
An Evolutionary Algorithm for Feature Selective
Double Clustering of Text Documents

S. N. Nourashrafeddin
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada B3H 4R2

nourashr@cs.dal.ca

Evangelos Milios
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada B3H 4R2

eem@cs.dal.ca

Dirk V. Arnold
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada B3H 4R2

dirk@cs.dal.ca

Abstract—We propose FSDC, an evolutionary algorithm for
Feature Selective Double Clustering of text documents. We first
cluster the terms existing in the document corpus. The term
clusters are then fed into multiobjective genetic algorithms to
prune non-informative terms and form sets of keyterms repre-
senting topics. Based on the topic keyterms found, representative
documents for each topic are extracted. These documents are then
used as seeds to cluster all documents in the dataset. FSDC is
compared to some well-known co-clusterers on real text datasets.
The experimental results show that our algorithm can outperform
the competitors.

Keywords—Genetic algorithm, co-clustering, multiobjective op-
timization, text clustering.

I. INTRODUCTION

Clustering plays an important role for browsing in text
document collections. Grouping similar documents provides
invaluable information about the text topics. The problem
of clustering is widely studied in the data mining literature
and numerous clusterers are proposed for different types of
data [10], [14]. However, naive clustering techniques such as
k-means do not typically work well for text [2]. This is mainly
because text data has challenging characteristics.

A text dataset can be represented as a document-term
matrix. Each entry of this matrix indicates the importance of
a term in the respective document. The dimensionality of this
representation is high but the underlying matrix is typically
sparse. This is because each document contains only a small
fraction of all terms existing in a dataset. Besides, many
terms are too general to discriminate among topics. These
non-informative terms act as noisy attributes in document
clustering. Terms are also correlated in the document collec-
tions. These difficulties suggest the usefulness of developing a
technique that reduces the dimensionality of the representation
and extracts discriminative terms.

Since the number of terms in a text dataset is often multiple
times larger than the number of documents, it has been pro-
posed to first focus on term clusters. Double clustering refers
to algorithms that perform term clustering before document
clustering [13], [17]. Given the term clusters, the document-
term matrix can be represented in a more compact way based
on the presence of the term clusters in the documents [17].

Simultaneous clustering of terms and documents is referred
to co-clustering [4], [7], [9]. A co-clusterer maps documents

to document clusters and terms to term clusters iteratively.
Term clustering is performed in the space of document clusters.
Document clustering is similarly performed in the space of
term clusters rather than terms. However, term clusters are
typically noisy due to non-informative terms. They might also
include only general terms that do not represent any specific
topic. Using the term clusters without any prior analysis causes
the quality of document clusters to deteriorate.

We do not cluster documents in the space of term clus-
ters in our work. Instead, we find keyterms associated with
document clusters. For this purpose, we use a multiobjective
genetic algorithm (MOGA) to find discriminative terms that
exist in each term cluster. Our experiments show that using
topic keyterms results in better document clusters than those
obtained by using term clusters without any prior analysis.

The number of document clusters is usually fixed to the
known number of classes in experimental evaluations of double
and co-clustering algorithms [4], [7], [9], [17]. However,
finding an optimal number of term clusters is not a trivial
task [9]. For this reason, the quality of document clusters
is analyzed for different numbers of term clusters using the
ground truth [4], [7], [9], [17]. This method of finding the
number of term clusters raises the following questions:

1) Since the document-term matrices are often large, is
it practical to run algorithms multiple times on each
dataset to find the best value for this parameter?

2) What range of numbers should be tested in order to
find an optimal number of term clusters?

3) How should one find a good value for this parameter
when there is no ground truth about documents
available?

We present a new way of double clustering that does
not attempt to find the optimal number of term clusters. The
proposed algorithm outperformed the competitive co-clusterers
in our experiments.

We use the search capability of genetic algorithms to
extract characteristic keyterms of topics. We show how a
term cluster can be pruned by removing non-discriminative
terms. We then propose a new way of document clustering
using the spaces spanned by these keyterms. In our double
clustering there is no need to evaluate the quality of clusters
multiple times in order to find the optimal number of term
clusters. Instead, we designed our algorithm in a way that the



number of term clusters is equal to the number of document
clusters. Experimental results on some real datasets show that
our approach results in better document clusters.

