

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283137531

# Slender reinforced concrete columns strengthened with longitudinal FRP reinforcements

Conference Paper · August 2014

| CITATIONS | 6                            | READS |                                                        |  |  |  |  |
|-----------|------------------------------|-------|--------------------------------------------------------|--|--|--|--|
| 0         |                              | 44    |                                                        |  |  |  |  |
|           |                              |       |                                                        |  |  |  |  |
| 2 authoi  | rs:                          |       |                                                        |  |  |  |  |
|           | Pedram Sadeghian             |       | Amir Fam                                               |  |  |  |  |
|           | Dalhousie University         |       | Queen's University<br>177 PUBLICATIONS 1,804 CITATIONS |  |  |  |  |
|           | 23 PUBLICATIONS 66 CITATIONS |       |                                                        |  |  |  |  |
|           | SEE PROFILE                  |       | SEE PROFILE                                            |  |  |  |  |
|           |                              |       |                                                        |  |  |  |  |

All content following this page was uploaded by Pedram Sadeghian on 06 November 2016.

The user has requested enhancement of the downloaded file. All in-text references <u>underlined in blue</u> are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.



International Institute for FRP in Construction

# SLENDER REINFORCED CONCRETE COLUMNS STRENGTHENED WITH LONGITUDINAL FRP REINFORCEMENTS

#### Pedram SADEGHIAN

Assistant Professor of Civil Engineering, The Pennsylvania State University at Harrisburg, USA *pedram@psu.edu* 

#### Amir FAM

Professor, Donald and Sarah Munro Chair in Engineering and Applied Science, Queen's University, Canada fam@civil.queensu.ca

**ABSTRACT:** This paper studies the effects of longitudinal fiber reinforced polymer (FRP) reinforcements bonded to the sides of slender reinforced concrete (RC) columns, in order to enhance flexural rigidity of the columns. As the ultimate load for a slender column depends mainly on flexural rigidity rather than axial rigidity, longitudinal high modulus FRPs can reduce lateral deformations and corresponding second-order moments of the column. This in turn enhances buckling load of the column through reducing P-delta effect and changing load path of the slender column. The longitudinal strengthening system can also change failure mode of the slender columns from buckling failure to material failure, which is more desirable. This study employs an analytical procedure based on ACI 318 formulas and moment magnification procedure for conventional slender RC columns. A parametric study is performed to build a data bank of theoretical flexural stiffness towards calculation of flexural stiffness used by ACI 318. In conclusion, a formula similar to that of conventional slender RC columns in ACI-318 is recommended, however more research with larger data bank is needed to propose a reliable formula for design.

### 1. Introduction

In the past two decades, strengthening of existing reinforced concrete (RC) columns with externally bonded fiber reinforced polymer (FRP) composites has been researched by many researchers. It has commonly been accepted that applying transverse FRPs (i.e. FRP wraps) on RC columns can effectively provide lateral confinement on concrete core and enhance strength and ductility of the columns under concentric compressive loadings. Transverse FRPs has also been successfully examined for strengthening of RC columns under eccentric compressive loadings. It is now widely accepted that transverse FRPs can enlarge axial load-bending moment (P-M) interaction curves of RC columns under combination of large axial loads and low bending moments. Recently, Fitzwilliam and Bisby (2010), Jiang and Teng (2012) have studied strengthening of slender RC columns with transverse FRPs, where their concentrations have been on enlarging P-M interaction curves and enhancing of the performance of the effectiveness of longitudinal FRPs to reduce lateral deflections and allow slender columns to achieve higher strengths. As the performance of slender RC columns strengthened with FRPs is not well known, there is a gap in design guidelines such as ACI 440.2R (2008).

