
Maintaining Liveness in a Spreadsheet with Logic Programming

Philip T. Cox

Technical Report CS-2009-03

June 18, 2009

Faculty of Computer Science
6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada

Maintaining Liveness in a Spreadsheet with

Logic Programming

Philip T. Cox

Dalhousie University,
Halifax, NS, Canada B3H 1W5

+1 902 494-6460

Philip.Cox@Dal.Ca

Abstract

Spreadsheets are among the most widely used programming tools,
having been adopted almost universally for computing and tabu-
lating financial information. They were not designed for use in
strategic applications, however, since they lack all but the most
rudimentary programming support, and are highly likely to con-
tain errors.

In L-sheets, a recently proposed extension to spreadsheets, the
standard data flow computational model is augmented with a form
of visual logic programming in which term unification is replaced
by array unification, providing both improved programmability
and a means to specify the high-level structure of sheets.

One of the most important properties of spreadsheets is “level 3
liveness”, the immediate recomputation of those cells in a sheet
affected by an editing change. This is simple to achieve with data
flow computation, but is complicated by the addition of logic
programming. Here we address the problem of maintaining live-
ness in L-sheets.

Categories and Subject Descriptors D.1.7 [Programming Tech-
niques]: Visual Programming. I.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving - logic programming. H.4.1 [In-
formation Systems Applications]: Office Automation - spread-
sheets.

General Terms Reliability, Languages.

Keywords Spreadsheets; logic programming; arrays; liveness;
visual programming.

1. Introduction

The spreadsheet, which first appeared in 1979 as VisiCalc, was
one of the first programming tools for non-technical users [2]. The
key to the success of the spreadsheet is that it employs a simple
metaphor familiar to its target users, paper ledger sheets contain-
ing data in rows and columns, presented in a graphical user inter-
face with which the user can directly interact.

Early spreadsheets were rudimentary at best, providing little
more than the ability to enter values and formulae into cells. Nev-
ertheless, they gave end-users, initially financial industry workers,
the power to rapidly build programs for analysing and tabulating
data, and forecasting, Needless to say, users began to build larger
and more complex spreadsheet applications, and to use them to
support key business decisions.

As spreadsheet use has grown, features have been added, such
as multi-sheet workbooks, references between sheets and work-
books, macros, plug-ins, functions and access to external pro-
gramming languages. Consequently, the spreadsheet has evolved
from a simple, useful but limited programming tool, to an ad hoc
collection of features, with little support for developing robust and
reliable applications. As a result, although the spreadsheet is one

of the most widely used programming tools [22], it is also one of
the most error-prone. Various studies have shown that over 90%
of all spreadsheets contain errors [16]. Many instances have been
reported of spreadsheet errors leading to significant financial
losses and other negative consequences [11].

Although spreadsheets have been an ingredient of many re-
search projects, their deficiencies have lately become the centre of
attention, at least partly motivated by legislation placing liability
for financial misreporting on company directors and managers
[16]. Some researchers are concentrating on minimising the risk
of spreadsheet errors by auditing [8], or employing spreadsheet
development methodologies and management practices [18, 21].
Others are focussing on spreadsheet technology itself, with a view
to providing tools for testing and debugging [9], analysis of struc-
ture [1, 5, 14], high level design [10, 15], and programming [3,
17, 26].

Several research projects have investigated the intersection of
spreadsheets and logic programming. In some proposals, a
spreadsheet-like grid is used as an interface to a logic program-
ming engine, the cells displaying the values of variables instanti-
ated by a logic program separate from the sheet [23, 25]. In oth-
ers, arrays are used to define predicates. For example, in NEX-
CEL an array can represent a predicate defined by a set of clauses,
the bodies of which consist of literals that refer to other arrays
representing predicates [4]. In LogiCalc, an array can represent a
table defining a relation, and cells can contain queries, lists or
other terms [13]. In XcelLog, cells contain expressions which are
translated into clauses for execution by an underlying logic pro-
gramming execution mechanism [19]. All of these systems present
a sheet interface to a computational mechanism which is signifi-
cantly different from the formula-in-cell data flow model, and
therefore do not contribute to overcoming the deficiencies of
standard spreadsheets. To our knowledge, there has been no com-
bination of logic programming and spreadsheets that preserves the
standard data flow model, aside from L-sheets [6, 7], described
below.

Most of the cells in more complex spreadsheet applications are
not unique, but have characteristics in common with their neigh-
bours. For example, some contiguous cells may contain formulae
of the same form, each referring to cells at the same vertical and
horizontal offset. Although cells with such common characteris-
tics form arrays within the sheet, spreadsheets provide only basic
tools for setting up and managing these arrays, limited to dragging
the corner of a cell to copy appropriate variants of its formula to
the cells in a rectangle.

L-sheets is based on the observation that assembling a rectan-
gular array of cells by attaching a column (or row) to another
array is analogous to assembling a list with the | operator in
Prolog. Arrays and lists are fundamentally different, of course, in
that lists are recursive structures accessed at one end, while arrays
are not. Hence the corresponding basic operation on arrays is

juxtaposition, either vertical or horizontal, of two arrays where
neither is restricted to be a column (or row). Pursuing the analogy,
L-sheets replaces unification of terms by unification of arrays to
obtain a form of logic programming in which the spreadsheet user
can specify the structure of arrays, relationships between arrays
and computations that add content to array cells. Since arrays and
the juxtaposition of arrays can be visually represented, the result-
ing language is visual, and in keeping with the sheet metaphor
familiar to spreadsheet users. In contrast to previous spreadsheet/
LP combinations, L-sheets delivers the following benefits:

• A visual, high-level specification of spreadsheet structure.

• Enhanced programmability.

• The existing “formula-in-cell” model, familiar to current us-
ers, is retained.

• User-defined abstractions are built in the sheet interface, al-
lowing for a smooth transition from novice to expert user.

If L-sheets is to succeed as a seamless extension of standard
spreadsheets, it must preserve key properties, in particular, the
feedback provided by immediate re-evaluation of cells following
editing. Although this is easy to achieve in the data flow model of
standard spreadsheets, it is more complicated when there are both
data flow and logic programming computations in a sheet. A pre-
liminary and inconclusive discussion of re-execution can be found
in [6]. Experience with a prototype implementation resulted in
some refinements to the language [7], and have provided further
insights into re-execution, leading to the algorithm we report here
which has yet to be incorporated into the prototype.

In the next section we informally describe L-sheets, and make
observations about some characteristics of the language entailed
by the requirement that L-sheets be as consistent with normal
spreadsheets as possible. In Section 3, we develop the re-
execution procedure, followed by concluding remarks and discus-
sion in Section 4.

