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Abstract

There exists significant hype regarding how much machine learning and incorporating social
media data can improve forecast accuracy in commercial applications. To assess if the hype is
warranted, we use data from the film industry in simulation experiments that contrast econo-
metric approaches with tools from the predictive analytics literature. Further, we propose
new strategies that combine elements from each literature in a bid to capture richer patterns
of heterogeneity in the underlying relationship governing revenue. Our results demonstrate
the importance of social media data and value from hybrid strategies that combine economet-
rics and machine learning when conducting forecasts with new big data sources. Specifically,
while recursive partitioning strategies greatly outperform dimension reduction strategies and
traditional econometrics approaches in forecast accuracy, there are further significant gains
from using hybrid approaches. Further, Monte Carlo experiments demonstrate that these
benefits arise from the significant heterogeneity in how social media measures and other film
characteristics influence box office outcomes.
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1 Introduction

Many speculate that in the near future, movie studios will find that predictive analytics

may play just as large of a role as either the producer, director, and/or stars of the film

when determining if it will be a success. Currently, predictive analytics that incorporate

social media data are being predominately used for demand forecasting exercises in the

film industry. Improved forecasts are valuable since they could increase capital invest-

ments by reducing investor uncertainty of the box office consequences and also help mar-

keting teams tailor effective advertising campaigns. However, there remains skepticism

as to whether social media data truly adds value to forecasting exercises.

While prior work by Bollen, Mao, and Zheng (2011), Goh, Heng, and Lin (2013) and

Lehrer and Xie (2017), among others, present evidence of the value of social media in

different contexts, the authors did not consider traditional off the shelf machine learning

approaches such as regression trees and random forests.1 These statistical learning algo-

rithms do not specify a structure for the model to forecast the mean and often achieve

predictive gains relative to conventional econometric approaches.2 Despite this benefit

in modeling, the algorithm used to build tree based structures via recursive partitioning

implicitly assumes homogeneous variance across the entire explanatory-variable space.3

1More recent work by Cui, Gallino, Moreno, and Zhang (2018) and Lehrer, Xie, and Zhang (2018) con-
sider these off the shelf methods and each present evidence that the value of social media information
increases with the machine learning technique’s level of sophistication.

2Gains from statistical learning arise by allowing for nonlinear predictor interactions that are missed by
common econometric estimators. Subsection F.13 in the Appendix provides an illustration of the improved
forecasting accuracy of random forest and bagging strategies relative to the estimators contrasted in Lehrer
and Xie (2017). Further, the authors restricted the films considered in their exercise on the basis of a budget
criteria, which reduces the amount of heterogeneity in the data. We extend their empirical exercise in this
paper to address both issues and demonstrate the practical benefits of the new hybrid estimators proposed.

3More generally, both OLS, regression trees and Lasso methods rely on the unweighted sum of squares
criterion (SSR), which implicitly assumes homoskedastic errors. It is well known that when this condition
is violated and heteroskedasticity is present, the standard errors are biased influencing statistical inference
procedures. Further, the objective function ensures that areas of high variability will contribute more to
minimizing the unweighted SSR, and will therefore play a larger role when making predictions at the
mean. As such, predictions for low-variance areas are expected to be less accurate relative to high variance
areas. Therefore heteroskedasticity might affect predictions at the mean, since the implicit weights to the
data are determined by the local variance. Recent developments continue to use the SSR as a loss function
but can generally accommodate richer forms of heterogeneity relative to parametric econometric models
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Heteroskedasticity of data which may arise from neglected parameter heterogeneity

can impact the predictive ability of many forecasting strategies. For example, the pres-

ence of heteroskedasticity can change how the data is partitioned thereby influencing the

structure of regression trees. In this paper, we introduce new strategies for predictive

analytics that are contrasted with existing tools from both the econometrics and machine

learning literature to first give guidance on how to improve forecast accuracy in applica-

tions within the film industry.4 Motivating our strategies is that heteroskedasticity would

be anticipated in many forecasting exercises that involve social media data for at least two

reasons. First, the attributes of individuals attracted to different films will differ sharply,

leading the data to appear as if coming from different distributions. Second, online re-

spondents may have greater unobserved variability in their opinions of different films.

We propose hybrid strategies that first use recursive partitioning methods to develop

subgroups and then undertake model averaging within these terminal groups to gen-

erate forecasts. Traditionally, forecasts from regression trees use a local constant model

that assumes homogeneity in outcomes within individual terminal leaves. By allowing

for model uncertainty in the leaves, richer forms of heterogeneity in the relationships be-

tween independent variables and outcomes within each leaf subgroup is allowed. To the

best of our knowledge, only Pratola, Chipman, George, and McCulloch (2018) consider in-

corporating heteroskedasticity in the machine learning literature within a Bayesian frame-

work. In our empirical application, we find significant computational advantages from

using our hybrid strategy relative to the approach developed in Pratola, Chipman, George,

and McCulloch (2018), while achieving nearly identical predictive accuracy as measured

by mean square forecast error.

Our empirical examination of the predictive accuracy of alternative empirical strate-

by accounting for limited forms of parameter heterogeneity.
4Thus, we contribute to a burgeoning literature in the emerging fields of data science and analytics that

focuses on developing methods to improve empirical practice including forecast accuracy. For example,
among other developments, Vasilios, Theophilos, and Periklis (2015) examine the forecasting accuracy of
machine learning techniques on forecasting daily and monthly exchange rates, Wager and Athey (2017)
propose variants of random forests to estimate causal effects, and Ban, Karoui, and Lim (2018) adopted
machine learning methods for portfolio optimization.

3



gies that forecast revenue for the film industry does not impose any sampling criteria

and considers every movie released either in theatres or the retail environment over a

three-year period. This data exhibits strong heteroskedasticity,5 which likely arises since

different films appeal to populations drawn from different distributions. The results pro-

vide new insights on the trade-offs researchers face when choosing a forecasting method.

Recursive partitioning strategies including regression trees, bagging and random forests

yield on average a 30-40% gains in forecast accuracy relative to econometric approaches

that either use a model selection criteria or model averaging approach. These large gains

from statistical learning methods even relative to econometric estimators and penaliza-

tion methods that implicitly account for heteroskedastic data, demonstrate the restrictive-

ness of linear parametric econometric models. These models remain popular in econo-

metrics since as Manski (2004) writes “statisticians studying estimation have long made

progress by restricting attention to tractable classes of estimators; for example, linear un-

biased or asymptotic normal ones”.

Second, we find additional gains of roughly 10% in forecast accuracy from our pro-

posed strategy that allows for model uncertainty in each subgroup leaf relative to al-

gorithms that estimate a single leaf-specific model. These gains are exhibited across a

variety of algorithms including random forest, bagging and M5’, that each create leaves

by maximizing a local objective function that partitions the data within the tree structure.

