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Abstract

Spreadsheets are among the most widely used programming tools, 
having been adopted almost universally for computing and tabu-
lating financial information. They were not designed for use in 
strategic applications, however, since they lack all  but the most 
rudimentary programming support, and are highly likely to con-
tain errors.

In L-sheets, a recently proposed extension to  spreadsheets, the 
standard data flow computational model is augmented with a form 
of visual logic programming in which term unification is  replaced 
by  array unification, providing both improved programmability 
and a means to specify the high-level structure of sheets.

One of the most important  properties of spreadsheets is  “level 3 
liveness”, the immediate recomputation of those cells  in a sheet 
affected by an editing change. This is  simple to achieve with data 
flow computation, but is complicated by the addition of logic 
programming. Here we address the problem of maintaining live-
ness in L-sheets.

Categories and Subject Descriptors D.1.7  [Programming Tech-
niques]: Visual Programming. I.2.3 [Artificial Intelligence]:  
Deduction and Theorem Proving - logic programming. H.4.1 [In-
formation Systems Applications]: Office Automation - spread-
sheets.

General Terms Reliability, Languages.

Keywords Spreadsheets; logic programming; arrays; liveness;  
visual programming.

1. Introduction

The spreadsheet, which first appeared  in 1979 as VisiCalc, was 
one of the first programming tools  for non-technical  users [2]. The 
key to the success of the spreadsheet is  that it employs a simple 
metaphor familiar to its  target users, paper ledger sheets contain-
ing data in rows and columns, presented in a graphical user inter-
face with which the user can directly interact.

Early spreadsheets  were rudimentary at  best, providing little 
more than the ability to enter values and formulae into cells. Nev-
ertheless, they gave end-users, initially financial industry workers, 
the power to rapidly build programs for analysing and tabulating 
data, and forecasting, Needless to say, users  began to build larger 
and more complex spreadsheet applications, and to use them to 
support key business decisions.

As spreadsheet use has grown, features have been added, such 
as multi-sheet workbooks, references between sheets  and work-
books, macros, plug-ins, functions and access to external pro-
gramming languages. Consequently, the spreadsheet has evolved 
from a simple, useful but limited programming tool, to an ad hoc 
collection of features, with little support for developing robust and 
reliable applications. As a result, although the spreadsheet is one 

of the most widely used programming tools [22], it is also  one of 
the most error-prone. Various studies  have shown that  over 90% 
of all spreadsheets contain errors [16]. Many instances have been 
reported of spreadsheet errors leading to significant financial 
losses and other negative consequences [11].

Although spreadsheets have been an ingredient of many re-
search projects, their deficiencies have lately become the centre of 
attention, at least  partly motivated by legislation placing liability 
for financial misreporting on company directors and managers 
[16]. Some researchers  are concentrating on minimising the risk 
of spreadsheet errors  by auditing [8], or employing spreadsheet 
development methodologies  and management  practices [18, 21]. 
Others are focussing on spreadsheet technology itself, with a view 
to  providing tools  for testing and debugging  [9], analysis of struc-
ture [1, 5, 14], high level design [10, 15], and programming [3, 
17, 26].

Several research projects  have investigated the intersection of 
spreadsheets and logic programming. In  some proposals, a 
spreadsheet-like grid is used as an interface to a logic program-
ming engine, the cells displaying the values of variables instanti-
ated by a logic program separate from the sheet [23, 25]. In oth-
ers, arrays are used  to define predicates. For example, in  NEX-
CEL an array can represent a predicate defined by a set of clauses, 
the bodies of which consist of literals that refer to other arrays 
representing predicates [4]. In  LogiCalc, an array can represent  a 
table defining a relation, and cells can contain queries, lists or 
other terms [13]. In XcelLog, cells contain expressions which are 
translated into clauses for execution by an underlying logic pro-
gramming execution mechanism [19]. All of these systems present 
a sheet interface to a computational mechanism which is signifi-
cantly different from the formula-in-cell data flow model, and 
therefore do not contribute to  overcoming the deficiencies of 
standard spreadsheets. To our knowledge, there has been no com-
bination of logic programming and spreadsheets that preserves the 
standard data flow model, aside from L-sheets [6, 7], described 
below.

Most of the cells  in more complex spreadsheet applications are 
not unique, but have characteristics in common with their neigh-
bours. For example, some contiguous cells may contain formulae 
of the same form, each referring to cells  at the same vertical  and 
horizontal offset. Although cells with such common characteris-
tics form arrays within the sheet, spreadsheets provide only basic 
tools for setting up  and managing these arrays, limited to dragging 
the corner of a cell to copy appropriate variants of its formula to 
the cells in a rectangle.

L-sheets is based on the observation that assembling a rectan-
gular array of cells by attaching a column (or row) to another 
array is  analogous to assembling a list  with the | operator in 
Prolog. Arrays and lists are fundamentally different, of course, in 
that lists are recursive structures accessed at one end, while arrays 
are not. Hence the corresponding basic operation on arrays is  



juxtaposition, either vertical or horizontal, of two arrays where 
neither is restricted to be a column (or row). Pursuing the analogy, 
L-sheets replaces unification of terms by unification of arrays to 
obtain a form of logic programming in which the spreadsheet user 
can specify the structure of arrays, relationships between arrays 
and computations that add content  to array cells. Since arrays and 
the juxtaposition of arrays can be visually represented, the result-
ing language is visual, and in keeping with the sheet metaphor 
familiar to spreadsheet users. In contrast to previous spreadsheet/
LP combinations, L-sheets delivers the following benefits:

• A visual, high-level specification of spreadsheet structure.

• Enhanced programmability.

• The existing “formula-in-cell” model, familiar to current us-
ers, is retained.

