
Hyperthyroidism in Primary Care

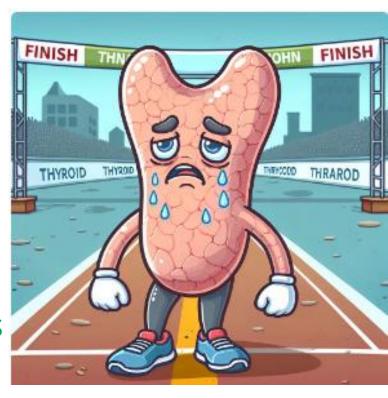
Keillor Steeves, MD, FRCPC, Assistant Professor

May 15, 2025

Disclosures

I. None relevant to today's topic (or thyroid disease)

Relationships With Financial Sponsors


SPEAKERS BUREAU/ HONORARIA:	<u>Diabetes/Obesity</u> : CPD Network Association, Eli Lilly, Novo Nordisk, Dexcom, Abbott (FreeStyle Libre)
GRANTS/RESEARCH SUPPORT/PATENTS:	None
CONSULTING FEES:	<u>Diabetes</u> : Abbott (FreeStyle Libre)
OTHER:	Assistant Professor in Medicine (Dalhousie)

I will be using Al-generated <u>images</u> (not content) <u>Off-label</u> recommendations will be clearly indicated

Objectives

- I. Explain the most common causes of hyperthyroidism in adults and an *approach to initial workup
- II. Understand some <u>nuances</u> and possible <u>pitfalls</u> in thyroid function interpretation and investigation
- III. Outline the <u>initial treatment</u> of patients with common forms of hyperthyroidism
- IV. List the criteria for involving **endocrinology** (and what to include in the referral)

*Patient Oriented

"I think there is something wrong with my thyroid"

Case: DQ 38M

- New diagnosis of hyperthyroidism
- 2 weeks of <u>anterior neck pain</u>, swelling following upper respiratory tract infection
- 1 week of palpitations, tremor, diaphoresis, anxiety
- Past Medical History: nil
- Medications: *biotin supplements (for "hair health")
- Exam: tremor, tachycardia, ?L-sided nodule
- TSH <u>undetectable ↓</u>, fT4 <u>32.2 ↑</u>, CRP <u>110 ↑</u>

Next steps?

"Why do I feel unwell?"

Case 2: GD 73M

- New diagnosis of <u>atrial</u> <u>fibrillation</u> and <u>heart failure</u>
 - Also found to have hyperthyroidism
- 2 week history of palpitations
- Past Medical History: reflux, allergies, gout
- Medications: rabeprazole, cetirizine, allopurinol (no biotin)
- Exam: tachycardia, heart failure, normal thyroid
- TSH <u>undetectable ↓</u>, fT4 <u>28.4↑</u>

"Why do I feel unwell?"

Next steps?

"Why is my thyroid high?"

Case 3: TA 43F

- Recurrent hyperthyroidism
- 6 weeks palpitations and weight loss after upper respiratory tract infection
- Past Medical History: hyperthyroidism in India
- Medications: carbimazole x few months ~1year ago, no biotin
- Exam: palpable R nodule

"T3-toxicosis"

• TSH <u>undetectable ↓</u>, fT4 17.9, fT3 <u>7.4↑</u> Next steps?

"Why is thyroid high?"

I. Hyperthyroidism:

Terminology: technical clarification

- <u>Thyrotoxicosis</u>: clinical condition of excess thyroid hormone in serum
- Hyperthyroidism: overproduction of thyroid hormone from overactive gland (Practically, I use these terms interchangeably)
 - <u>Subclinical</u>: <u>↓</u> TSH, normal fT4/fT3

I. Hyperthyroidism: Etiology

- 1. Overproduction of thyroid hormones (T4 and T3)
 - Excessive stimulation by trophic factors
 - Constitutive activation (autonomy)

3. [Extrathyroidal source of thyroid hormones] "Why is my thyroid high?"

Thermostat

Heater

Heat

I. Hyperthyroidism: DDx

Excess synthesis <u>vs</u>. release?

Increased RAIU ^a	Decreased RAIU
TSH-induced hyperthyroidism	Inflammatory thyroid disease
TSH-secreting tumors	Subacute thyroiditis
Selective pituitary resistance to T₄	Painless thyroiditis
Thyroid stimulators other than TSH	Ectopic thyroid tissue
TSAb (Graves' disease)	Struma ovarii
hCG (trophoblastic diseases)	Metastatic follicular carcinoma
Thyroid autonomy	Exogenous sources of thyroid hormone
Toxic adenoma	Medications containing thyroid hormone or iodine
Multinodular goiter	Food sources containing thyroid gland

THYROTOXICOSIS: MAJOR CAUSES

EXCESS SYNTHESIS (HYPERTHYROIDISM)

Autoimmune: Graves' disease, Hashimoto's

Autonomous thyroid tissue: Toxic adenoma, Toxic multinodular goitre

TSH-mediated: TSH-producing adenoma (TSHoma), Non-neoplastic TSH-mediated

hCG-mediated: Hyperemesis gravidarum, Trophoblastic disease (choriocarcinoma, molar)

EXCESS RELEASE (PREFORMED)

Thyroiditis: Subacute granulomatous [de Quervain's], Painless (silent, lymphocytic postpartum), Medications (amiodarone, <u>lithium</u>, immune checkpoint inhibitor), Radiation, Palpation

Congenital: Thyroid agenesis/dysgenesis, Defects in hormone synthesis

EXCESS EXOGENOUS

Thyroid Replacement: T4, T3

latrogenic: TSH suppression (e.g. cancer)

Factitious Hyperthyroidism

ECTOPIC

Struma ovarii: Ovarian teratoma

Metastatic Thyroid Cancer: Follicular

Carcinoma

*Adapted from ¹AAFP, ²ATA, ³Ross et al. 2025

The RAIU may be decreased if the patient has been recently exposed to excess iodine.

¹Kravets 2016

I. AAFP Approach

The "Big Three":

- 1. Thyroiditis
- 2. Graves' disease
- 3. Toxic nodule(s)

Others:

- Medications
- hCG
- TSH
- Ectopic

Table 1. Etiology and Pathogenesis of Hyperthyroidism		
Etiology	Mechanism	
Most common causes		
Graves disease	Autoimmune process in which antibodies stimulate the TSH receptor leading to overproduction of thyroid hormones	
Painless or transient (silent) thyroiditis	Autoimmune destruction of thyroid tissue leading to a release of preformed thyroid hormones	
Toxic adenoma (Plummer disease)	Somatic mutation in TSH receptor or Gs alpha gene in a thyroid nodule	
Toxic multinodular goiter	Expansion of clonogenic cells with an activating TSH receptor mutation	
Less common causes		
Drug-induced thyroiditis	Overproduction of thyroid hormones (amiodarone-induced thyrotoxicosis type 1) or release of preformed thyroid hormones (amiodarone-induced thyrotoxicosis type 2, interferon alfa, interleukin-2, or lithium)	
Hyperemesis gravidarum	High level of β -hCG stimulates TSH receptors	
Postpartum thyroiditis	Variant of painless thyroiditis with the same mechanism, occurring after delivery	
Subacute granulomatous (de Quervain) thyroiditis	Painful inflammation of the thyroid gland caused by viral infection, often with fever, triggering a release of preformed thyroid hormones	

Rare causes Factitious thyrotoxicosis Metastatic follicular

Struma ovarii

thyroid cancer

a germ cell tumor TSH-secreting pituitary adenoma

Trophoblastic tumor or

Surreptitious ingestion of thyroid hormones

Metastasis of functional follicular thyroid cancer

Ectopic thyroid tissue in ovarian dermoid tumor produces thyroid hormones

Tumor produces β-hCG, which stimulates thyroid TSH receptors

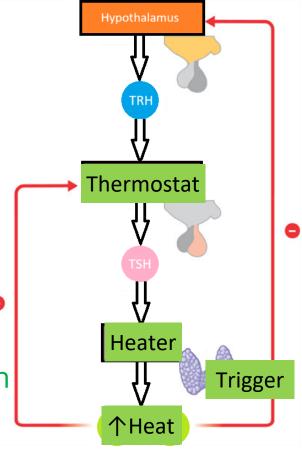
Tumor secreting large quantities of TSH, and not responding to thyroxine and triiodothyronine feedback

"Could this be caused by my medications?"

