Approach to Nausea & Vomiting

Med 3 Seminar 2017

Dr. Robin Grant

Division of Palliative Medicine
robin.grant@nshealth.ca

Why nausea and vomiting?

Pain 80-90+ %

Fatigue / asthenia 75-90%

Constipation 70%

Dyspnea 60+ %

Nausea 50-60%

Vomiting 30%

Delirium 30-90%

Depression / suffering 40-60%

Prevalence of symptoms in palliative population, Daeninck presentation, 2014

Why nausea and vomiting?

Almost everyone experiences nausea

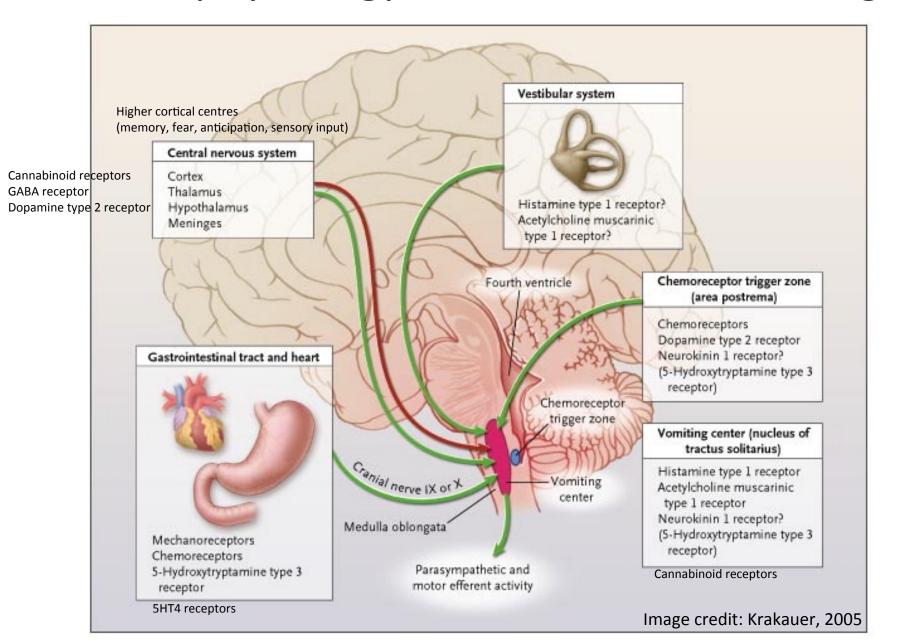
Objectives

- Review the pathophysiology of nausea & vomiting
- Recognize the underlying cause(s) of nausea & vomiting
- Know the nonpharmacologic and pharmacologic management of nausea & vomiting

Concentration on palliative population

Nausea

- Unpleasant sensation of the need to vomit
- Pallor, sweats, tachycardia, retching


- A symptom, not a disease
 - One of the most unpleasant symptoms!

Vomiting

- Cardiac sphincter relaxes
- Abdominal muscles and diaphragm contract
- Larynx closes
- Lower portion of stomach contracts
- Stomach contents expelled through the esophagus and mouth

Pathophysiology of Nausea and Vomiting

Centre	Causes	Neurotransmitter involved
GI tract and other viscera	Tumour Bowel obstruction Bowel distension Radiotherapy Ischaemia	Serotonin (5HT3, 5HT4) Dopamine (D2) Mechanoreceptors

Centre	Causes	Neurotransmitter involved
Chemoreceptor trigger zone	Medication - opioids, SSRIs, chemotherapy Toxins - uremia, hypercalcemia, infection	Dopamine (D2) Serotonin (5HT3) Substance P / Neurokinin 1

Centre	Causes	Neurotransmitter involved
Vestibular apparatus	Motion-induced nausea Vestibular disease	Histamine (H1) Acetylcholine (M)

Centre	Causes	Neurotransmitter involved
Brain cortex	Anticipatory nausea prior to chemotherapy	GABA receptors Cannabinoid receptors
Other brain causes	Anxiety, fear	
	Increased ICP	

Centre	Causes	Neurotransmitter involved
Vomiting Centre	Receive input from other causes Chemotherapy	Acetylcholine (M) Histamine (H1) Serotonin (5HT3) Substance P / Neurokinin 1

- Constipation
- Gastric dysmotility
 - Gastroparesis
 - Autonomic neuropathy
 - Gastric outlet obstruction
 - Ileus
 - Malignant bowel obstruction

- Abdominal involvement / visceral traction
 - Omental metastases
 - Peritoneal carcinomatosis
 - Masses
 - Extensive liver involvement

- Medications
 - Opioids
 - SSRIs
 - NSAIDs
 - Digoxin

- Severe pain
- Intracranial disease
- Radiation, chemotherapy
- Poor mouth care
- Vestibular apparatus stimulation

Often multi-factorial

Mechanism-based Approach

- 1. Thorough evaluation
- Determine the underlying cause(s) and neuroreceptors involved
- 3. Target treatment to the underlying cause(s) and neuroreceptors

remember to align with the patient's goals

The case of Mr. L

- 58M pancreatic cancer, diagnosed 15 months ago, neoadjuvant chemotherapy followed by partial resection
- 8 months ago palliative chemotherapy
- 6 months ago chemotherapy stopped

