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Abstract. We provide a unifying view on the structure of different types of agreement forests

using a “shifting lemma” proved by Bordewich et al. We consider rooted and unrooted max-

imum agreement forests (MAF’s) and rooted maximum acyclic agreement forests (MAAF’s).

Their sizes are known to respectively correspond to the subtree prune and regraft distance

between two rooted phylogenies, the tree bisection and reconnection distance between two un-

rooted phylogenies, and the hybridization number of two rooted phylogenies. With the excep-

tion of approximation of rooted MAF, we obtain improved approximation and fixed-parameter

algorithms for the sizes of all of the above types of agreement forests, most of which are

substantial improvements over the best previous results. To the best of our knowledge, our

3-approximation algorithm for MAAF size is the first approximation result for MAAF. For

rooted MAF size, we obtain an alternative and, in our opinion, simpler correctness proof for

the 3-approximation algorithm by Rodrigues et al.

? Supported by an NSERC CGS-M graduate scholarship.
?? Supported in part by NSERC, the Canadian Foundation for Innovation, and the Canada Research Chairs program.



1 Introduction

Phylogenies, or evolutionary trees, are a standard model to represent the evolutionary history of a set of

species and are an indispensable tool in evolutionary biology [20]. Unfortunately, most useful optimization

criteria for creating phylogenies, such as maximum likelihood [1] and Steiner tree [14], are NP-hard. As-

sessing the quality of proposed phylogenies found using approximate or heuristic methods often involves

measuring the similarity of many computed phylogenies using an appropriate distance metric. This is feasi-

ble only if distances under the used metric can be computed efficiently. Fast distance computations are also

required for the analysis and visualization of tree space [3, 19].

A number of metrics are commonly used to define the distance between phylogenies. The Robinson-

Foulds distance [24] is popular, as it can be calculated in linear time [13]. Other metrics, such as the tree

bisection and reconnection (TBR) and subtree prune and regraft (SPR) distances [20], are often more

meaningful. Not all groups of species follow a simple tree-like evolutionary pattern. Collectively known

as reticulation events, non-tree-like evolutionary processes such as hybridization, horizontal gene transfer,

and recombination result in species being composites of genes derived from different ancestors. Given two

trees on the same set of species but derived by analyzing different genes, the rooted SPR (rSPR) distance

and the hybridization number of the two trees are important tools that often help to discover such events.

In particular, the rSPR distance provides a lower bound on the number of reticulation events [4, 5], and this

metric has been regularly used to model reticulate evolution [21, 22]. The close relationship between rSPR

operations and reticulation events has also led to advances in network models of evolution [4, 11, 22].

While TBR distance, SPR distance, and hybridization number capture biologically meaningful notions

of similarity between phylogenies, their practical use has been limited by the fact that they are NP-hard

to compute [2, 9, 11, 18]. This has led to an interest in approximation and fixed-parameter algorithms for

computing these distances (see [23,27] for an introduction to approximation algorithms and fixed-parameter

tractability), as well as heuristic approaches [5, 18]. Hein et al. [16] claimed a 3-approximation algorithm

for computing SPR distances and proposed the notion of a maximum agreement forest (MAF) as the main

tool underlying both the approximation algorithm and a proposed NP-hardness proof for computing SPR

distances. The central claim was that the number of components in an MAF of two phylogenies is one more

than the number of SPR operations needed to transform one into the other. Unfortunately, there were subtle

mistakes in the proofs. Allen and Steel [2] proved that the number of components in an MAF is in fact

one more than the TBR distance between the two trees. Rodrigues et al. [25] provided instances where the

algorithm of [16] provides an approximation guarantee no better than 4 for the size of an MAF, thereby

disproving the 3-approximation claim of [16]. They also proposed a modification to the algorithm, which

they claimed to produce a 3-approximation for TBR. A counterexample to this claim was provided by Bonet

et al. [7], who showed, however, that both the algorithm of [16] and of [25] compute 5-approximations of the

rSPR distance between two rooted phylogenies, and that the algorithms can be implemented in linear time.

The approximation ratio was improved to three by Bordewich et al. [8], but at the expense of an increased

running time of O(n5).1 A second 3-approximation algorithm presented in [25] achieves a running time

of O(n2). Using entirely different ideas, Chataigner [12] obtained an 8-approximation algorithm for TBR

distances of two or more trees.

