Seismic Inversion and Source Rock Evaluation on Jurassic Organic Rich Intervals in the Scotian Basin, Nova Scotia

Natasha Morrison Dalhousie University – Halifax, NS

OBJECTIVES

Key objectives in this study were to:

- 1. Apply wireline TOC Determinations to eleven key wells
- 2. Apply a seismic inversion to the Eastern portion of the Sable Mega-Merge
- 3. Attempt the "Source Rock from Seismic" method to help identify the known or possible organic rich intervals of the Middle and Late Jurassic and map their extent
- 4. Investigate the controls of deposition and preservation of organic matter within the Sable Sub-basin;

These objectives were met by:

- 1. Defining a stratigraphic framework within the Jurassic strata, calibrated to the available wells
- 2. Delineating faults present within the stratigraphic framework
- 3. Completing an analysis of geochemical data available for wells with in the study area
- 4. Running a 3D seismic inversion on the Eastern portion of the Sable MegaMerge survey

SOURCE ROCK

Source rocks: rock units containing sufficient organic matter of suitable chemical composition to generate and expel hydrocarbons via biogenic or thermal processes

Measured by Total Organic Carbon (TOC):

- Measured by RockEval Pyrolysis
- ▶ 0.5% absolute minimum

Classified by Kerogen Type:

- ► Type I Lacustrine
- ► Type II Marine
- ► Type III Terrestrial
- ► Type IV Recycled or Oxidized OM

		Rock-Eval (n	ng/g rock)	_	
Potential	TOC (wt %)	S1	S2	Bitumen (ppm)	HCs (ppm)
Poor	<0.5	<0.5	<2.5	<500	<300
Fair	0.5-1	0.5-1	2.5-5	500-1000	300-600
Good	1-2	1-2	5-10	1000-2000	600-1200
Very Good	2-4	2-4	10-20	2000-4000	1200-2400
Excellent	>4	>4	>20	>4000	>2400

Peters et al. 2005

SCOTIAN MARGIN GEOLOGY

300,000 km²

Deposition: began in Early Triassic 250 Ma Continuous Sedimentation

Environments: Deltaic Carbonate Deepwater

Sandstone

Shale

Salt

Volcanics

Dolomite

WELL & SEISMIC DATASET

Well Dataset

47 wells within MM constraints

- ► 11 Development
- ▶ 22 Exploration
- ► 14 Delineation

Drilled between 1967-2000 Cretaceous – Jurassic Fms

MegaMerge 3D Cube

Approx. 2890 km² 8 potential 3D volumes merged Post-processed dataset

Study Area

Approx. 2120 km² 26 wells within constrains 11 with geochemical data 15 wells used in inversion

TOC RESTORATION

Passey Method

Scales sonic and resistivity logs

Requires maturity estimation LOM

 $\Delta \text{LogR} = \frac{\log(\text{RESD/RESD}_{\text{base}}) + 0.02 * (\Delta t - \Delta t_{\text{base}})}{3.281}$

 $TOC\% = \Delta LogR * 10^{(0.297 - (0.1688 * LOM))}$

Issler Method

Cross-plots sonic or density vs resistivity logs

No subjective user input

 $TOC\% = 0.0714^{*}(\Delta T + 195 * log(RESD_{fm})) - 31.86$

 $TOC\% = -0.1429 * (DEN_b - 1014) / (log(RESD_{fm}) + 4.122) - 45.14$

Sonic/Resistivity Cross Plots

Cross-plots sonic with resistivity logs

Deviation from regression indicates TOC enrichment

Does not estimate TOC values

 $D = -6.906 + (3.186 * \log(\Delta^{\dagger})) + (0.487 * \log(\text{RESD75}^{\circ}))$

∆t (µsec/ft)

Passey Method

Scales sonic and resistivity logs

Requires maturity estimation LOM

 $\Delta \text{LogR} = \frac{\log(\text{RESD/RESD}_{\text{base}}) + 0.02 * (\Delta t - \Delta t_{\text{base}})}{3.281}$

 $TOC\% = \Delta LogR * 10^{(0.297 - (0.1688 * LOM))}$

Issler Method

Cross-plots sonic or density vs resistivity logs

No subjective user input

 $TOC\% = 0.0714^{*}(\Delta T + 195 * log(RESD_{fm})) - 31.86$

 $TOC\% = -0.1429 * (DEN_b - 1014)/(log(RESD_{fm}) + 4.122) - 45.14$

Sonic/Resistivity Cross Plots

Cross-plots sonic with resistivity logs

Deviation from regression indicates TOC enrichment

Does not estimate TOC values

 $D = -6.906 + (3.186 * \log(\Delta^{\dagger})) + (0.487 * \log(\text{RESD75}^{\circ}))$

11

Passey Method

HORIZON INTERPRETATION

Horizons Interpreted:	Approx. Age:		
Sea Floor	Current		
🗖 Wyandot Fm.	Maastrichtian - Coniacian		
Dawson Canyon Fm.	Coniacian - Turonian		
Petrel Mb.	Turonian		
🗖 Logan Canyon Fm.	Albian - Aptian		
Missisauga Fm.			
🗖 Upper Mb.	Aptian - Barrem		

- 🔲 Middle Mb.
- 🗖 Lower Mb.

