parameter values obtained from
IRF matching procedure on first subsample except for parameter in question which is set
subsample 2 value or otherwise indicated. The units of the vertical axes are percentage
deviations.
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of technology. This includes estimates implying tighter monetary policy in response to infla-

tion (φπ) and looser monetary policy in response to output (φy) over all three IRF matching

exercises, and a evidence from our experiments suggesting these changes were associated

with the correct pattern of change of hours-worked in the second subsample.

Credit Hypothesis Our estimates suggest an inconsistent direction of change in the

steady state leverage parameter φb over the three IRF matching exercises, and our experi-

ments suggest the magnitude of change in the response of the IRFs was not material. Thus

a change in credit market frictions over time was not likely a source of the change in the

impact of technology. Our evidence does however suggest that the banking sector was a

powerful propagation mechanism of the change in other parameters.

Inventory Hypothesis Our estimates suggest an inconsistent direction of change in

the inventory taste shifting parameter ζ over the three IRF matching exercises, and our

experiments suggest the magnitude of change in the response of the IRFs was not material.

Thus a change in inventory management practices as evidence through this parameter was

not likely a source of the change in the impact of technology.

Knowledge Capital Hypothesis Our results suggest that changes in the nature of

intangible capital accumulation was a likely contributor to the change in the impact of

technology over time in matching the response of both hours and inventories, in particular

due to the change in the elasticity of labor in knowledge capital accumulation. Taking this

modeling mechanism literally, one interpretation is a change in the way firms learned about

organizing the inputs into production as the processes of production changed rapidly heading

into the information and technology revolution of the 1980’s and 1990’s. Taken more broadly,

the effect can be seen to be symptomatic of the emergence of a labor-demand side wedge

that feeds into an efficiency wedge in production.

Other channels Our results suggest that an increase in the cost of utilizing capital

contributed to the change in the the response of technology. Our estimates suggested an

increase in this cost over all three matching exercises, and our experiments showed that the

magnitude of magnitude of change in the response of the IRFs was material. The likely
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mechanisim for this change in the model was through the credit sector by influencing the

return to capital.

8 Conclusion

While not as far-reaching as once advocated in the 1980s, technology shocks continue

to play an important role in our understanding of aggregate fluctuations. Dis-satisfaction

with the idea and plausibility of unexpected high-frequency technology shocks – especially

negative shocks – lead researchers in the early 2000’s to study whether technology could still

play a role in the absence of surprise shocks and technological regress. Beaudry and Portier

(2006) showed how a business cycle boom-bust could result in such an environment when

the driving impulse was changes in expectations about future positive shifts in technology

rather than surprise changes in technology itself, and a vibrant literature was launched to

study the importance and role of such “news shocks”.

In this paper we add to the literature attempting to understand the role and importance

of technology shocks. We take an agnostic view of the presence of surprise verss anticipated

shocks, using a well-established empirical identification that seeks to best account for the

variation in TFP at some far out but finite horizon. Rather than using a single sample as

much of the work to date, we split our sample at the onset of the Great Moderation and

study each sample independently. Our results suggest that the qualitative response of TFP

is consistent with a dominant anticipated or diffused shock, that the importance of TFP

shocks has increased over the sub-samples, and that the transmission of the shocks into the

broader economy has changed.

This change in the transmission is manifested most clearly in the response of hours-

worked: hours falls in the first subsample, but rises in the second, despite consumption and

stock prices rising consistently in both subsamples. Moreover, despite its differential response

over the two subsamples, hours co-varies in a consistent way with investment, inventories,

the real wage, and the credit spread over both subsamples.
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We when add to the theoretical literature to study the source of the changes in the

response of technology through the lens of a rich structural model. We use both an IRF

matching procedure and model experiments to evaluate various different hypotheses for the

change. Our results suggest that the change in the response of technology over time was

likely some combination of a change in the stance of monetary policy, a change in the nature

of intangible capital accumulation, and a change in the cost of utilizing capital.
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Appendix

A Details on the VAR model

This appendix provides details on the VAR model, shock identification and prior speci-

fications.