2. L-SHEETS

In this section, we describe L-sheets informally via examples,
reproduced from [7] with minor changes. These examples were
chosen because one illustrates what we see to be a typical use of
L-sheets, while the other performs a computation one would not
normally associate with spreadsheets. In addition, they have con-
trasting re-execution properties, relevant to the discussion of live-
ness in Section 3. A more formal description of the language can
be found in [6].

An application in L-sheets consists of a set of worksheets, like
those in an ordinary spreadsheet, together with program sheets
which contain definitions as described in the examples below.
Computations in a worksheet are de-
fined in two ways. The user may insert
formulae into cells in the usual way, or
apply definitions from program sheets,
which will also insert formulae into
cells. Values for cells are computed
according to the data flow defined by
these formulae.

2.1. Spreadsheet Structure Specifi-
cation

As we mentioned earlier, one approach
to improving the reliability of spread-
sheet applications is to provide tools for
specifying the structure of sheets. This
is illustrated in an example due to Erwig

et al. [10], which deals with the structure of a budget worksheet,
as shown in Figure 1. This worksheet is an example of a family of
worksheets in which rows of budget items are repeated, and col-
umns are repeated in blocks of three, each block containing data
for one year. As the figure shows, formulae which occur in, or
refer to, repeated cells, conform to a pattern which can be applied
to a budget worksheet of any size.

The family of budget worksheets of which the sheet in Figure 1
is an example, is specified by the definitions budget and years in
the program sheet shown in Figure 2. The budget definition has a
single case, the head of which is a template named budget, repre-
sented by a pale grey rectangle. The body of this case consists of a
single template, named years. Body templates are usually dark
grey. Templates contain parameters, which are arrays, drawn as
grids similar to a worksheet grid. In our example, the budget
template has a single parameter, while the years template in the
body of the case of the budget definition has two.

A definition is analogous to a set of clauses defining a predi-
cate in Prolog. In particular, a case corresponds to a clause, a tem-
plate to a literal, and the parameters of a template to the list of
terms from which a literal is composed.

The structure of an array in a template is indicated by the col-
our of its grid lines. A vertical grey line indicates that the width of
the subarray in which the line lies is variable. For example, con-
sider the array in the budget template. Although the subarray with
the heavy outline labelled A is drawn with two columns, the line
separating these columns is grey, so the subarray A is variable in
width. Similarly, grey horizontal lines indicate variable height.
With this is mind, we see that the array in the budget template has
one column, followed by a variable number of columns, followed
by two columns. It also has two rows, followed by a variable
number of rows, followed by one row. Values of subarrays are
displayed when they are known. For example, the value of the 1 ! 1
subarray at the left end of the second row is the string “Category”.
The annotation F1 on the 1 ! 1 subarray at the bottom right corner
is not part of the program. It has been added to indicate that the
content of the subarray is as shown in the legend.

The definition budget specifies that an array is an instance of a
budget worksheet if it has the structure described in the previous
paragraph and contents as shown, and the subarrays named A and
B have the structure and content specified by the definition years.

To apply this definition to a worksheet, the user selects a rec-
tangular array of cells in the sheet to correspond to the parameter
(Figure 3a). A (virtual) goal template named budget is created
with the selected array as its parameter. As in Prolog execution,
this goal template is unified with the head of the first (and only)
case for budget. This involves unifying the selected array with the
parameter of the head template, using the algorithm described in
[7], which matches the structure of the two arrays and adds the

Figure 1. Budget worksheet displaying formulae (from [10] p.299)

contents of the subarrays of the parameter array of the head tem-
plate to the corresponding cells of the goal parameter array (Fig-
ure 3b). In particular, the formula F1 is rewritten to refer to the
appropriate cells in the worksheet, then added to the content of the
bottom-right cell of the rectangular array selected in the work-
sheet. Since the second column of the subarray B corresponds to
column I in the sheet and stretches from row 3 to row 5, F1 is
rewritten to SUM(I3:I5). Note that the syntax of
formulae in a program sheet differs from that
of formulae in a worksheet. In particular, a
reference in a program sheet formula consists
of a subarray name followed by row and col-
umn indices, while in a worksheet a reference
consists of the name of a column and the num-
ber of a row in the sheet. The " in the formula
SUM(B1,2:B",2) denotes the last row of the
referenced subarray B.

Conceptually, the above execution step
replaces the initial goal template with a years
goal template, which is derived from the body
of the applied case, and contains the two rec-
tangular arrays from the worksheet, indicated
by shading, to which subarrays A and B were
bound by the unification. Execution then pro-
ceeds in a fashion analogous to Prolog.

The first case of years contains two rulers,
used here to indicate that the second parameter
of the head templates and the array E in the
body template both have height H. The black
rectangle in the head of the second case of the
years definition represents an array which is 0
in at least one dimension. Also, if a subarray
which is variable in one or both dimensions
contains a formula, then when the subarray is
unified with an array of fixed size, the formula
is extended in the same way that a formula in
Excel is extended; that is, by appropriately
incrementing the indices of references in the
formula.

We leave it to the reader to complete the
example, verifying that the final state of the

worksheet is as shown in Figure 3c. Note
that execution proceeds according to the
normal Prolog execution order: that is, cases
of a definition are tried in the order in which
they are listed, and failure causes backtrack-
ing. In this example, failure can occur only
if two arrays cannot be unified because their
sizes cannot be matched.

2.2. Improved Programmability

Although solving simultaneous linear equa-
tions is not a typical spreadsheet use, the L-
sheets implementation of Gaussian elimina-
tion with partial pivoting, depicted in Figure
4, illustrates the improvement in program-
mability which has been achieved. The array
labelled A in the head of the first case of
gauss must be bound to an n ! n+1 array
containing the coefficients and right-hand
sides of the equations to be solved, while C
must be bound to a 1 ! n array for the solu-
tion vector.
The first goal template of the single case of
gauss, with a striped background, no name,

and arrays containing only Boolean-valued expressions, is an
example of a guard. During execution, the arrays in the guard
must be instantiated to arrays of fixed size, and their formulae
extended as described above. The guard succeeds if all the formu-
lae in each of its arrays produce true. Note that $ in a program
sheet formula has the same meaning as in a worksheet formula:
that is, it indicates that the following row or column index is not

budget years

BTotal

Category Qnty Cost

Total F1

A

B

A

years years

E

Qnty Cost Total

F2

Total F3

C

D DF4 F5

H

H

years

0 0

Figure 2. An L-sheets program defining a family of budget spreadsheets. The annotations
F1, F2,… are not part of the program, but indicate that the content of the annotated subarray
is as shown in the legend. (after [6]).

LegendLegend

F1 { SUM(B1,2:B",2) }

F2 { C1,1*C1,2 }

F3 { SUM(C1,3:C",1) }

F4 { C1,1 + E1,1 }

F5 { C1,3 + E1,2 }

(a) Selecting the parameter

A B

(b) After unification. The dotted outline and shaded
areas have been added for explanatory purposes.