• User-defined abstractions are built in the sheet interface, al-
lowing for a smooth transition from novice to expert user.

If L-sheets  is to succeed as a seamless extension of standard 
spreadsheets, it must preserve key properties, in particular, the 
feedback provided by immediate re-evaluation of cells following 
editing. Although this is easy to achieve in the data flow model  of 
standard spreadsheets, it is  more complicated  when there are both 
data flow and logic programming computations in  a sheet. A pre-
liminary and inconclusive discussion of re-execution can be found 
in  [6]. Experience with a prototype implementation resulted in 
some refinements to the language [7], and  have provided further 
insights  into re-execution, leading to the algorithm we report here 
which has yet to be incorporated into the prototype.

In the next section we informally describe L-sheets, and make 
observations about  some characteristics of the language entailed 
by  the requirement that  L-sheets be as consistent with normal 
spreadsheets as possible. In Section 3, we develop the re-
execution procedure, followed by concluding remarks and discus-
sion in Section 4. 

2. L-SHEETS

In this section, we describe L-sheets informally via examples, 
reproduced from [7] with minor changes. These examples were 
chosen because one illustrates what we see to be a typical use of 
L-sheets, while the other performs a computation one would not 
normally associate with spreadsheets. In  addition, they have con-
trasting re-execution properties, relevant to the discussion of live-
ness in Section 3. A more formal description of the language can 
be found in [6]. 

An application in L-sheets consists  of a set of worksheets, like 
those in  an ordinary spreadsheet, together with program sheets 
which contain definitions as described in the examples  below. 
Computations in a worksheet  are de-
fined in two ways. The user may insert 
formulae into cells in the usual way, or 
apply definitions from program sheets, 
which will  also insert formulae into 
cells. Values for cells are computed  
according to the data flow defined by 
these formulae.

2.1. Spreadsheet Structure Specifi-
cation

As we mentioned earlier, one approach 
to  improving  the reliability  of spread-
sheet applications is to provide tools for 
specifying the structure of sheets. This 
is  illustrated in an example due to Erwig 

et al. [10], which deals with the structure of a budget worksheet, 
as shown in Figure 1. This worksheet is  an  example of a family of 
worksheets in which rows of budget items are repeated, and col-
umns are repeated in blocks  of three, each block containing data 
for one year. As the figure shows, formulae which occur in, or 
refer to, repeated cells, conform to a pattern which can be applied 
to a budget worksheet of any size.

The family of budget worksheets of which the sheet in Figure 1 
is  an  example, is specified  by the definitions budget and years in 
the program sheet  shown in Figure 2. The budget definition  has a 
single case, the head of which  is a template named budget, repre-
sented by a pale grey rectangle. The body of this case consists of a 
single template, named years. Body templates are usually dark 
grey. Templates contain  parameters, which are arrays, drawn as 
grids similar to a worksheet grid. In our example, the budget 
template has a single parameter, while the years template in the 
body of the case of the budget definition has two.

A definition is analogous to a set  of clauses defining a predi-
cate in Prolog. In particular, a case corresponds to a clause, a tem-
plate to  a literal, and the parameters of a template to  the list  of 
terms from which a literal is composed.

The structure of an array in a template is indicated by the col-
our of its grid lines. A vertical grey line indicates that the width of 
the subarray  in  which the line lies is variable. For example, con-
sider the array in  the budget template. Although the subarray with 
the heavy outline labelled  A is drawn with two columns, the line 
separating these columns is grey, so the subarray A is  variable in 
width. Similarly, grey horizontal lines indicate variable height. 
With this is mind, we see that the array in the budget template has 
one column, followed by a variable number of columns, followed 
by  two columns. It  also has two rows, followed by a variable 
number of rows, followed by one row. Values of subarrays are 
displayed when they are known. For example, the value of the 1  ! 1 
subarray at the left end of the second row is the string “Category”. 
The annotation F1 on the 1  !  1 subarray at the bottom right corner 
is  not part of the program. It has been added to indicate that the 
content of the subarray is as shown in the legend.

The definition budget specifies that an array  is an instance of a 
budget worksheet if it  has  the structure described in  the previous 
paragraph and contents as shown, and the subarrays named A and 
B have the structure and content specified by the definition years. 

To apply this definition to a worksheet, the user selects a rec-
tangular array of cells in  the sheet to correspond to the parameter 
(Figure 3a). A (virtual) goal template named budget is created 
with  the selected array as its parameter. As in  Prolog execution, 
this  goal template is unified with the head of the first (and  only) 
case for budget. This involves unifying the selected array with the 
parameter of the head template, using  the algorithm described in 
[7], which matches the structure of the two arrays  and adds the 

Figure 1. Budget worksheet displaying formulae (from [10] p.299)



contents of the subarrays of the parameter array of the head tem-
plate to the corresponding cells of the goal parameter array (Fig-
ure 3b). In  particular, the formula F1 is rewritten to refer to the 
appropriate cells in  the worksheet, then added to the content of the 
bottom-right cell of the rectangular array selected in the work-
sheet. Since the second column of the subarray B corresponds  to 
column I in the sheet and stretches from row 3 to row 5, F1 is  
rewritten to SUM(I3:I5). Note that the syntax of 
formulae in a program sheet differs from that 
of formulae in  a worksheet. In particular, a 
reference in a program sheet formula consists 
of a subarray name followed by row and col-
umn indices, while in a worksheet a reference 
consists of the name of a column and the num-
ber of a row in the sheet. The "  in  the formula 
SUM(B1,2:B",2) denotes the last row of the 
referenced subarray B.