Fixed-parameter algorithms provide exact answers efficiently, as long as the distance between the two

trees is not too big. The currently best such algorithm for rSPR distance is due to Bordewich et al. [8] and

runs in O(4k · k4 + n3) time, where k is the distance between the two trees. For TBR distance, the currently

best result is due to Hallett and McCartin [15], who provide an algorithm with running time O(4k ·k5 + p(n)),
where p(·) is a polynomial function. An earlier algorithm for this problem by Allen and Steel [2] had

running time O(k3k + p(n)). For unrooted SPR, Hickey et al. [17] first claimed a fixed-parameter algorithm,

1 Using non-trivial but standard data structures, the running time can be reduced to O(n4).
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Approximation FPT

TBR Previous: 8-approximation in polynomial time [12] Previous: O(4kk5 + p(n)) time [15]

New: 3-approximation in linear time New: O(4kk +n3) or O(4kn) time

rSPR Previous: 3-approximation in O(n2) time [25] Previous: O(4kk4 +n3) time [8]

New: 3-approximation in linear time New: O(3kk +n3) or O(3kn) time

Hybridization Previous: — Previous: O((28k)k +n3) time [10]

New: 3-approximation in O(n logn) time New: O(3kk logk +n3) or O(3kn logn) time

Table 1. Previous and new results on rSPR distance, TBR distance, and hybridization number.

but the correctness proof was flawed. Recently, St. John [26] proposed a correction of the central technical

lemma in Hickey et al.’s result. In [10], Bordewich and Semple provided a fixed-parameter algorithm for the

hybridization number of two rooted phylogenies.

The contribution of this paper is to provide a unifying view on the results discussed in the previous

paragraph and improve on most of them along the way, substantially in most cases. In particular, we show

that the framework of the algorithms of [7, 16, 25] can be used not only to approximate the rSPR distance

between two rooted phylogenies but also to obtain approximation and FPT algorithms for rSPR distance,

TBR distance, and hybridization number. To the best of our knowledge, an approximation algorithm for

hybridization number had not been obtained before. The key to showing these results is a “shifting lemma”

proved by Bordewich et al. [8]. Table 1 shows our new results in comparison to the best previous results. The

3-approximation algorithm for rSPR is the algorithm of Rodrigues et al. [25], with a minor modification to

reduce its running time to linear. We believe that the correctness proof obtained using our approach is simpler

than the one presented in [25].

The rest of the paper is organized as follows. We present the necessary terminology and notation in

Section 2. Section 3 presents the main structural theorems that are at the heart of both the approximation

and fixed-parameter algorithms. Section 4 presents the approximation algorithms. Section 5 discusses briefly

how to turn the approximation algorithms into fixed-parameter algorithms based on bounded search trees.

2 Preliminaries

This section introduces the terminology and notation used throughout the paper. We mostly follow the defi-

nitions from [2, 7–9, 25]. An unrooted binary phylogenetic X-tree is a tree T whose leaves are the elements

of X and each of whose internal nodes has degree three. We refer to these trees simply as X-trees. The set X

is called the label set of T and contains the species whose evolutionary relationship the tree represents. For a

subset V of X , we use T (V ) to denote the smallest subtree of T that connects all nodes in V ; see Figure 1(b).

The V -tree induced by T is the tree T |V obtained from T (V ) by splicing out all nodes of degree two (i.e.,

replacing the vertex and its two incident edges with a single edge); see Figure 1(c). Such a splice operation

is called a forced contraction.

1

2

3

4

5

6

7

(a)

2

3

4

5

7

(b)

2

3

4

5

7

(c)

Fig. 1. (a) An X-tree T . (b) The subtree T (V ) for V = {2,3,4,5,7}. (c) The tree T |V obtained by forced contractions on T (V ).
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As discussed in the introduction, several distance measures between X-trees have been defined in the

literature, reflecting different biological concepts, such as horizontal gene transfers. Of interest here are

distance measures based on SPR and TBR operations. Given an X-tree T , an SPR operation cuts an edge xy

in T , thereby dividing T into two subtrees Tx and Ty containing x and y, respectively. Then it subdivides an

edge of Ty using a new vertex y′ and adds an edge between x and y′ to reconnect Tx and Ty. Finally, vertex y

is removed using a forced contraction. A TBR operation also starts by cutting an edge xy, but it subdivides

an edge in each of the two trees, Tx and Ty, and then adds an edge x′y′ to reconnect Tx and Ty, where x′ and y′

are the two vertices created in Tx and Ty by these edge subdivisions. Vertices x and y are then removed using

forced contractions. Figure 2 illustrates both operations.
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Fig. 2. Illustration of TBR and SPR operations.