{“Total”}

{B3*C3}

{B4*C4}

{B5*C5}

{SUM(D3:D5}

{“Category”}

{“Oranges”}

{“Apples”}

{“Lemons”}

{“Total”}

{“Qnty”}

{30}

{25}

{40}

{“Cost”}

{0.25}

{0.05

{0.15}

{“Qnty”} {“Cost”} {“Cost”}

{C3+F3}

{C4+F4}

{C4+F4}

{SUM(I3:I5}

{“Total”}

{“Qnty”}

{B3+E3}

{B4+E4}

{B4+E4}

{“Total”}

{E3*F3}

{E4*F4}

{E5*F5}

{SUM(G3:G5}

(c) Spreadsheet after execution, displaying formulae rather than values.

Figure 3. Applying the budget definition to a sheet.

incremented when the formula is extended. The guard in this case
specifies that the absolute value of the leading coefficient of the
equation represented by subarray B is greater than or equal to the
absolute value of the leading coefficient of each of the other equa-
tions, and is not zero. If the guard succeeds, then B is the pivot
row.

This example illustrates that array unification, unlike term
unification, is not unique. If the array to be unified with the first
array in the head of the second case of triangularise has n rows,
then there are n ways of unifying the two arrays, so during execu-
tion of this case, unification generates successive matches until
one is approved by the guard template. Array unification is, in this
respect, similar to the unification of lists containing segment vari-
ables in LISTLOG [12].

2.3. Observations

The motivation for L-sheets was not to invent a new programming
mechanism, but to enhance the reliability of spreadsheets by im-
proving programmability and providing a means to specify
spreadsheet structure, as discussed in Section 1. Consequently, L-
sheets is designed to exhibit behaviour that is as consistent with
standard spreadsheet behaviour as possible. In the remainder of
this section, we discuss some of the features of L-sheets that result
from this design principle.

2.3.1. Occurrences of subarrays

An array that occurs in a template of a definition is “virtual” in the
sense that it has no physical manifestation, unlike an array in a
goal template which has a fixed position in the
worksheet and includes some number of actual
worksheet cells. Suppose the head of a case of a
definition D includes two occurrences of an array
A, and that a goal template is created by applying
this definition to a worksheet in such a way that
the two occurrences of A are unified with different
arrays B and C in the worksheet. Each cell in B
would become identical to the corresponding cell
in C, in effect providing two points of access to
one set of formulae. Although there may be some
value to this, it violates the “ledger sheet” meta-
phor on which spreadsheets are based. No subar-
ray, therefore, can occur more than once in a head
template.

2.3.2. Cell content

In the example in Section 2.1, the array selected in
the worksheet to be unified with the parameter of
budget includes cells which already contain
formulae, and cells to which the execution of
budget will add formulae. Clearly a non-empty
worksheet cell could quite possibly have a for-
mula added to it by execution of a goal template.
The likelihood of this happening is even greater if
one of the arrays in a goal template is of variable
size. For example, consider the definition unique,
depicted in Figure 5, which produces an output
array by removing duplicate values from an input
array. The array selected in the worksheet for out-
put must be of variable length, since its actual
length will depend on the content of the input
array, so it may well extend across cells which
already have content. There are three ways of
dealing with this eventuality, as follows.

• A cell can contain at most one formula: Execution of a goal
template fails if it violates this condition. This is contrary to the
behaviour of standard spreadsheets in which a new formula
added to a cell replaces the current content.

• New content replaces existing content, as in standard spread-
sheets. This solution has several undesirable consequences.
First, since the new content is generated automatically by exe-
cution of a goal template, the user is not directly responsible for
the change, and may find it mysterious. Second, it could occur
unexpectedly as a consequence of a seemingly unrelated action,
for example, as a result of editing a cell the value of which is
used to compute the value of one of the cells of the input array
in the unique example, thereby changing the size of the output
array. Third, since execution of a template can produce new
formulae for many cells, there could be many simultaneous
changes. Finally, execution of the template may replace some
cell contents resulting from a previously executed goal template
T but not others, resulting in an anomalous situation in which
the content of cells in the scope of X no longer corresponds to
the execution of X.

• A cell contains a set of formulae. If all formulae compute the
same value, this is the value of the cell, otherwise a conflict
error occurs. This solution has the following advantages. First,
it includes the standard spreadsheet model in which a cell
contains one formula or is empty. Second, it does not signal
errors unnecessarily. Third, it retains all formulae so the user
can decide how to resolve conflict errors. For these reasons,
this solution was adopted for L-sheets.

triangularisetriangularise

F1 { A1,2 – A1,$1 * B$1,2 / B$1,$1 }

A

C

B

{ B1,1 } { B1,2 } F1

F2

R

R

triangularise

B

backsubstitute

A B

backsubstitute

F3

C

D F4A D

backsubstitute

gauss

A

 triangularise

BC A

 backsubstitute

B C

W

W

{ B1,1 } { B1,2 }

G1

G2

G3H
2

H
1

H
2

H
1

H
2

H
1

LegendLegendLegendLegendLegend

F1 { A1,2–A1,$1*B$1,2/B$1,$1 } G1 abs(B$1,1) = abs(A1,1)

F2 { C1,2–C1,$1*B$1,2/B$1,$1 } G2 abs(B$1,1) = abs(C1,1)

F3 { C1,2 / C1,1 } G3 abs(B1,1) > 0

F4 { B1,2 – B1,1* C1,2 / C1,1 }

Figure 4. Gaussian elimination.

Note that cells in guard templates each contain one formula.

2.3.3. Unification

In logic programming, unification accomplishes several tasks,
which in other languages are distributed across distinct mecha-
nisms:

(a) composing and decomposing structured data;
(b) driving conditional execution by generating failure or success;

and
(c) recording computed data by variable binding.

In spreadsheets, (a) has no equivalent; (b) Boolean expressions
are evaluated to select alternative formulae; and (c), values are
assigned to cells via formula evaluation. To preserve familiar
spreadsheet functionality, unification in L-sheets focusses on the
mechanisms new to spreadsheet users: (a) the composition and
decomposition of structured data, and the success or failure that
results (part of (b)). The remainder of (b) is dealt with by Boolean
expressions in guard templates. Aside from adding formulae to
cells, unification plays no part in (c).

2.3.4. Failure and backtracking

In standard spreadsheets, although formulae can refer to exter-
nally defined functions, computations are primarily built by plac-
ing formulae in cells to create data flow. To preserve this view,
definitions in L-sheets should, to the extent possible, behave like
functions. Hence, computational elements in a worksheet cannot
interact via failure-induced backtracking and re-execution, actions
which are confined to the execution of individual goal templates.