Conceptually, the above execution step 
replaces the initial goal  template with  a years 
goal template, which is derived  from the body 
of the applied case, and contains the two rec-
tangular arrays  from the worksheet, indicated 
by  shading, to which subarrays A and B were 
bound by the unification. Execution then pro-
ceeds in a fashion analogous to Prolog.

The first case of years contains two rulers, 
used here to indicate that the second parameter 
of the head templates and the array E in the 
body  template both have height H. The black 
rectangle in the head of the second case of the 
years definition represents an array which is 0 
in  at least one dimension. Also, if a subarray 
which is  variable in one or both dimensions 
contains a formula, then when the subarray is 
unified with an array of fixed size, the formula 
is  extended in the same way that a formula in 
Excel is extended; that is, by appropriately  
incrementing the indices of references in  the 
formula. 

We leave it to the reader to complete the 
example, verifying that the final state of the 

worksheet is  as shown in Figure 3c. Note 
that execution proceeds according to the 
normal Prolog execution order: that is, cases 
of a definition are tried in the order in which 
they are listed, and failure causes backtrack-
ing. In this example, failure can occur only 
if two arrays cannot be unified because their 
sizes cannot be matched. 

2.2.   Improved Programmability

Although solving simultaneous linear equa-
tions is not a typical spreadsheet use, the L-
sheets implementation of Gaussian elimina-
tion  with partial pivoting, depicted in Figure 
4, illustrates the improvement in program-
mability which has been achieved. The array 
labelled A in the head of the first case of 
gauss must be bound to an n ! n+1 array 
containing the coefficients  and right-hand 
sides of the equations to be solved, while C 
must be bound to a 1 ! n array for the solu-
tion vector.
The first goal template of the single case of 
gauss, with a striped background, no name, 

and arrays containing only Boolean-valued expressions, is an 
example of a guard. During execution, the arrays in the guard 
must be instantiated to arrays  of fixed size, and their formulae 
extended as described above. The guard succeeds if all  the formu-
lae in each of its arrays produce true. Note that $ in a program 
sheet formula has the same meaning as in a worksheet formula: 
that is, it indicates that the following row or column index is not 

budget  years

BTotal

Category Qnty Cost

Total F1

A

B

A

years  years

E

Qnty Cost Total

F2

Total F3

C

D DF4 F5

H
  

H
  

years

0 0

Figure 2. An L-sheets program defining a family of budget spreadsheets. The annotations 
F1, F2,… are not part of the program, but indicate that the content of the annotated subarray 
is as shown in the legend. (after [6]).

LegendLegend

F1 { SUM(B1,2:B",2) }

F2 { C1,1*C1,2 }

F3 { SUM(C1,3:C",1) }

F4 { C1,1 + E1,1 }

F5 { C1,3 + E1,2 }

(a) Selecting the parameter

A B

(b) After unification. The dotted outline and shaded
areas have been added for explanatory purposes.

{“Total”}

{B3*C3}

{B4*C4}

{B5*C5}

{SUM(D3:D5}

{“Category”}

{“Oranges”}

{“Apples”}

{“Lemons”}

{“Total”}

{“Qnty”}

{30}

{25}

{40}

{“Cost”}

{0.25}

{0.05

{0.15}

{“Qnty”} {“Cost”} {“Cost”}

{C3+F3}

{C4+F4}

{C4+F4}

{SUM(I3:I5}

{“Total”}

{“Qnty”}

{B3+E3}

{B4+E4}

{B4+E4}

{“Total”}

{E3*F3}

{E4*F4}

{E5*F5}

{SUM(G3:G5}

(c) Spreadsheet after execution, displaying formulae rather than values.

Figure 3. Applying the budget definition to a sheet.



incremented when the formula is extended. The guard in this  case 
specifies that the absolute value of the leading coefficient  of the 
equation represented by subarray B is  greater than or equal to the 
absolute value of the leading coefficient of each of the other equa-
tions, and is not zero. If the guard succeeds, then B is the pivot 
row. 

This example illustrates that  array unification, unlike term 
unification, is not unique. If the array to be unified with the first 
array in the head of the second case of triangularise has n rows, 
then there are n ways of unifying the two arrays, so during execu-
tion  of this case, unification generates successive matches until 
one is approved by the guard template. Array unification is, in this 
respect, similar to the unification of lists containing segment vari-
ables in LISTLOG [12].

2.3. Observations

The motivation for L-sheets was not  to invent a new programming 
mechanism, but to  enhance the reliability  of spreadsheets by im-
proving programmability and providing a means to specify 
spreadsheet structure, as discussed in Section 1. Consequently, L-
sheets is designed to exhibit behaviour that is as consistent with 
standard spreadsheet behaviour as possible. In the remainder of 
this  section, we discuss some of the features of L-sheets  that result 
from this design principle.

2.3.1. Occurrences of subarrays

An array that occurs in a template of a definition is “virtual” in the 
sense that it  has no physical manifestation, unlike an array in a 
goal template which has a fixed position in the 
worksheet and includes some number of actual 
worksheet cells. Suppose the head of a case of a 
definition D includes two occurrences of an array 
A, and that a goal template is  created by applying 
this  definition to a worksheet in such a way that 
the two occurrences of A are unified with different 
arrays B and C in the worksheet. Each cell  in B 
would become identical to the corresponding cell 
in  C, in effect providing two points of access to 
one set of formulae. Although there may be some 
value to this, it  violates the “ledger sheet” meta-
phor on which  spreadsheets are based. No subar-
ray, therefore, can occur more than once in a head 
template.