A rooted X-tree is obtained from an unrooted one, T , by subdividing one of T ’s edges, declaring the node

this introduces to be the root, and defining parent-child and ancestor-descendant relations in the standard

way with respect to the chosen root. While TBR operations seem inherently unrooted, as applying such an

operation to a rooted tree would require rerooting at least part of the tree, SPR operations translate naturally

to the rooted case: a rooted SPR (rSPR) operation performs the same transformation as an SPR operation

for unrooted trees; however, in the description of the operation above, vertex y is chosen to be the parent of

vertex x. Thus, rSPR operations leave ancestor-descendant relations in the two subtrees intact. Moreover, at

the end of the operation, forced contractions are applied only to non-root nodes of degree two, and the root

is removed if edge xy was one of its incident edges, thereby making its child the new root of the tree.

TBR, SPR, and rSPR operations define distance measures dTBR(·, ·), dSPR(·, ·), and drSPR(·, ·) between

(unrooted or rooted) X-trees, where the distance between two trees is the number of such operations required

to transform one into the other. A related distance measure for rooted X-trees is their hybridization number,

hyb(T1,T2). This distance is defined in terms of hybrid networks of the two trees, where a hybrid network

of T1 and T2 is a directed acyclic graph H such that both T1 and T2 can be obtained from H by deleting

edges and performing forced contractions. For a vertex x ∈ H, let degin(x) be its in-degree and deg−in(x) =
max(0,degin(x)−1). Then the hybridization number of T1 and T2 is minH ∑x∈H deg−in(x), where the minimum

is taken over all hybrid networks of T1 and T2.

TBR distance, rSPR distance, and hybridization number are known to be one less than the number of

connected components in appropriately defined maximum agreement forests (MAF’s) [2, 4, 9]. To define

these MAF’s, we first introduce some terminology.

Given a forest F and a subset E of its edges, we write F −E to denote the forest obtained by deleting the

edges in E from F . If forest F has components T1,T2, . . . ,Tk with label sets X1,X2, . . . ,Xk, we say that forest

F yields forest F ′ if F ′ has components T ′
1,T

′
2 , . . . ,T

′
k (some of them possibly empty) and, for all 1 ≤ i ≤ k,

T ′
i = Ti|Xi; if all nodes of a component Ti are unlabelled (that is, Xi = /0), we define Ti|Xi = /0. For an X-tree T ,

we say that F is a forest of T if there exists a subset E of T ’s edges such that T −E yields F .
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Fig. 3. Two X-trees T1 and T2 and an agreement forest F of T1 and T2. F is obtained from each tree by cutting the dashed edges.

Given two X-trees T1 and T2 and two forests F1 of T1 and F2 of T2, a forest F is an agreement forest of

F1 and F2 if there exist edge sets E1 and E2 such that F1 −E1 and F2 −E2 yield F ; see Figure 3. Forest F

is a maximum agreement forest (MAF) if there is no agreement forest of F1 and F2 with fewer connected

components than F . We use m(F1,F2) to denote the number of connected components in an MAF of F1

and F2 and e(F1,F2) to denote the size of the smallest edge set E2 such that F2 −E2 yields F . The following

theorem by Allen and Steel [2] establishes the relationship between TBR distances and unrooted MAF sizes.

Theorem 1. For two unrooted X-trees T1 and T2, dTBR(T1,T2) = e(T1,T2) = m(T1,T2)−1.

In the rooted case, MAF’s are similarly related to rSPR distances. This, however, is true only if the MAF

is defined with respect to augmented versions of the two trees, obtained by adding a new root node with

label ρ to both trees and making the original root of each tree the child of ρ . An agreement forest of two

forests F1 and F2 of T1 and T2 is then defined as a collection {T ′
ρ ,T ′

1,T
′

2, . . . ,T
′

k} of rooted trees with label

sets Xρ ,X1,X2, . . . ,Xk that satisfy the following conditions [9]:

1. The label sets Xρ ,X1,X2, . . . ,Xk partition X ∪{ρ}, and ρ ∈ Xρ .

2. For all i ∈ {ρ,1,2, . . . ,k}, T ′
i = F1|Xi = F2|Xi in the rooted sense.

3. The graphs in each of the sets {F1(Xi) | i ∈ {ρ,1,2, . . . ,k}} and {F2(Xi) | i ∈ {ρ,1,2, . . . ,k}} are vertex-

disjoint trees.