2.3.5. Variable-size arrays

In L-sheets, variable-size arrays are combined into compound
arrays, creating patterns that specify the structure of families of
fixed-size arrays. Analogously, Prolog terms containing variables
are patterns that specify the structure of families of ground terms.
However, although it is acceptable for variables to occur in the
answers to Prolog queries, it makes no sense for a worksheet to
contain a variable-size array, so execution must fix the sizes of the
arrays of a query template. Note, however, that it is necessary to
allow variable-size arrays to be selected in a worksheet when
applying a definition, for example, the definition unique in Figure
5.

2.3.6. Errors

In spreadsheets, a cycle error occurs if a data flow cycle is de-
tected, and a value error occurs if a formula cannot be evaluated
for some reason. In L-sheets, the presence of goal
templates creates dependencies in addition to data
dependencies, creating a graph of which the data
flow graph is a subgraph (see Section 3.3). This
extended digraph must also be acyclic. Other
error types are required to deal with goal tem-
plates. A conflict error arises if two formulae in
the content of a cell return different values, as
discussed above. If execution of a goal template
fails, or does not fix the sizes of the arrays of the
template, a goal error is produced. A guard error
indicates that a guard cannot be evaluated as a
result of a value error in one of its arrays.

2.3.7. Liveness

One of the most significant features of spread-
sheets is their immediate reaction to changes. If

the content of a cell is changed, the values of cells affected by the
change are recalculated, providing instant feedback, a property
termed “level 3 liveness” by Tanimoto [24]. This behaviour is
easily achieved by following data flow links to locate and recom-
pute affected cells. Preserving this property in L-sheets is compli-
cated by the presence of goal templates, which may or may not
need to be re-executed. Furthermore, if a template is re-executed,
it may change the contents of cells, altering the data flow. The
next section examines liveness in detail.

3. Liveness

The examples in Section 2 consider only the logic programming
aspects of L-sheets, concentrating on the execution of a single
goal template in a worksheet, the level of functionality achieved
in the current prototype. In general, however, a worksheet may
contain several goal templates, the arrays of which may overlap,
as well as formulae placed in cells by the user in the normal way.
To achieve the liveness that spreadsheet users expect, we must
determine how these computational elements should react when a
change is made to the sheet. We first establish the conditions that
trigger re-execution of a goal template; then investigate the inter-
action of worksheet elements as they re-execute.

3.1. Execution Triggers, Virtual Cells, And Data Flow

The factors that affect execution of a goal template are success or
failure of unification, and success or failure of guards. The former
depends on the dimensions of parameter arrays, so if a dimension
of a parameter is changed, the goal template must be re-executed.
The outcome of evaluating a guard depends on the values of some
cells. In the second case of gauss in the example in Section 2.2,
formulae in cells that are referenced by the guard template must
be evaluated during the execution, while formulae constructed for
the result array can be returned unevaluated to the worksheet, then
evaluated in the usual way. This implies that if the values of cells
in the equation array change, the gauss goal template must be re-
executed, changing the formulae deposited in the cells of the re-
sult array. In the example in Section 2.1, however, no formulae are
evaluated during execution of a budget goal template, so re-
execution following changes in cells is unnecessary.
Figure 6 illustrates the creation of virtual cells, the data flow be-
tween them, and triggers attached to cells to initiate re-execution.
In this example, gauss is applied to a 3 ! 4 array containing three
equations, and a result array of height 1 and variable width, as
shown in the grey band at the top. Each of the following bands
corresponds to a goal template with parameters from the band
immediately above. For example the gauss (1) band corresponds

 unique

 unique

 unique

A

C

 unique

C

 A1,1 = B1,1
B b A b

 unique

A B

{A1,1} C

A

C

Figure 5. Removing repeated elements from an array.

to the goal template gauss, the parameters of which are the two
arrays in the worksheet (0) band. The arrays in a band, reading
left-to-right and top-to-bottom, correspond to the arrays in the
non-guard templates of the case that has been applied to the asso-
ciated goal template, in the order that they appear in the case.

An array or subarray allocated during the execution of the cor-
responding template is indicated by a solid border, while an array
or subarray with a dashed border is a reference to an array or
subarray allocated previously, indicated by a dashed arrow. For
example, the first array in the band labelled gauss (1), is a refer-
ence to the array in the worksheet containing the equations to be
solved. The dark grey shading in the latter marks out the subarray
to which the former refers, the entire array in this instance. The
second array in the gauss (1) band is a reference to the result
array in the worksheet, and the third is an array of variable height
and width, allocated by this invocation of gauss, as indicated by
the label !. The third array corresponds to the array named B in
the body of gauss, and consists of cells which do not lie in the
sheet, called virtual cells.

The band labelled triangularise (2) shows the arrays involved
when the second case of triangularise is applied, the parameters
in the head of the first case having failed to unify with the given
arrays. Note that the fourth array is a reference to a subarray of the
second, and that the third consists of 6 virtual cells allocated by
triangularise (2). Since the guard template and unification algo-
rithm negotiate to select the pivot equation in the first parameter
of the head template, as explained in Section 2.2, the values of
cells in the first column of the equation array will determine the
composition of the formulae deposited in the second and third
arrays, so if any of them subsequently change, triangularise (2)
must be re-executed. Hence triggers are attached to these cells,
indicated by the annotation 2*. This invocation of triangularise
adds formulae to the contents of certain cells, indicated by the
annotation 2 in the cells, and the solid arrows labelled 2, each
denoting the presence of a number of data flow links. For exam-
ple, the formula in the top left cell of the third array refers to the
first and second cells of the first row in the first array, and the first

and second cells of the pivot equation row in the first array. Hence
there are four data flow links to this cell from cells of the first
array, and in total, the solid arrow from the first to the third array
represents 24 data flow links. The reader is invited to work
through the construction of the rest of this diagram. Note that the
dimensions of the third array in the gauss (1) band are finally
determined when the base case of triangularise is executed, as
shown in the last band.

Figure 7 is obtained by deleting the bands corresponding to
goal templates which have been completely executed, removing
array references in those bands and appropriately reassigning data
flow links incident on array references. Except for the array refer-
ences in the gauss (1) band, which will be removed later, and a
further pruning of the structure discussed below, the resulting
diagram depicts the structure of data at this point.

The diagram in Figure 8 shows the arrays involved in the exe-
cution of backsubstitute. Some of these consist of a combination
of virtual cells and references: for example, the cells in the last
column of the third array in backsubstitute (5) are virtual, while
the rest of this array is a reference to the shaded subarray in the
first array in this band.