2.3.2. Cell content

In the example in Section 2.1, the array selected in 
the worksheet to be unified with the parameter of 
budget includes  cells which already contain  
formulae, and cells to which the execution of 
budget will add formulae. Clearly a non-empty 
worksheet cell could quite possibly have a for-
mula added to it by execution of a goal template. 
The likelihood of this happening  is even greater if 
one of the arrays in a goal template is of variable 
size. For example, consider the definition unique, 
depicted in Figure 5, which produces an output  
array by removing duplicate values from an input 
array. The array selected in the worksheet for out-
put must be of variable length, since its  actual 
length will depend on the content of the input  
array, so  it may well extend across cells  which  
already have content. There are three ways of 
dealing with this eventuality, as follows.

• A cell  can contain at most  one formula: Execution of a goal 
template fails if it violates this condition. This is contrary to the 
behaviour of standard spreadsheets in  which a new formula 
added to a cell replaces the current content. 

• New content replaces existing content, as in standard spread-
sheets. This solution has several undesirable consequences. 
First, since the new content is generated automatically by exe-
cution of a goal template, the user is not  directly responsible for 
the change, and may find it  mysterious. Second, it could occur 
unexpectedly as a consequence of a seemingly unrelated action, 
for example, as  a result of editing a cell the value of which is 
used to compute the value of one of the cells of the input array 
in  the unique example, thereby changing the size of the output 
array. Third, since execution of a template can  produce new 
formulae for many cells, there could be many simultaneous 
changes. Finally, execution of the template may replace some 
cell contents resulting from a previously executed goal template 
T but  not others, resulting in an anomalous situation in which 
the content of cells  in  the scope of X no longer corresponds to 
the execution of X.

• A cell contains a set  of  formulae. If all formulae compute the 
same value, this is the value of the cell, otherwise a conflict  
error occurs. This  solution has the following advantages. First, 
it  includes the standard spreadsheet  model in which a cell  
contains one formula or is empty. Second, it  does not signal  
errors unnecessarily. Third, it retains all formulae so the user 
can decide how to  resolve conflict errors. For these reasons, 
this solution was adopted for L-sheets.

triangularisetriangularise

F1 { A1,2 – A1,$1 * B$1,2 / B$1,$1 }
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{ B1,1 } { B1,2 } F1
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B

backsubstitute

A B
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LegendLegendLegendLegendLegend

F1 { A1,2–A1,$1*B$1,2/B$1,$1 } G1 abs(B$1,1) = abs(A1,1)

F2 { C1,2–C1,$1*B$1,2/B$1,$1 } G2 abs(B$1,1) = abs(C1,1)

F3 { C1,2 / C1,1 } G3 abs(B1,1) > 0

F4 { B1,2 – B1,1* C1,2 / C1,1 }

Figure 4. Gaussian elimination.



Note that cells in guard templates each contain one formula.

2.3.3. Unification

In logic programming, unification accomplishes several tasks, 
which in other languages are distributed across distinct mecha-
nisms: 

(a) composing and decomposing structured data;
(b) driving conditional execution by generating failure or success; 

and 
(c) recording computed data by variable binding. 

In spreadsheets, (a) has  no equivalent;  (b) Boolean expressions 
are evaluated  to select alternative formulae; and (c), values are 
assigned to cells  via formula evaluation. To preserve familiar 
spreadsheet functionality, unification in L-sheets focusses on the 
mechanisms new to spreadsheet users: (a) the composition and 
decomposition of structured data, and the success or failure that 
results (part of (b)). The remainder of (b) is dealt with by Boolean 
expressions in guard templates. Aside from adding formulae to 
cells, unification plays no part in (c).

2.3.4. Failure and backtracking

In standard spreadsheets, although formulae can refer to  exter-
nally defined functions, computations are primarily  built by plac-
ing formulae in  cells  to create data flow. To preserve this view, 
definitions in L-sheets  should, to the extent possible, behave like 
functions. Hence, computational elements in a worksheet cannot 
interact via failure-induced backtracking and re-execution, actions 
which are confined to the execution of individual goal templates.

2.3.5. Variable-size arrays

In L-sheets, variable-size arrays are combined into compound 
arrays, creating patterns that  specify the structure of families  of 
fixed-size arrays. Analogously, Prolog terms containing variables 
are patterns that specify  the structure of families of ground terms. 
However, although it  is acceptable for variables to occur in the 
answers to Prolog queries, it makes  no sense for a worksheet to 
contain a variable-size array, so  execution must fix the sizes of the 
arrays of a query template. Note, however, that it is necessary  to 
allow variable-size arrays to be selected in a worksheet when 
applying a definition, for example, the definition unique in Figure 
5.

2.3.6. Errors

In spreadsheets, a cycle error occurs if a data flow cycle is  de-
tected, and a value error occurs if a formula cannot be evaluated 
for some reason. In L-sheets, the presence of goal 
templates creates dependencies in addition to data 
dependencies, creating a graph of which the data 
flow graph is a subgraph (see Section 3.3). This 
extended digraph must also be acyclic. Other 
error types are required  to deal with goal tem-
plates. A conflict error arises if two formulae in 
the content of a cell return different values, as 
discussed above. If execution of a goal template 
fails, or does not fix the sizes of the arrays of the 
template, a goal error  is produced. A guard error 
indicates that  a guard cannot be evaluated as a 
result of a value error in one of its arrays.

2.3.7. Liveness

One of the most significant features of spread-
sheets is their immediate reaction to changes. If 

the content  of a cell  is changed, the values of cells affected  by the 
change are recalculated, providing instant  feedback, a property 
termed “level 3 liveness” by Tanimoto [24]. This behaviour is  
easily achieved by following data flow links to locate and recom-
pute affected cells. Preserving this  property in L-sheets is compli-
cated by the presence of goal templates, which may or may not 
need to be re-executed. Furthermore, if a template is  re-executed, 
it  may change the contents  of cells, altering the data flow. The 
next section examines liveness in detail.