The effect of longitudinal FRPs on slender RC columns has been neglected based on the lower stiffness of conventional FRPs in comparison to steel reinforcements, which is very important parameter for second-order deformations. However, these days, based on the availability of some high modulus carbon FRPs (CFRPs) with elastic modulus up to two times of steel reinforcements, the effect of FRPs on second-order deformations can be completely different. Recently, Sadeghian and Fam (2014) have demonstrated that longitudinal FRPs such longitudinal fabrics, bonded laminates, and near surface mounted (NSM) systems are very effective for the strengthening of slender RC columns. They have developed an iterative second-order analysis to predict the load path of the slender columns. The model accounts for material and geometric nonlinearity as well as concrete cracking. The key feature of the model is that it achieves strengthening primarily by altering the load path of the column, through controlling second-order deflections, such that it intercepts the P-M interaction curve at a higher load. This is different from traditional strengthening approaches of RC columns, which aim primarily to enlarging the P-M interaction curve, rather than altering the loading path.

While FRP strengthening of short RC columns through applying confinement on concrete have been studied extensively, few studies as mentioned have been conducted on slender RC columns. Moreover, these few studies have been concentrated on strengthening through applying transverse FRPs and increasing confinement to enlarge P-M interaction curve and there is no study to concentrate on changing loading path through applying longitudinal FRPs and increasing flexural stiffness. This paper addresses the flexural stiffness of slender RC column strengthened with high-modulus bonded longitudinal FRPs through a design-oriented analytical model, not an iterative second-order analysis as developed by Sadeghian and Fam (2014). The model is based on modifying the provisions of ACI 318 (2011) for flexural stiffness of conventional slender RC columns. It is focused on using the design-oriented analytical model to evaluate the effectiveness of the FRPs in strengthening slender RC columns with different slenderness ratios, FRP reinforcement ratios, FRP modulus, and initial eccentricity ratio.

## 2. ANALYTICAL MODEL

This section introduces a design-oriented analytical model that can be used to predict the performance of slender RC columns strengthened with longitudinal FRPs. The model is based on modifying the provisions of ACI 318 for flexural stiffness of conventional slender RC columns that is called "moment magnification procedure".

## 2.1. Strengthening of Short and Slender RC Columns

Figure 1 shows performance of a short and slender RC column before and after strengthening with longitudinal high modulus FRPs. Straight line OA represents loading path related to a typical short RC column under compressive axial load P and eccentricity e<sub>o</sub>. Applying longitudinal FRPs on this columns changes failure point A to A' which upgrades load capacity of the columns a little as shown in the figure. Let's consider a column with similar cross section, eccentricity, and strengthening system, but with larger length (i.e. a slender column). Because the column is slender, lateral deformations are significant and eccentricity at mid height increases extensively based on the concept of second-order deformations, which leads to typical non-linear loading path OB with a significant lower load capacity (i.e. failure point B) in compare to the short RC column (i.e. failure point A). It is expected to change load path OB to OB' by applying high modulus FRPs in order to upgrade failure point B to B' which represent a significant strengthening gain for slender column in compare to short column. This hypothesis is logical as secondorder deformations are directly related to flexural stiffness of the slender column and high modulus FRPs are able to provide enough flexural stiffness to change the loading path. The authors believe that strengthening mechanism with longitudinal FRPs is fundamentally different to that of short and slender RC columns. For Short columns, strengthening gain attains only through enlarging interaction diagram, however for slender columns longitudinal high modulus FRPs are able to change loading path to achieve a significant strengthening gain as shown in Fig. 1(a).