The remainder of this paper is organized as follows. Section
2 reviews some co-clusterers and evolutionary algorithms used
for text data. Section 3 explains the proposed algorithm in
detail. Experimental results on some real text datasets are
shown in Section 4. Section 5 presents conclusions and future
work.

II. RELATED WORK

A double clusterer for text data is proposed in [17]. The
algorithm first finds the term clusters that preserve most
of the mutual information about documents. Hence, the co-
occurrence matrix of documents and terms is replaced by the
co-occurrence matrix of documents and term clusters. The
algorithm then finds document clusters that preserve most of
the information about term clusters. The main advantage of
the double clusterer is that the matrix of documents versus
term clusters is denser and reveals the structure of document
clusters better [17].

A co-clusterer resembling the algorithm of [17] is pro-
posed in [9]. Information-Theoretic Co-clustering views a co-
occurrence matrix as an empirical joint distribution of two
random variables, the set of rows and the set of columns.
The goal is to preserve the mutual information between these
two variables as much as possible. Given a co-clustering, the
joint distribution is represented as a joint distribution of the
co-clusters. The loss in mutual information due to the co-
clustering is then computed. The optimal co-clustering that
minimizes this loss is desired.

Like the algorithms mentioned above, we use term clusters
to cluster documents in this study. However, rather than repre-
senting documents by term clusters, we use a multiobjective al-
gorithm to find keyterms needed to represent the topic of each
term cluster. In other words, we use a multiobjective algorithm
as a feature selection step so as to distill the term clusters by
removing non-discriminative terms. The keyterms are found
based on the similarity of the documents characterized by the
keyterms.

Two co-clustering algorithms for gene expression data are
presented in [7]. Given a co-clustering, two squared residue
measures are defined to compute the homogeneity of each
co-cluster. The first measure is the sum of squared distances
between each entry of a co-cluster and the mean of the co-
cluster. The second measure is the sum of squared distances
between each entry of a co-cluster and the corresponding row
mean and column mean that the entry belongs in. Using these
two measures, two co-clustering algorithms similar to k-means
are proposed.

A general framework for matrix approximation is presented
in [4]. The co-clustering problem is viewed as a special case of
matrix approximation of the original data matrix. The quality
of a co-clustering is obtained by the approximation error.
The best co-clustering generates the best approximation of the
original matrix where the error is measured using Bregman
divergences. Six different co-clustering bases are introduced
in [4]. Algorithms including two of the bases are used as
competitors in our work.

A semi-supervised algorithm for document clustering is
proposed in [13]. The algorithm is based on the assumption
that an expert can provide a few good labeled documents
for each topic. Fuzzy c-means [5] is initialized by using the
keyterms of the labeled documents so as to cluster terms. After
term clustering each document is assigned to the term cluster
in which it has the largest contribution:

di ∈ cj if j = argmaxp

w∑
l=1

f(tl, di)upl (1)

where w is the number of terms in the dataset, upl is the
membership value of the term tl in term cluster cp, and
f(tl, di) is the document-term matrix value of term l in
document i.

This algorithm is similar to our algorithm in that fuzzy
c-means is used to generate term clusters. The documents
are then clustered by using the contribution of their terms
in term clusters. However, we use term clusters to find some
representative documents. The representative documents are
used as seeds to cluster all documents. Our experiments show
that FSDC outperforms this algorithm.

Topic keyterm clusters are also used for document clus-
tering in [6]. Each document is first pre-processed to identify
meaningful keyterms. These keyterms are then used to form
a weighted graph. Each node of this graph corresponds to
a keyterm. A co-occurrence-based correlation of keyterms is
then defined to compute the weights of edges. The assumption
of this study is that highly co-occurring terms in documents
characterize topics. A heuristic graph partitioning method is
then used to generate topic keyterm clusters. The cosine
similarity between keyterms of clusters and documents are
finally used to assign documents to the topics.