3. Liveness

The examples in Section 2 consider only the logic programming 
aspects of L-sheets, concentrating on the execution of a single 
goal template in  a worksheet, the level of functionality achieved 
in  the current  prototype. In general, however, a worksheet may 
contain several  goal templates, the arrays of which  may overlap, 
as well as formulae placed in cells  by the user in the normal way. 
To achieve the liveness that spreadsheet users expect, we must  
determine how these computational elements should  react when a 
change is made to the sheet. We first establish the conditions that 
trigger re-execution of a goal template; then investigate the inter-
action of worksheet elements as they re-execute.

3.1. Execution Triggers, Virtual Cells, And Data Flow

The factors that affect execution of a goal template are success or 
failure of unification, and success or failure of guards. The former 
depends on the dimensions of parameter arrays, so  if a dimension 
of a parameter is changed, the goal template must  be re-executed. 
The outcome of evaluating a guard depends on the values of some 
cells. In the second case of gauss in  the example in Section 2.2, 
formulae in cells that are referenced by the guard template must 
be evaluated during the execution, while formulae constructed  for 
the result array can  be returned unevaluated  to the worksheet, then 
evaluated in the usual way. This implies that  if the values of cells 
in  the equation array change, the gauss goal template must be re-
executed, changing the formulae deposited in the cells  of the re-
sult  array. In the example in Section 2.1, however, no formulae are 
evaluated during execution of a budget goal template, so re-
execution following changes in cells is unnecessary.
Figure 6  illustrates  the creation of virtual cells, the data flow be-
tween them, and triggers attached to cells to initiate re-execution. 
In this  example, gauss is applied to a 3  ! 4 array containing three 
equations, and a result array of height 1 and variable width, as 
shown in the grey band at the top. Each of the following bands 
corresponds to a goal template with parameters from the band 
immediately above. For example the gauss (1) band corresponds 

 unique

 unique

 unique
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C

 unique

C

 A1,1 = B1,1
B b A b

 unique

A B

{A1,1} C
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Figure 5. Removing repeated elements from an array.



to  the goal template gauss, the parameters of which are the two 
arrays in the worksheet (0) band. The arrays in  a band, reading 
left-to-right and top-to-bottom, correspond to the arrays in the 
non-guard templates  of the case that has been applied to the asso-
ciated goal template, in the order that they appear in the case. 

An array or subarray allocated during the execution of the cor-
responding template is indicated by a solid border, while an array 
or subarray with a dashed border is  a reference to an array or 
subarray allocated previously, indicated by a dashed arrow. For 
example, the first array in the band labelled gauss (1), is a refer-
ence to the array  in  the worksheet  containing the equations to be 
solved. The dark grey shading in the latter marks out the subarray 
to  which the former refers, the entire array in this instance. The 
second array in the gauss (1) band is a reference to the result  
array in  the worksheet, and the third is  an array of variable height 
and width, allocated by this  invocation of gauss, as indicated by 
the label !. The third  array corresponds to the array named B in 
the body of gauss, and consists  of cells which do not  lie in the 
sheet, called virtual cells.

The band labelled triangularise (2) shows the arrays involved 
when the second case of triangularise is applied, the parameters 
in  the head of the first case having failed to unify with the given 
arrays. Note that the fourth array  is a reference to a subarray of the 
second, and that the third consists of 6 virtual cells  allocated by 
triangularise (2). Since the guard  template and unification algo-
rithm negotiate to select the pivot  equation in the first  parameter 
of the head template, as explained in Section 2.2, the values of 
cells in the first column of the equation array will determine the 
composition of the formulae deposited in the second and third 
arrays, so if any of them subsequently change, triangularise (2) 
must be re-executed. Hence triggers are attached to these cells, 
indicated by the annotation 2*. This invocation of triangularise 
adds formulae to the contents of certain cells, indicated by the 
annotation 2 in the cells, and the solid arrows labelled 2, each 
denoting the presence of a number of data flow links. For exam-
ple, the formula in the top left cell of the third array refers to the 
first and second cells  of the first  row in the first  array, and the first 

and second cells  of the pivot  equation row in the first array. Hence 
there are four data flow links to this cell  from cells of the first  
array, and in total, the solid arrow from the first to the third array 
represents 24 data flow links. The reader is invited to work 
through the construction of the rest  of this  diagram. Note that the 
dimensions of the third array in the gauss (1) band are finally 
determined when the base case of triangularise is executed, as 
shown in the last band.

Figure 7  is  obtained  by  deleting  the bands  corresponding to 
goal templates which have been completely executed, removing 
array references  in those bands and appropriately reassigning data 
flow links incident  on array references. Except for the array refer-
ences in the gauss (1) band, which will  be removed later, and a 
further pruning of the structure discussed below, the resulting 
diagram depicts the structure of data at this point.

The diagram in  Figure 8 shows the arrays involved in the exe-
cution of backsubstitute. Some of these consist of a combination 
of virtual cells and references:  for example, the cells in the last 
column of the third array in backsubstitute (5) are virtual, while 
the rest  of this  array is  a reference to  the shaded subarray in the 
first array in this band.