## 2.2. Moment Magnification Procedure

Based on ACI 318-11, moment magnification procedure is an approximate design procedure that uses the moment magnifier concept to account for slenderness effects. Moments computed using an ordinary first-order frame analysis are multiplied by a moment magnifier that is a function of the axial load P and the critical buckling load  $P_c$  for the column. A first-order frame analysis is an elastic analysis that does not include the internal force effects resulting from deflections. For a non-sway column with single curvature and equal initial eccentricity  $e_o$  at both ends, first-order moment  $M_o=P.e_o$  is amplified as the following:

$$M = \delta . M_o \tag{1}$$

where the moment magnifier  $\delta$  and the critical buckling load  $P_c$  are taken as:

$$\delta = \frac{1}{1 - P/P_c}$$

$$P_c = \frac{\pi^2 EI}{(kl)^2}$$
(2)
(3)

where l is the unsupported length and k is the effective length factor. For conventional RC columns under short term loads, the stiffness parameter El is taken as one of the following equations:

$$EI = 0.2E_c I_g + E_s I_{se} \tag{4}$$

$$EI = 0.4E_c I_g \tag{5}$$

where  $E_c$  and  $E_s$  are the modulus of elasticity of the concrete and steel, respectively,  $I_g$  is the gross moment of inertia,  $I_{se}$  is the moment of inertia of the steel. Either Eq. (4) or (5) may be used to compute *El*. Equation (4) was derived for small eccentricity ratios and high levels of axial load where slenderness effects are most pronounced. Eq. (5) is a simplified approximation to Eq. (4) and is less accurate (Mirza 1990).

In defining the critical load, the main problem is applying the moment magnifier concept to an inelastic, non-homogeneous material such as reinforced concrete is the manner in which the critical load of the column is defined. In particular, it is difficult to choose a value of the flexural stiffness *EI* which will reasonably approximate the variations in stiffness due to cracking, creep, and the nonlinearity of the concrete stress-strain curve (MacGregor et al. 1970 and Mirza 1990). The focus of this paper is on the flexural stiffness *EI* for slender RC columns strengthened with longitudinal FRPs that is discussed in the following section.



Fig. 1 – (a) Performance of short and slender RC columns before and after strengthening with longitudinal FRPs; (b) relationship between cross section capacity and slender column capacity.

## 2.3. Proposed Model

As mentioned, the flexural stiffness *EI* depends on cracking level and nonlinear behavior of the RC column. As longitudinal FRPs can change the behavior of a slender RC column, it is expected to see this difference as additional term for FRP contribution and possibly different coefficient for contribution of concrete. In order to account for the differences, modifying Eq. (4) is proposed to include effects of longitudinal FRPs, as shown in the following:

$$EI = \alpha E_c I_g + E_s I_{se} + E_f I_{fe}$$
(6)

where  $E_f$  and  $I_{fe}$  are the modulus of elasticity and moment of inertia of the FRP, respectively. The contribution of longitudinal FRPs is considered with the same format of the contribution longitudinal steel rebars. The dimensionless coefficient  $\alpha$  is considered as a general form of a reduction factor which depends on the cracking level and stiffness of slender RC column strengthened with longitudinal FRPs. The coefficient  $\alpha$  can be expressed as the following:

$$\alpha = \left(EI - E_s I_{se} - E_f I_{fe}\right) / E_c I_g \tag{7}$$

The procedure describing in the following is adopted from Mirza (1990) for conventional slender RC columns. The second-order moment of a pin-pin slender column subjected to equal and opposite end moments is given by Timoshenko and Gere (1961) as the following (secant formula):

$$M = M_o \sec\left(\frac{\pi}{2}\sqrt{\frac{P_u}{P_c}}\right) \tag{8}$$

where *M* is design bending moment which includes second-order effects;  $M_o$  is applied end moment calculated by a conventional elastic frame analysis;  $P_u$  is factored axial load acting on the column; and  $P_c$  is Euler's buckling strength (Eq. 3). For the purpose of current analysis, *M* and  $M_o$  are respectively replaced by the cross-sectional bending moment capacity  $M_{cs}$  and the overall column bending moment capacity  $M_{col}$  (as shown in Fig. 1b). Thus, Eq. (8) can be rearranged as the below:

$$P_{c} = \frac{\pi^{2} P_{u}}{4 \left[\sec^{-1} \left(M_{cs} / M_{col}\right)\right]^{2}}$$
(9)