The structure remaining after execution of gauss is shown in
Figure 9. Bearing in mind that this diagram does not show the
details of data flow present in the actual structure, we note the
following. If a value in the third or fourth column of the equation
array changes, no re-execution is necessary. If a value in the sec-
ond column of the equation array changes, then a value in the first
column of the first reduced array will change, triggering re-
execution of triangularise (3), and the dependent invocation
triangularise (4). First, any virtual cells labelled " or #, and
formulae indicated by the cell annotations 3 and 4 are deleted,
triangularise (3) is re-executed, and consequent changes in cell
values are propagated in the usual way. Since the shape of the
triangular array is unchanged and there are no 5* triggers, back-

substitute (5) is not re-executed.
The structure in Figure 9 can be further pruned, resulting in the

diagram in Figure 10, as follows. Since the array of virtual cells
labelled "! will be deleted prior to any re-execution, its only
function is to contain intermediate formulae which are referenced
by formulae in cells marked 4 in the triangular array. This array
can therefore be deleted, and the formulae it contains embedded
directly in the formulae that refer to them. Similar reasoning leads
to the deletion of the arrays of virtual cells labelled $!and %. We
could also remove the triangular array, and embed the formulae it
contains in the formulae of the result array in the worksheet: this,
however, would necessitate re-execution of backsubstitute (5)
following any re-execution of triangularise (2) or triangularise

(3), even though backsubstitute (5) is sensitive only to the size of

gauss (1)

worksheet

2*

2*

2*

3*,2 2 2

3*,2 2 2

2 2 2 2

2 3 3 3

2 3 4 4

3 3

2

2

3

3 4

1

2

3

0 0

Figure 7. Structure produced by the execution of triangularise.

triangularise (4)

triangularise (3)

triangularise (2)

worksheet (0)

gauss (1)

2*

2*

2*

2 2 2

2 2 2

2 2

2

3*

3*

3 3

3

3 3

4 4

2

2

3

3

4

1

2

3

0 0

Figure 6. Creating virtual cells, data flow and triggers.

the triangular array, not its content. Note that the goal templates
that accompany this structure are gauss(1), triangularise(2) and
triangularise(3).

worksheet
2*

2*

2*

3*,2 2 2

3*,2 2 2
2 2 2 2

2 3 3 3

2 3 3 3

2

2

3

5

5 5 5

1
2

0 0

Figure 10: Final pruned structure of virtual cells.

The final, pruned structure in Figure 10 contains the smallest
set of virtual cells required to avoid rebuilding formulae unneces-
sarily during re-execution initiated by changes in the values of
triggered cells. Note that a virtual cell pruned away in the final
step could be referenced by more than one formula, in which case
its formula would be embedded in more than one other formula,
and computed more than once during any subsequent evaluation.
Such virtual cells could be retained to achieve more economical
computation. At the other extreme, all virtual cells and associated
goals could be removed, in which case any trigger associated with
a virtual cell would be propagated to worksheet cells referenced
by the virtual cell’s formula, resulting, in our example, in the
structure in Figure 11. Note that when a trigger is propagated dur-
ing removal of the virtual cell that contains it, it is changed to
refer to the goal which is the nearest remaining ancestor of the
goal to which it originally referred.

Clearly, applying the above analysis to execution of a budget
goal template will produce a structure, analogous to the diagram
in Figure 10, with no virtual cells or triggers.

The above example does not illustrate some subtleties of the
process of attaching triggers to cells. Consider some definition A
with three cases, which, by the Prolog analogy mentioned in Sec-
tion 2.1, we can represent as follows:

A(X) :- G1(X), ...

A(Y) :- B(Y,W),G2(W), ...

A(Z) :- ...

where G1 is a guard that refers to cell X occurring in the head of
the first case, and G2 is a guard that refers to a cell W, the content
of which is determined during execution of the template B, which
in turn refers to cell Y in the head of the second case. Suppose that
the execution that ensues when this definition is applied to a goal
template in the worksheet terminates with the second case of A. In
the process, a trigger will be attached to the worksheet cell, X0,
corresponding to X in the head of the first case, and to the virtual
cell, W0, corresponding to W in the second case. Hence, triggers
accumulate as execution advances through the cases of a defini-
tion.

Now suppose the value of W0 changes, triggering re-execution,
which terminates with the third case of A. Since backtracking out
of the second case will delete associated structures including the
virtual cell W0, the trigger on this cell must first be propagated
back to any cells to which the formula in W0 refers.

Finally, if the definition of B includes guards, the structure
resulting from the initial execution described above will contain
virtual cells allocated during execution of the B(Y,W) goal, with
triggers arising from these guards. During backtracking out of the
second case of A, these triggers must be propagated back to refer-
ring cells as described above.

3.2. Execution Graph Of A Query

Regardless of the degree of pruning, the resulting structure of
goals, cells, data flow links, triggers and dependencies is called
the execution graph of the query. An execution graph has five
types of vertices, four of which are depicted in Figure 12 which
corresponds to the final pruned structure in Figure 10. The four

worksheet

1* 1*

1* 1*

1* 1*

1
1 1 1

Figure 11. Structure with no virtual cells.

worksheet
2*

2*

2*

3*,2 2 2

3*,2 2 2
2 2 2 2

2 3 3 3

2 3 4 4

3 3

2

2

3

3 4

5

5

5

5

6

6

6 7

7

7

6

7 6 5

1
2

3

5

6

first reduced array

triangular array

0 0

Figure 9. Virtual cells, data flow and triggers after
execution of gauss.

gauss (1)

worksheet

2*

2*

2*

3*,2 2 2

3*,2 2 2

2 2 2 2

2 3 3 3

2 3 4 4

3 3

2

2

3

3 4

backsubstitute (5)

5
5

5

5

5

backsubstitute (6)

6

6

6

backsubstitute (7)

7

backsubstitute (8)

1

2

3

5

6

0 0

6

7

Figure 8. Structure produced by execution of backsubstitute.

types of vertices in this figure are worksheet cells, virtual cells
and goals, represented by black squares, grey squares and dia-
monds, respectively, and arrays, each represented by a grey box
enclosing the vertices corresponding to the cells of which the
corresponding array is composed. This arrangement is meant to
make the diagram readable, not to imply a relationship between an
array vertex and the vertices it contains. As discussed below, the
function of an array vertex is simply to provide a reference to the
dimensions of the corresponding array.

In Figure 13, we have added formula vertices (the fifth type),
represented by circles, together with associated data flow edges,
represented by plain arrows, and dependency edges, represented
by dotted arrows. To avoid clutter, we have shown only some of
the formula vertices and dependency edges that occur in our ex-
ample. A formula vertex corresponds to one of the formulae in the
content of one cell: hence there is exactly one data flow edge leav-
ing a formula vertex, and any number of data flow edges entering
a cell vertex. A dependency edge connects a goal vertex to another
vertex which exists because of the execution of the goal: hence
there is no dependency edge entering a worksheet cell, and ex-
actly one dependency edge entering each other vertex. We have
assumed that the last equation turns out to be the pivot at each
level of triangularisation.

