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An Analysis of Clustering Objectives for Feature Selection Applied
to Encrypted Traffic Identification

Carlos Bacquet, Nur A. Zincir-Heywood, and Malcolm I. Heywood

Abstract

This work explores the use of clustering objectives in a Multi-Objective Genetic Algorithm (MOGA) for both, feature
selection and cluster count optimization, under the application of flow based encrypted traffic identification. We first explore
whether it is possible to achieve the performance of a gold standard model (i.e., classification objectives), using a MOGA
based on clustering objectives. Then, we explore the performance gain (if it exists) of applying a logarithmic transformation
to the data prior to running the MOGA. Results show that MOGA trained with clustering objectives can closely reproduce
the behavior of a gold standard model, not only in terms of the selected features, but also in terms of the achieved detection
rate and false positives rate, above 90% and less than 1% respectively. On the other hand, no gain was observed by applying
logarithmic transformation to the data.

I. INTRODUCTION

An important part of network management requires the accurate identification and classification of network traffic for
decisions regarding both, bandwidth management and quality of service [1], [3]. A particularly interesting area in network
traffic identification pertains to encrypted traffic, where the fact that the payload is encrypted represents an additional degree
of uncertainty. Many traditional approaches to traffic classification rely on payload inspection, which become unfeasible
under packet encryption. Alternatively, some approaches have used port numbers to identify application types, however, this
practice has become increasingly inaccurate as user applications are now able to arbitrarily change the port number to deceive
security mechanisms [2]. In short, the traditional approaches are unable to deal with the identification of encrypted traffic.
In this work, Secure Shell (SSH) is chosen as an example encrypted application. While SSH is typically used to remotely
access a computer, it can also be utilized for “tunneling, file transfers and forwarding arbitrary TCP ports over a secure
channel between a local and a remote computer” [1]. These properties of SSH make it an interesting encrypted application
to focus on, given that it shows similar behavior to popular encrypted applications such as Skype. However, unlike Skype,
SSH is an open source protocol. This ensures that the ground truth is known regarding the traffic tested.

From the traffic identification perspective, we employ a Multi-Objective Genetic Algorithm (MOGA) that is used for the
dual goal of (i) identifying the appropriate (flow) attribute/feature subspace and (ii) identifying traffic types via clustering.
We first employed such a MOGA based approach to traffic identification in [4], under the assumption that the resulting
clusters partition traffic into encrypted/not encrypted. Alternatively, instead of using clustering objectives, we could use
label information during training to establish a gold standard for cluster purity. Thus, by using Detection Rate (DR) and
False Positives Rate (FPR) as objectives, we avoid the uncertainty of building clusters based on a fitness function that
indirectly pertains to the purpose of traffic identification. I.e., clustering data description is not necessarily the same as
classification. However, the use of labels during the learning phase is computationally much more expensive as it involves
iterative calculations of DR and FPR, and implies the availability of labeled training data which is expensive to produce.
Thus, the first objective in this work is to explore whether it is possible to mimic the results obtained with the gold standard
objectives (label driven learning), with clustering objectives.

The second objective of this work is to establish the significance of a prior attribute normalization on the resulting cluster
quality. Network traffic under a flow based representation utilizes attributes representing different properties, such as time
features and packet features. As a result, significant variation in attribute ranges is typically observed. Such diversity in
attribute ranges is typically considered to have a negative impact machine learning algorithms in general, resulting in the
wide spread use of a prior attribute standardization/normalization to achieve a common variance or dynamic range across
all attributes. We analyzed the effects of applying a logarithmic transformation to the data set to increase the homogeneity
between the attributes. This is believed [17] to lead to better classification results.
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II. PREVIOUS WORK

Paxson presented in [17] a number of analytic models to describe the features associated with TELNET, NNTP, SMTP,
and FTP connections. Three million TCP connections gathered at seven different sites were analyzed, focusing on attributes
like bytes transfered and duration. In doing so, they noticed that in the case of attributes with large ranges of values it is
more meaningful to analyze the data after applying a logarithmic transformation. Specifically, the significance of statistics
such as mean and standard deviation are skewed towards attributes with the greater ranges. Given that there are several
orders of magnitude, applying a log transformation reduces the corresponding dynamic range to the attributes with the most
dissimilar ranges.