Monte Carlo experiments clarify why these gains arise in our empirical application. We

find hybrid strategies are quite useful in settings where heteroskedasticity arises due to

significant parameter heterogeneity, perhaps due to jumps or threshold effects, or simply

5Results from Breusch-Pagan test are presented in appendix F.1 and sampling restrictions such as those
in Lehrer and Xie (2017) may sidestep heteroskedasticity by reducing the heterogeneity in the data by only
including films with similar budgets. We should also stress that another reason one needs to account for
heteroskedasticity is parameter heterogeneity, which is a form of an omitted variables problem. However,
the link between neglected parameter heterogeneity and heteroskedasticity are not well known among
practitioners, but can be easily explained with the following example. If regression coefficients vary across
films (perhaps the role of Twitter volume on box office revenue differs for a blockbuster science fiction film
relative to an art house drama), then the variance of the error term varies too for a fixed-coefficient model.
This link between neglected heterogeneity and heteroskedasticity has implications for specification tests
and Chesher (1984) demonstrates that the well-known information matrix (IM) test due to White (1982) can
be interpreted as a test against random parameter variation.
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neglected parameter heterogeneity in the underlying behavioral relationships. In this set-

ting, hybrid strategies can explain a portion of the significant amount of heterogeneity in

outcomes within each leaf of a bagging tree.6

Third, our analysis finds tremendous value from incorporating social media data in

forecasting exercises. Econometric tests find that the inclusion of social media data leads

to large gains in forecast accuracy. Calculations of variable importance from recursive

partitioning methods show that measures of social media message volume account for 6

of the 10 most influential variables when forecasting either box office or retail movie unit

sales revenue.

This paper is organized as follows. In the next section, we first briefly review tra-

ditional econometric and machine learning strategies to conduct forecasting. We then

propose two new computationally efficient strategies to aid managerial decision mak-

ing by accommodating more general forms of heterogeneity than traditional methods. A

discussion of Monte Carlo experiments in section 3 elucidates why an understanding of

the source of heteroskedasticity is useful when selecting forecasting methods. The data

used and design of the simulation experiments that compares forecasting methods is pre-

sented in section 4. Section 5 presents and discusses our findings that show the value of

social media data and combining machine learning with econometrics when undertaking

forecasts. We conclude in the final section.

2 Empirical Tools for Forecasting

Forecasting involves a choice of a method to identify the underlying factors that might

influence the variable (y) being predicted. Econometric approaches begin by considering

6We also find larger gains relative to trees built using a boosting algorithm. This may arise since boosting
builds trees that are quite short and thus have more observations (and heterogeneity) in the leaves. Further,
our analysis finds that adding model averaging post variable selection by penalization methods or using a
model screening approach leads to small gains relative to traditional econometric approaches.
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a linear parametric form for the data generating process (DGP) of this variable as

yi = µi + ei, µi =
∞

∑
j=1

β jxij, E(ei|xi) = 0 (1)

for i = 1, ..., n and µi can be considered as the conditional mean µi = µ(xi) = E(yi|xi)

that is converging in mean square.7 The error term can be heteroskedastic, where σ2
i =

E(e2
i |xi) denote the conditional variance that depends on xi. Since the DGP in equation

(1) is unknown, econometricians often approximate it with a set of M candidate models:

yi =
k(m)

∑
j=1

β
(m)
j x(m)

ij + ui, (2)

for m = 1, ..., M, where x(m)
ij for j = 1, ..., k(m) denotes the regressors, β

(m)
j denotes the

coefficients. The residual now contains both the original error term and a modeling bias

term denoted as b(m)
i ≡ µi −∑k(m)

j=1 β
(m)
j x(m)

ij .

In practice, researchers have a set of plausible models, and do not know with certainty

which model is correct, or the best approximation for the task at hand. The traditional so-

lution is empirical model selection, which provides an evidence-based rule (e.g. Akaike

information criterion) for selecting one model from a set of feasible models. Rather than

selecting one model among a set of M linear candidate models, empirical model aver-

aging approaches allow the researcher to remain uncertain about the appropriate model

specification and take a weighted average of results across the set of plausible models to

approximate the DGP in equation (1).8

In the context of model averaging, the critical question is how to select the weights for

each candidate model. Formally, assume that the M candidate models that approximate

7Convergence in mean square implies that E(µi −∑k
j=1 β jxij)

2 → 0 as k→ ∞.
8That is, define the estimator of the mth candidate model as µ̂(m) = X(m)

(
X(m)>X(m)

)−1X(m)>y =

P(m)y, where X(m) is a full rank n× k(m) matrix of independent variables with (i, j)th element being x(m)
ij

and P(m) = X(m)(X(m)>X(m))−1X(m)>. Similarly, the residual is ê(m) = y− µ̂(m) = (In − P(m))y for all m.
See Steel (2019) for a recent survey of the model averaging literature.
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the DGP are given by y = µ + e, where y = [y1, ..., yM]>, µ = [µ1, ..., µM]> and e =

[e1, ..., eM]>. We define the variable w = [w1, w2, ..., wM]> as a weight vector in the unit

simplex in RM,

H ≡
{

wm ∈ [0, 1]M :
M

∑
m=1

wm = 1

}
. (3)

Numerous optimization routines have been developed by econometricians to estimate

these weights and each routine aims to strike a balance between model performance and

complexity of the individual models. Once the optimal weights (wm) are obtained, the

forecast from the model averaging estimator of µ is

µ̂(w) =
M

∑
m=1

wmµ̂(m) =
M

∑
m=1

wmP(m)y = P(w)y. (4)

This forecast is a weighted average of the forecasts of the individual candidate models,

which is why model averaging can equivalently be described as forecast combination.

Data mining techniques developed within the machine learning literature can also be

used for forecasting. Unlike many econometric approaches that begin by assuming a lin-

ear parametric form to explain the DGP, supervised learning algorithms do not ex-ante

specify a structure for the model to forecast the mean and build a statistical model to

make forecasts by selecting which explanatory variables to include. For example, deci-

sion trees create a form of a top-down, flowchart-like model that recursively partitions

a heterogeneous data set into relatively homogeneous subgroups in order to make more

accurate predictions on future observations. Each partition of the data is called a “node”,

with the top node called the “root” and the terminal nodes called “leaves”.

One of the more popular algorithms is classification and regression decision trees

(CART) introduced by Breiman, Friedman, and Stone (1984) that uses a fast divide and

conquer greedy algorithm to recursively partition the data. Formally, at node τ contain-

ing nτ observations with mean outcome ȳ(τ) of the tree can only be split by one selected

explanatory variable into two leaves, denoted as τL and τR. The split is made at the
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variable where ∆ =SSR(τ)−SSR(τL)−SSR(τR), reaches its global maximum;9 where the

within-node sum of squares is SSR(τ) = ∑nτ
i (yi − ȳτ)2. This splitting process continues

at each new node until the ȳ(τ) at nodes can no longer be split since it will not add any

additional value to the prediction. Forecasts at each final leaf l are the fitted value from a

local constant regression model

yi = a + ui, i ∈ l, (5)

where ui is the error term and a stands for a constant term. The least square estimate of

â = ȳi∈l. In other words, after partitioning the dataset into numerous final leaf nodes, the

forecast assumes any heterogeneity in outcomes within each subgroup is random. From

the perspective of the econometrician, this can appear unsatisfying.