Interfering Agents

"What about my meds?"

DRUGS AND THYROID FUNCTION	
HYPOTHYROIDISM	
Inhibition of Hormone Synthesis or Release	Thiomanides, <u>Lithium</u> , Perchlorate, Aminoglutethimide, Kelp, <u>Iodine</u> (Amiodarone, Contrast, Iodide [SSKI], Expectorants, Betadine douches, Topical antiseptics), Thalidomide
Decrease T4 Absorption	Calcium, Iron, Cholestyramine, Colestipol, Colesevelam, Chromium, Aluminum hydroxide, Sucralfate, Raloxifene, Proton pump inhibitors, Sevelamer, Sertraline, Lanthanum carbonate
Immune Dysregulation	Interferon alfa, Interleukin-2, Immunotherapy (checkpoint inhibitors)
TSH Suppression	Dopamine, Bexarotene (increased T4 clearance)
Destruction	Immunotherapy (<u>checkpoint inhibitors</u>), Tyrosine kinases inhibitors
Type 3 Deiodination	Tyrosine kinases inhibitors
ABNORMAL THYROID FUNCTION TESTS	
Low TBG	Androgens, Danazol, <u>Glucocorticoids</u> , Niacin, L-asparaginase
Decreased T4 Binding	Salicylates, Salsalate, Furosemide, Heparin, Non-steroidal anti-inflammatory drugs
Increase T4 Clearance	Phenytoin, Carbamazepine, Rifampin, Phenobarbital, Ritonavir, Imatinib
TSH Suppression	Dopamine, Glucocorticoids, Octreotide
Impaired T4 to T3 Conversion	Amiodarone, Propylthiouracil, Contrast/liopanoic acid, Glucocorticoids, Propranolol, Nadolol
*Adapted from ² ATA, ¹ AAFP, ⁴ Ross et al. 2025	


*Pearl: review medication changes

UpToDate®

1. Thyroiditis

"What's wrong?"

- Thyroid "irritated", releasing <u>stored</u> thyroid hormones (T4 > T3), then absence of new hormone synthesis ("stunned")
 - Many <u>triggers</u>: viral, postpartum, neck palpation, radiation, medications, iodine supplements (*lion's mane, ashwanganda*)
- Can follow upper respiratory or GI infection
- Phasic: thyrotoxic, hypothyroid, (recovery)
 - This makes the diagnosis
 - Hashimoto's: most common cause of primary hypothyroidism
- TPO antibody is often positive, CRP elevated
- Uptake and scan: no uptake (decreased from normal)
 - Rarely needed

1. Thyroiditis

THYROIDITIS: MAJOR CAUSES

PAINFUL (TENDER)

Subacute: Granulomatous, Suppurative (de Quervain's), Nonsuppurative

Infectious: Acute or Chronic

latrogenic: Radiation, Palpation/Trauma

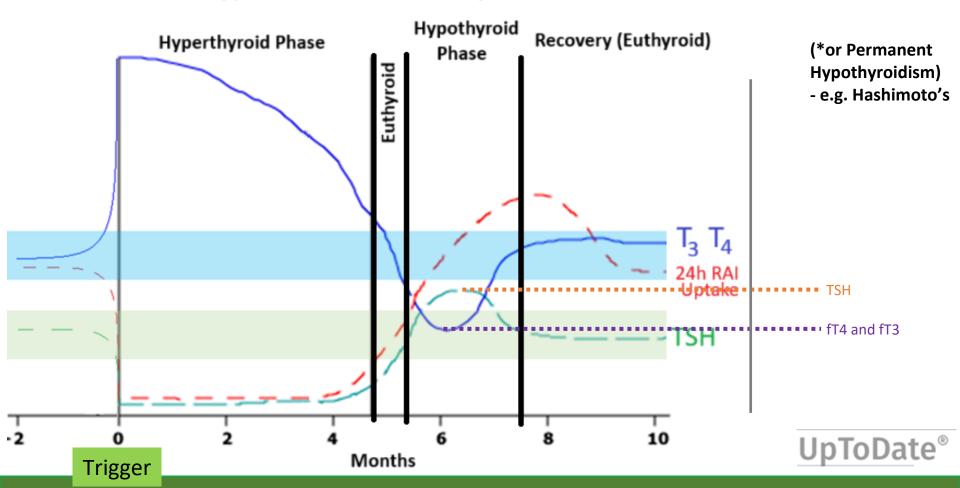
PAINLESS

Painless: Silent, Lymphocytic (Spontaneous, Subacute)

Drugs: Lithium, Amiodarone (type 2), Immunotherapy (checkpoint inhibitors),

Tyrosine kinase inhibitors, Interferon alpha, Interleukin 2

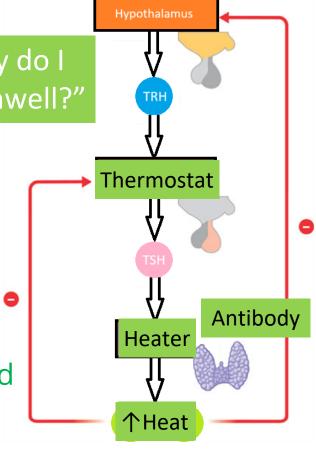
Chronic lymphocytic: <u>Hashimoto's</u>, Postpartum


Fibrous: Reidel's, IG4-related, invasive

*Adapted from ⁵Ross et al. 2025

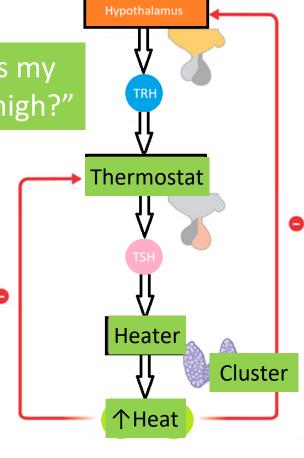
*Pearl: acute pain usually means thyroiditis

1. Thyroiditis


Typical Courses of Thyroiditis

2. Graves' Disease

"Why do I feel unwell?"


- Autoantibody triggers inappropriate increased <u>synthesis</u> of new thyroid hormone (T3 > T4)
- Autoimmune: antibodies are usually positive
 - This makes the diagnosis
- Shorter subclinical hyperthyroidism period progresses to overt hyperthyroidism
- Ocular manifestations
- 30% of cases go into permanent <u>remission</u> after 12-18 months of antithyroid therapy
- Uptake and scan: diffuse, homogenous, <u>increased</u> uptake with no hot/cold nodules
 - (I only order this when antibodies are <u>negative</u>)

3. Toxic Nodule(s)

"Why is my thyroid high?"