Genetic and Differential Evolution algorithms are used to
find centroids of document clusters in [15] and [1]. Each
individual encodes k documents as the centroids of k clusters.
The remaining documents are assigned to the clusters with
the closest centroids. The drawback of these algorithms is
that a document does not contain enough data to represent
a document cluster [2]. This is due to the nature of text where
each document includes only a small fraction of all terms that
exist in a corpus.

A co-evolutionary algorithm for co-clustering document-
term matrices is proposed in [3]. A binary document-term
matrix indicates whether terms appear in documents. Each
individual contains two binary strings. Documents marked with
’1’ in a document string form a document cluster. A term string
similarly indicates the terms associated with each document
cluster. The fitness of an individual is defined as the decrease
of overall entropy due to the clustering. The main drawback
of the algorithm is that co-clusters are formed based on the
presence of terms in documents regardless of their relevance
degrees in documents. Moreover, due to the sampling approach
used in the algorithm, even general terms can form co-clusters.

III. METHODOLOGY

We represent a text dataset as a document-term matrix in
the bag of words model [2]. Considering the rows of this
matrix, each document is a vector of terms existing in the



Fig. 1. The structure of FSDC. Fuzzy c-means (FCM) is used to cluster terms.
Topic keyterm selection is performed by the MOGA. A genetic algorithm (GA)
is finally used for document clustering.

dataset. Considering the columns of this matrix, each term
is a vector of documents. Each entry of the matrix is term
frequency–inverse document frequency (tf-idf ), that indicates
the importance of a term in the respective document.

The proposed algorithm is based on the idea that before
finding document clusters, it is better to focus on term clus-
tering and the keyterms that represent topics. FSDC consists
of three phases:

1) Term clustering
2) Topic keyterm selection
3) Document clustering

The structure of FSDC and its main steps are depicted in
Fig. 1 and Fig. 2 respectively. In the first phase, fuzzy c-means
is used to cluster terms (columns of the document-term matrix)
into k groups. We assume that each term cluster includes some
keyterms representing a topic. They also include some general
terms which are not useful in the clustering process. The goal
of the second phase is to extract the topic keyterms that exist
in a term cluster by removing the general terms.

In Phase 2, we select topic keyterms of each term cluster.
For this purpose, a multiobjective genetic algorithm is applied
on each term cluster independently. From topic keyterms, we
extract some documents called representative in this work.

A single-objective genetic algorithm (GA) in Phase 3
clusters documents using the centroids of the representative
documents obtained in Phase 2.

Fig. 2. The main steps of FSDC.

A. Term Clustering

Having similar topics is a common case in text clustering.
Similar topics share common terms and each term usually
belongs to multiple topics with different degrees of relevance.
This is a key issue in term clustering.

The integration of fuzzy paradigm with the simplicity and
efficiency of k-means, make fuzzy c-means a good candidate
for term clustering. Given a document-term matrix, we apply
fuzzy c-means on the term vectors to generate k term clusters.
We use the maximum method to defuzzify the membership
matrix [5].

B. Topic Keyterm Selection

The input of this phase are k term clusters each including a
set of terms. Some terms in each term cluster are too general to
represent a topic. Given a term cluster, we use a multiobjective
genetic algorithm to find the keyterms and eliminate general
terms as shown in Fig. 1. The method of this phase is inspired
by the genetic algorithms proposed in [16], [18] in searching
for candidate subspaces.

Each individual of our MOGA includes a set of terms in
the form of:

individuali = (t1, t2, ..., tTi
) (2)

where tj is the column number of a term in the document-
term matrix, and Ti is the number of terms used in the ith

individual.

Since it is not clear how many keyterms should be used to
represent a topic [6], a variable-length integer representation
is used for individuals.

The goodness of an individual depends on the goodness of
the subspace spanned by its terms. Finding a good subspace
can be defined as a multiobjective task including the following
criteria:

1) The number of similar documents in the subspace.
2) The degree of similarity between the documents

and the size of subspace in which similarities are
measured.