The statistical learning literature has noted both this drawback in how forecasts are

made,10 along with drawbacks in how splits within the tree are made, leading to fur-

ther refinements. First, Hastie, Tibshirani, and Friedman (2009) discuss that individual

regression trees are not powerful predictors relative to ensemble methods since they ex-

hibit large variance.11 Ensemble methods that combine estimates from multiple models

or trees exist in both the machine learning and econometrics literature. Bootstrap aggre-

gating decision trees (aka bagging) proposed in Breiman (1996) and random forest devel-

oped in Breiman (2001) are randomization-based ensemble methods that draw a parallel

to model averaging.12 In bagging, trees are built on random bootstrap copies of the orig-

9Intuitively, this procedure may appear to operate like forward stepwise regression where at each step,
the procedure adds an independent variable based on the reduction in the sum of squares error caused by
the action in the full sample until a stopping criterion is met. However, with regression trees variables are
added in a more flexible manner since every cut-point in each independent variable is considered allowing
for highly nonlinear models with potentially complex interactions within the subsamples by node following
each split. Implicitly it is assumed that there are no unobservables relevant to the estimation.

10This approach approximates the DGP with a series of discontinuous flat surfaces forming an overall
rough shape. Our hybrid strategy smooths the shape and is more general than algorithms that use weighted
polynomial smoothing techniques to smooth forecasts between leaf nodes, see e.g. Chaudhuri, Huang, Loh,
and Yao (1994).

11Put differently, since trees are constructed sequentially very small small perturbations in the sample
used to construct a tree can lead to a very different tree model used for forecasts.

12The main idea is to introduce random perturbations into the learning procedure by growing multiple
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inal data, producing multiple different trees. Bagging differs from random forest only in

the set of explanatory factors being considered in each tree. That is, rather than consider

which among the full set of explanatory variables leads to the best split at a node of the

tree, random forests only consider a random subset of the predictor variables for the best

split. With both strategies, the final forecast is obtained as an equal weight average of the

individual tree forecasts.

Second, within the statistical learning literature studies have concluded that the split

selection process is biased towards selecting variables with many split points due to the

greater possibility for significantly different partitions to be found (see e.g. Loh and Shih,

1997; Kim and Loh, 2003; Hothorn, Hornik, and Zeileis, 2006). This critique appears

imprecise and we argue that any split to minimize ∆ with heteroskedastic data will be

biased to regions of variables with high heteroskedasticity at the expense of regions of

low heteroskedasticity. Thus, heteroskedastic data can lead to perhaps not choosing the

“correct” first split of the root node can lead the rest of the tree down a sub-optimal path.13

To summarize, forecasts from recursive partitioning and model averaging methods

are computationally expensive but differ in three important ways. First, how the DGP in

equation (1) is approximated differs and both bagging and random forest do not make

any assumptions about the probabilistic structure of the data. The remaining two differ-

ences relate to how predictions are weighted across the different models/trees. Optimal

weights across models are calculated using equation (3) from predictions using the full

sample in model averaging strategies. The weight of each leaf in the tree forecast is sim-

ply determined by the sample proportion in each leaf. Second, final predictions from

regression trees rule out any model uncertainty in each final leaf ȳ(τ) of the tree.

different decision trees from a single learning set and then an aggregation technique is used to combine the
predictions from all these trees.These perturbations help remedy the fact that a single tree may suffer from
high variance and display poor forecast accuracy. See appendix A for more details.

13In the statistical learning literature, the critique that minimizing ∆ to determine splits by the greedy
approach of Breiman, Friedman, and Stone (1984) leads to choosing locations of local, rather than global
optimality with each split (Murthy, Kasif, and Salzberg, 1994; Brodley and Utgoff, 1995; Fan and Gray,
2005; Gray and Fan, 2008). Subsequent work to build trees involve new algorithms that search for the
best combination of splits one to two more levels deeper before selecting a split rule. These more global
algorithms involve larger computational costs since they need to look several steps ahead in the tree.
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This lack of heterogeneity and computational considerations motivate our two pro-

posed extensions for forecasting with social media data. The first extension considers an

improved method to select candidate models for model averaging estimators. The second

extension proposes a hybrid strategy that combines recursive partitioning with model av-

eraging to allow for heterogeneity in forecasts when the final leaf subgroup consists of

observations that differ in some observed covariates.

Last, the presence of heteroskedasticity cannot be combated by taking a log - transfor-

mation on the outcome variable. Silva and Tenreyro (2006) point out that such a nonlinear

transformation of the dependent variable will generate biased and inconsistent OLS esti-

mates since the transformation changes the properties of the heteroskedastic error term

creating correlation with the covariates. Similarly, this transformation will also influence

where splits occur with recursive partitioning algorithms, thereby generating different

subgroups. Initial splits would continue to be biased in regions of high heteroskedasticity,

which is likely regions containing more low revenue films due to the log transformation.

2.1 A New Strategy for Model Screening

The empirical performance of any model averaging estimator crucially depends on the

candidate model set. LetM denote the candidate model set before screening. In practice,

one possible approach to construct the candidate model set is to consider a full permu-

tation of all regressors. One obvious drawback of this approach is that the total number

of candidate models increases exponentially with the number of regressors. As shown in

Wan, Zhang, and Zou (2010), Xie (2015), Zhang, Zou, and Carroll (2015), among others, by

either keeping the total number of candidate models to be small or letting the total num-

ber of candidate models converge to infinity slow enough, provides a necessary condition

to maintain the asymptotic optimality of model averaging estimators.14 While most ex-

14Moreover, Hansen (2014) and Zhang, Ullah, and Zhao (2016) point out that to satisfy the conditions on
the global dominance of averaging estimators over the unrestricted least-squares estimator, the number of
candidate models should be limited by screening and every possible model should not be estimated.

10



isting research assumes a pre-determined candidate model set, a recent paper by Zhang,

Yu, Zou, and Liang (2016) established the asymptotic optimality of Kullback-Leibler (KL)

loss based model averaging estimators with screened candidate models. Following this

insight, we define M̃ to be the candidate model set following model screening, in which

M̃ ⊆ M. The weight vector space solved via an optimization routine under M̃ can be

written as

H̃ =

{
w ∈ [0, 1]M : ∑

m∈M̃
wm = 1 and ∑

m/∈M̃
wm = 0

}
. (6)

Note that the resultant weight vector, denoted as w̃, under M̃ is still M × 1, however,

models that do not belong in M̃ are assigned zero weight.

We define the average squared loss as L(w) = (µ̂(w)− µ)>(µ̂(w)− µ) where µ̂(w) is

defined in (A10). We present the following set of assumptions

Assumption 1 We assume that there exist a non-negative series of vn and a weight series of
wn ∈ H such that

(i) vn ≡ L(wn)− infw∈H L(w),

(ii) ξ−1
n vn → 0,

(iii) Pr(wn ∈ H̃)→ 1 as n→ ∞,

where H̃ is defined in (6) and ξn is the (lowest) modified model risk defined in equation (A28).