- Groups of thyroid cells becomes <u>autonomous</u>, inappropriately increasing new thyroid hormone synthesis (T3 > T4)
- Antibodies are usually <u>negative</u>
- Longer subclinical hyperthyroidism progresses to overt (10% progress each year)
- Uptake and scan: concentrated uptake in one (or more) "hot" nodules with background suppression of remaining thyroid tissue (*not in pregnancy)
 - This makes the diagnosis

I. Hyperthyroidism: Approach

1. Symptoms?

- Palpitations, tremor, diaphoresis, heat intolerance, diarrhea, polyphagia, unintentional weight loss, worsened anxiety, irritability/decreased concentration, congestive heart failure, weakness, oligo/amenorrhea
- Ocular manifestations: proptosis, chemosis, blepharitis, diplopia
- 2. Offending agents?
 - <u>Biotin</u>, iodine, medications (levothyroxine, liothyronine, steroids, lithium amiodarone, checkpoint inhibitors, cytokines, tyrosine kinase inhibitors)
- 3. Repeat testing in <u>6-8 weeks</u> (after minimizing interference from 2.)
 - Thyroid function studies: TSH, fT4, fT3
 - Antibodies: TPO, <u>thyroid receptor antibodies</u> (or thyroid-stimulating immunoglobulin)
 - CBC, CRP, ALT, bilirubin, <u>hCG</u> (females of child-bearing age)
- 4. Imaging
 - Uptake (quantity) and scan (quality): probably best to leave for <u>Endocrinology</u>

I. Symptoms

Pathognomonic for <u>Graves'</u> disease:

- Orbitopathy (esp. with smoking)
 - Exophthalmos
 - Periorbital edema
- Pretibial myxedema
- Thyroid acropachy

Graves' Diagnosis:

- Symmetrically enlarged thyroid +
- 2. New onset orbitopathy +
- 3. Moderate to severe hyperthyroidism

Table 2. Signs and Symptoms of Hyperthyroidism

Adrenergic

Palpitations, tachycardia, anxiety, tremor, jitteriness, diaphoresis, heat intolerance, stare, lid lag, hyperdefecation (not diarrhea)

Cardiovascular

Tachycardia, irregular pulse (in atrial fibrillation), dyspnea, orthopnea and peripheral edema (in heart failure)

Cutaneous

Onycholysis (Plummer nails), patchy or generalized hyperpigmentation (especially of the face and neck)

Symptoms pathognomonic for Graves disease: pretibial myxedema (thyroid dermopathy) and thyroid acropachy (clubbing of fingers and toes accompanied by soft-tissue swelling of the hands and feet)

Patchy vitiligo can also be observed in Graves disease

Hypermetabolism

Weight loss in spite of increased appetite, fever (in thyroid storm)

Neuromuscular

Brisk peripheral reflexes with accelerated relaxation phase and weakness of proximal muscles

Neuropsychiatric

Anxiety, rapid and pressured speech, insomnia, psychosis (if hyperthyroidism is severe)

Ocular

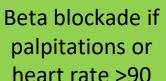
Increased lacrimation, incomplete closure of the eyes when sleeping reported by the patient's partner, photophobia, increased eye sensitivity to wind or smoke, grittiness or sensation of a foreign body or sand in the eyes

Symptoms pathognomonic for Graves disease: exophthalmos, periorbital edema, diplopia, blurred vision, reduced color perception

Hyperthyroidism: Approach

Symptoms?

- Palpitations or tremor?
- Neck pain or swelling?


- 6-8 weeks
- No biotin x 7 days
- Offending agent?

- Goitre
- Nodule

Persistent, overt hyperthyroidism

*Subclinical hyperthyroidism

NSAIDS (+/- GCs)

fT4, fT3

TRAB, TPO

CBC, ALT,

bilirubin, CRP

(hCG)

Thyroid ultrasound

*Pearl: treat symptoms, then order further tests

II. Nuances of Investigations

- A. Biotin
- B. Subclinical hyperthyroidism
- C. Steady-state
- D. Pregnancy
- E. T4 vs. T3; free vs. total
- F. Thyroid antibodies
- G. In-patients
- H. Ultrasound

"Does it matter if I take biotin? Can't hurt, right?"

Benefits of using Biotin capsules

- Improve skin health
- Makes your hair thicker and longer
- Brittle nails
- Prevent hair fall
- Treat Dandruff

BIOTIN[®]

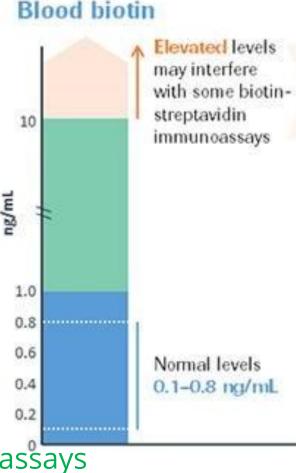
100% Plant-Based Vegetarian

Made from Organic

- 100% Vegan
- Organic Herbs
- Natural Vitamins
- 100% Vegetarian
- 100% Plant Based Formula
- Superior Absorption*
- High Quality
- No Side Effect

STRONGER

Hair, Skin & Nails

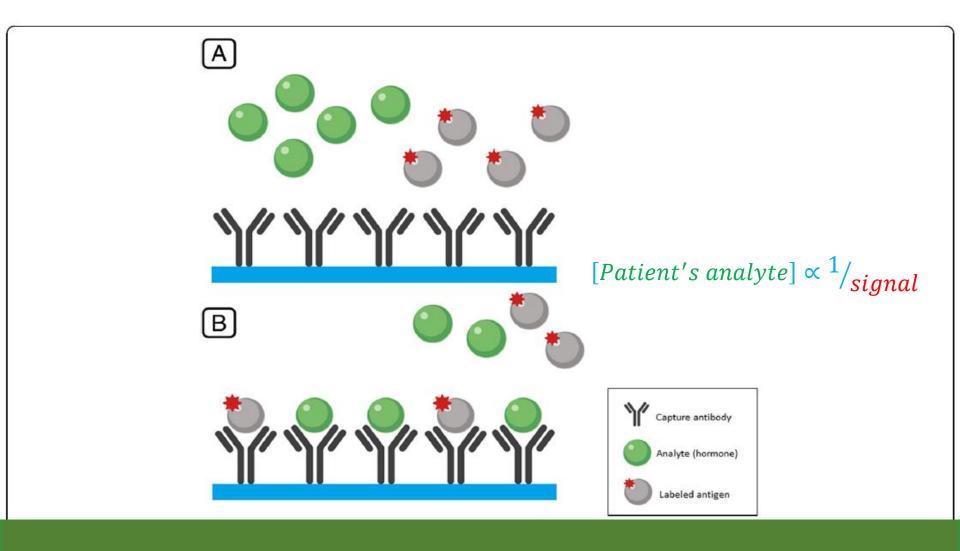

Try Our New Dietary Supplement with Biotin

amazon*Prime*

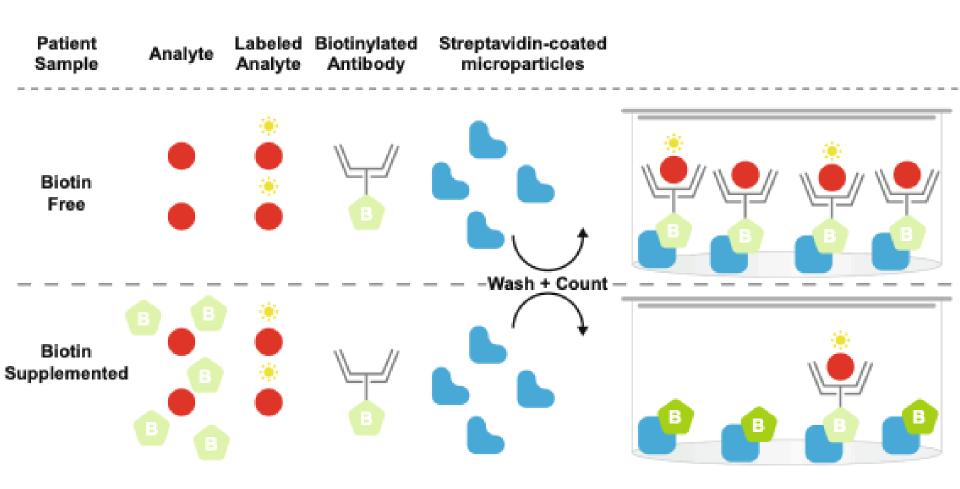
"Does it matter if I take biotin?"