A.1 VAR-Based Identification of Technology Shocks

We consider the following vector autoregression (VAR), which describes the joint evolu-

tion of an n× 1 vector of variables yt:

yt = A(L)ut.

A(L) = I + A1L + ... + ApL
p is a lag polynomial of order p over conformable coefficient

matrices {Ap}pi=1. ut is an error term with n × n covariance matrix Σ. We assume a linear

mapping between the reduced form errors ut and the structural errors εt:

ut = B0εt,

where B0 is an identification matrix. We can then write the structural moving average

representation of the VAR:

yt = C(L)εt,

where C(L) = A(L)B0, εt = B−1
0 ut, and the matrix B0 satisfies B0B

′
0 = Σ. B0 can also

be written as B0 = B̃0D, where B̃0 is any arbitrary orthogonalization of Σ and D is an

orthonormal matrix such that DD′ = I.

We identify the technology shock using the Max Share methodology as suggested in

Francis et al. (2014) who maximize the forecast error variance share of a productivity measure

at a long but finite horizon. Following Kurmann and Sims (2021), we use TFP as the measure

for productivity. The Max Share methodology identifies productivity variations in the long

run. The absence of any short run restrictions makes our applied identification robust to

cyclical measurement issues of technology. Note that the methodology does not make an a
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prior assumption on whether technology reacts to the shock only with a lag or not.

Mechanically, we identify the technology shock by finding a rotation of the identification

matrix B̃0, which maximizes the forecast error variance of the TFP series at some finite

horizon. In this, we follow the Max Share approach of Francis et al. (2014). Specifically, the

h-step ahead forecast error is given by:

yt+h − Et−1yt+h =
h∑
τ=0

Aτ B̃0Dεt+h−τ .

The share of the forecast error variance of variable i attributable to shock j at horizon h is

then:

Vi,j (h) =
e′i

(∑h
τ=0 Aτ B̃0Deje

′
jD
′B̃′0A

′
τ

)
ei

e′i

(∑h
τ=0AτΣA

′
τ

)
ei

=

∑h
τ=0 Ai,τ B̃0γγ

′B̃′0A
′
i,τ∑h

τ=0 Ai,τΣA
′
i,τ

,

where ei denotes a selection vector with one in the i-th position and zeros everywhere else.

The ej vector picks out the j-th column of D, denoted by γ. B̃0γ is therefore an n×1 vector

corresponding to the j-th column of a possible orthogonalization and can be interpreted as

an impulse response vector.

The Max Share approach chooses the elements of B̃0 to make this restriction on forecast

error variance share hold as closely as possible. This is equivalent to choosing the impact

matrix so that contributions to V1,2(h) are maximized. Consequently, we choose the second

column of the impact matrix to solve the following optimization problem:20

arg max
γ

V1,2(h) =

∑h
τ=0Ai,τ B̃0γγ

′B̃′0A
′
i,τ∑h

τ=0Ai,τΣA
′
i,τ

, s.t. γγ′ = 1.

We restrict γ to have unit length to be a column vector of an orthonormal rotation matrix

of the Choleski decomposition of the reduced-form variance covariance matrix.
20The optimization problem is written in terms of choosing γ conditional on any arbitrary orthogonalization

B̃0 to guarantee that the resulting identification belongs to the space of possible orthogonalizations of the
reduced form.
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A.2 Specification for the Minnesota Prior in the VAR