Substituting Euler's buckling strength (Eq. 3) for a pin-pin column (k=1) in Eq. (9) and solving it for *El* gives the following expression:

$$EI = \frac{P_u l^2}{4 \left[\sec^{-1} \left(M_{cs} / M_{col}\right)\right]^2}$$
(10)

Eq. (10) is the theoretical flexural stiffness of a pin-pin slender column subjected to single curvature bending with equal moments acting at both ends. The terms  $M_{cs}$  and  $M_{col}$  used in this expression is computed based on a procedure developed by the authors (Sadeghian and Fam 2013) for the load path of slender RC columns strengthened by longitudinal FRPs.

#### 2.4. Parametric Study

The iterative model (Sadeghian and Fam 2014) is applied to investigate the effects of key parameters on behavior of slender RC columns strengthened with longitudinal FRP reinforcement, including slenderness ratio ( $\lambda = kl/r$ ); FRP reinforcement ratio ( $\rho_i$ ); FRP modulus ( $E_i$ ), and initial eccentricity ratio ( $e_o/h$ ). As shown in Table 1, for a total of 41 cases, the range of values are  $\lambda = 40$ , 60, 80, 100, and 120;  $\rho_i = 0$ , 0.1, 0.3, 0.5, and 0.7%;  $E_i = 100$ , 200, 300, 400, and 500 GPa; and  $e_o/h = 0.01$ , 0.05, 0.1. 0.2, 0.3, 0.6, and 1. The rest of parameters, namely cross-section b=h=400 mm, FRP tensile strength  $f_{ru}=1500$  MPa, concrete strength  $f_c=40$  MPa, steel yielding strength  $f_y=400$  MPa, steel modulus  $E_s=200$  GPa, and steel reinforcement ratio  $\rho_s=2\%$  are kept constant.

For each case, M<sub>cs</sub>, P<sub>u</sub>, M<sub>col</sub> and pure axial capacity of cross-section P<sub>o</sub> are calculated using the iterative model, interaction diagrams, and procedure explained in this paper. Then the theoretical flexural stiffness El and coefficient  $\alpha$  are calculated using Eq. (10) and Eq. (8), respectively. Fig. 2(a) and 2(b) show variation of coefficient  $\alpha$  versus eccentricity ratio and load capacity ratio, respectively. Fig. 2(a) shows that the variation of coefficient  $\alpha$  for small initial eccentricities is more than large initial eccentricities. Moreover, when initial eccentricities increases, coefficient  $\alpha$  decreases to slightly below 0.2. Fig. 2(b) shows that coefficient  $\alpha$  for small load capacity ratios is slightly less than 0.2. When load capacity ratio increases, coefficient  $\alpha$  increases to a peak of slightly less than 0.6 and then decreases. In general a lower limit about  $\alpha$ =0.2 similar to ACI 318 seems appropriate for design applications. Fig. 3(a) shows the ratio of the theoretical flexural stiffness El over flexural stiffness El calculated with  $\alpha$ =0.2. It shoes that the lower limit is slightly less than 1 and upper limit is slightly less than 2. It means  $\alpha$ =0.2 might be an appropriate number for design application; however more research with larger data bank is needed to propose a reliable coefficient. Using the coefficient  $\alpha$ =0.2, the load path of a column tested by Gajdosova and Bilcik (2013) is calculated and shown in Fig. 3(b). The iterative second-order analysis results developed by Sadeghian and Fam (2014) is also presented, where it shows a good agreement. The possibility of a failure controlled by FRP debonding under compression should also be studied further.