- Vitamin B7 (water-soluble)
 - Many names: vitamin H, coenzyme R, factor S, factor W, vitamin Ba, protective factor X
- Biotin-streptavidin is one of nature's <u>strongest</u> non-covalent interactions
 - In vitro diagnostic tests take advantage of by immobilizing biotinylated capture antibodies
- Up to 85% of common immunochemistry analyzers used biotin-streptavidin immunoassays
- Immunoassay manufacturers and FDA have issued safety warnings about biotin interference
 - Reported levels of 1.0-1200ng/mL

Immunoassay refresher: 2 methods of analyte detection

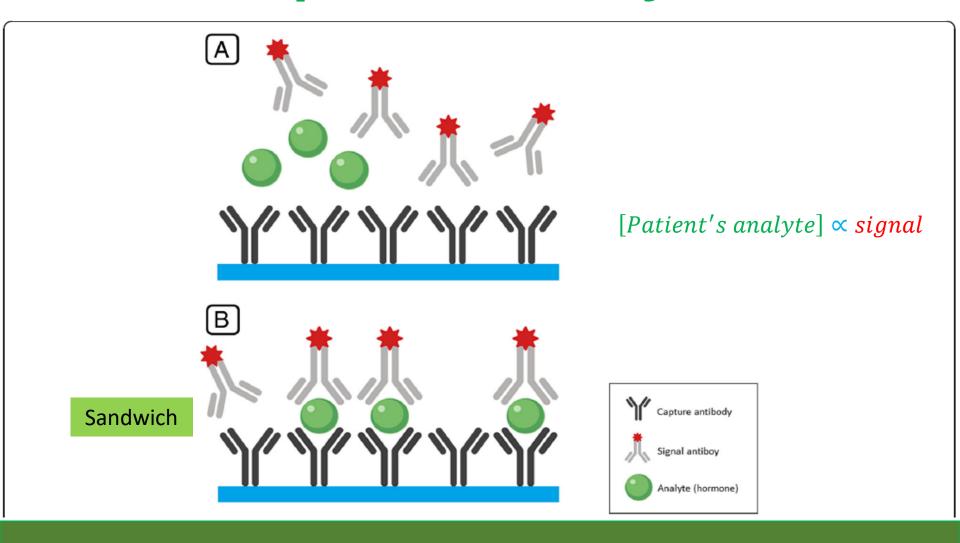

A. Competitive assay

- Patient's analyte and known quantity of labelled analyte compete for specific antibodies
- After wash off, signal of bound labelled analyte measured: [Patient's analyte] $\propto \frac{1}{signal}$

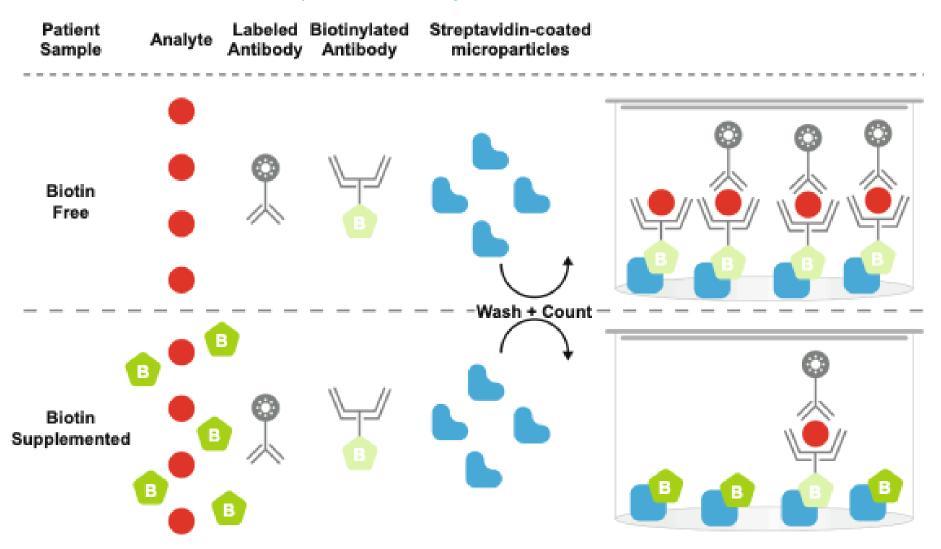

B. Non-competitive assay (sandwich)

- Patient's analyte binds to fixed capture antibody, then labelled antibody binds to the fixed antibody complex
- After wash off, signal of labelled antibody complexes measured: [Patient's analyte] ∝ signal

Competitive Assay



A. Competitive assay [Patient's analyte] $\propto 1/signal$



Biotin falsely decreases measured signal (falsely high result)

Non-competitive Assay

B. Non-competitive assay [$Patient's\ analyte$] $\propto signal$

Biotin falsely decreases measured signal (falsely low result)

_TSH + _fT4/fT3 = 1° hyperthyroidism

Falsely <u>low</u> immunometric assays (e.g. TSH)

 Falsely <u>high</u> competitive-binding assays (e.g. fT4, fT3, TRAB, TPO)

Hormones

Test	Potential impact
Parathyroid Hormone (LAB108)	
Follicle Stimulating Hormone (LAB86)	
Luteinizing Hormone (LAB88)	
Adrenocorticotropic Hormone (LAB511)	
Prolactin (LAB531)	Falsa dasussas
Growth Hormone (LAB525)	False decrease
Insulin (LAB7389)	
C-Peptide (LAB521)	
Insulin-Like Growth Factor 1 (LAB8787)	
Anti-Mullerian Hormone (LAB7364)	
Cortisol (LAB61)	
Estradiol (LAB523)	
Testosterone (LAB124)	False increase
Progesterone (LAB529)	
Dehydroepiandrosterone Sulfate (LAB524)	

Nutritiona	l Markers
------------	-----------

Test	Potential impact
Ferritin (LAB68)	False decrease
Vitamin D, 25-Hydroxy (LAB535)	
Vitamin B12 (LAB67)	False increase
Vitamin B12, Reflexive (LAB882)	Faise increase
Folate (LAB69)	

Other Proteins

Test	Potential impact
Immunoglobulin E (LAB74)	
Myoglobin (LAB105)	False decrease
Sex Hormone Binding Globulin (LAB4945)	

Preanancy-Related Markers

Test	Potential impact
Pregnancy Screen, Qualitative (LAB1166)	
HCG – Pregnancy (LAB1148)	False decrease
HCG – Tumor Marker or Pregnancy (LAB142)	

Assays at The Moncton Hospital lab should not be susceptible to biotin interference

Multivitamin

30 - 60mcg/day

No recommended daily intake (RDI) exists, as deficiencies are rare

Hair & nail supplement

5,000-10,000 mcg/day

More than 125 times the suggested intake

Experimental therapeutic regimen

>10,000 mcg/day

Doctor-directed for specific patient populations

ASK your patients to report everything they are taking, including prescription and OTC medicines, vitamins and supplements, prior to a blood draw.

UNDERSTAND

that many patients are not aware that they are taking high dose biotin because it is packaged as a supplement for hair, skin and nail beauty.