We estimate the VAR using a Bayesian approach. The prior for the VAR coefficients A

a standard Minnesota prior as commonly used in the literature. It is of the form

vec (A) ∼ N
(
β, V

)
,

where β is one for variables in the baseline specification which are in log-levels, and zero for

hours. The prior variance V is diagonal with elements,

V i,jj =


a1

p2 for coefficients on own lags
a2σii
p2σjj

for coefficients on lags of variable j 6= i

a3σii for intercepts

where p denotes the number of lags. Here σii is the residual variance from the unrestricted

p-lag univariate autoregression for variable i. The degree of shrinkage depends on the hyper-

parameters a1, a2, a3. We set a3 = 1 and we choose a1, a2 by searching on a grid and selecting

the prior that maximizes the in-sample fit of the VAR, as measured by the Bayesian Infor-

mation Criterion.21

B Additional VAR Evidence

This section provides some additional empirical evidence that corroborates the results

presented in the main body.

Labor Market Responses. Figure 12 shows that the subsample differences in hours-

worked documented in Section 2.2 are also present if we replace total hours-worked with

its components, the labor force participation rate and the unemployment rate. Consistent

with the decline in hours-worked documented for the first subsample, Figure 12 documents

a decline in the labor force participation rate and a rise in the unemployment rate. For
21The grid of values we use is: a1 = (1e-4:1e-4:9e-4, 0.001:0.001:0.009, 0.01:0.01:0.1, 0.1:0.1:1), a2 =

(0.01,0.05,0.1,0.5,1,5). We consider all possible pairs of a1 and a2 in the above grids.
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the second subsample, the rise in hours-worked comes along with a rise in the labor force

participation rate and a decline in the unemployment rate.

Figure 12: IRF to TFP shock. First subsample 1954Q2-1983Q4 (red), second subsample
1984Q1-2019Q4 (blue). The solid line is the median and the shaded colored areas are the
16% and 84% posterior bands generated from the posterior distribution of VAR parameters.
The units of the vertical axes are percentage deviations.

An Alternative Measure for Technology. Figure 13 shows impulse responses to a

shock that maximizes the share of variance explained in labor productivity as in Francis

et al. (2014). This shows that responses in Figure 1 are robust to using labor productivity

instead of TFP as an alternative measure for productivity. In particular, also when using

this measure for productivity we observe an expansion in GDP, consumption and stock

prices that is more pronounced in the second subsample. Importantly hours work continue

to decline in the first subsample and rise in the second subsample. An important difference

between Figures 1 and 13 is that labor productivity responds strongly in the first subsample.

This is consistent with findings in Francis et al. (2014) and Kurmann and Sims (2021) who

flag this is due to a short-run capital deepening effect: the capital to labor ratio is driven

up by the fall in hours-worked which in turn boosts labor productivity on impact relative to

the more gradual rise in TFP documented in Figure 1.

Responses over the Entire Sample. Figure 14 shows the responses to a technology

shock over the whole sample (1954Q2-2019Q4). All macroeconomic aggregates increase
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Figure 13: IRF to shock that maximizes variation in labor productivity. First
subsample 1954Q2-1983Q4 (red), second subsample 1984Q1-2019Q4 (blue). The solid line is
the median and the shaded colored areas are the 16% and 84% posterior bands generated from
the posterior distribution of VAR parameters. The units of the vertical axes are percentage
deviations.

strongly and instantaneously in response to the shock. We also observe a rise in stock prices

and a decline in credit spreads, so that these impulse responses resemble those documented

in Figures 1 and 3 for the second subsample. Particularly the decline in hours-worked and

inventories as well as the rise in credit spreads that we document for the first subsample is

not evident when we estimate a VAR over the entire sample.

Figure 14: IRF to TFP shock. Entire sample 1954Q2-2019Q4 . The solid line is the
median and the shaded areas are the 16% and 84% posterior bands generated from the
posterior distribution of VAR parameters. The units of the vertical axes are percentage
deviations.