| Case | λ        | ρ   | E <sub>f</sub> | e√h  | P <sub>o</sub> | M <sub>cs</sub> | P.(kN) | M <sub>col</sub> | El a    | α     | P./P.  | <i>El</i> <sub>α=0.2</sub> | EI / EI <sub>7-0.2</sub> |
|------|----------|-----|----------------|------|----------------|-----------------|--------|------------------|---------|-------|--------|----------------------------|--------------------------|
| #    |          | (%) | (GPa)          |      | (kN)           | (kN-m)          |        | (kN-m)           | (kN-m²) | -     | - 4- 0 | (kN-m²)                    | u=0.2                    |
| 1    | 40       | 0   | 400            | 0.1  | 7550           | 298             | 5075   | 203.0            | 43360   | 0.535 | 0.672  | 22111                      | 1.96                     |
| 2    | 60       | 0   | 400            | 0.1  | 7550           | 384             | 3836   | 153.4            | 36992   | 0.435 | 0.508  | 22111                      | 1.67                     |
| 3    | 80       | 0   | 400            | 0.1  | 7550           | 416             | 2686   | 107.4            | 36074   | 0.420 | 0.356  | 22111                      | 1.63                     |
| 4    | 100      | 0   | 400            | 0.1  | 7550           | 303             | 1010   | 12.0             | 34041   | 0.401 | 0.240  | 22111                      | 1.00                     |
| 5    | 120      | 0   | 400            | 0.1  | 7550<br>9370   | 320             | 5080   | 40.0             | 20397   | 0.299 | 0.149  | 22111                      | 1.20                     |
| 7    | 40<br>60 | 0.5 | 400            | 0.1  | 8370           | 333<br>441      | 5123   | 204.0            | 56188   | 0.443 | 0.714  | 35001                      | 1.44                     |
| 8    | 80       | 0.5 | 400            | 0.1  | 8370           | 538             | 3845   | 153.8            | 53982   | 0.334 | 0.012  | 35001                      | 1.01                     |
| 9    | 100      | 0.5 | 400            | 0.1  | 8370           | 600             | 2564   | 102.6            | 47160   | 0.400 | 0.400  | 35001                      | 1.34                     |
| 10   | 120      | 0.5 | 400            | 0.1  | 8370           | 600             | 1714   | 68.6             | 41898   | 0.309 | 0.000  | 35001                      | 1.00                     |
| 11   | 40       | 1   | 400            | 0.1  | 9266           | 403             | 6870   | 274.8            | 58764   | 0.371 | 0.200  | 47891                      | 1.20                     |
| 12   | 60       | 1   | 400            | 0.1  | 9266           | 507             | 5990   | 239.6            | 66670   | 0.496 | 0.646  | 47891                      | 1.39                     |
| 13   | 80       | 1   | 400            | 0.1  | 9266           | 619             | 4758   | 190.3            | 69267   | 0.537 | 0.513  | 47891                      | 1.45                     |
| 14   | 100      | 1   | 400            | 0.1  | 9266           | 735             | 3404   | 136.2            | 63927   | 0.453 | 0.367  | 47891                      | 1.33                     |
| 15   | 120      | 1   | 400            | 0.1  | 9266           | 804             | 2400   | 96.0             | 59085   | 0.377 | 0.259  | 47891                      | 1.23                     |
| 16   | 60       | 0.5 | 400            | 0.01 | 8370           | 288             | 6532   | 26.1             | 38654   | 0.258 | 0.780  | 35001                      | 1.10                     |
| 17   | 60       | 0.5 | 400            | 0.05 | 8370           | 359             | 5977   | 119.5            | 51121   | 0.454 | 0.714  | 35001                      | 1.46                     |
| 18   | 60       | 0.5 | 400            | 0.2  | 8370           | 540             | 3830   | 306.4            | 53019   | 0.484 | 0.458  | 35001                      | 1.51                     |
| 19   | 60       | 0.5 | 400            | 0.3  | 8370           | 580             | 3010   | 361.2            | 48340   | 0.410 | 0.360  | 35001                      | 1.38                     |
| 20   | 60       | 0.5 | 400            | 0.6  | 8370           | 594             | 1800   | 432.0            | 40798   | 0.291 | 0.215  | 35001                      | 1.17                     |
| 21   | 60       | 0.1 | 400            | 0.1  | 7741           | 379             | 4405   | 176.2            | 48313   | 0.573 | 0.569  | 24689                      | 1.96                     |
| 22   | 60       | 0.3 | 400            | 0.1  | 8049           | 413             | 4746   | 189.8            | 51481   | 0.541 | 0.590  | 29845                      | 1.72                     |