The structure remaining after execution of gauss is shown in 
Figure 9. Bearing in mind that this diagram does  not  show the 
details of data flow present in the actual structure, we note the 
following. If a value in the third or fourth column of the equation 
array changes, no re-execution is necessary. If a value in the sec-
ond column of the equation array changes, then a value in the first 
column of the first reduced array will change, triggering  re-
execution of triangularise (3), and the dependent invocation 
triangularise (4). First, any virtual cells labelled " or #, and 
formulae indicated by the cell annotations  3 and 4 are deleted, 
triangularise (3) is  re-executed, and consequent changes in cell 
values are propagated in the usual way. Since the shape of the 
triangular array is unchanged and there are no 5* triggers, back-

substitute (5) is not re-executed.
The structure in Figure 9 can be further pruned, resulting in  the 

diagram in Figure 10, as follows. Since the array  of virtual cells 
labelled "! will be deleted prior to any re-execution, its only 
function is to contain intermediate formulae which are referenced 
by  formulae in  cells marked 4 in the triangular array. This array 
can therefore be deleted, and  the formulae it contains embedded 
directly in the formulae that refer to  them. Similar reasoning leads 
to  the deletion of the arrays of virtual cells  labelled  $!and %. We 
could also remove the triangular array, and embed the formulae it 
contains in the formulae of the result array in the worksheet:  this, 
however, would necessitate re-execution  of backsubstitute (5) 
following any re-execution of triangularise (2) or triangularise 

(3), even though backsubstitute (5) is sensitive only to the size of 
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Figure 7. Structure produced by the execution of triangularise.
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Figure 6. Creating virtual cells, data flow and triggers.



the triangular array, not its content. Note that  the goal templates 
that accompany this structure are gauss(1), triangularise(2) and 
triangularise(3).

worksheet
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3*,2 2 2
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2

2

3

5

5 5 5
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Figure 10: Final pruned structure of virtual cells.

The final, pruned structure in Figure 10 contains the smallest 
set of virtual cells required to avoid rebuilding formulae unneces-
sarily during re-execution initiated by changes in the values of 
triggered cells. Note that a virtual cell pruned away in the final 
step could  be referenced by more than one formula, in which case 
its formula would be embedded in more than one other formula, 
and computed more than once during any subsequent evaluation. 
Such  virtual cells could  be retained to achieve more economical 
computation. At the other extreme, all  virtual cells and associated 
goals could be removed, in  which case any trigger associated with 
a virtual cell  would  be propagated to worksheet cells referenced 
by  the virtual  cell’s formula, resulting, in  our example, in the 
structure in  Figure 11. Note that when a trigger is  propagated dur-
ing removal of the virtual  cell that contains it, it is  changed to 
refer to the goal which is the nearest remaining ancestor of the 
goal to which it originally referred.

Clearly, applying the above analysis to execution of a budget 
goal template will produce a structure, analogous to the diagram 
in Figure 10, with no virtual cells or triggers.

The above example does not illustrate some subtleties of the 
process of attaching triggers  to  cells. Consider some definition A 
with  three cases, which, by the Prolog analogy mentioned in Sec-
tion 2.1, we can represent as follows:

A(X) :- G1(X), ...

A(Y) :- B(Y,W),G2(W), ...

A(Z) :- ...

where G1 is a guard that  refers to cell X occurring  in the head of 
the first case, and G2 is a guard that refers to a cell W, the content 
of which is determined during execution of the template B, which 
in  turn refers to cell Y in the head of the second case. Suppose that 
the execution that ensues when this definition is  applied to a goal 
template in the worksheet  terminates with the second case of A. In 
the process, a trigger will be attached to the worksheet cell, X0, 
corresponding to X in the head of the first  case, and to  the virtual 
cell, W0, corresponding  to W in the second case. Hence, triggers 
accumulate as execution advances through the cases of a defini-
tion. 

Now suppose the value of W0 changes, triggering re-execution, 
which terminates with  the third case of A. Since backtracking out 
of the second case will delete associated structures including the 
virtual cell  W0, the trigger on this cell must  first be propagated 
back to any cells to which the formula in W0 refers. 

Finally, if the definition of B includes guards, the structure 
resulting from the initial execution described above will  contain 
virtual cells allocated during execution of the B(Y,W) goal, with 
triggers arising from these guards. During  backtracking out of the 
second case of A, these triggers must be propagated back  to refer-
ring cells as described above.

3.2. Execution Graph Of A Query

Regardless of the degree of pruning, the resulting structure of 
goals, cells, data flow links, triggers and dependencies is  called 
the execution graph  of the query. An execution graph has  five 
types of vertices, four of which are depicted in Figure 12 which 
corresponds to the final pruned  structure in Figure 10. The four 
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Figure 11. Structure with no virtual cells.
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types of vertices in this figure are worksheet cells, virtual cells 
and goals, represented by black squares, grey squares  and dia-
monds, respectively, and arrays, each represented by a grey box 
enclosing the vertices corresponding to the cells of which the 
corresponding array is composed. This arrangement  is meant to 
make the diagram readable, not to imply a relationship  between an 
array vertex and the vertices it contains. As discussed below, the 
function of an array vertex is simply to provide a reference to the 
dimensions of the corresponding array.

In Figure 13, we have added  formula vertices (the fifth type), 
represented by circles, together with associated data flow edges, 
represented by plain arrows, and dependency edges, represented 
by  dotted arrows. To avoid clutter, we have shown only some of 
the formula vertices and dependency edges  that occur in our ex-
ample. A formula vertex corresponds  to one of the formulae in the 
content of one cell: hence there is  exactly one data flow edge leav-
ing a formula vertex, and any number of data flow edges entering 
a cell vertex. A dependency edge connects a goal vertex to another 
vertex which exists  because of the execution of the goal: hence 
there is no dependency edge entering a worksheet cell, and ex-
actly one dependency edge entering each other vertex. We have 
assumed that  the last equation turns out to be the pivot at each 
level of triangularisation.