McGregor et al. [14] presented an unsupervised approach using Expectation Maximization (EM) clustering to classify
network traffic represented by a set of flow attributes. Attributes that did not have an impact on the classification were
removed. Using the Auckland VI trace they observed that the clustering showed some capabilities in grouping flows together
by traffic type, but that more work needed to be done to derive better features to increase their performance. Zander et al.
[21] also proposed traffic identification by using an unsupervised machine learning technique (autoclass). They employed the
Auckland VI data set, and the NZIX-II and Leiozig traces. The feature selection was based on a sequential forward selection.
The quality of the resulting classes was evaluated in terms of intra-class homogeneity, aiming to achieve good separation
between different applications. They were able to achieve an average accuracy across all traces of 86.5%. Bernaille et al.
[5] proposed an unsupervised clustering (K-means) online approach, based solely on the packet size of the first p packets.
The best results were obtained with the first 5 packets, being able to correctly classify more than 80% of the flows of
almost all of the tested applications. The authors did mention, however, that this approach is sensitive to the arrival order
of the packets. Siqueira et al. [11] focused on P2P traffic, presenting an unsupervised approach in which 249 features were
analyzed, including statistics about the length of the packets and time between the packets. The feature selection was based
on the Ratio F, which use a ratio of two estimates, “dividing the variance mean of intra-group elements” and “the mean
variance of inter-group elements”. They were able to achieve 86.12% in trust, and 96.79% in accuracy. It is important to
notice, however, that the Port server was included as one of the selected features. Yang et al. [19] applied a DBSCAN
clustering algorithm, using 5 flow features. Feature selection was based on the effect that different features have on the
classification accuracy, i.e., a wrapper methodology. They were able to achieve an accuracy of about 87%. None of the these
authors mention any logarithmic transformation to deal with the skewness of the data as described by Paxson. Moreover,
most of them used both time, and packet related features.

Erman et al., on the other hand, presented several unsupervised approaches for traffic classification in which the data was
logged to deal with the “heavy tail distribution” of the features employed [6], [7], [8], [9]. In [7], the authors presented a
comparison of an unsupervised machine learning approach, EM, to previously obtained results with a supervised learning
method. They found the unsupervised technique outperformed the supervised technique by up to 9%, achieving an overall
accuracy of up to 91%. Then in [6], they compared three unsupervised techniques: EM, K-Means, and DBSCAN, using the
Auckland IV trace as well as traffic collected at the University of Calgary. The authors concluded that K-Means accuracy is
only marginally lower than AutoClass (EM), but with a much faster training time. In [8] they proposed a semi-supervised
method, in which the training was done with only a small percentage of labeled and a high percentage of unlabeled flows.
They obtained high flow and byte accuracy, greater than 90%, using a backward greedy feature selection method. They
observed that flow features that have time components should be avoided as “they are less likely to be invariant across
different networks” [8]. Finally, Yingqiu et al. [20] also applied a logarithmic transformation to the data. The authors
presented an unsupervised K-means approach, combined with feature reduction techniques such as CFS, Consistency-based
subset evaluation, backward and forwards greedy search, among others. With traffic collected at a research facility, they
obtained improvements of at least 10% accuracy after applying log transformation, with an overall accuracy of up to 90%.

To the best of our knowledge, this is the first work that, without using any payload information or port number, identifies
encrypted traffic with a multi-objective genetic algorithm, and compares its performance to that of an equivalent gold standard
model. Furthermore, this is also the first work that assesses the suitability of a logarithmic transformation to the data for a
genetic algorithm applied to encrypted traffic identification.