The best subspace has the minimum number of terms while
characterizing the maximum number of similar documents.



Fig. 3. A sample of four term-centroids generated from four classes of the
20-Newsgroups dataset. The block structure of the representative documents
(white areas) is clear in this image.

For the fitness assignment step, we need to measure the
similarity of the documents characterized by the terms of each
individual. These representative documents are found by using
the following steps:

1) We first compute a term-centroid for each individual.
A term-centroid is the average of the column vectors
corresponding to the terms included in an individual.

2) We then apply k-means with k = 2 on the term-
centroid (in a one dimensional space) to partition
its elements into two clusters. One cluster includes
elements with near-zero values and the other cluster
includes elements with values larger than zero. Ele-
ments with large values correspond to the represen-
tative documents with larger tf-idf values. The other
cluster consists of the non-representative documents
with near-zero tf-idf values.

A sample of four term-centroids for four classes of the
20-Newsgroups dataset is shown in Fig. 3. Each column of
this gray scale image corresponds to a term-centroid and each
row is a document. Black areas contain near-zero tf-idf values
while white areas contain larger tf-idf. The representative
documents of each term-centroid have larger values (white
color) compared to the non-representative documents (black
color) as shown in Fig. 3.

After finding the representative documents of each indi-
vidual, two objective function values are computed for fitness
assignment:

1) Number of representative documents: the number of
representative documents of an individual. This ob-
jective should be maximized. We use the represen-
tative documents as seeds to cluster all documents.
Having a larger number of these documents results
in better document clusters.

2) Distortion: The representative documents of an in-
dividual should be similar to each other. Distortion
or intra-cluster variation is a common criterion to
evaluate quality of clusters [13], [18]. The distortion
of the ith individual is computed as:

Distortion(indi) =
1

Ti

∑
dj∈repi

‖ dj − dci ‖2SP i
(3)

where repi is the set of representative documents as-
sociated with the ith individual, dci is the document-
centroid of the documents of repi, and SP i is the
feature space spanned by the keyterms of the ith

individual. The distances are normalized by the size

Fig. 4. A sample output of Phase 2 (Topic keyterm selection). Two term
clusters are fed into the MOGA so as to prune non-discriminative terms. Each
output is a non-dominated solution representing a set of topic keyterms.

of subspace Ti. This objective function should be
minimized.

Individuals are initialized by using the high-variance terms.
For each term, we measure the variance of its tf-idf values over
all documents using the following formula:

Var(tj) =
1

N − 1

N∑
i=1

([dt]ij −mj)
2 (4)

where tj is the jth term, [dt]ij is the ijth entry of the
document-term matrix, mj is the average of the entries of the
jth column of the matrix, and N is the number of documents
in the dataset.

Parent selection is performed by tournament selection.
Uniform crossover and the following mutation operators are
considered in our MOGA:

1) Add-term: this operator increases the length of an
individual by 1 and adds a new randomly selected
term.

2) Remove-term: this operator decreases the length of
an individual by 1 and removes a randomly selected
term.

3) Replace-term: this operator randomly replaces a term
by a new term.

The output of multiobjective optimization is a set of non-
dominated solutions. A solution is non-dominated if and only
if there is no other solution that has better values for all
objective functions. Each solution of our MOGA is a set of
topic keyterms. The best solution of each MOGA will be
identified in Phase 3, Document clustering.

A sample output of this phase is shown in Fig. 4. In this
figure, terms are already clustered into two term clusters. The
topic of the first term cluster is Electrical and the topic of
the second one is Car/Auto. Some terms in this example are
too general to discriminate a topic, like Canada, September,
Please, and Number. We applied the MOGA on each term
cluster individually to remove these general terms.

FSDC is independent of the multiobjective optimization
algorithm and any kind of multiobjective method can be used.



In this study, we used a Matlab implementation1 of NSGA-
II [8].

It is also noteworthy to mention that this phase of FSDC
can be run independently for each term cluster in parallel as
shown in Fig. 1.

C. Document Clustering

Multiple non-dominated solutions are obtained for each
term cluster in Phase 2. In this phase, we want to identify
the best solution of each term cluster.