Assumption 1(i) is the definition of vn, which is the distance between a model risk by

wn and the lowest possible model risk. Assumption 1(ii) is a convergence condition. It

requires that ξn goes to infinity faster than vn. The final item of Assumption 1 implies

the validity of our selected model screening techniques. When the sample size goes to

infinity, the chance that the model screening techniques accidentally omit at least one

useful model goes to 0. This condition is easily satisfied by imposing mild screening

conditions, while keeping the candidate models in M̃ to be as many as allowed.

The following theorem establishes the asymptotic optimality of Mallows-type model

averaging estimators under screened model set.
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Theorem 1 Let Assumption 1 be satisfied, then under the conditions that sustain the asymptotic
optimality of Mallows-type model averaging estimators under given (unscreened) candidate model
set, we have

L(w̃)

infw∈H L(w)

p→ 1, (7)

as n→ ∞.

The proof appears in appendix D.7. Theorem 1 states that using screened model set

M̃, the model averaging estimator w̃ is asymptotically optimal in the sense of achieving

the lowest possible mean squared error (model risk); even compared to a model averaging

estimator that used all potential candidate models in its set.

2.2 New Hybrid Approaches: Model Averaging Learning Methods

In an influential paper, Belloni and Chernozhukov (2013) suggest applying the OLS es-

timator after variable selection by the Lasso, thereby creating the first two-step hybrid

machine learning and econometrics estimator.15 In this paper, we suggest using classi-

fication algorithms in the first step to build tree structures and then apply econometric

estimators that allow for model uncertainty in place of equation (5) when forecasting. We

denote this procedure as model averaging regression tree (MART), which is the building

block of the proposed hybrid approaches.

Formally, following the classification procedure at each tree leaf in the forest, there

may be a sequence of m = 1, ..., M linear candidate models, in which regressors of each

model m is a subset of the regressors belonging to that tree leaf. The regressors X(m)
i∈l

for each candidate model within each tree leaf is constructed such that the number of

regressors k(m)
l � nl for all m. Using these candidate models, model averaging obtains

β̂l(w)
(K×1)

=
M

∑
m=1

w(m) β̃
(m)
l

(K×1)
, (8)

15Penalization methods such as the Lasso have objective functions designed to reduce the dimensionality
of explanatory variables. Lehrer and Xie (2017) extend this idea and proposed using model averaging in
place of the OLS estimator in the second step. The set of candidate models considered in that step are
restricted to those constructed with variables selected by the first step Lasso.
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which is a weighted averaged of the “stretched” estimated coefficient β̃
(m)
l for each candi-

date model m. Note that the K× 1 sparse coefficient β̃
(m)
l is constructed from the k(m)

l × 1

least squares coefficient β̂
(m)
l by filling the extra K− k(m)

l elements with 0s. This approach

generalizes linear regression trees that were found to yield improvements over the lo-

cal constant model in equation (5), by allowing there to be more than a single model to

explain outcomes in each leaf.

To implement this strategy, the predicting observations X p
t with t = 1, 2, ..., T are

dropped down the regression tree. For each X p
t , after several steps of classification, we

end up with one particular tree leaf l. We denote the predicting observations that are

classified in tree leaf l as X p
t∈l. The forecast for all observations can then be obtained as

ŷt∈l = X p
t∈l β̂l(w). (9)

This strategy preserves the original classification process and within each leaf allows ob-

servations that differ in characteristics to generate different forecasts ŷt∈l.

Model averaging bagging (MAB) applies this process to each of the B samples used

to construct a bagging tree. The final MAB forecast remains the equal weight average

of the B model averaged tree forecasts. Model averaging random forest (MARF) oper-

ates similarly with the exception that only k predictors out of the total K predictors are

considered for the split at each node. With fewer predictors, the candidate model set for

each leaf does not potentially consider each of the K regressors as in MAB, but rather is

constructed with the k regressors used to split the nodes that generated this leaf l.16 This

restriction affects how β̂l(w) is calculated as it is averaged only over those leafs where it

was randomly selected. The intuition of this hybrid strategy can be applied to any ma-

chine learning algorithm including ones with a different objective function to determine

splits within a tree such as M5.
16If the full sample contains n observations, the tree leaf l contains a subset nl < n of the full sample of y,

denoted as yi with i ∈ l. Also, the sum of all nl for each tree leaf equals n. The mean of yi∈l is calculated,
denoted as ȳi∈l . The value ȳi∈l is the forecast of X p

t∈l . It is possible that different predicting observations
X p

t and X p
s with t 6= s will end up with the same tree leaf, therefore, generates identical forecasts.
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To illustrate the benefits of allowing for heterogeneity due to model uncertainty in

each tree leaf in the forest via this two-step hybrid procedure, we simulate data drawn

from a non-linear process. Panels (a) and (b) of Figure 1 respectively present the scatter

plot and surface plot of training data generated by

Y = sin(X1) + cos(X2) + u,

where X1 ∈ [1, 10], X2 ∈ [1, 10], and u is a Gaussian noise with mean 0 and variance

0.01. Forecasts of Y calculated from RT and MART with the training data are presented

in Panels (c) and (d) of Figure 1. Since RT forecasts assume homogeneity within leaves,

the surface plot in Panel (c) appears similar to a step-function. In contrast, by allowing

for heterogeneity in the forecasts within each leaf, the surface plot from MART in Panel

(d) more closely mimics the variation in the joint distribution in the underlying data.

Panels (e) and (f) of figure 1 respectively plot the forecast errors from RT and MART

against both X1 and X2. Comparing the height of these figures shows that the absolute

biases from MART are less than half of the biases obtained from RT. The reduced height

occurs throughout the space spanned by X1 and X2 demonstrating that the gains are

achieved by allowing for richer relationships in each tree leaf. In the next section, we

conduct a formal Monte Carlo study to provide further insights on when allowing for

model uncertainty may improve forecasts from recursive partitioning strategies.
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Figure 1: Simulation Evidence Illustrating the Gains of the Hybrid Approach That Com-
bines Model Averaging with Regression Trees

Note: Plot (a) presents a scatter plot of the simulated data, plot (b) is the corresponding surface plot, plots
(c) and (d) display the forecasted shape by RT and MART, and plots (e) and (f) present the absolute value
of forecast errors against the two explanatory variables for each forecasting strategy, respectively.
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3 Monte Carlo Study

Similar to Liu and Okui (2013), we consider the following DGP

yt = µt + et =
∞

∑
j=1

(β j + r · σt)xjt + et (10)

for t = 1, ..., n. The coefficients are generated by β j = cj−1, where c is a parameter that we

control, such that R2 = c2/(1 + c2) that varies in {0.1, ..., 0.9}. The parameter σt is drawn

from a N(0, 1) and introduces potential heterogeneity (depends on values of the scale

variable r) to the model. We set x1t = 1 and other xjts follow N(0, 1). Since the infinite

series of xjt is infeasible in practice, we truncate the process at jmax = 10, 000 without

violating our assumption on the model set-up.17 We assume that the whole 10,000 xjts

set is not entirely feasible and we can only observe the first 20 regressors. Two scenarios

designed to represent pure random heteroskedasticity and heteroskedasticity that arises

due to neglected parameter heterogeneity are considered. Formally,

1. Random Heteroskedasticity: we set the parameter r = 0, eliminating heterogeneity

and pure random heteroskedasticity is created by drawing et ∼ N(0, x2
2t).