III. METHODOLOGY

This section first discusses the employed data set, followed by a description of the flow features obtained from it. We
then explain the multi-objective genetic algorithm, MOGA, which leads to an analysis of its clustering objectives, detailed
in fitness subsection. This section is concluded with an outline of the logarithmic transformation used for attribute wise
standardization.
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A. Data Set

The employed data set was captured by the Dalhousie University Computing and Information Services Centre (UCIS) in
January 2007 on the campus network between the university and the commercial Internet. Dalhousie University is one of
the largest universities in the Atlantic region of Canada, with more than 15,000 students and about 3,300 faculty and staff.
Data privacy related issues required that the data was filtered to scramble the IP addresses and each packet was further
truncated to the end of the IP header so that all the payload was excluded. Furthermore, the checksums were set to zero
since they could conceivably leak information from short packets. However, any length information in the packet was left
intact. Dalhousie traces were labeled by UCIS with a commercial classification tool, PacketShaper, which is a deep packet
analyzer, i.e., it analyzes the packet payload [16]. Given that the handshake part of SSH protocol is not encrypted, we can
confidently assume that the labeling of the data set is completely accurate and provides the ground truth for testing purposes.
Again, we emphasize that our work did not consider any information from the handshake phase nor any part of the payload,
IP addresses, or port numbers. Also, we focus on SSH as a case study, there is nothing in the approach that ties us to the
SSH protocol specifically. However, the fact that the SSH’s handshake is not encrypted, allowed us to compare our obtained
results with those obtained through payload inspection. In order to build training data we sampled the Dalhousie traces. The
training data for all experiments consisted of 12250 flows, including SSH, MSN, HTTP, FTP, and DNS. The test data, on
the other hand, was the entire data set (more than 18,500,000 flows) and consisted of flows from each of those applications,
plus flows that belonged to any of the following additional applications: RMCP, Oracle SQL*NET, NPP, POP3, NETBIOS
Name Service, IMAP, SNMP, LDAP, NCP, RTSP, IMAPS and POP3S.

TABLE I
FLOW FEATURES

ind. Feature Name Abreviation
1 protocol (tcp, udp) proto
2 total forward packets total fpackets
3 total forward volume total fvolume
4 total backward packets total bpackets
5 total backward volume total bvolume
6 min forward packet length min fpktl
7 mean forward packet length mean fpktl
8 max forward packet length max fpktl
9 std dev forward packet length std fpktl

10 min backward packet length min bpktl
11 mean backward packet length mean bpktl
12 max backward packet length max bpktl
13 std dev backward packet length std bpktl
14 min forward inter arrival time min fiat
15 mean forward inter arrival time mean fiat
16 max forward inter arrival time max fiat
17 std dev forward inter arrival time std fiat
18 min backward inter arrival time min biat
19 mean backward inter arrival time mean biat
20 max backward inter arrival time max biat
21 std dev backward inter arrival time std biat
22 duration of the flow duration
23 min active min active
24 mean active mean active
25 max active max active
26 std dev active std active
27 min idle min idle
28 mean idle mean idle
29 max idle max idle
30 std dev idle std idle
31 sub flow forward packets sflow fpackets
32 sub flow forward bytes sflow fbytes
33 sub flow backward packets sflow bpackets
34 sub flow backward bytes sflow bbytes
35 forward push counter fpsh cnt
36 backward push counter bpsh cnt
37 forward urg counter furg cnt
38 backward urg counter burg cnt
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B. Flow Generation
Flows are defined by sequences of packets that present the same values for source IP address, destination IP address,

source port, destination port and type of protocol. In this work, each flow is described by a set of statistical features and
associated feature values. A feature is a descriptive statistic that can be calculated from one or more packets. NetMate [15],
an open source tool, was used generate flows, and compute feature values. Table 1 shows the 38 features obtained from
NetMate. Flows are bidirectional with the first packet determining the forward direction. Since flows are of limited duration,
in this work UDP flows are terminated by a flow timeout, and TCP flows are terminated upon proper connection teardown
or by a flow timeout, whichever occurs first. A 600 second flow timeout value was employed here; where this corresponds
to the IETF Realtime Traffic Flow Measurement working groups architecture [10]. It is important to mention that only UDP
and TCP flows are considered. Specifically, flows that have no less than one packet in each direction, and transport no less
than one byte of payload. Again, payload data and features like IP addresses and source/destination port numbers were
excluded from the feature set to ensure that the results were not dependent on such biases.