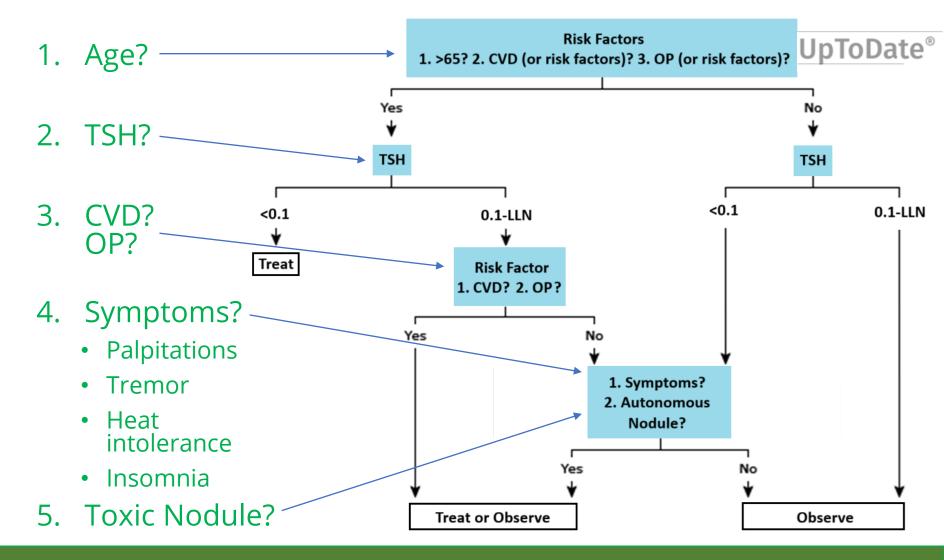
INFORM your

patients about how to prepare for blood work. If they take high dose biotin, they will need to wait before a blood draw.

*Pearl: when in doubt, hold biotin for 7 days

"Can my thyroid levels change as I get older?"

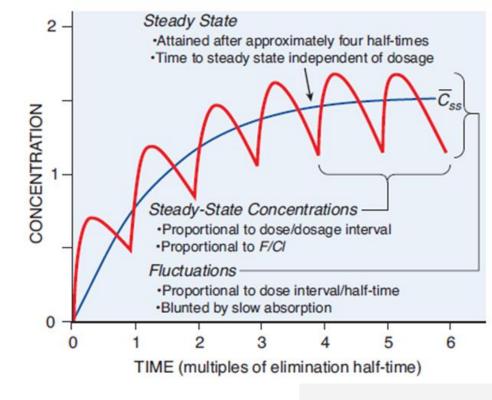
B. Subclinical Hyperthyroidism


- - Inverse logarithmic relationship
 - TSH more sensitive: better screening test
- Can be caused by any etiology discussed above
 - Steroids/lithium cause this (moreso than overt)

Age matters:

"Can thyroid change with age?"

- Younger patients more tolerant
- Older patients (>65y) at increased risk
 - Bone: osteopenia, osteoporosis, fragility fracture
 - <u>Embolic</u>: ?myocardial infarction, atrial fibrillation (transient ischemic attack/stroke)


B. Subclinical Hyperthyroidism

"Can we recheck my thyroid next week?"

C. Steady State

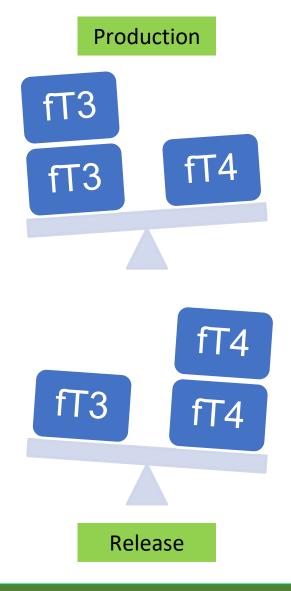
- Changes in thyroid function tests take time
- Repeating <6 weeks not recommended

- Exception: write "exception" on req
 - Pregnancy: every 4 weeks
 - New atrial fibrillation

"Can we recheck next week?"

D. Pregnancy

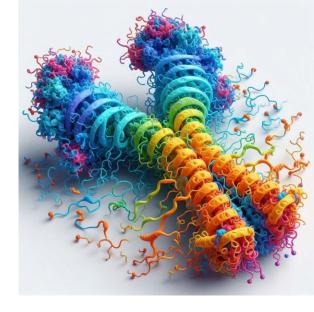
- TSH range of normal is assay specific
 - Based off young, non-pregnant adults
- If reference range not provided, use the ATA trimester standard:
 - 1st trimester: 0.1-2.5
 - 2nd trimester: 0.2-3.0
 - 3rd trimester: 0.3-3.0



*Pearl: pregnancy targets are different

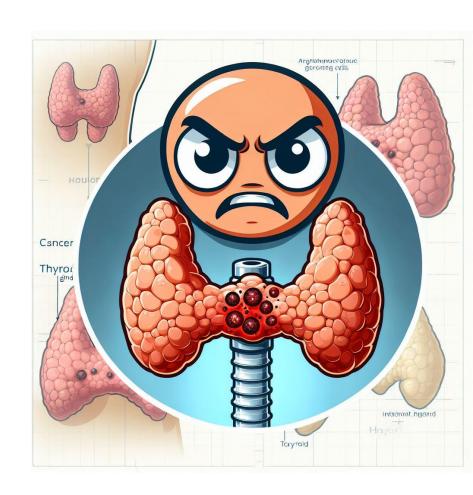
"What is my total T4?"

E. Free T4 vs. Free T3


- Lab will automatically run these if TSH abnormal (reflexive)
- Thyroid makes T4:T3 14:1
 - T3 predominance: increased <u>production</u> seen in Graves'/toxic nodule(s) ["hyperthyroidism"]
 - T4 predominance: increased release in thyroiditis (any cause)
- Total T4 or total T3: do not order

"Is this because of my immune system?"

F. Thyroid Antibodies

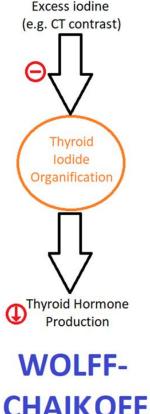

- Thyroid receptor antibodies (TRAB): TSH binding inhibition immunoglobulin (TBII)
 - >4: highly sensitive for Graves' disease
 - Cheaper: preferred by lab
- Thyroid stimulating immunoglobulin (TSI):
 - Highly sensitive for Graves' disease
 - More expensive (can require special approval)
- Thyroid peroxidase (TPO): less helpful
 - Marker of potential autoimmune thyroid dysfunction (<u>once</u> per patient lifetime)
 - Elevated in Graves' disease (not specific)
 - Elevated in Hashimoto's disease/thyroiditis
 - Elevated in normal thyroid (annual TSH screening)

"Is this my immune system?"

F. Other tests

- Anti-thyroglobulin antibodies: do <u>not</u> order
 - Role in thyroid cancer treatment monitoring
- Thyroglobulin: do <u>not</u> order
 - Measure of functioning thyroid
 - Role in thyroid cancer treatment monitoring

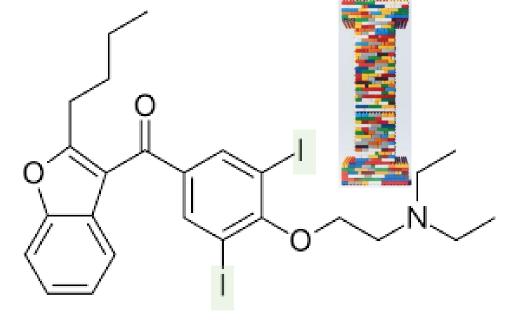
G. In-patients


- Sick euthyroid syndrome
 - Best to repeat in <u>6-8</u>
 weeks as an outpatient
- Sick Sicker Sickest
- Checkpoint inhibitors: <u>hyper</u>- or <u>hypo</u>thyroidism
 - Oncology: protocol for monitoring
- Thyroid storm: <u>rare</u> complication
 - Diagnosis: Burch-Wartofsky Score

G. In-patients

lodine (CT contrast):

- Wolff-Chaikoff: protective
 - Excess iodine exposure reduces thyroid synthesis


JOD **BASEDOW**

- Jod-Basedow: abnormal
 - Abnormal thyroid cells "escape" and use excess iodine to increase thyroid synthesis (hyperthyroidism)

[Recent iodine exposure makes thyroid uptake/scan less reliable and radioactive iodine therapy less effective.]