An MAF is again one with the minimum number of connected components. Bordewich and Semple [9]

proved the following theorem, where m(F1,F2) and e(F1,F2) are defined as in the unrooted case.

Theorem 2. For two rooted X-trees T1 and T2, drSPR(T1,T2) = e(T1,T2) = m(T1,T2)−1.

The hybridization number of two rooted X-trees T1 and T2 corresponds to an MAF of the two trees with

an additional constraint. For two forests F1 and F2 of T1 and T2, an agreement forest F of F1 and F2 is said

to contain a cycle if there exist two nodes x and y that are roots of trees in F and such that x is an ancestor

of y in T1, while y is an ancestor of x in T2. (Each node x in F can be mapped to nodes φ1(x) in T1 and

φ2(y) in T2 by defining Xx to be set of labelled descendants of x in F and defining φi(x) to be the lowest

common ancestor in Ti of all nodes in Xx.) A maximum acyclic agreement forest (MAAF) of F1 and F2 is an

agreement forest with the minimum number of connected components among all acyclic agreement forests

of F1 and F2. We denote the size of such a forest by m̄(F1,F2) and the number of edges that need to be cut

in a forest F of F2 to obtain such a forest by ē(F1,F2,F). The following result by Baroni et al. [4] relates

ē(T1,T2,T2) to hyb(T1,T2).

Theorem 3. For two rooted X-trees T1 and T2, hyb(T1,T2) = ē(T1,T2,T2) = m̄(T1,T2)−1.

By Theorems 1–3, it suffices to compute or approximate the size of the right kind of MAF in order to

compute or approximate the distance of two trees under one of the three metrics, dTBR(·, ·), drSPR(·, ·) or

hyb(·, ·). Thus, we focus on MAF’s in the remainder of this paper.
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For a forest F and two nodes a and b of F , we write a ∼F b to indicate that a and b belong to the same

connected component of F , that is, there exists a path from a to b in F . We say that (a,c) is a sibling pair of

a forest F if a and c are labelled leaves of T with the same neighbour, which we denote by rac. As previous

algorithms for rooted MAF’s, our algorithms rely on the following two lemmas, which were proved by

Bordewich and Semple [9] and Bonet et al. [7] for the rooted case, but are easily seen to apply also to the

unrooted case and to acyclic agreement forests.

Lemma 1. Let (F1,F2) be a pair of forests, let (a,c) be a sibling pair that exists in both forests, and let

(F ′
1,F

′
2) be the forests obtained by removing a and c from F1 and F2 and assigning label (a,c) to rac. We

refer to this as contracting the sibling pair (a,c). Then e(F1,F2) = e(F ′
1,F

′
2) and ē(F1,F2,F2) = ē(F ′

1,F
′

2,F
′

2).

Lemma 2. Let (F1,F2) be a pair of forests, let c be a singleton in F2, and let (F ′
1,F

′
2) be the forests obtained

by removing c from both forests. Then e(F1,F2) = e(F ′
1,F

′
2) and ē(F1,F2,F2) = ē(F ′

1,F
′

2,F
′

2).

3 The Structure of Agreement Forests

This section presents the structural results that provide the intuition and correctness proofs for the algorithms

presented in Sections 4 and 5. All these algorithms start with a pair of trees (T1,T2), cut edges, remove

singletons, and contract sibling pairs in both trees until they have one or two nodes left and are identical.

The intermediate state is that T1 has been reduced to a tree T , and T2 to a forest F . Each iteration has

to decide which edges in F to cut next. The results in this section identify small edge sets in F so that

at least one edge in each of these sets has the property that cutting it reduces e(T,F) by one. Thus, the

approximation algorithm cuts all edges in the identified set, and the size of the edge set cut in each step

gives the approximation ratio of the algorithm. The FPT algorithm tries each edge in the set in turn, so that

the size of the set gives the branching factor for a bounded search tree algorithm. The following lemma by

Bordewich et al. [8] is the central tool used in all our proofs. They proved this result for rooted trees. It is

trivial, however, to verify that it holds also for unrooted trees.