C. Genetic Algorithm for Feature Selection and Clustering
In this work we took the MOGA framework proposed by Kim et al. [12] for feature selection and cluster count optimization,

but adapted the MOGA as proposed by Kumar et al. [13]. The latter converges towards the Pareto-front (set of non-dominated
solutions) without any complex sharing/niching mechanism. One specific property of this Genetic Algorithm (GA) is the
utility of a steady-state GA, thus, only two members of the population are replaced at a time under an elitist replacement
model. Like most GA’s, MOGA starts with a population of individuals (potential solutions to a problem), and incrementally
evolves that population into better individuals, as established by the fitness criteria. Fitness is naturally relative to the
population.

In order to model the problem of feature selection, each individual in the population represents a subset of features f and
a number of clusters K. Specifically, an individual is a 120 bit binary string, where bits between the first bit and the 38th bit
represent the features to include, and the remaining bits represent the K number of clusters. Bits of the individuals in the
initial population are initialized with a uniform probability distribution. For feature selection, a “one” implies that the feature
at that index (from Table 1) is included, and a “zero” ignores the feature. The K number of clusters, on the other hand, is
obtained from the number of “ones” (as opposed to “zeros”) contained between the 39th bit and the 119th bit. Clusters are
identified using the standard K-means algorithm, using the subset of features f, and the number of clusters K, as the input
for the K-means algorithm. We used the K-means algorithm provided by Weka [18]. The fitness of the individual will then
depend on how well the resulting clusters perform in relation to four predefined clustering objectives: Fwithin, Fbetween,
Fclusters, and Fcomplexity (see section III. D). Fitness evaluation assumes a multi-objective approach, typically resulting in
the identification of the Pareto front, or a set of non-dominated solutions. Informally, a solution is said to dominate another
if it has higher values in at least one of the objectives, and is at least as good in all the others. After the objective values
for each individual have been assessed, individuals are assigned with ranks, which indicate how many individuals dominate
that particular individual. Thus, fitness of the individuals is inversely proportional to their ranks, which is used to build a
roulette wheel that is ultimately used for parental selection.

The population is evolved for 5000 epochs, after which we identify the set of non-dominated individuals (individuals
whose ranks equal to 1). These individuals correspond to the set of potential solutions. The evolutionary component of the
algorithm is then terminated and the best individual in the set of non-dominated solutions (the one that better identifies
SSH traffic) is identified in the post-training phase. We take each individual from the set of non-dominated solutions, apply
K-Means with its proposed set of features f and number of clusters K, and label its clusters as SSH or NON-SSH. If the
majority of the flows in a cluster have SSH labels, then that cluster is labeled as SSH, otherwise it is labeled as non-SSH.
The post-training phase is then entered and consists of testing each of the non-dominated individual in our training data
(used to build the clusters on), to identify the solution with best classification rates. The entire system is displayed in Figure
1, and its evolutionary component in Figure 2.
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Fig. 1. System Diagram

Fig. 2. Evolutionary Component Diagram
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D. Fitness Function
The fitness of the individual depends on how well the resulting clusters perform in relation to the following four

predefined clustering objectives:

1) Fwithin: Measures cluster cohesiveness, the more cohesive the better. For this purpose the average standard deviation
per cluster is assumed. That is, the sum of the standard deviations per feature over the total number of employed
features. Then Fwithin will be the number of clusters in a solution, K, over the sum of all the clusters’ average standards.

2) Fbetween: Measures how separate the clusters are from each other, the more separated the better. For each pair of
clusters i and j, we calculate their average standard deviations and we also calculate the euclidean distance between
their centroids. Then, Fbetween for clusters i and j is:

Fbetween(i, j) =
EuclideanDistanceFrom i to j√
(AveStdDevi)2 + (AveStdDevj)2

Thus, Fbetween will be the sum of all pairs of cluster’s Fbetween(i,j), over K.

3) Fclusters: Measures the number of clusters K, “Other things being equal, fewer clusters make the model more
understandable and avoid possible over fitting” [12].

Fclusters = 1− K −Kmin

Kmax−Kmin

Kmax and Kmin are the maximum and minimum number of clusters.