2. Parameter Heterogeneity: heterogeneity in β for each observation is created by set-

ting r = 1/5 and drawing et ∼ N(0, 1).

With this DGP, we compare the performance of conventional learning methods and

model averaging learning methods using their risks.18 We assume that the first K = 5
17The simulation design aims to mimic a big data environment, where the number of covariates is large.

Variables with close-to-0 coefficients can be ignored since they barely influence the dependent variable.
Such is the case for xjt with j > jmax. All results are robust to alternative values of the scale variable r.

18Specifically, Riski ≡ 1
n ∑n

i=1
(
µ̂L

i − µi
)2, where µi is the true fitted value (feasible in simulation) and

µ̂L
i is the fitted value obtained by a specific learning method for for L = Regression Tree, Bagging, MAB,

Random Forest, and MARF. For each sample size, we compute the risk for all methods and average across
1,000 simulation draws. For bagging and random forest, we set the total number of bootstraps as B = 20.
For random forest, we randomly draw 2 regressors out of 5 to split each node. The same settings apply to
the model averaging learning methods. For all model averaging learning methods, the candidate model set
for each leaf contains all feasible combinations of the regressors. To ease interpretation, we normalize all
risks by the risk of the generalized unrestricted model.
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regressors are observed in both scenarios and fix the control parameter c = 2 when gen-

erating the true coefficients. Figure 2 panels A and B present results respectively for

the random heteroskedasticity and parameter heterogeneity scenario. In each figure, the

number of observations is presented on the horizontal axis, the relative risk is displayed

on the vertical axis and dash-dotted (solid) lines respectively represent bagging and ran-

dom forest (the model averaging counterpart). The results indicate that: i) the model aver-

aging learning method performs much better than their respective conventional learning

method in all values of n; ii) as sample sizes increase, all methods tend to yield smaller

risks; and iii) MARF has the best relative performance in all cases. Overall, we observe

smaller relative risks in the parameter heterogeneity scenario.

Figure 2: Relative Performance of Conventional and Model Averaging Learning
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B. Parameter Heterogeneity
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Since the results in figure 2 panel A are relative to a generalized unrestricted model

(henceforth GUM) that utilizes all the independent variables, we next present absolute

risks for all model averaging learning methods along with the risks of the GUM in figure

3. Figure 3(a) and (b) presents results for the absolute risks under random heteroskedas-

ticity and parameter heterogeneity, respectively. In each figure, MAB, MARF, and GUM

are presented by circle-, and star-solid lines, respectively. The ranking of the methods is

identical and GUM yields significantly higher risks in the parameter heterogeneity sce-

nario. This suggests that conventional regressions suffer from efficiency loss in the pres-

ence of heterogeneity. Yet the statistical learning methods are immune to heterogeneity,

since it has been acknowledged and treated during the classification process.

Figure 3: Risk Comparison under Different Scenarios
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In summary, the results from the Monte Carlo experiments suggest that hybrid strate-

gies may be beneficial when there is significant parameter heterogeneity, perhaps due to

jumps or threshold effects. Econometric strategies that use the mean or average marginal

effects simply do not allow for good forecasts when there is large heterogeneity in ef-

fects both within and across subgroups. Intuitively, this additional heterogeneity shifts

to the residual, creating new outliers that change the effective weighting on different ob-

servations.19 In contrast, recursive partitioning methods provide equal weights across

19Appendix C.2 presents Monte Carlo evidence that splits in trees occur at different locations and there
is more variation in outcomes in the final leaves with heteroskedastic data relative to homoskedastic data.
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observations ruling out heterogeneity within groups.20

4 Empirical Exercise

4.1 Data

We collected data on the universe of movies released in North America between October

1, 2010 and June 30, 2013. We extend the analysis in Lehrer and Xie (2017) that concen-

trated solely on movies with budgets ranging from 20 to 100 million dollars and consider

the full suite of films released during this period.21 With the assistance of the IHS film

consulting unit the characteristics of each film were characterized by a series of indica-

tor variables to describe the film’s genre,22 the rating of a film’s content provided by the

Motion Picture Association of America’s system,23 film budget excluding advertising and

both the pre-determined number of weeks and screens the film studio forecasted the spe-

cific film will be in theatres measured approximately six weeks prior to opening. In our

analysis, we examine the initial demand by using the actual opening weekend box office

(n = 178) and total sales of both DVD and Blu-Rays (n = 143) upon initial release.

To measure purchasing intentions from the universe of Twitter messages (on average,

approximately 350 million tweets per day) we consider two measures. First, the senti-

ment specific to a particular film is calculated using an algorithm based on Hannak et

20The theoretical benefits of most model screening methods relate to efficiency. Appendix F.4 presents
evidence that model screening approaches and model averaging or Lasso methods that additionally con-
sider heteroskedasticity do not seem to perform differently whatever the source of heteroskedasticity, and
in practice yield minimal gains to approaches that treat the data as homoskedastic.

21Movies with budgets above 100 million dollars are usually regarded as “Blockbusters” and many ‘’Art-
house” movies usually have budgets below 20 million dollars. Further details on the data collection are
provided in subsection E of the Appendix.

22In total, we have 14 genres: Action, Adventure, Animation, Biography, Comedy, Crime, Drama, Family,
Fantasy, Horror, Mystery, Romance, Sci-Fi, and Thriller.

23Specifically, films in our sample were assigned ratings of PG, PG13, and R. There are very few movies
in our data set that were given a G rating.
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al. (2012) that involves textual analysis of movie titles and movie key words.24 In each

Twitter message that mentions a specific film title or key word, sentiment is calculated by

examining the emotion words and icons that are captured within.25 The sentiment index

for a film is the average of the sentiment of the scored words in all of the messages asso-

ciated with a specific film. Second, we calculate the total unweighted volume of Twitter

messages for each specific film. We consider volume separate from sentiment in our anal-

yses since the latter may capture perceptions of quality, whereas volume may just proxy

for popularity.26

Across all the films in our sample, there is a total of 4,155,688 messages to be assessed.

There is a large amount of time-varying fluctuations in both the number of, and sentiment

within the Twitter messages regarding each film. Some of this variation reflects responses

to the release of different marketing campaigns designed to both build awareness and

increase anticipation of each film. Thus, in our application we define measures from

social media data over different time periods. That is, suppose the movie release date is

T, we separately calculate sentiment in ranges of days within the window corresponding

to 4 weeks prior to and subsequent the release date.27

Summary statistics are presented in table 1. The mean budget of films is respectively

approximately 61 and 63 million for the open box office and retail unit sales outcome.