Lemma 3 (Shifting Lemma). Let T be an X-tree, F a forest of T , e and f edges in the same component

of F, and E a subset of edges of F such that f ∈ E and e /∈ E. Let v f be the end-vertex of f closest to e, and ve

an end-vertex of e. If (1) v f ∼F−E ve and (2) x �F−(E∪{e}) v f for all x∈X, then F−E and F−(E \{ f}∪{e})

yield the same forest.2

The other tool we need is an observation that relates incompatible triples and quartets to agreement

forests. A triple ab|c in a rooted tree T is defined by three leaves a, b, c such that the path from a to b is

vertex-disjoint from the path from c to the root. A quartet ab|cd in an unrooted tree T is defined by four

leaves a, b, c, d such that the two paths from a to b and from c to d are vertex-disjoint. Given a tree T and

a forest F , we say a triple ab|c or quartet ab|cd of T is incompatible with F if its leaves either do not all

belong to the same component of F or define a different triple or quartet; for example, ac|b or ac|bd.

Observation 1. (i) Let T1 and T2 be two rooted X-trees, T and F defined as above, and F ′ an agreement

forest of T and F. If ab|c is a triple of T incompatible with F, then a �F ′ b or a �F ′ c.

(ii) Let T1 and T2 be two unrooted X-trees, T and F defined as above, and F ′ an agreement forest of T and F.

If ab|cd is a quartet of T incompatible with F, then a �F ′ b, a �F ′ c or c �F ′ d.

Now consider a tree T and a forest F as above, and let (a,c) be a sibling pair of T that does not exist in

F and such that neither a nor c is a singleton in F . If a and c belong to the same tree of F , the sibling b of a

in F is the node adjacent to a’s neighbour that does not belong to the path from a to c in F . Otherwise, b is

2 In the rooted case, it is assumed that ρ ∈ X .
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any node at distance two from a in F . Note that b is not necessarily a leaf. We use ea and eb to denote the

edges connecting a and b to their common neighbour rab, and B to denote the subtree of F induced by all

nodes b′ such that edge eb belongs to the path from b′ to a. The sibling d of c and its attached subtree D are

defined analogously. In the rooted case, if a and c belong to the same component of F , we assume that the

distance from the root to a is no less than the distance from the root to c. This implies that rab is the parent

of a and b in F .

With these tools in hand, we are now ready to prove three results characterizing edges that need to be

cut in order to make progress towards an M(A)AF. The first result considers rooted MAF’s.

Theorem 4. Let T1 and T2 be two rooted X-trees, and let F be a forest of T2. Let (a,c) be a sibling pair of

T1 that is not a sibling pair of F, and assume that neither a nor c is a singleton in F. Then e(T1,F −{ex}) =
e(T1,F)−1 for some x ∈ {a,b,c}. In particular, e(T1,F −{ea,eb,ec}) ≤ e(T1,F)−1.

Proof. It suffices to prove that there exists an edge set E such that F −E yields an MAF of T1 and F and

E∩{ea,eb,ec} 6= /0. So let E be chosen such that F−E yields an MAF F ′ and assume that E∩{ea,eb,ec}= /0.

We prove that there exists an edge f ∈ E such that F −E and F − (E \ { f}∪{ex}) yield the same forest,

for some x ∈ {a,b,c}. Thus, since F −E yields an MAF, so does F −E ′, where E ′ = E \ { f}∪{ex}, and

E ′∩{ea,eb,ec} 6= /0.

By Lemma 3, we can assume that there exists a leaf b′ ∈ B such that b′ ∼F−E rab because otherwise we

can choose an arbitrary leaf b′ ∈ B and replace the first edge in E on the path from rab to b′ with eb without

altering the forest yielded by F −E.

Since ea /∈ E, we have a ∼F−E rab and, hence, a ∼F−E b′. Since (a,c) is a sibling pair of T1, ac|b′ is a

triple of T1, while c /∈ B implies that either ab′|c is a triple of F or a �F c. In either case, the triple ac|b′ is

incompatible with F . Since F −E yields an agreement forest F ′ of T1 and F , Observation 1(i) now implies

that a �F−E c. Therefore, if a ∼F c, there exists an edge in E that belongs to the path from a to c in F , and

we choose f to be such an edge that is closest to c. Since (a,c) is a sibling pair of T1 and a ∼F−E b, a �F−E c

implies that c is a singleton in F ′. Thus, edges f and e = ec satisfy the conditions of Lemma 3, and F −E

and F − (E \{ f}∪{ec}) yield the same forest.