Finally, in Figure 14 we have added the trigger edges, repre-
sented by  arrows with diamond-shaped heads. A trigger edge en-
ters a goal  vertex, and indicates the need to re-execute the goal if 
the value of the vertex (a cell  or array) at the tail of the edge 
changes. Note that although goal 3 should be re-executed if the 
dimension of the array represented by the lower left  array vertex 
changes, it is  unnecessary to include a trigger edge indicating this, 
since the dimension can change only if goal  2 is re-executed, in 
which case goal 3 will be re-executed because of the dependency 
edge from 2 to 3.

Let D be the domain over which formulae are constructed, 
including c, v, x, q, g which respectively denote cycle, value, con-
flict, goal and guard errors, and !, denoting “no value”. A value is 
associated with each vertex in the execution graph, as illustrated 
by the following examples.

• Successful execution: Suppose formulae in the cells of the first 
parameter array in the above example produce the values dis-

played in  the corresponding cell vertices in Figure 15. After 
execution, the other vertices  have the values shown in or beside 
them. All goal vertices have the value !, indicating success.

• Execution with evaluation errors: Now suppose the formulae 
in  the cells of the first parameter array in the above example 
produce the values shown in Figure 16. The values  of the up-
per two vertices  in the last  column indicate errors  arising from 
the evaluation of the formulae in the corresponding cells. The 
value ! in  the bottom vertex of this column indicates  that the 
corresponding cell is  empty. Neither the errors nor the ! value 
cause execution of the query to fail, so the structure of the 
execution graph is  the same. The values, however, are as 
shown, assuming the Excel convention that  ! is equivalent to 
0 when evaluating arithmetic expressions. Although the for-
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5

Figure 12. Cell, array and goal vertices of an execution graph of 
the gauss query.
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5

Figure 13. An execution graph of the gauss query, including 
some of the formula vertices and associated data flow edges, and 
some of the dependency edges.

1
2

3

5

Figure 14. An execution graph of the gauss query, including the 
trigger edges.



mulae introduced by the application of gauss propagate the v 
and x errors, the errors are inherent in the worksheet: hence the 
goal vertices in the graph have the value !"

• Execution with cycle errors: Figure 17 shows the values that 
result if the third  cell in  the first row of the first parameter 
array contains  a formula dependent on  the first cell of the sec-
ond parameter array. In contrast to the previous  example, the 
cycle error is not  solely due to the worksheet the formulae 
introduced by the application of gauss, hence the cycle error 
is  propagated from formula vertices to the goal  vertices  on 
which they  depend. The cycle in  this example involves only 
data flow edges, but  in general, cycles can include edges of all 
three kinds.

• Failure: If a definition is applied to arrays of inappropriate 
size, unification will fail, resulting in a goal error, illustrated in 
Figure 18.

3.3. Interaction Of Worksheet Elements

In this section, we examine the re-execution that follows editing 
of a worksheet. First we formally define the structure of execution 
graphs, introduced in the above examples, omitting array vertices, 
since our main focus is re-execution following a change in cell 
contents.

If W is a worksheet, let  C denote the set  consisting of the cells 
in  W and all virtual cells, G the set  of goal templates in W and F 
the set of all occurrences of formulae in C. The computation graph 
of W is a directed graph E=(V,E) where V = G ! C !  F, and E = D 

! X ! T where

D = { (c,f) | c " C, f " F and f contains a reference to c } !

{ (f,c) | c " C, f " F and f is in the content of c }

X = { (g,f) | g " G, f " F and f is created by the execution of g } !

{ (g1,g2) | g1,g2 " G and g2 is created by the execution of g1 }

T = { (c,g) | c " C, g " G and a trigger for g is associated with c }

D, X  and  T are the sets of dataflow, dependency and trigger 
edges, respectively.

Note that “worksheet” and “computation graph” are actually 
synonymous:  the latter is simply a structural description of the 
former.
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Figure 15. Values for vertices of an execution graph of the gauss 
query, following successful execution.
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DEFINITION. If E is a computation graph and C1 # C # C then:

• If g " G, then g is independent of C iff for every c " C, there is 
no walk from c to g. 

• If G # G and f " F, f is a barrier for  C1 in C[G] iff there is a 
walk from some c " C – C1 to f which includes at  least one 
trigger edge incident on some g $ G.

• If G # G and g  " G, g is  partially controlled by C1 in  C[G] iff 
for every  c " C1 there exists at least one walk from c to g, and 
there is no walk from c to g that  includes a barrier for C1 in 
C[G]. g is fully controlled by C1 in C[G] iff there is no C2 such 
that g is partially controlled by C2 in C[G], and C1 % C2 # C. If 
g " G is fully controlled by C1 in C[G], C1 is called the activa-
tor set for g in C[G].

LEMMA. If E is  acyclic, g " G, G # G and C # C, then either g is 
independent of C or there exists a unique subset C1 of C such that 
g is fully controlled by C1 in C[G]. In the latter case, let GC be the 
set of all  goals fully controlled by subsets  of C, then there exists at 
least one g " GC – G such that  for all  g1 " GC, (g1,g) $ X. g is  said 
to be a candidate for C[G].

Simply  put, the above lemma guarantees  that, when the value 
of every cell  in some set C of an acyclic worksheet changes, either 
there are no goals that need to be re-executed, in which case the 
changes can simply be propagated by data-driven data flow in the 
usual way; or among the goals that must be re-executed, there is at 
least one which does not rely  on values produced by re-execution 
of some others. It is  important to  note, however, the role of the 
suffix [G] in the definition. In practice, when the content of a cell 
changes, its value may not, so we cannot assume that  a goal must 
be re-executed if the content of a cell in its activator set  changes. 
Hence, if a candidate g  is selected, but evaluating its trigger cells 
does not change their values, g should not be re-executed, and 
should  be excluded when deciding which formulae are barriers 
while searching for another candidate.