Finally, in Figure 14 we have added the trigger edges, repre-
sented by arrows with diamond-shaped heads. A trigger edge en-
ters a goal vertex, and indicates the need to re-execute the goal if
the value of the vertex (a cell or array) at the tail of the edge
changes. Note that although goal 3 should be re-executed if the
dimension of the array represented by the lower left array vertex
changes, it is unnecessary to include a trigger edge indicating this,
since the dimension can change only if goal 2 is re-executed, in
which case goal 3 will be re-executed because of the dependency
edge from 2 to 3.

Let D be the domain over which formulae are constructed,
including c, v, x, q, g which respectively denote cycle, value, con-
flict, goal and guard errors, and !, denoting “no value”. A value is
associated with each vertex in the execution graph, as illustrated
by the following examples.

• Successful execution: Suppose formulae in the cells of the first
parameter array in the above example produce the values dis-

played in the corresponding cell vertices in Figure 15. After
execution, the other vertices have the values shown in or beside
them. All goal vertices have the value !, indicating success.

• Execution with evaluation errors: Now suppose the formulae
in the cells of the first parameter array in the above example
produce the values shown in Figure 16. The values of the up-
per two vertices in the last column indicate errors arising from
the evaluation of the formulae in the corresponding cells. The
value ! in the bottom vertex of this column indicates that the
corresponding cell is empty. Neither the errors nor the ! value
cause execution of the query to fail, so the structure of the
execution graph is the same. The values, however, are as
shown, assuming the Excel convention that ! is equivalent to
0 when evaluating arithmetic expressions. Although the for-

1
2

3

5

Figure 12. Cell, array and goal vertices of an execution graph of
the gauss query.

1
2

3

5

Figure 13. An execution graph of the gauss query, including
some of the formula vertices and associated data flow edges, and
some of the dependency edges.

1
2

3

5

Figure 14. An execution graph of the gauss query, including the
trigger edges.

mulae introduced by the application of gauss propagate the v
and x errors, the errors are inherent in the worksheet: hence the
goal vertices in the graph have the value !"

• Execution with cycle errors: Figure 17 shows the values that
result if the third cell in the first row of the first parameter
array contains a formula dependent on the first cell of the sec-
ond parameter array. In contrast to the previous example, the
cycle error is not solely due to the worksheet the formulae
introduced by the application of gauss, hence the cycle error
is propagated from formula vertices to the goal vertices on
which they depend. The cycle in this example involves only
data flow edges, but in general, cycles can include edges of all
three kinds.

• Failure: If a definition is applied to arrays of inappropriate
size, unification will fail, resulting in a goal error, illustrated in
Figure 18.

3.3. Interaction Of Worksheet Elements

In this section, we examine the re-execution that follows editing
of a worksheet. First we formally define the structure of execution
graphs, introduced in the above examples, omitting array vertices,
since our main focus is re-execution following a change in cell
contents.

If W is a worksheet, let C denote the set consisting of the cells
in W and all virtual cells, G the set of goal templates in W and F
the set of all occurrences of formulae in C. The computation graph
of W is a directed graph E=(V,E) where V = G ! C ! F, and E = D

! X ! T where

D = { (c,f) | c " C, f " F and f contains a reference to c } !

{ (f,c) | c " C, f " F and f is in the content of c }

X = { (g,f) | g " G, f " F and f is created by the execution of g } !

{ (g1,g2) | g1,g2 " G and g2 is created by the execution of g1 }

T = { (c,g) | c " C, g " G and a trigger for g is associated with c }

D, X and T are the sets of dataflow, dependency and trigger
edges, respectively.

Note that “worksheet” and “computation graph” are actually
synonymous: the latter is simply a structural description of the
former.

1
2

3

5

(3,4)

(2,3)

(1,3)

(3,4)

-2 1 2 -3

-3 -1 2 -11

2 1 -1 8

.3 .3 .6

1.6 .6 4.3

-3 -1 2 -11

1.6 .6 4.3

.2 -.2

2 3 1

.3

-3

2

1

-.2

!

!

!

!

Figure 15. Values for vertices of an execution graph of the gauss
query, following successful execution.

1
2

3

5

(3,4)

(2,3)

(1,3)

(3,4)

-2 1 2 x

2 1 -1 v

.3 .3 v

1.6 .6 v

-3 -1 2 ⊗

1.6 .6 v

.2 v

v v v

.3

-3

v

v

v

-3 -1 2 ⊗

!

!

!

!

Figure 16. Values of execution graph vertices following execu-
tion with evaluation errors.

1
2

3

5

(3,4)

(2,3)

(1,3)

(3,4)

-2 1 2 -3

-3 -1 2 -11

2 1 c 8

.3 c .6

1.6 .6 4.3

-3 -1 2 -11

1.6 .6 4.3

c -.2

c c c

c

-3

2

c

-.2

!

c

c

c

c

Figure 17. Values of execution graph vertices following execu-
tion with cycle errors.

1

(2,4) (2,!)

g

Figure 18. Values of execution graph vertices following an
execution with goal error.

DEFINITION. If E is a computation graph and C1 # C # C then:

• If g " G, then g is independent of C iff for every c " C, there is
no walk from c to g.

• If G # G and f " F, f is a barrier for C1 in C[G] iff there is a
walk from some c " C – C1 to f which includes at least one
trigger edge incident on some g $ G.

• If G # G and g " G, g is partially controlled by C1 in C[G] iff
for every c " C1 there exists at least one walk from c to g, and
there is no walk from c to g that includes a barrier for C1 in
C[G]. g is fully controlled by C1 in C[G] iff there is no C2 such
that g is partially controlled by C2 in C[G], and C1 % C2 # C. If
g " G is fully controlled by C1 in C[G], C1 is called the activa-
tor set for g in C[G].

LEMMA. If E is acyclic, g " G, G # G and C # C, then either g is
independent of C or there exists a unique subset C1 of C such that
g is fully controlled by C1 in C[G]. In the latter case, let GC be the
set of all goals fully controlled by subsets of C, then there exists at
least one g " GC – G such that for all g1 " GC, (g1,g) $ X. g is said
to be a candidate for C[G].

Simply put, the above lemma guarantees that, when the value
of every cell in some set C of an acyclic worksheet changes, either
there are no goals that need to be re-executed, in which case the
changes can simply be propagated by data-driven data flow in the
usual way; or among the goals that must be re-executed, there is at
least one which does not rely on values produced by re-execution
of some others. It is important to note, however, the role of the
suffix [G] in the definition. In practice, when the content of a cell
changes, its value may not, so we cannot assume that a goal must
be re-executed if the content of a cell in its activator set changes.
Hence, if a candidate g is selected, but evaluating its trigger cells
does not change their values, g should not be re-executed, and
should be excluded when deciding which formulae are barriers
while searching for another candidate.