G. In-patients

Iodine (amiodarone): long half-life (baseline testing recommended)

- Hypothyroidism
- <u>Hyper</u>thyroidism: amiodarone-induced thyrotoxicosis
 - Type 1: pre-existing goitre or latent Graves' disease
 - Type 2: destructive thyroiditis

"Do I have to stop amiodarone?"

"Can I have a thyroid ultrasound?"

H. Ultrasound

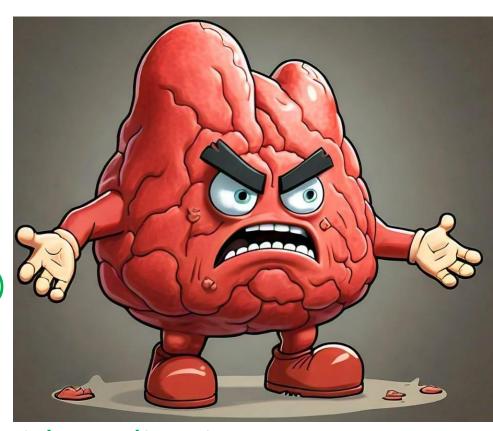
- Order only if <u>abnormal</u> exam
- Helpful for investigating:
 - Goitre
 - Nodules

- NOT helpful for <u>hypothyroidism/hyperthyroidism</u>
 - Need special training to accurately collect and interpret results within this context

"Can I have a thyroid ultrasound?"

Choosing Wisely - Canada

- Don't routinely order a thyroid ultrasound in patients with abnormal thyroid function tests <u>unless</u> there is a palpable abnormality of the thyroid gland.
- Don't routinely test for Anti-Thyroid Peroxidase Antibodies (anti-TPO).


*Pearl: let patient presentation guide testing

III. Hyperthyroidism: Treatment

- Age
 - >65
- Symptoms
 - Palpitations, tremor, diaphoresis, heat intolerance, diarrhea, polyphagia, unintentional weight loss, worsened anxiety, irritability/decreased concentration, congestive heart failure, weakness, oligo/amenorrhea
- Severity
 - Overt hyperthyroidism (fT4 or fT3 >1.5 ULN)
 - Moderately correlates with symptoms

III. Thyroiditis Therapy

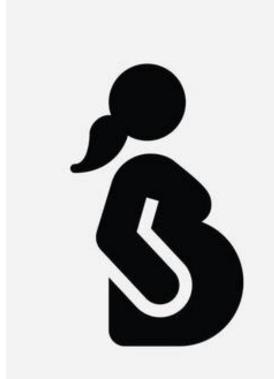
- Symptoms: beta blockade
 - Propranolol vs. other
- Subacute: pain
 - NSAIDs (naproxen 250-500 mg twice daily)
 - GCs (prednisone 20-40mg)

Rarely require antithyroid medication

Table 5. Pharmacologic Treatment of Hyperthyroidism

First-line agents	Dosage	Adverse effects	Comments	Cost*
Beta blockers				
Atenolol	25 to 100 mg orally once per day	Exacerbation of congestive heart failure	Selective beta ₁ blocker; safer than propranolol in asthma or chronic obstructive pulmonary disease; once-daily dosing improves compliance	\$5
Propranolol	Immediate release: 10 to 40 mg orally every eight hours Extended release: 80 to 160 mg orally once per day	Exacerbation of congestive heart failure or asthma	Decreases T ₄ to T ₃ conversion; nonselective beta blocker	\$20 to \$84 for immediate release \$76 to \$152 for extended release
Antithyroid medi	cations			
Methimazole (Tapazole)	5 to 120 mg orally per day (can be given in divided doses)	Dose-related agranulocytosis	Contraindicated in the first trimester of pregnancy	\$20 to \$100 (\$45 to \$900)
Propylthiouracil	50 to 300 mg orally every eight hours	Agranulocytosis not related to dose; liver dysfunction; rash, including ANCA- associated vasculitis	Drug of choice in the first trimester of pregnancy; carries a higher risk of liver failure than methimazole	\$60 to \$400
Ancillary agents				
Glucocorticoids	Prednisone: 20 to 40 mg orally per day for up to four weeks Hydrocortisone: 100 mg intravenously every eight hours with subsequent taper	Hyperglycemia in patients with diabetes mellitus, otherwise few short-term adverse effects	Used in severe hyper- thyroidism or thyroid storm to reduce T ₄ to T ₃ conversion; also used in severe subacute thyroiditis	Prednisone: \$20 Hydrocortisone: NA
Nonsteroidal anti- inflammatory drugs	Depends on the specific agent	Nephrotoxicity; gastrointestinal bleeding	Treats pain in subacute thyroiditis	_

ANCA = antineutrophil cytoplasmic autoantibodies; NA = not applicable; $T_3 = triiodothyronine$; $T_4 = thyroxine$.


¹Kravets 2016

III. Graves'/Adenoma Therapy

- Symptoms: beta blockade (for 3-4 weeks)
 - Propranolol (preferred in pregnancy) vs. other
- Antithyroid medications:
 - (*Propylthiouracil: preferred during 1st trimester)
 - Methimazole: preferred during all other times
 - Overt hyperthyroidism: 10mg PO twice daily
 - Rare side effects:
 - Rash (Stephen-Johnson syndrome or vasculitis)
 - Jaundice (liver dysfunction): ALT, bilirubin
 - Fever/severe odynophagia (agranulocytosis): neutrophils
- Radioactive iodine ablation (esp. adenoma)

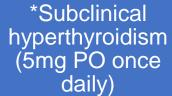
III. Pregnancy Therapy

- Pregnancy improves autoimmune conditions (e.g. Graves' disease)
- Postpartum flare is common
 - As is postpartum thyroiditis
- Antithyroid medications have been linked to inutero malformations
 - T1: PTU is safer than methimazole
- Pregnant body needs more thyroid hormones (i.e. lower TSH)
 - Treatment target: T4 and T3 around ULN

Hyperthyroidism: Approach

Symptoms?

- Palpitations or tremor?
- Neck pain or swelling?



- 6-8 weeks
- No biotin x 7 days
- Offending agent?

- Goitre
- Nodule

Persistent, overt hyperthyroidism

Beta blockade if palpitations or heart rate >90

NSAIDS (+/- GCs) fT4, fT3

TRAB, TPO

CBC, ALT,

bilirubin, CRP

(hCG)

Thyroid ultrasound

Methimazole
10mg PO twice
daily x 2
weeks, then
10mg PO
thereafter

Back to our patients...