This leads  to the algorithm in Figure 19 for updating the work-
sheet following a change in the content of each cell  in some set C. 
In line 9, “vertices dependent on g” means all vertices reachable 
from g by a walk consisting of dependency edges. “Data flow 
descendents” in  line 13 means  vertices reachable by walks con-
sisting of dataflow edges. Execution  of g in line 10 will halt if a 
guard or cycle error occurs.

Other changes  that  may be made to a worksheet are handled as 
follows.

a) A goal template g is  added to the sheet: Let C=& and run the 
re-execution algorithm from line 10.

b) A goal template g is removed: Delete all dependent vertices, 
let C be the set of remaining cells the content of which has 
changed. Run the re-execution algorithm.

c) A parameter array of a goal template is resized: The template 
is removed (b) and a new template added (a).

4. Concluding remarks

Many of the features of spreadsheets  that have contributed to their 
runaway popularity with end-users also make them highly error-
prone and therefore unsuitable for the strategically important app-
plications for which they are routinely used. Primitive program-
ming facilities, lack of high-level structural abstractions, and lack 
of debugging and testing tools all contribute to the errors that  
occur in the majority of spreadsheet applications, with well known 
negative consequences.

To rectify these problems, L-sheets augments the simple data 
flow model of spreadsheets with a form of logic programming in 
which the user can draw rectangular arrays of cells, specify how 
such arrays are composed of smaller arrays, and how they are to 
be filled with formulae. The resulting visual language provides  a 
mechanism for describing the structure of a spreadsheet, as well 
as programming facilities superior to the simple data flow of for-
mulae in cells. Although logic programming may be beyond the 
grasp of the majority of spreadsheet users, the L-sheets version, 
which deals with visually represented arrays rather than abstract 
terms, may be more palatable. Furthermore, beginners can start 
with  the standard data flow model, incorporate pre-built defini-
tions, then gradually move towards building their own.

In this paper, we have considered the problem of maintaining 
in  L-sheets one of the most important features of spreadsheets, the 
immediate re-execution of those cells affected by an edit. This  
involved studying the interaction between computational elements 
in  a worksheet, that is, goal templates and formulae in cells, which 
can be entered by the user or deposited by execution of goal tem-
plates. We noted that the behaviour of the logic programming 
extension should be as consistent as possible with standard 
spreadsheet behaviour, and that  this principle has certain  conse-
quences for the design of the language, in turn affecting  the way 
changes propagate through the computational elements in  a sheet. 
These considerations led to a re-execution algorithm.

Issues we are currently investigating or intending to  investigate 
are as follows.

• Indicating or enforcing correct parameter size. In the current 
prototype, when applying a definition to a sheet the user is 
given some help  in choosing arrays of acceptable size. For 
example, as the user drags to mark out a rectangle of cells 
when applying budget, the outline of the rectangle is  coloured 
green if the rectangle has 3n columns for some non-zero n, and 
at least 3 rows, and red otherwise. This is accomplished by 
repeating a simplified version of execution as the drag occurs, 
a brute force approach with  significant limitations. We are at 
present exploring  a more sophisticated method that relies on 
an analysis of the size constraints in the definitions.

• Computing  formats. Arrays in program sheets will contain 
formats such as  font, cell colours  and borders, which will be 
transferred to the worksheet during unification. Such formats 
will  become another part of a cell’s content, so it will be nec-
essary to determine the rules for combining formats and re-

 1 repeat {
 2  G = &;

 3  found = false;
 4  while (there is a candidate for C[G] and not found) 

 {
 5   g = some candidate for C[G]; 

 6   evaluate trigger cells for g;
 7   if (values have changed) found = true;

   }
 8  if (found) {

 9   delete all vertices dependent on g;
 10   execute g;

 11   add cells with changed content to C;
}

 12 until (not found) ;
 13 evaluate all data flow descendents of cells in C ;

Figure 19. Worksheet re-execution.



solving format conflicts, and whether changes in formats 
should trigger re-execution.

• Re-execution. The present prototype of L-sheets implements 
the standard spreadsheet model, including re-execution of data 
flow, the building and editing of program sheets, and the ap-
plication of definitions to  worksheets. We have yet to  incorpo-
rate the full re-execution algorithm described above.

• Debugging facilities. The errors that can occur during execu-
tion  are discussed above. Appropriate debugging tools must be 
devised for tracking and fixing each of them. In addition, vari-
ous debugging tools and methodologies have been proposed 
for standard spreadsheets  [20]. Research is required to deter-
mine the extent to which they can be incorporated into L-
sheets.

• Language enhancements. In the current version of the lan-
guage, nesting of named arrays is not allowed, primarily to 
avoid complexity  in the visual  notation. Some programs, how-
ever, are more simply expressed with nested named arrays. We 
will  investigate ways of incorporating them without compli-
cating the interface.

• More powerful array structures. In the current  version of L-
sheets, an array of variable width is homogeneous horizon-
tally: that  is, it represents a repetition of similar columns. An 
array made up of repeated blocks of dissimilar columns must 
be specified by a definition, for example, the years definition 
in  Figure 2. The same applies to arrays of repeated blocks of 
dissimilar rows. We are looking into extending the definition 
of arrays, and  array unification, to allow such repetition of 
blocks.

• Deducing definitions. Several researchers have described 
mechanisms for analysing and generalising patterns in the 
content of spreadsheets to  generate structure specifications 
[10, 14]. Spreadsheets such as those defined by budget, for 
example, are amenable to such analysis. We will explore the 
possibility of using these or other mechanisms to automati-
cally generate L-sheets definitions. In particular, we are inter-
ested to see how far such automatic generation can be pushed 
beyond simple examples such as budget.
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