Each solution indicates a set of keyterms and their repre-
sentative documents. For each solution, we compute a docu-
ment centroid (dc). A document centroid is the row average
of document vectors corresponding to the representative doc-
uments.

Since MOGA produces multiple non-dominated solutions,
there are multiple document centroids for each term cluster.
We need to choose only k document centroids, one from each
term cluster, to cluster all documents.

Suppose that the number of document centroids of the ith
term cluster is tki. To find the best document centroids, we
need to examine tk1× tk2× ...× tkk cases. This is very time-
consuming where k or the number of non-dominated solutions
is large.

To search for the best document centroids, a single-
objective GA is used in this phase. In this GA, the length
of individuals is fixed to k. Each entry of an individual is ded-
icated for document centroids of one term cluster. The value of
an entry indicate a document centroid. For fitness assignment,
all documents are assigned to the nearest document centroids
indicated in an individual to generate k clusters {Ci}ki=1. We
then compute the Separation (inter-cluster distances) of the
clusters as the fitness value of the individual:

Separation =
∑
µi,µj

‖ µi − µj ‖2 (5)

where µi is the centroid of documents in document cluster Ci.
After a predefined number of iterations, the best individual in
the population generates k document clusters.

Parent selection is performed by tournament selection and
no crossover is considered. The only genetic operator is a
replacement mutator which randomly replaces one document
centroid. An example of this phase is shown in Fig. 5. As
shown in this figure, from all non-dominated solutions, the
third solution of the first term cluster and the third solution of
the second term cluster are chosen for document clustering.

IV. EXPERIMENTAL RESULTS

In this section we show the benefits of FSDC as com-
pared to seven co-clustering algorithms including: Information-
Theoretic Co-clustering (ITCC ) [9], Euclidean Co-clustering
(ECC ) and Minimum Sum-squared Residue Co-clustering
(MSRCC ) [7], Square Euclidean co-clustering and I-
divergence co-clustering with bases C2 and C5 (SECC2,

1http://www.mathworks.com/matlabcentral/fileexchange/
10429-nsga-ii-a-multi-objective

Fig. 5. A sample output of Phase 3 (Document clustering). The GA identified
the best solutions that should be used for document clustering.

SECC5, IdivCC2, IdivCC5 ) [4]. We did not include the double
clusterer of [17] in our experiments since it was demonstrated
that ITCC outperforms the clusterer on some subsets of the
20-Newsgroups dataset [9]. The unsupervised version of [13]
(UVFCM ) is also implemented in this study in order to
compare with FSDC.

A. Evaluation Measures

We used the true labels of documents to evaluate clusters.
For this purpose, a confusion matrix is formed after each
clustering process. Each element of this matrix shows the
number of common documents between the corresponding
cluster and class. The dimensionality of this matrix is k by
k in this study. This confusion matrix is then used to compute
two evaluation measures:

1) Fmeasure is a commonly used measure in informa-
tion retrieval. The harmonic mean of precision and
recall is used in our experiments [19]:

Fmeasure =
2·Precision·Recall
Precision+Recall

(6)

2) Normalized Mutual Information (NMI ) measures the
amount of information we get about classes if we
have clusters [14]. It has a maximum value of one
when the clustering process recreates classes per-
fectly and it has a minimum of zero:

NMI =
I(W,C)

[H(W ) +H(C)]/2
(7)

I(W,C) =
∑
k

∑
j

P (wk∩cj) log
P (wk ∩ cj)
P (wk)P (cj)

(8)

H(W ) = −
∑
k

P (wk) log(P (wk)) (9)

where W = {w1, w2, .., wk} and C = {c1, c2, ..., ck}
denote clusters and classes respectively and N is the
number of documents.

http://www.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective
http://www.mathworks.com/matlabcentral/fileexchange/10429-nsga-ii-a-multi-objective


TABLE I. SUMMARY OF THE TEXT DATASETS USED IN OUR
EXPERIMENTS

Dataset No. of No. of Reduced No. of No. of Sparsity
Name Documents Terms Terms Classes Percentage