| 23   | 60       | 0.7 | 400            | 0.1  | 8710           | 471             | 5485   | 219.4            | 60186   | 0.516 | 0.630  | 40157                      | 1.50                     |
| 24   | 100      | 0.1 | 400            | 0.1  | 7741           | 433             | 1843   | 73.7             | 33863   | 0.345 | 0.238  | 24689                      | 1.37                     |
| 25   | 100      | 0.3 | 400            | 0.1  | 8049           | 537             | 2191   | 87.6             | 39855   | 0.358 | 0.272  | 29845                      | 1.34                     |
| 26   | 100      | 0.7 | 400            | 0.1  | 8710           | 660             | 2933   | 117.3            | 54487   | 0.426 | 0.337  | 40157                      | 1.36                     |
| 27   | 60       | 0.5 | 100            | 0.1  | 7785           | 386             | 4437   | 177.5            | 48129   | 0.559 | 0.570  | 25334                      | 1.90                     |
| 28   | 60       | 0.5 | 200            | 0.1  | 7983           | 406             | 4661   | 186.4            | 50559   | 0.547 | 0.584  | 28556                      | 1.77                     |
| 29   | 60       | 0.5 | 300            | 0.1  | 8125           | 425             | 4888   | 195.5            | 53021   | 0.535 | 0.602  | 31779                      | 1.67                     |
| 30   | 60       | 0.5 | 500            | 0.1  | 8551           | 458             | 5355   | 214.2            | 59087   | 0.529 | 0.626  | 38224                      | 1.55                     |
| 31   | 120      | 0.5 | 400            | 0.3  | 8551           | 553             | 1229   | 147.5            | 37649   | 0.242 | 0.144  | 38224                      | 0.98                     |
| 32   | 100      | 0.5 | 400            | 0.3  | 8551           | 598             | 1638   | 196.6            | 38612   | 0.257 | 0.192  | 38224                      | 1.01                     |
| 33   | 80       | 0.5 | 400            | 0.3  | 8551           | 615             | 2278   | 273.4            | 42580   | 0.320 | 0.266  | 38224                      | 1.11                     |
| 34   | 60       | 0.5 | 400            | 0.3  | 8551           | 581             | 2980   | 357.6            | 46852   | 0.387 | 0.348  | 38224                      | 1.23                     |
| 35   | 40       | 0.5 | 400            | 0.3  | 8551           | 548             | 3627   | 435.2            | 49102   | 0.422 | 0.424  | 38224                      | 1.28                     |
| 32   | 120      | 0.5 | 400            | 0.6  | 8551           | 514             | 910    | 218.4            | 36809   | 0.229 | 0.106  | 38224                      | 0.96                     |
| 33   | 100      | 0.5 | 400            | 0.6  | 8551           | 540             | 1136   | 272.6            | 37730   | 0.243 | 0.133  | 38224                      | 0.99                     |
| 34   | 80       | 0.5 | 400            | 0.6  | 8551           | 574             | 1434   | 344.2            | 38423   | 0.254 | 0.168  | 38224                      | 1.01                     |
| 35   | 60       | 0.5 | 400            | 0.6  | 8551           | 613             | 1818   | 436.3            | 38904   | 0.262 | 0.213  | 38224                      | 1.02                     |
| 36   | 40       | 0.5 | 400            | 0.6  | 8551           | 621             | 2195   | 526.8            | 40535   | 0.287 | 0.257  | 38224                      | 1.06                     |
| 37   | 120      | 0.5 | 400            | 1    | 8551           | 485             | 669    | 267.6            | 35646   | 0.210 | 0.078  | 38224                      | 0.93                     |
| 38   | 100      | 0.5 | 400            | 1    | 8551           | 496             | 788    | 315.2            | 36393   | 0.222 | 0.092  | 38224                      | 0.95                     |
| 39   | 80       | 0.5 | 400            | 1    | 8551           | 518             | 934    | 373.6            | 36679   | 0.226 | 0.109  | 38224                      | 0.96                     |
| 40   | 60       | 0.5 | 400            | 1    | 8551           | 534             | 1090   | 436.0            | 37255   | 0.236 | 0.127  | 38224                      | 0.97                     |
| 41   | 40       | 0.5 | 400            | 1    | 8551           | 554             | 1254   | 501.6            | 37399   | 0.238 | 0.147  | 38224                      | 0.98                     |