Case: DQ 38M

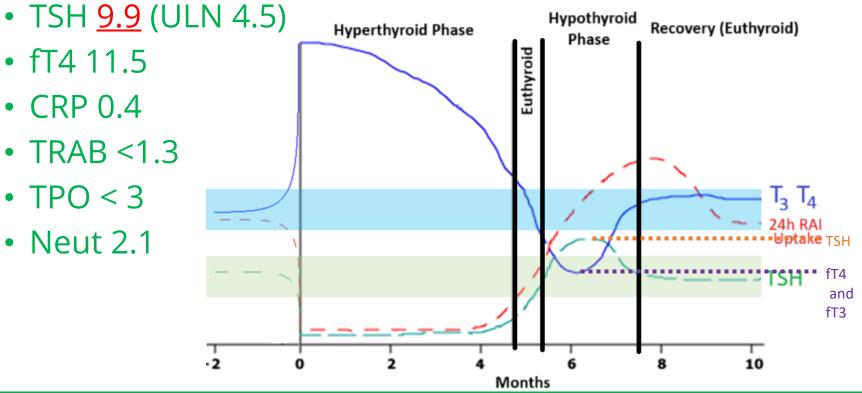
- New diagnosis of hyperthyroidism
- 2 weeks of <u>anterior neck pain</u>, swelling following upper respiratory tract infection
- 1 week of palpitations, tremor, diaphoresis, anxiety
- Past Medical History: nil
- Medications: *biotin supplements (for "hair health")
- Exam: tremor, tachycardia, ?L-sided nodule
- TSH undetectable ↓, fT4 32.2 ↑, CRP 110 ↑

Next steps?

Case: DQ 38M

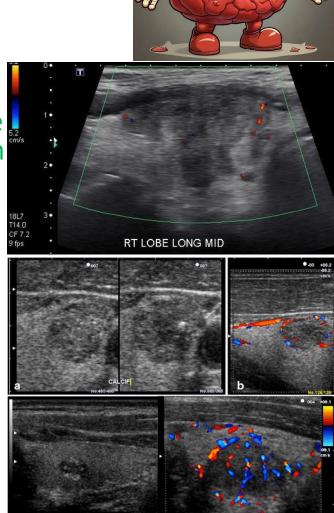
- Symptomatic (tremor/palpitations): propranolol
 - Neck pain and swelling: naproxen, prednisone
- In 6-8 weeks, repeat labs (after holding biotin for 7 days)
 - TSH, fT4, fT3, antibodies (thyroid receptor antibody AND anti-TPO), CBC, ALT, bilirubin
- Abnormal exam: order thyroid ultrasound
- Most likely: subacute thyroiditis (de Quervain's)

Case 1: DQ 38M



biotin for 7 days)

Typical Courses of Thyroiditis



- CRP 0.4
- TRAB < 1.3
- TPO < 3
- Neut 2.1

Case: DQ 38M

- Thyroid ultrasound:
 - There is a large 1.8 x 2.0 x 3.4 centimetre rounded well circumscribed lesion within the left lobe of the thyroid gland. This is solid and hypoechoic relative to background parenchyma. Lesion is wider than tall with no calcifications.
 - Diffuse heterogeneity of the background thyroid parenchyma with large lobular masses within both lobes of the thyroid gland. Given the provided history of fevers in the degree of heterogeneity/ size of bilateral nodules, findings are favoured on the basis of subacute De Quervain Thyroiditis.

ACR TI-RADS

COMPOSITION

(Choose 1)

Cystic or almost 0 points completely cystic

Spongiform 0 points

Mixed cystic 1 point and solid

Solid or almost 2 points

completely solid

ECHOGENICITY

(Choose 1)

Anechoic 0 points

1 point

Hyperechoic or isoechoic

Hypoechoic 2 points

Very hypoechoic 3 points

SHAPE

(Choose 1)

Wider-than-tall 0 points

Taller-than-wide

3 points

MARGIN

(Choose 1)

Smooth 0 points

III-defined 0 points

2 points

3 points

irregular

Lobulated or

Extra-thyroidal

extension

ECHOGENIC FOCI

(Choose All That Apply)

None or large 0 points comet-tail artifacts

Macrocalcifications 1 point

Peripheral (rim) 2 points

calcifications

Punctate echogenic 3 points

foci

Add Points From All Categories to Determine TI-RADS Level

0 Points

TR1 Benign No FNA 2 Points

TR2
Not Suspicious
No FNA

3 Points

TR3

Mildly Suspicious FNA if ≥ 2.5 cm

FNA If \geq 2.5 cm Follow if \geq 1.5 cm 4 to 6 Points

TR4

Moderately Suspicious

FNA if ≥ 1.5 cm Follow if ≥ 1 cm 7 Points or More

TR5

Highly Suspicious FNA if ≥ 1 cm

Follow if ≥ 0.5 cm*

COMPOSITION ECHOGENICITY SHAPE MARGIN ECHOGENIC FOCI

Spongiform: Composed predominantly (>50%) of small cystic spaces. Do not add further points for other categories.

Mixed cystic and solid: Assign points for predominant solid component.

Assign 2 points if composition cannot be determined because of calcification.

Anechoic: Applies to cystic or almost completely cystic nodules.

Hyperechoic/isoechoic/hypoechoic: Compared to adjacent parenchyma.

Very hypoechoic: More hypoechoic than strap muscles.

Assign 1 point if echogenicity cannot be determined

Taller-than-wide: Should be assessed on a transverse image with measurements parallel to sound beam for height and perpendicular to sound beam for width.

This can usually be assessed by visual inspection.

Lobulated: Protrusions into adjacent tissue.

Irregular: Jagged, spiculated, or sharp angles.

Extrathyroidal extension: Obvious invasion = malignancy.

Assign 0 points if margin cannot be determined.

Large comet-tail artifacts: V-shaped, >1 mm, in cystic components.

Macrocalcifications: Cause acoustic shadowing.

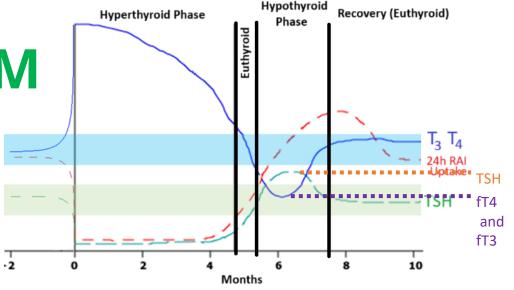
Peripheral: Complete or incomplete along margin.

Punctate echogenic foci: May have small comet-tail artifacts.

^{*}Refer to discussion of papillary microcarcinomas for 5-9 mm TR5 nodules.

Case: DQ 38M

- Thyroid ultrasound:
 - There is a large 1.8 x 2.0 x 3.4 centimetre rounded well circumscribed lesion within the left lobe of the thyroid gland. This is solid and hypoechoic relative to background parenchyma. Lesion is wider than tall with no calcifications.
 - Diffuse heterogeneity of the background thyroid parenchyma with large lobular masses within both lobes of the thyroid gland. Given the provided history of fevers in the degree of heterogeneity/size of bilateral nodules, findings are favoured on the basis of subacute De Quervain Thyroiditis.
- TIRADS 4: <u>FNA</u> if >1.5cm



	Composition (Choose 1)*	☐ Cystic or almost completely cystic 0 point
		☐ Spangiform 0 points
		☐ Mixed cystic and solid 1 point
		Solid or almost completely solid 2 points
	Echogenicity (Choose 1)*	☐ Anechoic 0 points
		☐ Hyperechoic or isoechoic 1 point
		■ Hypoechoic 2 points
		□ Very hypoechoic 3 points
	Shape (Choose 1)*	■ Wider-than-tall 0 points
		☐ Taller-than-wide 3 points
	Margin (Choose 1)*	☑ Smooth O points
		☐ III-defined 0 points
		☐ Lobulated or irregular 2 points
		☐ Extra-thyroidal extension 3 points
Echogenic Fo	ci (Choose All That Apply)*	■ None or large comet-tail artifacts 0 points
		☐ Macrocalcifications 1 point
		☐ Peripheral (rim) calcifications 2 points
		☐ Punctate echogenic foci 3 points
Total Points	4	
TI-RADS Level		
7770-2270	TR4	
commendations Moderately Suspicious: FNA if ≥ 1.5 cm; Follow if ≥ 1 cm at 1.		A if ≥ 1.5 cm; Follow if ≥ 1 cm at 1, 2, 3, and 5 y