Reviews 4069 36746 7724 5 97.9%
Classic4 7094 41681 5099 4 99.5%
Cacmcisi 4663 14409 2528 2 99.4%

News-sim3 2924 20753 4697 3 99.7%
News-multi7 6632 33469 7006 7 99.8%

B. Datasets and Implementation

In our experiments, we used five text datasets whose
characteristics are summarized in Table I. The last column
of the table shows the percentage of zero values that exists
in the document-term matrices of the datasets. Reviews in-
cludes articles about movies, food, restaurants, music, and
radio gathered from San Jose Mercury News2. Classic4 is
one of the well-known benchmark datasets used in text
clustering. It is created from the SMART data repository3

containing abstracts of papers about medical, information
retrieval, aerodynamics, and computing algorithms. Cacm-
cisi is also made from the SMART repository but includes
only abstracts about computing algorithms and information
retrieval. The last two datasets are derived from the 20-
Newsgroups dataset [11]. This dataset consists of approxi-
mately 20000 news articles grouped into 20 different top-
ics4. News-sim3 includes articles about three similar top-
ics including comp.graphics, comp.os.ms-windows.misc, and
comp.windows.x. There are articles about seven topics in
News-multi7 including alt.atheism, comp.sys.mac.hardware,
misc.forsale, rec.sport.hockey, sci.crypt, alt.politics.guns, and
soc.religion.Christian.

Stop-word removal, stemming, and removing low-variance
terms are applied on the datasets in a pre-processing step. Each
dataset is then represented as a document-term matrix in the
bag of words model. The effect of document length is reduced
by using the L2 norm to normalize the length of document
vectors to one. The importance of terms in documents are
measured using tf-idf values.

We use Euclidean distance to cluster document vectors
since their length is normalized to one and cosine distance
to cluster term vectors.

C. Removing Low-variance Terms

Not all terms in the bag of words model are required in
clustering. We assume that only high-variance terms represent
topics and the other terms are non-discriminative [12]. For this
reason, we measured the variance of terms over all documents.
We used only terms whose variances are larger than the average
of all variances. In this way, Reviews has 7724 terms, Classic4
has 5099 terms, Cacmcisi has 2528 terms, News-sim3 has
4697, and News-multi7 has 7006 terms.

To show the effectiveness of this pre-processing step, we
performed the following experiment. We used Naive Bayes
classifier implemented in WEKA5 on the datasets of Table I

2http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
3ftp://ftp.cs.cornell.edu/pub/smart/
4http://qwone.com/∼jason/20Newsgroups/
5http://www.cs.waikato.ac.nz/ml/weka/

TABLE II. NMI VALUES OBTAINED BEFORE AND AFTER REMOVING
LOW-VARIANCE TERMS USING NAIVE BAYES CLASSIFIER

Dataset Before Removing After Removing
Name Low-variance Terms Low-variance Terms

Reviews 0.651 0.651
Classic4 0.918 0.958
Cacmcisi 0.903 0.944

News-sim3 0.292 0.539
News-multi7 0.668 0.833

TABLE III. CHARACTERISTICS OF THE COMPETITORS USED IN OUR
EXPERIMENTS

Clustering Term Number of Number of
Algorithm Clustering Document Cluster Term Cluster

FSDC 3 k k

UVFCM 3 k k

ITCC 3 k variable
ECC 3 k variable

MSRCC 3 k variable
SECC2 3 k variable
SECC5 3 k variable
IdivCC2 3 k variable
IdivCC5 3 k variable

before and after this step. The outputs of the classifier using
10-fold cross validation method are shown in Table II.

The quality of classes is improved except for the dataset
Reviews. This experiment shows that not only this step did
not cause the performance of the classifier deteriorate but also
improved it in most cases.

D. Results and Discussion

We evaluated the performance of nine clustering algorithms
on the five datasets using two evaluation measures. The number
of term clusters for FSDC and UVFCM is the same as the
number of document clusters as shown in Table III. For the
co-clustering algorithms, we used different numbers of term
clusters. For ITCC, ECC, and MSRCC the number of term
clusters are {1, 2, 4, 8, ..., 128} as suggested in [9]. These
numbers are {5, 10, 15, ..., 50} for SECC2, SECC, IdivCC2,
and IdivCC5 as in the experiments performed in [4].