Venture Limestones

- 🔲 3 Lime
- 🗖 6 Lime
- 🗖 9 Lime
- 🗆 Y Lime
- 🗖 Z Lime
- 🗖 Z2 Lime
- Citnalta Lime
 Penobscot Lime
 Top Salt

- Aptian Barremian Hauterivian - Valanginian Berriasian - Kimmeridgian -2
- Tithonian Bathonian Tithonian - Bathonian Tithonian - Bathonian Tithonian - Bathonian Tithonian - Bathonian
- Tithonian Bathonian Tithonian - Bathonian Tithonian - Bathonian Norian - Hettangian

FAULT INTERPRETATION

L8212

XL604

SEISMIC INVERSION

CGG Jason

Deterministic

- Constrained Sparse Spike Inversion
- Creates acoustic impedance cube

Workflow

Input requirements:

- ▶ 3D seismic cube
- Seismic horizons
- Well logs (sonic & density)
- ► Wavelet

<u>InverTrace^{PLUS}</u>

SOURCE ROCK FROM SEISMIC

Løseth et al. 2011

AI decreases non-linearly with increasing TOC

- AI decrease = Top source rock
- Al increase = Base source rock
 Can create a TOC profile
- ► AI Range = TOC %

Workflow

Input requirements:

- ▶ 3D seismic cube
- Seismic horizons
- Well logs (sonic & density)
- Wavelet

Parameters

TOC > 3-4% and <25%

Above 4500 m depth

- Relationship only stable to mature oil window
- > 20 m shale thickness

RESULTS - PASSEY METHOD

Completed on both sonic and density logs

- Baseline taken at each formation/member or drastic lithology change
- Baseline taken from closest well if unable to establish

RockEval data used to calibrate calculations

Olympia A-12

<u> </u>					1/1
Lower Missisauga	Corrections		Baselines		
	Sonic	Sonic	Sonic	Resistivity	
	Scale	Offset	AC	ILD	
	Factor	Factor	µs/m	ОНММ	
3995 – 4300 m	0.5	2	225	2.5	
4300 – 4751.8 m	0.5	2	225	3.5	
Mic Mac	Corre	ctions	Bo	aselines	
Mic Mac	Corre Sonic	ctions Sonic	Bc Sonic	xselines Resistivity	
Mic Mac	Corre Sonic Scale	ctions Sonic Offset	Bc Sonic AC	aselines Resistivity ILD	4
Mic Mac	Corre Sonic Scale Factor	ctions Sonic Offset Factor	Bc Sonic AC µs/m	aselines Resistivity ILD OHMM	4
Mic Mac 4751.8 – 5300 m	Corre Sonic Scale Factor 2	ctions Sonic Offset Factor 2	Bc Sonic AC µs/m	Resistivity ILD OHMM	4
Mic Mac 4751.8 – 5300 m 5300 – 6071.2 m	Corre Sonic Scale Factor 2 2	ctions Sonic Offset Factor 2 5	Bc Sonic AC µs/m 270	aselines Resistivity ILD OHMM 2.1	4

South Venture O-59

Lower Missisauga	Corrections		Baselines		
	Sonic Scale Factor	Sonic Offset Factor	Sonic AC µs/m	Resistivity ILD OHMM	
4335 – 4750 m 4750 – 5100 m 5100 – 5300 m 5300 – 5776.2 m	0.5 0.5 1 1	0.75 1 1 3	250	2.5	
Mic Mac	Corrections		Baselines		
	Sonic Scale Factor	Sonic Offset Factor	Sonic AC µs/m	Resistivity ILD OHMM	
	1	10	250	1.9]

RESULTS – ISSLER METHOD

- Completed on both sonic and density logs
- Baseline taken at each formation/member or drastic lithology change
- Baseline taken from closest well if unable to establish
- RockEval data used to calibrate calculations

LITHOSTRATIGRAPHIC CROSS SECTIONS 6180 6180 6180 6180 6180

LITHOSTRATIGRAPHIC CROSS SECTIONS

LITHOSTRATIGRAPHIC CROSS SECTIONS

Prodeltaic Shale Carbonate Reef Relic Pounded Turbidite Basin

Below Seismic Resolution

-----Prodeltaic Shale

Carbonate Reef Relic

Deltaic Sand Prodeltaic Sandstone-Shale ____

Passey Method

Scales sonic and resistivity logs

Requires maturity estimation LOM

 $\Delta \text{LogR} = \log(\text{RESD/RESD}_{\text{base}}) + 0.02 * (\Delta \dagger - \Delta \dagger_{\text{base}})$ 3.281 $TOC\% = \Delta LogR * 10^{(0.297 - (0.1688 * LOM))}$

Issler Method

Cross-plots sonic or density vs resistivity logs

No subjective user input

$$TOC\% = 0.0714^{*}(\Delta T + 195 * log(RESD_{fm})) - 31.86$$

 $TOC\% = -0.1429 * (DEN_b - 1014)/(log(RESD_{fm}) + 4.122) - 45.14$

Sonic/Resistivity Cross Plots

Cross-plots sonic with resistivity logs

Deviation from regression indicates TOC enrichment

Does not estimate TOC values

$$D = -6.906 + (3.186 * \log(\Delta t)) + (0.487 * \log(\text{RESD75}^\circ))$$

10.0