4) Fcomplexity: Measures the amount of features used to cluster the data, this objective aims at minimizing the number
of selected features.

Fcomplexity = 1− d− 1
D − 1

D is the dimensionality of the whole dataset and d is the number of employed features.

In short, this model assumes that building fewer high quality clusters in terms of low intra-cluster distance and
high inter-cluster distance, and selecting fewer features, will lead to a better data description. Conversely, post training
performance evaluation is based on detection rate (DR) and false positives rate (FPR) defined by:

DR = 1− #false negatives

total number of SSH flows

FPR =
#false positives

total number of non SSH flows

where false negatives means SSH traffic incorrectly classified as non-SSH traffic, and false positives means non SSH traffic
incorrectly classified as SSH traffic.

In order to test whether these clustering objectives can indeed optimize the system, and still achieve good classification
rates, a second set of objectives is defined, in which Fwithin and Fbetween are replaced with DR and FPR as clustering
objectives, but keeping the Fcomplexity and Fclusters objectives. By doing so, the learning is guided towards the
classification objectives, rather than towards generating high quality clusters. However, this second approach has the
disadvantage of (i) being computationally much more expensive, as the calculation of DR and FPR requires a test run over
the entire training data for each individual evaluation, and (ii) being label dependent, requiring a labelled training data that
is expensive to produce. We are, therefore, interested in identifying under what conditions (if any) the purely cluster style
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objectives are able to approach the performance of the explicitly label driven approach to cluster identification. Such an
analysis will consider both classification performance and attribute support.

E. Log Transformation
It is important to notice that not all 38 features from Table 1 belong to the same type. Instead, there is a mix of time

features, with packet features, and others, resulting in significant range differences between their values. These differences
can account for up to seven orders of magnitude between their average values. Presumably, differences of this order could bias
the design of clusters towards some of the features, not because of class discriminating characteristics, but because of their
range in values. I.e., clustering is a data description process, thus will be biased to modeling the most frequent/dominant
properties in the data. Whether this is an appropriate bias for traffic discrimination is unknown. To test the effect of a
logarithmic transformation to reduce the effect of these range differences, we conducted a second set of experiments in
which a log transformation was applied to each attribute. The logged data will observe much lower inter attribute variation,
thus less bias towards any feature in particular, potentially resulting in different features being identified as appropriate
support for clustering.

IV. RESULTS

We conducted a total of four sets of experiments. The first set consisted of running the MOGA with the original clustering
objectives, without applying a logarithmic transformation. The second set consisted of running MOGA with the original
objectives, but after applying a logarithmic transformation to the data. The third and fourth sets of experiments consisted
of running MOGA with the gold standard objectives, without applying logarithmic transformation in the third set, and after
applying logarithmic transformation in the fourth set. Each set of experiments consisted of 25 independent runs, from which
we took the non-dominated individuals. We then combined those non-dominated individuals, and took a subset that we
consider the best individuals, in the case of the runs with the original objectives, the best individuals were those with the
highest intra and inter cluster distances, and in the case of the gold standard model, the best individuals were those with
DR above 90% and FPR under 0.6%.

Figures 3 to 6 show the features selected by the best individuals in each set of experiments. The vertical axis contains
the 38 available features from Table 1, and the horizontal axis represents the percentage of best individuals that employed
each feature. Figure 3 demonstrates that MOGA with the original objectives selects a subset of the features identified by the
gold standard model, Figure 5, both without logarithmic transformation. Both time and packet related features are selected
by the best individuals. It appears that the standard deviation forward inter arrival time, std fiat, and the minimum backward
inter arrival time, min biat, were selected by almost all of the individuals in both sets of experiments. We can also see how
with the exception of the features between duration, and std idle, the remaining 26 features are selected with a very similar
frequency. On the other hand, once the logarithmic transformation is included, we observe that the features selected with
the original objectives significantly differ from the features selected by the gold standard model; compare Figures 4 and 6.
With the exception of the standard backward inter arrival time, std biat, the other selected features seems to be the opposite
with the gold standard model.
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Fig. 3. Features selected with original objectives without log. standardiz.
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Fig. 5. Features selected with gold standard without log. standardiz.
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To further explore these observations, we conducted a post training evaluation of classification performance, as described
in the methodology section. We test the best non-dominated individuals per set of experiments in the training data, in order
to identify the ones with the best classifications rates. The individual with the best classification performance in post training
becomes the final solution for that set of experiments, and it is then tested in the entire data set.