For each dataset, we ran the experiments in the following
way. Each co-clusterer is run 20 times for each number of term
clusters and the average F-measure and NMI of these 20 runs
are computed. We only reported the best F-measure and NMI
corresponding to the best number of term clusters. The other
algorithms are also run 20 times and the average F-measure
and NMI are shown in Fig. 6 to Fig. 10.

Our experimental results reveal that FSDC outperformed
the competitors on all the datasets. This is more evident on
Classic4, and News-sim3. It is noteworthy to mention that
News-sim3 is the most difficult dataset to cluster in our
experiments since it includes three similar topics.

An important observation in our experiments is that the
outputs of the co-clusterers are sometimes sensitive to the
number of term clusters. It is quite noticeable for Reviews and
Classic4. Even though it is suggested in [9], [17] to increase
the number of term clusters to get better results, this did not
happen on some datasets in our experiments.

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
ftp://ftp.cs.cornell.edu/pub/smart/
http://qwone.com/~jason/20Newsgroups/
http://www.cs.waikato.ac.nz/ml/weka/


Fig. 6. The quality of clusters for FSDC and the co-clusterers on Cacmcisi.
FSDC outperformed the competitors. The algorithms ECC, SECC2 and
SECC5 generated comparable results. The quality of clusters of IdivCC2
decreases as the number of term clusters increases. The algorithms SECC2
and SECC5 are the least sensitive co-clusterers to the number of term clusters.

Fig. 7. The quality of clusters for FSDC and the co-clusterers on Reviews.
FSDC is the best clustering algorithm. The outputs of the co-clusterers
(SECC2, SECC5, IdivCC2, IdivCC5, ITCC ) are sensitive to the number of
term clusters. The best co-clusterer is IdivCC5.

Overall, the comparison between the proposed algorithm
and the other double or co-clustering algorithms demonstrates
that our algorithm always outperformed the competitors in
our experiments. This observation confirms that the number
of term clusters being selected as equal to the number of
document cluster is a rational assumption and no further
attempts for finding this number is needed for FSDC.

V. CONCLUSION AND FUTURE WORK

We proposed a new approach for topic keyterm selection
of text documents using evolutionary algorithms.

Fig. 8. The quality of clusters for FSDC and the co-clusterers on Classic4.
FSDC is the best clustering algorithm and the quality of its clusters are much
better than those of the competitors. The outputs of the co-clusterers (SECC2,
SECC5, IdivCC2 ) are sensitive to the number of term clusters.

Fig. 9. The quality of clusters for FSDC and the co-clusterers on News-
sim3. FSDC is the best clustering algorithm and the quality of its clusters are
much better than those of the competitors. The algorithm SECC5 is the best
co-clusterer.

A multiobjective genetic algorithm is designed so as to
prune non-discriminative terms from term clusters. Each non-
dominated solution of our MOGA includes a set of topic
keyterms.

We then proposed a heuristic method to extract the rep-
resentative documents associated with each solution. These
documents are used as seeds to cluster all documents. We
applied k-means on the term centroid of each solution for this
purpose.

Rather than selecting one non-dominated solution from
each MOGA, we examined combinations of all non-dominated
solutions using a genetic algorithm. The genetic algorithm



Fig. 10. The quality of clusters for FSDC and the co-clusterers on News-
multi7. FSDC is the best clustering algorithm. Only IdivCC5 could generate
clusters with similar quality.

identifies the best solutions based on the quality of clusterings
that they can generate. The centroids of the representative
documents associated with the solutions are used for this
purpose.

Our work also demonstrated that distilling term clusters can
result in better document clusters compared to the competitors
in which term clusters are used without any prior analysis.

ACKNOWLEDGMENT

This research was supported by the NSERC (Natural Sci-
ences and Engineering Research Council of Canada) Business
Intelligence Network.