Robustness for Rolling Window Analysis. Figure 15 shows the median and pos-

terior bands of impact responses for selected variables over different samples. Results are

consistent with those in Figure 4 in the main body which shows the most extreme response

within the first ten quarters. For hours, inventories and investment, it is evident that im-
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pact responses move away from the negative territory over the rolling window analysis. On

impact the BAA becomes negative particularly once the window includes the time around

the financial crisis.

Figure 15: Impact IRF responses to a TFP shock for rolling windows. First rolling
window sample is 1954Q2-1983Q4. The window is shifted up to 2019Q4. We display the
median (red dot) and the 16% and 84% posterior bands generated from the posterior distri-
bution of VAR parameters. The units of the vertical axes are percentage deviations. Subplots
are based on a VAR with TFP, GDP, consumption, hours-worked, the S&P 500 and one of
the plotted variables at a time.

Figures 17 and 16 show statistics corresponding to those in Figure 4 in the main body.

They shows for each rolling window the maximum or minimum IRF (whichever is largest in

absolute terms) within the first ten quarters to a TFP shock for rolling window. Figures 17

and 16 differ from the one depicted in the main body in that they consider a shorter rolling

window of 90 and 100 quarters, respectively, instead of 119 quarters.

C Data Sources and Time Series Construction

This section provides an overview of the data used to construct the observables. All the

data transformations we have made in order to construct the dataset used for estimating the

various VAR specifications and they enter in levels. The majority of the raw data described

below were retrieved from the Federal Reserve of St.Luis FRED database. The exceptions

are the TFP and utilization data series which is from Fernald (2014) at the Federal reserve

bank of San Francisco, and the data on market yield and the BAA spread which are from

the Federal reserve board and Bloomberg.
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Figure 16: Maximum/minimum (whichever is largest in absolute terms) IRF re-
sponse within the first ten quarters to a TFP shock for rolling window. First rolling
window sample is 1954Q2-1979Q1 (100 quarters). The window is shifted up to 2019Q4. We
display the median (red dot) and the 16% and 84% posterior bands generated from the
posterior distribution of VAR parameters. The units of the vertical axes are percentage
deviations. Subplots are based on a VAR with TFP, GDP, consumption, hours-worked, the
S&P 500 and one of the plotted variables at a time.

Figure 17: Maximum/Minimum (whichever is largest in absolute terms) IRF re-
sponse within the first ten quarters to a TFP shock for rolling window. First rolling
window sample is 1954Q2-1976Q3 (90 quarters). The window is shifted up to 2019Q4. We
display the median (red dot) and the 16% and 84% posterior bands generated from the
posterior distribution of VAR parameters. The units of the vertical axes are percentage
deviations. Subplots are based on a VAR with TFP, GDP, consumption, hours-worked, the
S&P 500 and one of the plotted variables at a time.
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Data Sources. We describe the exact source of each data series below.

Gross domestic product, current prices: U.S. Bureau of Economic Analysis, Gross Domes-

tic Product [GDP], retrieved from FRED, Federal Reserve Bank of St. Louis; https :

//fred.stlouisfed.org/series/GDP .

Gross Private Domestic Investment, current prices: U.S. Bureau of Economic Analysis,

Gross Private Domestic Investment [GPDI], retrieved from FRED, Federal Reserve Bank of

St. Louis; https : //fred.stlouisfed.org/series/GPDI.

Real Gross Private Domestic Investment: U.S. Bureau of Economic Analysis, Real Gross

Private Domestic Investment [GPDIC1], retrieved from FRED, Federal Reserve Bank of St.

Louis; https : //fred.stlouisfed.org/series/GPDIC1.

Personal Consumption Exp.: Durable Goods, current prices: U.S. Bureau of Economic Anal-

ysis, Personal Consumption Expenditures: Durable Goods [PCEDG], retrieved from FRED,

Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCEDG.

Real Personal Consumption Exp.: Durable Goods: U.S. Bureau of Economic Analysis, Real

Personal Consumption Expenditures: Durable Goods [PCEDGC96], retrieved from FRED,

Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCEDGC96.