This leads to the algorithm in Figure 19 for updating the work-
sheet following a change in the content of each cell in some set C.
In line 9, “vertices dependent on g” means all vertices reachable
from g by a walk consisting of dependency edges. “Data flow
descendents” in line 13 means vertices reachable by walks con-
sisting of dataflow edges. Execution of g in line 10 will halt if a
guard or cycle error occurs.

Other changes that may be made to a worksheet are handled as
follows.

a) A goal template g is added to the sheet: Let C=& and run the
re-execution algorithm from line 10.

b) A goal template g is removed: Delete all dependent vertices,
let C be the set of remaining cells the content of which has
changed. Run the re-execution algorithm.

c) A parameter array of a goal template is resized: The template
is removed (b) and a new template added (a).

4. Concluding remarks

Many of the features of spreadsheets that have contributed to their
runaway popularity with end-users also make them highly error-
prone and therefore unsuitable for the strategically important app-
plications for which they are routinely used. Primitive program-
ming facilities, lack of high-level structural abstractions, and lack
of debugging and testing tools all contribute to the errors that
occur in the majority of spreadsheet applications, with well known
negative consequences.

To rectify these problems, L-sheets augments the simple data
flow model of spreadsheets with a form of logic programming in
which the user can draw rectangular arrays of cells, specify how
such arrays are composed of smaller arrays, and how they are to
be filled with formulae. The resulting visual language provides a
mechanism for describing the structure of a spreadsheet, as well
as programming facilities superior to the simple data flow of for-
mulae in cells. Although logic programming may be beyond the
grasp of the majority of spreadsheet users, the L-sheets version,
which deals with visually represented arrays rather than abstract
terms, may be more palatable. Furthermore, beginners can start
with the standard data flow model, incorporate pre-built defini-
tions, then gradually move towards building their own.

In this paper, we have considered the problem of maintaining
in L-sheets one of the most important features of spreadsheets, the
immediate re-execution of those cells affected by an edit. This
involved studying the interaction between computational elements
in a worksheet, that is, goal templates and formulae in cells, which
can be entered by the user or deposited by execution of goal tem-
plates. We noted that the behaviour of the logic programming
extension should be as consistent as possible with standard
spreadsheet behaviour, and that this principle has certain conse-
quences for the design of the language, in turn affecting the way
changes propagate through the computational elements in a sheet.
These considerations led to a re-execution algorithm.

Issues we are currently investigating or intending to investigate
are as follows.

• Indicating or enforcing correct parameter size. In the current
prototype, when applying a definition to a sheet the user is
given some help in choosing arrays of acceptable size. For
example, as the user drags to mark out a rectangle of cells
when applying budget, the outline of the rectangle is coloured
green if the rectangle has 3n columns for some non-zero n, and
at least 3 rows, and red otherwise. This is accomplished by
repeating a simplified version of execution as the drag occurs,
a brute force approach with significant limitations. We are at
present exploring a more sophisticated method that relies on
an analysis of the size constraints in the definitions.

• Computing formats. Arrays in program sheets will contain
formats such as font, cell colours and borders, which will be
transferred to the worksheet during unification. Such formats
will become another part of a cell’s content, so it will be nec-
essary to determine the rules for combining formats and re-

 1 repeat {
 2 G = &;

 3 found = false;
 4 while (there is a candidate for C[G] and not found)

 {
 5 g = some candidate for C[G];

 6 evaluate trigger cells for g;
 7 if (values have changed) found = true;

 }
 8 if (found) {

 9 delete all vertices dependent on g;
 10 execute g;

 11 add cells with changed content to C;
}

 12 until (not found) ;
 13 evaluate all data flow descendents of cells in C ;

Figure 19. Worksheet re-execution.

solving format conflicts, and whether changes in formats
should trigger re-execution.

• Re-execution. The present prototype of L-sheets implements
the standard spreadsheet model, including re-execution of data
flow, the building and editing of program sheets, and the ap-
plication of definitions to worksheets. We have yet to incorpo-
rate the full re-execution algorithm described above.

• Debugging facilities. The errors that can occur during execu-
tion are discussed above. Appropriate debugging tools must be
devised for tracking and fixing each of them. In addition, vari-
ous debugging tools and methodologies have been proposed
for standard spreadsheets [20]. Research is required to deter-
mine the extent to which they can be incorporated into L-
sheets.

• Language enhancements. In the current version of the lan-
guage, nesting of named arrays is not allowed, primarily to
avoid complexity in the visual notation. Some programs, how-
ever, are more simply expressed with nested named arrays. We
will investigate ways of incorporating them without compli-
cating the interface.

• More powerful array structures. In the current version of L-
sheets, an array of variable width is homogeneous horizon-
tally: that is, it represents a repetition of similar columns. An
array made up of repeated blocks of dissimilar columns must
be specified by a definition, for example, the years definition
in Figure 2. The same applies to arrays of repeated blocks of
dissimilar rows. We are looking into extending the definition
of arrays, and array unification, to allow such repetition of
blocks.

• Deducing definitions. Several researchers have described
mechanisms for analysing and generalising patterns in the
content of spreadsheets to generate structure specifications
[10, 14]. Spreadsheets such as those defined by budget, for
example, are amenable to such analysis. We will explore the
possibility of using these or other mechanisms to automati-
cally generate L-sheets definitions. In particular, we are inter-
ested to see how far such automatic generation can be pushed
beyond simple examples such as budget.

5. Acknowledgements

This work was supported by the Natural Sciences and Engineering
Research Council of Canada via Discovery Grant OGP0000124.

6. References

[1] Abraham, R. and Erwig, M. 2006. Inferring templates from spread-
sheets. In Proceedings of the 28th International Conference on Soft-
ware engineering (Shanghai, China, May 20 - 28, 2006). ACM, New
York, NY, USA, 182-191. DOI=
http://doi.acm.org/10.1145/1134285.1134312

[2] Bricklin, D. and Frankston, R. VisiCalc: Information from its crea-
tors. http://www.bricklin.com/visicalc.htm. Accessed April 9, 2009

[3] Burnett, M., Atwood, J., Djang, R.W., Reichwein, J., Gottfried, H.
and Yang, S. 2001. Forms/3: A first-order visual language to explore
the boundaries of the spreadsheet paradigm. J. Funct. Program., 11,
2 (March 2001), 155-206.