If a �F c, then a �F−E c and, as above, c is a singleton in F ′. Since c is not a singleton in F , there

exists an edge f ∈ E that belongs to the same connected component of F as c, and e = ec and f satisfy

Lemma 3 if f is chosen so that none of the edges on the path from f to c is in E. Hence, again, F −E and

F − (E \{ f}∪{ec}) yield the same forest. ut

Note that Theorem 4 also holds if we replace e(T1, ·) with ē(T1,T2, ·). To see this, it suffices to consider

a set E in the proof such that F −E yields an MAAF instead of an MAF. The next theorem provides an

analogous result for unrooted MAF’s.

Theorem 5. Let T1 and T2 be two unrooted X-trees, and let F be a forest of T2. Let (a,c) be a sibling pair of

T1 that is not a sibling pair of F, and assume that neither a nor c is a singleton in F. Then e(T1,F −{ex}) =
e(T1,F)−1 for some x ∈ {a,b,c,d}.

Proof. As in the proof of Theorem 4, our goal is to show that there exists a set E such that F −E yields

an MAF of T1 and F and E ∩{ea,eb,ec,ed} 6= /0. Again, we show that, if F −E yields an MAF F ′ of T1

and F and E ∩{ea,eb,ec,ed} = /0, we can find an edge f ∈ E and an x ∈ {a,b,c,d} such that F −E and

F − (E \{ f}∪{ex}) yield the same forest.

By the same arguments as in the proof of Theorem 4, we can assume that there exist vertices b′ ∈ B and

d′ ∈ D such that b′ ∼F−E rab and d′ ∼F−E rcd and, hence, b′ ∼F−E a and d′ ∼F−E c. Since (a,c) is a sibling

pair of T1, ac|b′d′ is a quartet of T1, while c /∈ B implies that either ab′|cd is a quartet of F or a �F c. In

either case, the quartet ac|b′d′ is incompatible with F . Since F −E yields an agreement forest of T1 and F ,
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Observation 1(ii) now implies that a �F−E c. Therefore, if a ∼F c, there exists an edge in E that belongs to

the path from a to c in F , and we choose f to be such an edge that is closest to c. Since (a,c) is a sibling

pair of T1 and a ∼F−E b, a �F−E c implies that c is a singleton in F ′. Thus, edges f and e = ec satisfy the

conditions of Lemma 3, and F −E and F − (E \{ f}∪{ec}) yield the same forest.

If a �F c, then the same argument as in the proof of Theorem 4 shows that F−E and F−(E \{ f}∪{ec})
yield the same forest, F ′, for some edge f ∈ E. ut

Similar to Theorem 4, Theorem 5 immediately implies that e(T1,F −{ea,eb,ec,ed}) ≤ e(T1,F)− 1.

However, we can do a little better.

Theorem 6. Let T1 and T2 be two unrooted X-trees, and let F be a forest of T2. Let (a,c) be a sibling pair

of T1 that is not a sibling pair of F, and assume that neither a nor c is a singleton in F. Then e(T1,F −
{ea,eb,ec}) ≤ e(T1,F)−1.

Proof. Let E be an edge set such that F −E yields an MAF F ′ of T1 and F . We can again assume that

E ∩{ea,eb,ec} = /0, as otherwise the theorem holds trivially. We show that there exists an edge f ∈ E such

that F − (E ∪{ea,eb}) and F − (E \ { f}∪ {ea,eb,ec}) yield the same forest. This forest is an agreement

forest of T1 and F , as it can be obtained by cutting edges ea and eb in F ′. Hence, e(T1,F −{ea,eb,ec}) ≤
|E \ { f}| = |E| − 1 = e(T1,F)− 1. Note that this is not the same as claiming that we can replace an edge

f ∈ E with an edge in {ea,eb,ec} without altering the resulting forest. It is crucial that all three edges are

cut. As in the proof of Theorem 4, we can again assume that there exists a leaf b′ ∈ B such that b′ ∼F−E rab

and, hence, b′ ∼F−E a. For the remainder of the proof, we distinguish three cases.

If a ∼F−E c, we observe that (a,c) being a sibling pair in T1 and c /∈ B imply that ac|b′d′ is a quartet

of T1 incompatible with F , for all d′ /∈ XB ∪{a,c}. Hence, by Observation 1(ii), a ∼F−E b′ and a ∼F−E c

imply that c �F−E d′, for each such leaf d′. Therefore, c �F−E ′ x, for all x ∈ X , where E ′ = E ∪{ea,ec}. If

we now choose an edge f ∈ E such that no edge on the path from f to c belongs to E, Lemma 3 implies that

F − (E ∪{ea,eb}) and F − (E \{ f}∪{ea,eb,ec}) yield the same forest.