On average, these films were in the theatre for 14 weeks and played on roughly 3000

24This algorithm developed by Janys Analytics for IHS-Markit was also used for the initial reported
measures of the Wall Street Journal-IHS U.S. Sentiment Index

25In total, each of 75,065 unique emotion words and icons that appeared in at least 20 tweets between
January 1st, 2009 to September 1st, 2009 is given a specific value that is determined using emotional valence.
Note that Twitter messages were capped at 140 characters throughout this period. These messages often
contain acronyms and Twitter specific syntax such as hashtags that may present challenges to traditional
sentiment inference algorithms.

26We consider both measures since prior work by Liu (2006) and Chintagunta, Gopinath, and Venkatara-
man (2010) suggest that sentiment in reviews affect subsequent box office revenue. Similarly, Xiong and
Bharadwaj (2014) finds that pre-launch blog volume reflects the enthusiasts’ interest, excitement and ex-
pectations about the new product and Gopinath, Chintagunta, and Venkataraman (2013) study the effects
of blogs and advertising on local-market movie box office performance.

27For a typical range, T–a/–b, it stands for a days before date T (release date) to b days before date T. We
use the sentiment data before the release date in equations that forecast the opening weekend box office.
After all, reverse causality issues would exist if we include sentiment data after the release date. Similarly,
T+c/+d means c days to d days after date T, which are additionally used for forecasting the retail unit sales.
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Table 1: Summary Statistics

Variable Open Box Office Retail Unit Sales
(n = 178) (n = 143)

Mean Std. Dev. Mean Std. Dev.
Genre
Action 0.3202 0.4679 0.3357 0.4739
Adventure 0.2416 0.4292 0.2378 0.4272
Animation 0.0843 0.2786 0.0909 0.2885
Biography 0.0393 0.1949 0.0420 0.2012
Comedy 0.3652 0.4828 0.3776 0.4865
Crime 0.1966 0.3986 0.1818 0.3871
Drama 0.3483 0.4778 0.3706 0.4847
Family 0.0562 0.2309 0.0629 0.2437
Fantasy 0.1011 0.3023 0.0909 0.2885
Horror 0.1180 0.3235 0.1049 0.3075
Mystery 0.0899 0.2868 0.0909 0.2885
Romance 0.1124 0.3167 0.0979 0.2982
Sci-Fi 0.1124 0.3167 0.1119 0.3163
Thriller 0.2416 0.4292 0.2517 0.4355
Rating
PG 0.1461 0.3542 0.1608 0.3687
PG13 0.4213 0.4952 0.4126 0.4940
R 0.4270 0.4960 0.4196 0.4952
Core Parameters
Budget (in million) 60.9152 56.9417 63.1287 56.5959
Weeks 13.9446 5.4486 14.4056 5.7522
Screens (in thousand) 2.9143 0.8344 2.9124 0.8498
Sentiment
T-21/-27 73.5896 3.2758 73.4497 3.5597
T-14/-20 73.6999 3.0847 73.7530 3.0907
T-7/-13 73.8865 2.6937 73.9411 2.6163
T-4/-6 73.9027 2.7239 73.8931 2.8637
T-1/-3 73.8678 2.8676 73.7937 3.0508
T+0 73.8662 3.0887
T+1/+7 73.8241 3.1037
T+8/+14 73.4367 3.8272
T+15/+21 73.7001 3.3454
T+22/+28 74.0090 2.7392
Volume
T-21/-27 0.1336 0.6790 0.1499 0.7564
T-14/-20 0.1599 0.6649 0.1781 0.7404
T-7/-13 0.1918 0.6647 0.2071 0.7377
T-4/-6 0.2324 0.8400 0.2494 0.9304
T-1/-3 0.4553 0.9592 0.4952 1.0538
T+0 1.5233 3.2849
T+1/+7 0.6586 1.1838
T+8/+14 0.3059 0.8290
T+15/+21 0.2180 0.7314
T+22/+28 0.1660 0.7204

screens. Not surprisingly, given trends in advertising, the volume of Tweets increases

sharply close to the release date and peaks that day. Following a film’s release we find a

steady decline in the amount of social web activity corresponding to a film.
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4.2 Simulation Experiment Design

To examine the importance of incorporating data from the social web either using tradi-

tional estimators or an approach from the machine learning literature, we follow Hansen

and Racine (2012) and conduct the following experiment to assess the relative predic-

tion efficiency of different estimators with different sets of covariates. The estimation

strategies that we contrast can be grouped into the following categories (i) traditional

econometric approaches, (ii) model screening approaches, (iii) and (iv) machine learning

approaches, and (v) newly proposed methods that combine econometrics with machine

learning algorithms to capture richer patterns of heterogeneity. Table 2 lists each estima-

tor analyzed in the exercise and the online Appendices A, B, and D provide further details

on each econometric estimator and machine learning strategy considered.

The experiment shuffles the original data with sample n, into a training set of nT and

an evaluation set of size nE = n− nT. Using the training set, we obtain the estimates from

each strategy and then forecast the outcomes for the evaluation set. With these forecasts,

we evaluate each of the forecasting strategies by calculating mean squared forecast error

(MSFE) and mean absolute forecast error (MAFE):

MSFE =
1

nE
(yE − xE β̂T)

>(yE − xE β̂T),

MAFE =
1

nE

∣∣yE − xE β̂T
∣∣> ιE,

where (yE, xE) is the evaluation set, nE is the number of observations of the evaluation

set, β̂T is the estimated coefficients by a particular model based on the training set, and

ιE is a nE × 1 vector of ones. In total, this exercise is carried out 10,001 times for different

sizes of the evaluation set, nE = 10, 20, 30, 40.

In total, there are 223 = 8, 388, 608 and 229 = 536, 870, 912 potential candidate mod-

els for open box office and movie unit sales respectively. This presents computational

challenges for the HRCp and other model averaging estimators. Thus, we conducted the
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following model screening procedure based on the GETS method to reduce the set of po-

tential candidate models for model selection and model averaging methods. First, based

on the OLS results presented in table A4, we restrict that each potential model contains a

constant term and 7 (11) relatively significant parameters for open box office (movie unit

sales). Second, to control the total number of potential models, a simplified version of the

automatic general-to-specific approach of Campos, Hendry, and Krolzig (2003) is used for

model screening.28 While this restriction that rules out many potential candidate model

may appear severe, it has been found in numerous applications including Lehrer and Xie

(2017), that only a handful of models account for more than 95% of the total weight of

the model averaging estimate.29 Last, the tuning parameter for Lasso strategies was cho-

sen to fix the number of explanatory variables selected (i.e. OLS10 indicates OLS with 10

variables selected by the Lasso).