 Table 1 – Summary of parametric study for theoretical stiffness data.

## 3. Conclusion

In this paper, an analytical procedure was used to predict the flexural stiffness of slender RC columns strengthened with longitudinal FRP reinforcements. The analytical procedure was based on modifying the provisions of ACI 318 to evaluate the effectiveness of longitudinal FRP reinforcements. To determine the load paths of slender columns an iterative analytical model was used to find load and moment capacity of the slender columns. A parametric study was performed with different slenderness ratios, FRP reinforcement ratios, FRP modulus, and initial eccentricity ratio to prepare a data bank of flexural stiffness and coefficient  $\alpha$ . It was shown that coefficient  $\alpha$  is variable and it is a function of initial eccentricity and load capacity ratios. In general a lower limit with the value of about  $\alpha$ =0.2 similar to ACI 318 seems appropriate for design of slender RC columns strengthened with longitudinal FRP reinforcements, however more research with larger data bank and considering FRP debonding under compression is needed to propose a reliable coefficient.



Fig. 2 – Variation of coefficient  $\alpha$  versus (a) eccentricity ratio; (b) load capacity ratio.



Fig. 3 – (a) Variation of *EI / El*<sub> $\alpha=0.2$ </sub> versus load capacity ratio; (b) comparison of load path with  $\alpha=0.2$  with experiment (Gajdosova and Bilcik 2013) and iterative model (Sadeghian and Fam 2014).

## 4. References

ACI 318, "Building code requirements for structural concrete." American Concrete Institute, Farmington, MI, 2011, 503 pp.

ACI 440.2R, "Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures." American Concrete Institute, Farmington, MI, 2008, 76 pp.

FITZWILLIAM, Jason, and BISBY Luke A., "Slenderness effects on circular CFRP confined reinforced concrete columns." Journal of Composites for Construction, Vol. 14, No. 3, June 2010, pp. 280–288.

GAJDOSOVA, Katarina., and BILCIK, Juraj, "Full-scale testing of CFRP-strengthened slender reinforced concrete columns." Journal of Composites for Construction, Vol. 17, No. 2, April 2013, pp. 239–248.

JIANG, T., and TENG, J. G., "Theoretical model for slender FRP-confined circular RC columns." Construction and Building Materials, Vol. 32, July 2012, pp. 66-76.

MACGREGOR, J. G., BREEN, J. E., and PFRANG, E. O., "Design of slender concrete columns." ACI Journal, Vol. 67, No. 1, 1970, 6-28.

MIRZA, S. A., "Flexural stiffness of rectangular reinforced concrete columns," ACI Structural Journal, Vol. 87, No. 4, 1990, pp. 425-435.

SADEGHIAN, Pedram and FAM, Amir, "Strengthening slender reinforced concrete columns using highmodulus bonded longitudinal reinforcement for buckling control." Journal of Structural Engineering, ASCE, Accepted on Feb 07, 2014.

TIMOSHENKO, Stephen P., and GERE, James M., "Theory of Elastic Stability." 2nd Edition, McGraw-Hill Book Co., New York, 1961. 541 pp.