If a ∼F c but a �F−E c, there exists an edge in E that belongs to the path from a to c in F , and we

choose f to be such an edge that is closest to c. Since (a,c) is a sibling pair of T1 and a ∼F−E b, a �F−E c

implies that c is a singleton in F ′. Thus, edges f and e = ec satisfy the conditions of Lemma 3, and F −E

and F − (E \{ f}∪{ec}) yield the same forest.

If a �F c, then the same argument as in the proof of Theorem 4 shows that F−E and F−(E \{ f}∪{ec})
yield the same forest, F ′, for some edge f ∈ E. ut

While Theorem 4 suffices as a basis of an algorithm to compute or approximate an MAF of two rooted

trees, a little extra work is required to obtain an MAAF. As observed after the proof of Theorem 4, we can

use this theorem to make progress towards an MAAF until we obtain an agreement forest of the two trees. If

this forest is in fact acyclic, we are done. Otherwise, we need to continue cutting edges to remove all cycles

that may exist. The next theorem identifies candidate edges to cut. In this theorem, we consider two trees, A

and B, of the agreement forest whose roots, a and b, form a cycle. We call (a,b) a cycle pair and use ea to

denote any of the two edges in A incident to a, and eb to denote any of the two edges in B incident to b.

Theorem 7. Let T1 and T2 be two rooted X-trees, F an agreement forest of T1 and T2, and (a,b) a cycle pair

of F. Then ē(T1,T2,F −{ex}) = ē(T1,T2,F)−1 for some x ∈ {a,b}. In particular, ē(T1,T2,F −{ea,eb}) ≤
ē(T1,T2,F)−1.

Proof. Once again, our goal is to show that there exists a set E of edges of F such that F −E yields an

MAAF of T1 and F and E ∩{ea,eb} 6= /0. So we choose E to be a set such that F −E yields an MAAF F ′ of

T1 and F , and assume that E ∩{ea,eb} = /0. Let A1 and A2 be the two subtrees of A rooted in a’s children,

and let B1 and B2 be the two subtrees of B rooted in b’s children.
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First observe that there exists an index i such that either a′ �F−E a for all a′ ∈ XAi
or b′ �F−E b for all

b′ ∈ XBi
. Indeed, if this was not the case, there would exist leaves a1 ∈ A1, a2 ∈ A2, b1 ∈ B1, and b2 ∈ B2 such

that a1 ∼F−E a2 and b1 ∼F−E b2, which implies that both a and b exist in F ′, and F ′ would not be acyclic.

So assume w.l.o.g. that a′ �F−E a, for all a′ ∈ A1. In this case, Lemma 3 states that, if we choose a leaf

a′ ∈ A1 and the edge f ∈ E closest to a on the path from a to a′, then F −E and F − (E \{ f}∪{ea}) yield

the same forest, which is the MAAF F ′. Hence, the edge set E ′ = E \{ f}∪{ea} has the property that F −E ′

yields an MAAF of T1 and F and E ′∩{ea,eb} 6= /0. ut

4 Approximation Algorithms

4.1 3-Approximation for Rooted MAF (rSPR Distance)

The first algorithm we present is a 3-approximation algorithm for rooted MAF, that is, rooted SPR distance.

This algorithm is essentially the one discussed in [25], modified to achieve linear time. We include it here to

demonstrate that Theorem 4 establishes its correctness, and also as a reference for the other algorithms. The

algorithm starts with a pair of trees (T1,T2) and modifies both through a series of transformations. T1 always

remains a tree but shrinks over time; T2, on the other hand, may become a forest. The algorithm maintains

a counter, D, of the number of edges in T2 it has cut so far. We use T
(i)

1 , T
(i)

2 , and D(i) to denote the two

forests obtained from T1 and T2 after the ith transformation and the value of D after the ith transformation.

The algorithm terminates when the label set of T
(i)

1 and T
(i)

2 has size at most 2, including the root label ρ ,

which is never eliminated. The output is the value of D at the time of termination.

Each iteration applies one of the following cases, illustrated in Figure 4.

1. As long as T2 contains a singleton c 6= ρ , the algorithm removes c from both T1 and T2 and performs a

forced contraction in T1 to merge the other two edges incident to c’s parent in T1. D remains unchanged.

For the other two rules, the algorithm chooses a fixed sibling pair (a,c) of T1.

2. If (a,c) is also a sibling pair of T2, the algorithm contracts the sibling pair in both trees; that is, it removes

a and c from both T1 and T2 and assigns the label (a,c) to their parent rac.