5 Empirical Results

The two panels of table 3 report the median MSFE and MAFE from the prediction error

exercise outlined in the preceding section for the 10 different econometric strategies listed

in panel A of table 2. Each row of the table considers a different size for the evaluation

set and to ease interpretation all MSFEs and MAFEs are normalized by the MSFE and

MAFE of the HRCp. Panel A of table 3 presents results for forecasting open box office and

panel B demonstrates results corresponding to forecasting retail movie unit sales. Notice

that for open box office, all remaining entries for MSFE are larger than one, indicating

28This approach explores through the whole set of potential models and examine each model using the
following rule: we first estimate the p-values for testing each parameter in the model to 0. If the maximum
of these p-values exceeds our benchmark value, we exclude the corresponding model. In this way, we are
deleting models with weak parameters from our model set. We set the benchmark value to equal to 0.3
and 0.35 for open box office and movie unit sales respectively, which is a very mild restriction. These pre-
selection restrictions lead us to retain 105 and 115 potential models for open box office and retail movie unit
sales respectively. Note, we did investigate the robustness of our results to alternative benchmark values
and in each case the results presented in the next section are quite similar.

29See appendix F.5 for a detailed discussion of the model averaging weights and top 5 models for both
open box office and movie unit sales in our experiment.
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inferior performance of the respective estimator relative to HRCp. In general, the three

model averaging approaches and the model selected by AIC perform nearly as well as

HRCp. For movie unit sales, HPMA yields the best results in the majority of experiments.

However, the gains from using HPMA in place of PMA appear quite small.

The results in table 3 also stress the importance of social media data for forecast

accuracy. Models that ignore social media data (MTV) perform poorly relative to all

other strategies. Additional experiments makes clear that both social media measures are

needed.30 In contrast to Lehrer and Xie (2017) we find that the post-Lasso methods listed

in table 2,31 including the double-Lasso method, OLS post Lasso and model averaging

post Lasso perform poorly relative to HRCp in this application.

Table 4 considers the performance of alternative model screening strategies listed in

panel B of table 2 relative to HRCp. We observe small gains in forecast accuracy from

model screening relative to the benchmark HRCp. The hetero-robust methods yields

slightly better results than homo-efficient methods for forecasts of box office opening.

In contrast, when forecasting retail movie unit sales, the homo-efficient ARMS demon-

strates better results than the other screening methods.32 Taking these findings together

with the results contrasting PMA to HPMA table 3 illustrate that there are small gains in

practice from using econometric approaches that accommodate heteroskedasticity.33

Table 5 demonstrates that are very large gains in prediction efficiency of the recursive

partitioning algorithms relative to the benchmark HRCp. The subscript below RF and

30In appendices F.3, F4.1, and F.6, we carried out additional experiments to evaluate the forecast accuracy
of alternative strategies with only a single social media measure. In each case, the evidence demonstrates
markedly lower degrees of forecast accuracy relative to the corresponding exercise with two measures,
thereby providing robust evidence of the need to account for both sentiment and volume. Last, Appendix
F.14 presents tables of absolute bias of each strategy that correspond to tables 3-5.

31The post Lasso strategy can be viewed as a model screening method since it limits the number of ex-
planatory variables and hence dimensionality of the candidate models. Full details on how these estimators
are implemented is available in appendix D.6.

32Interestingly as presented in appendix F.7, the ARMS and ARMSH approaches select nearly identical
weights and models.

33In appendix F.4, we use the Monte Carlo design introduced in section 3 to additionally evaluate whether
the source of heteroskedasticity can explain some of these surprising results. This includes (i) the difference
in the performance between PMA and HRCp in table 3 when forecasting retail movie unit sales, and (ii) the
relative improved performance of ARMS presented in table 4.
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MARF refer to the number of randomly chosen explanatory variables used to determine

a split at each node. For both outcomes when nE is small, machine learning methods

have dominating performance over the HRCp. Popular approaches such as bagging and

random forest greatly outperform the benchmark. However, our proposed MAB has the

best performance when evaluating by MSFEs and adding model averaging tends to lead

to gains of 10% between bagging and MAB.34 While regression tree yields the lowest rela-

tive MAFE, random forest methods, both conventional and model averaging, have mod-

erate performance in all cases. Note that as nE increases, all learning methods observe

decreases in performance. Last, note that the large gains in performance of all strategies

in table 5 relative to the results presented in tables 3 and 4.

A potential explanation for the improved performance of statistical learning approaches

relative to all of the econometric strategies is that the full suite of predictors is considered.

Recall, that due to computational challenges we undertook model screening to reduce the

number of candidate models for model averaging estimators and by so doing reduced the

number of predictors. In appendix F.8, we reconsider table 5 where we restrict the set of

predictors to be identical for the recursive partitioning strategies as the model screening

and model averaging approaches. We continue to find large gains in forecast accuracy

from random forest and bagging relative to the econometric approaches. This suggests

that the gains in forecast accuracy are not from allowing a larger dimension of predictor

variables, but rather likely are obtained by relaxing the linearity assumption imposed by

the econometric estimator considered when constructing candidate models.

Table 5 compares the performance of our hybrid strategies to the suite of advanced

machine learning strategies listed in panel D of Table 2. We continue to find improved

performance of our hybrid strategy relative to these alternative algorithms with the po-

tential sole exception of HBART in the box office opening MSFE scenario, which exhibit

marginally smaller MSFE and MAFE for retail movie unit sales. However, HBART is

computationally expensive and takes over a week to yield results, roughly three to four
34In appendix F.9, we present results from the SPA test of Hansen (2005) that provide significant evidence

of the superior predictive ability of the MAB method over the other ML algorithms considered.
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times as long as the hybrid strategy.

Briefly, we believe the improved performance of the hybrid strategies relative to BART

and boosting arises since the latter strategies build short trees and substantial hetero-

geneity remains in the terminal nodes. The hybrid approach nests the conventional local

constant model and allows for more candidate models (and thereby) heterogeneity in

terminal leaves with more observations. Similarly, the regression function used in each

terminal leaf of popular linear regression tree algorithms is nested and contained among

the multiple multivariate functions used to conduct forecasts in each terminal leaf in the

hybrid approach. Further, with some linear regression tree algorithms, the fixed mul-

tivariate function in the terminal leaf may involves more covariates than observations

available in the terminal leaf. Model averaging allows the researcher to consider all pos-

sible candidate models that involve at least as many covariates as 1 plus the number of

observations in the respective terminal leaf. Last, the hybrid approach is quite flexible

and can be applied with other algorithms including M5’ (see Appendix C for additional

evidence and intuition) that partition the data into subgroups.

5.1 Relative Importance of the Factors

While recursive partitioning algorithms were developed to make predictions and not un-

derstand the underlying process of how predictors correlate with outcomes, strategies

have since been developed to identify which predictor variables are the most important

in making forecasts.35 The importance of each predictor variable is first computed at the

tree level, and the scores are averaged across all trees to obtain the final, global impor-

tance score for the variable.36 The most important variables are the ones leading to the

35Variable importance is often computed by applied researchers but the theoretical properties and statis-
tical mechanisms of these algorithms are not well studied. To the best of our knowledge, Ishwaran (2007)
presents the sole theoretical study of tree-based variable importance measures.