 Daily nausea, has ondansetron left over from chemotherapy treatments

1. Thorough Evaluation

History

1. Thorough Evaluation

Physical exam

1. Thorough Evaluation

Investigations

2. Determine the underlying cause

- The case of Mr. L scenario 1
 - No recent opioid changes
 - Abdominal pain stable
 - No bowel movement in ~ 7 days
 - Epigastric mass
 - Liver mets

2. Determine the underlying cause

- The case of Mr. L scenario 2
 - Abdominal pain increased
 - No BM x 7 days
 - No flatus x 2+ days

2. Determine the underlying cause

- The case of Mr. L scenario 3
 - No recent opioid changes
 - Abdominal pain stable
 - No bowel movement in ~ 7 days
 - Epigastric mass
 - Moments of confusion

- Nonpharmacologic
 - Avoid constipation
 - Small meals and snacks
 - Foods that are tolerable
 - Good mouth care
 - Ginger, herbal products (mild effect)
 - Hypnotherapy for anticipatory nausea

- Pharmacologic general principles
 - Opioid-induced usually self-limited
 - Dexamethasone for brain involvement
 - Aim to use one anti-emetic at a time. Combine for refractory cases
 - Avoid prokinetic + anticholinergic agents (theoretically cancel each other out)

anti-dopamine & prokinetic

Drug / Class	Receptor	Centre / Mechanism
Metoclopramide	5HT4 agonist (prokinetic) 5HT3 antagonist (at high doses) Dopamine (D2) antagonist	GI tract, except obstruction Chemoreceptor trigger zone Higher cortical centres
Domperidone - crosses BBB to lesser degree	5HT4 agonist (prokinetic) D2 antagonist	GI tract, except obstruction

- Monitor EPS
- Use carefully in patients with parkinsonism

anti-dopamine

Drug / Class	Receptor	Centre / Mechanism
Haldol	Dopamine (D2) antagonist (more potent than metoclopramide)	GI tract, good choice for obstruction Chemoreceptor Trigger Zone Higher cortical centres
Methotrimeprazine Olanzapine	Multiple (D2, 5HT2, H1, Ach antagonism)	GI tract Chemoreceptor Trigger Zone Higher cortical centres Vomiting centre Vestibular system

- Monitor EPS
- Sedating
- Use carefully in patients with parkinsonism

Management anti-5HT3

Drug / Class	Receptor	Centre / Mechanism
Ondansetron	5HT3 antagonist	Chemoreceptor trigger zone GI tract Vomiting centre

• Expensive, constipating, QT-prolonging

anti-histamine

Drug / Class	Receptor	Centre / Mechanism
Dimenhydrinate	H1 antagonist	Vestibular system Chemoreceptor trigger zone Vomiting centre

Increased risk of falls in the elderly

anti-cholinergic

Drug / Class	Receptor	Centre / Mechanism
Scopolamine (Hyoscine hydrobromide)	Ach muscarinic antagonist	Vestibular system Vomiting centre GI tract – dries secretions
Buscopan (Hyoscine butylbromide)	Ach muscarinic antagonist	Vestibular system GI tract- dries secretions

- Scopolamine: sedating, available in patch
- Buscopan: no central effect, doesn't cross BBB

corticosteroid

Drug / Class	Receptor	Centre / Mechanism
Dexamethasone	Unclear	Brain involvement (good choice for brain mets, increased ICP) Reduces secretions (good choice for bowel obstruction)

High side-effect profile with long-term use

cannabinoid

Drug / Class	Receptor	Centre / Mechanism
Cannabinoids Nabilone (THC) Sativex (THC & CBD) Herbals	Cannabinoid receptors	Higher cortical centres Chemoreceptor trigger zone Vomiting centre

- High side effect profile
- For chemotherapy-induced nausea and vomiting or refractory cases

benzodiazepine

Drug / Class	Receptor	Centre / Mechanism
Benzodiazepines	GABA receptors	Higher cortical centres
Lorazepam		

Sedating

Mechanism-based Approach

- 1. Thorough evaluation
- 2. Determine the underlying cause(s) and neuroreceptors involved
- 3. Target treatment to the underlying cause(s) and neuroreceptors

remember to align with the patient's goals

3. Targeted treatment

- The case of Mr. L scenario 1
 - No recent opioid changes
 - Abdominal pain stable
 - No bowel movement in ~ 7 days
 - Epigastric mass
 - Liver mets

3. Targeted treatment

- The case of Mr. L scenario 2
 - Abdominal pain increased
 - No BM x 7 days
 - No flatus x 2+ days

3. Targeted treatment

- The case of Mr. L scenario 3
 - No recent opioid changes
 - Abdominal pain stable
 - No bowel movement in ~ 7 days
 - Epigastric mass
 - Moments of confusion

Objectives

- Review the pathophysiology of nausea & vomiting
- Recognize the underlying cause(s) of nausea & vomiting
- Know the nonpharmacologic and pharmacologic management of nausea & vomiting

Concentration on palliative population

Medication Summary

Suspected Cause	Best choices
Opioid-induced nausea	Metoclopramide, domperidone, haloperidol
Malignant bowel obstruction	Haloperidol, dimenhydrinate, ondansetron, dexamethasone
Chemotherapy and radiotherapy-induced nausea	Ondansetron, cannabinoids, corticosteroids, metoclopramide
Anticipatory nausea or anxiety-related nausea	Benzodiazepine, hypnotherapy
Motion sickness / vestibular	Dimenhydrinate, scopolamine
GI / visceral cause	Metoclopramide
Increased ICP	Dexamethasone