Case 1: DQ 38M

1. Thyroiditis:

 Course: self-limiting thyrotoxicosis

- A. Biochemical euthyroidism possible
- B. Transient hypothyroidism common
- C. Permanent hypothyroidism common
 - e.g. Hashimoto's thyroiditis

*Pearl: thyroiditis may not require treatment

Case 2: GD 73M

- New diagnosis of <u>atrial</u> <u>fibrillation</u> and <u>heart failure</u>
 - Also found to have hyperthyroidism
- 2 week history of palpitations
- Past Medical History: reflux, allergies, gout
- Medications: rabeprazole, cetirizine, allopurinol (no biotin)
- Exam: tachycardia, heart failure, normal thyroid
- TSH <u>undetectable ↓</u>, fT4 <u>28.4↑</u>

"Why do I feel unwell?"

Next steps?

Case 2: GD 73M

- Symptomatic (tremor/palpitations):
 - Calcium channel blocker (acute, decompensated heart failure)
- Normal thyroid: no ultrasound
- Further labs (done right away given atrial fibrillation)
 - fT3 ("exception"), antibodies (thyroid receptor antibody AND anti-TPO), CBC, ALT, bilirubin, CRP
- fT3 <u>15.7 ↑</u> (ULN 6), TRAB <u>32 ↑</u>, TPO 24 <u>↑</u>, CRP <u>9.6 ↑</u>
 - T3 predominance: fT4 <u>28.4 ↑</u> (ULN 19)
- Most likely: Graves' disease (remission in ~30-40%)
 - Started methimazole 10mg PO daily

Case 3: TA 43F

- Recurrent hyperthyroidism
- 6 weeks palpitations and weight loss after upper respiratory tract infection
- Past Medical History: hyperthyroidism in India
- Medications: carbimazole x few months ~1year ago, no biotin
- Exam: palpable R nodule

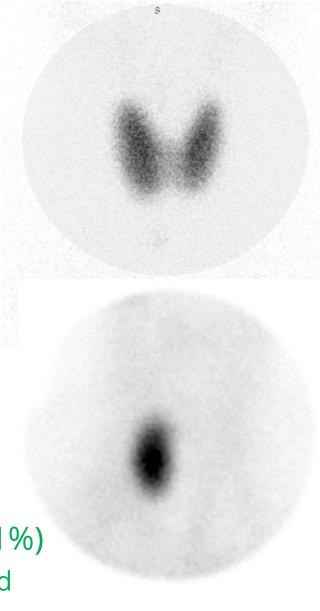
"T3-toxicosis"

• TSH <u>undetectable ↓</u>, fT4 17.9, fT3 <u>7.4↑</u> Next steps?

L:._

Case 3: TA 43F

- Symptomatic (tremor/palpitations):
 - Metoprolol PO twice daily x 6 weeks
- Given previous history, start methimazole 5mg PO
 - *hCG <2.3 (add on to labs)



- TSH, fT4/fT3 ("exception"), antibodies (thyroid receptor antibody AND anti-TPO), CBC, ALT, bilirubin, CRP
- Abnormal exam: order thyroid ultrasound

Case 3: TA 43F

- Repeat labs (methimazole 5mg):
 - TSH <u>0.38 ↓</u>
 - fT4 11.0
 - fT3 4.4
 - TRAB 1.67
 - TPO <3.0
 - HCG < 2.3
- Thyroid uptake and scan
 - Given negative antibodies
- Most likely: toxic nodule (remission <1%)
 - Radioactive iodine ablation recommended

IV. When to Call Endocrinology

- Thyroid storm
- Overt hyperthyroidism lasting >3 months
- Pregnancy (esp. <u>overt</u> hyperthyroidism)
- Amiodarone
- Checkpoint inhibitor
- Rare causes

When something does not make sense...

"I want to see a specialist"

IV. Endo Referral Checklist

- ☐ Clear clinical question
- Symptoms of hyperthyroidism
- ☐ Supplements containing biotin, iodine
- ☐ Updated medication list, including drug allergies, medications tried for this issue
- ☐ Repeat 6-8 weeks later (7 days <u>no biotin</u>):
 - TSH, free T4, free T3, antibodies (<u>thyroid</u> <u>receptor antibody</u> AND anti-TPO), CBC, ALT, bilirubin, CRP, hCG (if female)
- ☐ Thyroid ultrasound (only if <u>abnormal</u> exam)

Take Away Points

- Keep the differential for hyperthyroidism simple
 - Basic workup reveals most causes
- Be mindful of common nuances of thyroid testing
 - Try to eliminate interferences before repeating
- Initial hyperthyroid treatment is symptomatic
- Refer hyperthyroidism to Endocrinolgy when:
 - Long-term treatment required
 - Pregnancy or medication-induced
 - Rarer causes
 - When something does not make sense...

Questions? Thoughts?

Resources

- 1. AAFP: Kravets, I. (2016). Hyperthyroidism: diagnosis and treatment. *American Family Physician*, 93(5), 363-370, https://www.aafp.org/pubs/afp/issues/2016/0301/p363.html
- 2. Ross et al. 2016: Ross, D. S et al. (2016). 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. *Thyroid*, 26(10), 1343-1421. https://www.liebertpub.com/doi/epdf/10.1089/thy.2016.0229

<u>UpToDate</u>:

- 3. Ross, DR, Cooper, DS, & Mulder, JE. Diagnosis of Hyperthyroidism. *UpToDate*. Retrieved from Nov 4, 2024.
- 4. Ross, DR, Cooper, DS, & Mulder, JE. Disorders that Hyperthyroidism. *UpToDate*. Retrieved from Nov 4, 2024.
- 5. Ross, DR, Cooper, DS, & Mulder, JE. Subclinical Hyperthyroidism in Nonpregnant Adults. *UpToDate*. Retrieved from Nov 4, 2024.
- 6. Burman, KD. Subacute thyroiditis. *UpToDate*. Retrieved from May 5, 2025.

Resources: Biotin/Other

- 7. Pazirandehm S., Burns, D.L. (2021) Overview of water-soluble vitamins. UpToDate Ed. Seres D. January 25, 2022.
- 8. Rodrigo, J., Bullock, H., Mumma, B. E., Kasapic, D., & Tran, N. (2022). The prevalence of elevated biotin in patient cohorts presenting for routine endocrinology, sepsis, and infectious disease testing. *Clinical Biochemistry*, 99, 118-121. https://www.sciencedirect.com/science/article/pii/S000991202 https://www.science/article/pii/S000991202 https://www.science/article/pii/S000991202 ht
- 9. Haddad, R. A., Giacherio, D., & Barkan, A. L. (2019). Interpretation of common endocrine laboratory tests: technical pitfalls, their mechanisms and practical considerations. *Clinical diabetes and endocrinology*, *5*(1), 1-10.
- 10.Bowen, R., Benavides, R., Colón-Franco, J. M., Katzman, B. M., Muthukumar, A., Sadrzadeh, H., ... & Tran, N. (2019). Best practices in mitigating the risk of biotin interference with laboratory testing. *Clinical biochemistry*, 74, 1-11.
- 11.Choosing Wisely Canada https://choosingwiselycanada.org/