REFERENCES

[1] A. Abraham, S. Das, and A. Konar, “Document clustering using
differential evolution,” in IEEE Congress on Evolutionary Computation
(CEC), 2006, pp. 1784–1791.

[2] C. C. Aggarwal and C. Zhai, Mining Text Data. Springer US, 2012,
ch. A Survey of Text Clustering Algorithms, pp. 77–128.

[3] A. Aizawa, “A co-evolutionary framework for clustering in information
retrieval systems,” Proceedings of the 2002 Congress on Evolutionary
Computation, vol. 2, pp. 1787–1792, 2002.

[4] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha, “A
generalized maximum entropy approach to Bregman co-clustering and
matrix approximation,” Journal of Machine Learning Research, vol. 8,
pp. 1919–1986, 2007.

[5] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms. Norwell, MA, USA: Kluwer Academic Publishers, 1981.

[6] H. C. Chang and C. C. Hsu, “Using topic keyword clusters for automatic
document clustering,” Third International Conference on Information
Technology and Applications (ICITA), vol. 1, pp. 419–424, July 2005.

[7] H. Cho, I. Dhillon, Y. Guan, and S. Sra, “Minimum sum-squared residue
co-clustering of gene expression data,” in Proceedings of the fourth
SIAM International Conference on Data Mining, vol. 114, 2004.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-II,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, April 2002.

[9] I. S. Dhillon, S. Mallela, and D. S. Modha, “Information-theoretic co-
clustering,” in Proceedings of the ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’03.
New York, NY, USA: ACM, 2003, pp. 89–98.

[10] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, and P. Leon, “A
survey of evolutionary algorithms for clustering,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
vol. 39, no. 2, pp. 133–155, 2009.

[11] Y. Hu, E. E. Milios, and J. Blustein, “Enhancing semi-supervised
document clustering with feature supervision,” in Proceedings of the
27th Annual ACM Symposium on Applied Computing, ser. SAC ’12.
New York, NY, USA: ACM, 2012, pp. 929–936.

[12] J. Kogan, C. Nicholas, and V. Volkovich, “Text mining with
information-theoretic clustering,” Computing in Science and Engineer-
ing, vol. 5, no. 6, pp. 52–59, Nov. 2003.

[13] H. Mahmoodi and E. Mansoori, “Document clustering based on semi-
supervised term clustering,” International Journal of Artificial Intelli-
gence & Applications (IJAIA), vol. 3, no. 3, pp. 69–82, 2012.

[14] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval. New York, NY, USA: Cambridge University Press,
2008.

[15] Y. K. Meena, Shashank, and V. P. Singh, “Text documents clustering us-
ing genetic algorithm and discrete differential evolution,” International
Journal of Computer Applications, vol. 43, no. 1, 2012.

[16] S. Nourashrafeddin, D. Arnold, and E. Milios, “An evolutionary sub-
space clustering algorithm for high-dimensional data,” in Proceedings
of the fourteenth International Conference on Genetic and Evolutionary
Computation Conference Companion, ser. GECCO Companion ’12.
New York, NY, USA: ACM, 2012, pp. 1497–1498.

[17] N. Slonim and N. Tishby, “Document clustering using word clusters via
the information bottleneck method,” in Proceedings of the 23rd annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, ser. SIGIR ’00. New York, NY, USA: ACM,
2000, pp. 208–215.

[18] A. Vahdat, M. Heywood, and N. Zincir-Heywood, “Bottom-up evo-
lutionary subspace clustering,” in IEEE Congress on Evolutionary
Computation (CEC), 2010, pp. 1–8.

[19] Y. Zhao and G. Karypis, “Comparison of agglomerative and partitional
document clustering algorithms,” Univ. of Minnesota, Tech. Rep. #02-
14, 2002.


	Introduction
	Related Work
	Methodology
	Term Clustering
	Topic Keyterm Selection
	Document Clustering

	Experimental Results
	Evaluation Measures
	Datasets and Implementation
	Removing Low-variance Terms
	Results and Discussion

	Conclusion and Future Work
	References