36With bagging and random forests, each tree is grown with its respective randomly drawn bootstrap
sample and the excluded data from the Out-Of-Bag sample (OOB) for that tree. The OOB sample can
be used to evaluate the tree without the risk of overfitting since the observations did not build the tree. To
determine importance, a given predictor is randomly permuted in the OOB sample and the prediction error
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greatest losses in accuracy.

We calculate variable importance scores using the MAB and MARF strategies where

we include and exclude the social media variables as predictors.37 Table 6 reports the top

10 most important predictors for open box office and movie unit sales in panels A and

B, respectively. The results with both strategies reinforce the importance of social media

data and volume related variables are found to have a greater association with revenue

outcomes than sentiment measures. Further, the predetermined budget and screens as

well as weeks in theatre are important predictors. Taken together, these results suggest

that the amount of social media buzz is more important than the emotional content when

forecasting revenue outcomes.38

To examine whether sentiment plays a larger role for small budget films that may

benefit more from word of mouth or critical reviews, we calculated variable importance

scores for films located in different budget quartile. The results are presented in table

7. Notice that constructed buzz measures are highly important for large budget films,

but the volume of messages is key for many films in lower budget quartiles. In sum-

mary, the evidence in this study continues to point to the inclusion of both social media

measures and different forecasting strategies yield different rankings of the importance

of each measure.

of the tree on the modified OOB sample is compared with the prediction error of the tree in the untouched
OOB sample. This process is repeated for both each tree and each predictor variable. The average of this
gap in prediction errors across all OOB samples provides an estimate of the overall decrease in accuracy
that the permutation of removing a specific predictor induced.

37We consider both MAB and MARF since Strobl et al. (2008) showed that using mean decreased accuracy
in variable importance with random forests is biased and could overestimate the importance of correlated
variables. This bias exists if random forest did not select the correct covariate, but rather chose a highly
correlated counterpart in a bootstrapped sample. This bias should not exist with bagging strategies that
use all available predictors. However, it should also be noted that the finding in Strobl et al. (2008) were
not replicated in Genuer, Poggi, and Tuleau-Malot (2010).

38While the Lasso can be used to select variables to include in a regression model it does not rank them. In
table A18, we report the numbers of Twitter sentiment and volume variables selected by Lasso in various
samples. The results show that the Lasso also favors the inclusion of sentiment variables in almost all
subsamples. This difference in the importance of social media variables selected may explain the uneven
prediction performance of Lasso-related estimators in tables 3 and 4
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Table 6: Relative Importance of the Predictors

Ranking With Twitter Variables Without Twitter Variables
MAB MARF MAB MARF

Panel A: Open Box Office
1 Screens Screens Screens Screens
2 Budget Budget Rating: R Budget
3 Volume: T-1/-3 Volume: T-1/-3 Genre: Horror Genre: Horror
4 Volume: T-4/-6 Volume: T-4/-6 Genre: Adventure Weeks
5 Volume: T-7/-13 Volume: T-7/-13 Budget Genre: Adventure
6 Volume: T-21/-27 Volume: T-14/-20 Rating: PG Genre: Fantasy
7 Volume: T-14/-20 Genre: Adventure Genre: Comedy Rating: PG13
8 Sentiment: T-1/-3 Volume: T-21/-27 Genre: Animation Rating: R
9 Weeks Weeks Rating: PG13 Genre: Comedy
10 Rating: R Genre: Horror Genre: Fantasy Rating: PG

Panel B: Movie Unit Sales
1 Screens Screens Screens Screens
2 Budget Budget Weeks Budget
3 Weeks Weeks Budget Weeks
4 Volume: T+0 Volume: T+0 Genre: Comedy Genre: Fantasy
5 Volume: T+8/+14 Volume: T+8/+14 Rating: R Genre: Adventure
6 Volume: T+15/+21 Volume: T+1/+7 Genre: Horror Rating: R
7 Volume: T-21/-27 Volume: T-1/-3 Genre: Fantasy Genre: Drama
8 Volume: T+22/+28 Volume: T+15/+21 Rating: PG Genre: Family
9 Volume: T+1/+7 Volume: T-4/-6 Genre: Thriller Genre: Comedy
10 Volume: T-1/-3 Volume: T-21/-27 Genre: Adventure Genre: Animation

Note: This table presents the rank order of the importance of the predictors for film revenue by the
respective machine learning.

6 Conclusion

The film industry is characterized by substantial uncertainty and De Vany and Walls

(2004) report that only 22% of films either made a profit or broke-even. Since social media

can be used to gauge interest in movies before they are released as well as provide mea-

sures of potential audience response to marketing campaigns, there is excitement in this

industry about using this new data source in forecasting exercises. Not only can a new

data source potentially improve forecasts, so too can adopting algorithms developed in

the machine learning literature for data mining applications. Using data from the film

industry we find significant gains in forecast accuracy from using recursive partitioning

strategies instead of either dimension reduction or traditional econometrics approaches.

Despite the clear practical benefits from using machine learning, we suggest that het-

eroskedastic data may hinder the performance of many algorithms. We propose a new

hybrid strategy that applies model averaging to observations in each leaf subgroup cre-
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ated by a statistical learning algorithm. Our empirical investigation first demonstrates

significant gains in forecast accuracy from the proposed hybrid strategy. Second, our anal-

ysis casts doubt that there are gains from modifying traditional econometric approaches,

penalization methods or model screening methods to account for heteroskedasticity.

Monte Carlo experiments shed further light on why these additional gains are achieved.

Evidence from these simulations show that gains from combining model averaging with

recursive partitioning are obtained when heteroskedasticity arises due to neglected pa-

rameter heterogeneity. Last, we find benefits from incorporating social media in forecast-

ing exercises for the film industry, in part since 6 of the 10 most influential variables when

using statistical learning algorithms originate from this new data source.

A challenge facing researchers in machine learning is known as the no free lunch the-

orem of Optimization due to Wolpert and Macready (1997). This is an impossibility theo-

rem that rules out the possibility that a general-purpose universal optimization strategy

exists. The optimal strategy depends on the structure of the specific problem under con-

sideration and is generally unknown ex-ante to the analyst. Yet, we argue that our pro-

posed hybrid strategy may add significant value since heteroskedastic data is the norm in

the real world. After all, our findings that irrespective of the optimization strategy used to

build trees, gains in forecast accuracy are achieved from using model averaging in place

of either a local constant or linear regression model, reinforcing the potential practical

value of using a hybrid strategy.

Future work is needed to understand the statistical properties of hybrid strategies as

well as developing formal tests that can detect the source of heteroskedasticity in settings

with many covariates to help guide practitioners choice of strategy. In addition, devel-

oping diagnostics that can evaluate forecasting strategies on the basis of not just the bias

and efficiency of the estimator but also the forecasting strategy’s computational complex-

ity should prove fruitful to aid in business decision making.
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