[4] Cervesato, I. 2007. NEXCEL, a deductive spreadsheet. The Knowl-
edge Engineering Review, 22, 03 2007), 221-236. DOI=
http://dx.doi.org/10.1017/S0269888907001142

[5] Chambers, C. and Erwig, M. 2008. Dimension inference in spread-
sheets. In Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing, 2008 (Herrsching am Ammersee,
Germany, September 19-21, 2008). IEEE Computer Society, Pis-

cataway, NJ, USA, 123-130. DOI=
http://dx.doi.org/10.1109/VLHCC.2008.4639072

[6] Cox, P.T. 2007. Enhancing the Programmability of Spreadsheets with
Logic Programming. In Proceedings of the Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing
(Coeur d'Alène, ID, USA, September 23-27, 2007). IEEE Computer
Society, Piscataway, NJ, USA, 87-94. DOI=
http://dx.doi.org/10.1109/VLHCC.2007.18

[7] Cox, P.T. and Nicholson, P. 2008. Unification of Arrays in Spread-
sheets with Logic Programming. In Proceedings of the Practical
Aspects of Declarative Languages (San Francisco CA, 2008). Lec-
ture Notes in Computer Science 4902. Springer, Berlin, 100-115.
DOI= http://dx.doi.org/10.1007/978-3-540-77442-6_8

[8] Croll, G.J. 2008. In Pursuit of Spreadsheet Excellence. In Proceed-
ings of the European Spreadsheet Risks Interest Group (Greenwich,
UK, July, 2008).

[9] Erwig, M. and Burnett, M.M. 2002. Adding Apples and Oranges. In
Proceedings of the 4th International Symposium on Practical As-
pects of Declarative Languages (Portland, OR, USA, January 19-20,
2002). Lecture Notes in Computer Science 2257. Springer, Berlin,
173-191. DOI= http://dx.doi.org/10.1007/3-540-45587-6

[10] Erwig, M., Abraham, R., Kollmansberger, S. and Cooperstein, I.
2006. Gencel: a program generator for correct spreadsheets. Journal
of Functional Programming, 16, 3 (May 2006), 293-325. DOI=
http://dx.doi.org/10.1017/S0956796805005794

[11] EuSpRIG. European Spreadsheet Risks Interest Group. Spreadsheet
mistakes - news stories. http://www.eusprig.org/stories.htm. Ac-
cessed July 2008

[12] Farkas, Z. 1987. LISTLOG - A Prolog Extension for List Processing.
In Proceedings of the International Joint Conference on Theory and
Practice of Software Development (Pisa, Italy, March 23-27, 1987).
Lecture Notes in Computer Science 250. Springer-Verlag, Berlin, 82-
95. DOI= http://dx.doi.org/10.1007/BFb0014968

[13] Gupta, G. and Akhter, S.F. 2000. Knowledgesheet: A Graphical
Spreadsheet Interface for Interactively Developing a Class of Con-
straint Programs. In Proceedings of the Second International Work-
shop on Practical Aspects of Declarative Languages (Boston, MA,
USA, 2000). Lecture Notes in Computer Science 1753. Springer-
Verlag, Berlin, 308-323. DOI=
http://dx.doi.org/10.1007/3-540-46584-7

[14] Paine, J. 2004. Spreadsheet Structure Discovery with Logic Pro-
gramming. In Proceedings of the European Spreadsheet Risks Inter-
est Group (Greenwich, UK, 2004). 121-133.

[15] Paine, J. 2005. Excelsior: bringing the benefits of modularisation to
Excel. In Proceedings of the European Spreadsheet Risks Interest
Group (Greenwich, UK, July, 2005). 173-184.

[16] Panko, R.R. 2006. Spreadsheets and Sarbanes-Oxley: Regulations,
Risks, and Control Frameworks. Communications of the Association
for Information Systems, 17, Article 29 (2006), 647-676. Available
at: http://aisel.aisnet.org/cais/vol17/iss1/29

[17] Peyton Jones, S., Blackwell, A. and Burnett, M. 2003. A user-centred
approach to functions in Excel. In Proceedings of the Proceedings of
the eighth ACM SIGPLAN international conference on Functional
programming (Uppsala, Sweden, June, 2003). ACM, New York, NY,
USA, 165-176. DOI= http://doi.acm.org/10.1145/944705.944721

[18] Rajalingham, K., Chadwick, D. and Knight, B. 2001. An Evaluation
of a Structured Spreadsheet Development Methodology. In Proceed-
ings of the European Spreadsheet Risks Interest Group (Greenwich
UK, July, 2001). 39-59.

[19] Ramakrishnan, C., Ramakrishnan, I. and Warren, D. 2006. Deductive
Spreadsheets Using Tabled Logic Programming. In Proceedings of
the 22nd International Conference on Logic Programming (Seattle,
WA, USA, August 10 - 22, 2006). Lecture Notes in Computer Sci-
ence 4079. Springer, Berlin, 391-405. DOI=
http://dx.doi.org/10.1007/11799573_29

[20] Ruthruff, J.R., Prabhakararao, S., Reichwein, J., Cook, C., Creswick,
E. and Burnett, M. 2005. Interactive, visual fault localization support
for end-user programmers. Journal of Visual Languages and Com-
puting, 16, 1-2 (April 2005), 3-40. DOI=
http://dx.doi.org/10.1016/j.jvlc.2004.07.001

[21] Saadat, S. 2001. Managing Critical Spreadsheets in a Compliant
Environment. In Proceedings of the European Spreadsheet Risks
Interest Group (Greenwich, UK, July, 2001). 21-24.

[22] Scaffidi, C., Shaw, M. and Myers, B. 2005. Estimating the numbers
of end users and end user programmers. In Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing
(Dallas, TX, USA, September 20-24, 2005). IEEE Computer Society,
Piscataway, NJ, USA, 207-214. DOI=
http://dx.doi.org/10.1109/VLHCC.2005.34

[23] Spenke, M. and Beilken, C. 1989. A spreadsheet interface for logic
programming. In Proceedings of the SIGCHI conference on Human
factors in computing systems: Wings for the mind (Austin, TX, USA,
April 30 - May 4, 1989). ACM, New York, NY, USA, 75-80. DOI=
http://doi.acm.org/10.1145/67449.67466

[24] Tanimoto, S.L. 1990. VIVA: A visual language for image processing.
Journal of Visual Languages and Computing, 1, 2 (June 1990), 127-
139. DOI= http://dx.doi.org/10.1016/S1045-926X(05)80012-6

[25] van Emden, M.H., Ohki, M. and Takeuchi, A. 1986. Spreadsheets
with incremental queries as a user interface for logic programming.
New Gen. Comput., 4, 3 (October 1986), 287-304.

[26] Wilson, S. 1997. Building a Visual Programming Language. Mac-
Tech, 13, 4 (1997). Available at:
http://www.mactech.com/articles/mactech/Vol.13/13.04/Spreadsheet
2000/