Personal Consumption Expenditures: Services, current prices: U.S. Bureau of Economic

Analysis, Personal Consumption Expenditures: Services [PCES], retrieved from FRED, Fed-

eral Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCES.

Real Personal Consumption Expenditures: Services: U.S. Bureau of Economic Analysis,

Real Personal Consumption Expenditures: Services [PCESC96], retrieved from FRED, Fed-

eral Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCESC96.

Personal Consumption Exp.: Nondurable Goods, current prices: U.S. Bureau of Economic

Analysis, Personal Consumption Expenditures: Nondurable Goods [PCEND], retrieved from

FRED, Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCEND.

Real Personal Consumption Exp.: Nondurable Goods: U.S. Bureau of Economic Analysis,

Real Personal Consumption Expenditures: Nondurable Goods [PCENDC96], retrieved from
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FRED, Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/PCENDC96.

Real Private Nonfarm Inventories: U.S. Bureau of Economic Analysis [A373RX1Q020SBEA],

retrieved from FRED, Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/A373RX1Q020SBEA.

Civilian Noninstitutional Population: U.S. Bureau of Labor Statistics, Population Level

[CNP16OV], retrieved from FRED, Federal Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/CNP16OV .

Non-farm Business Sector: Compensation Per Hour: U.S. Bureau of Labor Statistics, Non-

farm Business Sector: Compensation Per Hour [COMPNFB], retrieved from FRED, Federal

Reserve Bank of St. Louis; https : //fred.stlouisfed.org/series/COMPNFB.

Non-farm Business Sector: Hours of All Persons: U.S. Bureau of Labor Statistics, Nonfarm

Business Sector: Hours of All Persons [PRS85006031], retrieved from FRED, Federal Re-

serve Bank of St. Louis; https : //fred.stlouisfed.org/series/PRS85006031.

Effective Federal Funds Rate: Board of Governors of the Federal Reserve System (US), Ef-

fective Federal Funds Rate [FEDFUNDS], retrieved from FRED, Federal Reserve Bank of

St. Louis; https : //fred.stlouisfed.org/series/FEDFUNDS.

Implicit GDP deflator: U.S. Bureau of Economic Analysis, Gross Domestic Product: Im-

plicit Price Deflator [A191RI1Q225SBEA], retrieved from FRED, Federal Reserve Bank of

St. Louis; https : //fred.stlouisfed.org/series/A191RI1Q225SBEA.

10 year treasury yield: The market yield on U.S. Treasury securities at 10-year constant

maturity are available from the Federal Reserve Board H.15 database.

The BAA yield is Moody’s Bond Indices Corporate BAA obtained from Bloomberg.

The real S&P 500 index is obtained from Robert Shiller’s website (http : //www.econ.yale.edu/ shiller/data.htm).

The utilization adjusted TFP data and the series for capacity utilization can be accessed at

www.frbsf.org/economic− research/economists/jfernald/quarterly_tfp.xls.

The raw data are transformed as follows for the analysis. Consumption (in current

prices) is defined as the sum of personal consumption expenditures on services and personal

consumption expenditures on non-durable goods. The times series for real consumption is

constructed as follows. First, we compute the shares of services and non-durable goods in
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total (current price) consumption. Then, total real consumption growth is obtained as the

chained weighted (using the nominal shares above) growth rate of real services and growth

rate of real non-durable goods. Using the growth rate of real consumption we construct a

series for real consumption.

Real output is GDP derived by dividing current price GDP with the GDP deflator and

the Civilian Noninstitutional Population measure. Similarly for hours-worked, consumption,

investment and hourly wages (defined as total compensation per hour). All these series, as

well as the real inventory measure are expressed in per capita terms using the series of non-

institutional population, ages 16 and over. The nominal interest rate is the effective federal

funds rate. The BAA spread series is the difference between the BAA yield and the 10 year

treasury yield.
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