Figures 7 to 10 show the plot of the best individuals performances during the post training phase. The vertical access
represents the DR and the horizontal axis represents the FPR. The final solution per experiment is marked with a darker square
on each plot. From Figure 7, we can observe that with the original objectives and without the logarithmic standardization,
the final solution achieves a DR of 93.5% and a FPR of 0.25% in post training. That same individual achieves a DR of
90.0% and a FPR of 0.4% when tested on the entire data set. In comparison, the gold standard model achieves a DR of
93.9% and a FPR of 0.22% in post training (Figure 9), and a DR of 90.0% and a FPR of 0.8% when tested on the entire
data set. We can conclude that the original objectives are capable of closely mimicking the performance of the gold standard
model. This does not come as a surprise, as we already observed that the original model generally selects a similar set of
features as the gold standard model.

On the other hand, we can observe from Figures 8 and 10 that the results achieved in post training when applying
the logarithmic standardization, differ between the original objectives and the gold standard objectives. With the original
objectives, the final solution achieves a DR of 95.4% and a FPR of 1.1% in post training (Figure 8). Notice that the rest of
the individuals do not appear on the plot for being out of scale with much larger FPR. That same individual achieves a DR
of 91.4% and a FPR of 17.0% when tested in the entire data set, which is a prohibitory high FPR. The gold standard model,
Figure 10, achieves a DR of 94.4% and a FPR of 0.16% in post training, and a DR of 91.0% and a FPR of 0.2% when
tested in the entire data set. Thus, we can conclude that because the original objectives under a logged data do not select
the same features as the gold standard, the performance of the MOGA with the original clustering objectives is inferior to
that of the gold standard model. All the test results are summarized in Table 2.
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Fig. 7. Post training with original objectives without log. standardization. DR (y-axis) over 93 to 96% range; FPR (x-axis) over 0.1 to 1% range.
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Fig. 9. Post training with gold standard with log. standardization. DR (y-axis) over 93 to 96% range; FPR (x-axis) over 0.1 to 0.7% range.
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Fig. 10. Post training with gold standard with log. standardization. DR (y-axis) over 93 to 96% range; FPR (x-axis) over 0.1 to 0.7% range.

TABLE II
FINAL SOLUTIONS TEST RESULTS

Experiment DR FPR
Original Objectives 90.0% 0.4%
Gold Standard 90.0% 0.8%
Original Objectives logged 91.4% 17.0%
Gold Standard logged 91.0% 0.2%

V. CONCLUSIONS

With regards to our first goal, we observe that the original cluster style objectives can quite closely mimic the behavior
of the gold standard classifier style objectives in the non logged experiments. In that case, we observe that not only both
sets of experiments selected a similar set of features, but also that the results from testing both models’ best individuals on
the entire data set show very similar performances. The gold standard model achieves a DR of 90.0% with a FPR of 0.8%
when tested on the entire data set, and the original objectives also achieve a DR 90.0% with a FPR of 0.4%.

With regards to our second goal, on the other hand, we observe that after applying a log transformation to the attributes,
the original objectives do not mimic the behavior of the gold standard model. Both sets of experiments do not select similar
features. Moreover, the classification performance achieved with the original objectives is considerably lower than the logged
gold standard model. The gold standard model achieved a DR of 91.0% with a FPR of 0.2% when tested on the entire data
set, whereas the original model achieved a DR of 91.% with a FPR of 17.0%, which is prohibitory high.

Finally, we observe that the best results are achieved consistently with a mix of time and packet related features. In
particular, the features std fiat and min biat were employed by almost all the best individuals in the non logged experiments.

For future work we consider to modify the MOGA into a hierarchical clustering approach, and also to focus on other
types of encrypted traffic, such as Skype.
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