3. If (a,c) is not a sibling pair in T2, then assume w.l.o.g. that a’s distance from the root of T2 is no less

than that of c. Node a must have a sibling b in T2 because T2 contains no singletons. In this case, the

algorithm cuts edges ea, eb, and ec in T2 and increases D by three.

Theorem 8. Given two rooted X-trees T1 and T2, a 3-approximation of e(T1,T2) = drSPR(T1,T2) can be

computed in linear time.

Proof. We use the algorithm above and output the final value of D as the approximation of e(T1,T2). We

argue below that the algorithm terminates, in linear time. If the algorithm terminates after k iterations, k′ of

which change D, then its output is D(k) = 3k′. We prove that e(T1,T2) ≤ 3k′ ≤ 3e(T1,T2), thereby proving

that the value D(k) output by the algorithm is a 3-approximation of e(T1,T2) = drSPR(T1,T2).

For every iteration that leaves D unchanged, we have e(T
(i)

1 ,T
(i)

2 ) = e(T
(i−1)

1 ,T
(i−1)

2 ) because only

Cases 1 and 2 leave D unchanged and Lemmas 1 and 2 show that the transformations applied in these cases

do not alter e(T1,T2). Every iteration that changes D applies Case 3. Since (a,c) is not a sibling pair of T2 in

this case, and neither a nor c is a singleton in T2, Theorem 4 implies that e(T
(i)

1 ,T
(i)

2 )≤ e(T
(i−1)

1 ,T
(i−1)

2 )−1.

Hence, we have e(T1,T2) ≥ k′, that is, D(k) = 3k′ ≤ 3e(T1,T2). Conversely, since the 3k′ edges we cut in T2

yield an agreement forest of T1 and T2, we have e(T1,T2) ≤ 3k′.

To bound the running time of the algorithm, we observe that it terminates after O(n) iterations. Indeed,

each iteration removes at least one of the O(n) vertices and edges from T1 or T2. Moreover, T1 contains a
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sibling pair as long as the label set of T1 has size greater than 2, which implies that one of the transformation

rules is applicable. Thus, it suffices to prove that each iteration can be implemented in constant time, which

we do in Appendix B. (The argument is similar to the one presented by Bonet et al. [7].) ut

4.2 3-Approximation for Unrooted MAF (TBR Distance)

The 3-approximation algorithm for unrooted MAF and, hence, for TBR distance is the same as for the rooted

case, except that edges ea, eb, and ec in Case 3 are used in their unrooted meaning, and the algorithm may

end up cutting not eb but the third edge apart from ea and eb incident to rab:

3. If (a,c) is not a sibling pair in T2, let b∗ be one of the two nodes at distance two from a in T2. Then the

algorithm cuts edges ea, eb∗ , and ec in T2 and increases D by three.

The different cases of the algorithm are illustrated in Figure 5 in Appendix A.

Theorem 9. Given two unrooted X-trees T1 and T2, a 3-approximation of e(T1,T2) = dTBR(T1,T2) can be

computed in linear time.

Proof. The linear running time of the algorithm is established as in the rooted case. We need to prove that,

if the algorithm runs for k iterations, the final value of D, D(k), is a 3-approximation of e(T1,T2).
Again, let k′ be the number of applications of Case 3. Then D(k) = 3k′. As in the proof of Theorem 8,

each application of Cases 1 and 2 satisfies e(T
(i)

1 ,T
(i)

2 ) = e(T
(i−1)

1 ,T
(i−1)

2 ). Hence, it suffices to prove that

e(T
(i)

1 ,T
(i)

2 ) ≤ e(T
(i−1)

1 ,T
(i−1)

2 )− 1 for each application of Case 3. If Case 3 cut edges ea, eb, and ec, this

would follow from Theorem 6 similarly to the proof of Theorem 8. As pointed out, however, we may cut

the third edge incident to rab instead of eb. The reason we do this is that it would be costly to check which

of the two edges apart from ea incident to rab does not belong to the path from a to c. To establish that

e(T
(i)

1 ,T
(i)

2 ) = e(T
(i−1)

1 ,T
(i−1)

2 −{ea,eb∗ ,ec}) ≤ e(T
(i−1)

1 ,T
(i−1)

2 )−1, we observe that, if b∗ 6= b, then edges

e = eb∗ and f = eb satisfy Lemma 3 with respect to the edge set E = {ea,eb,ec}. Hence, T
(i−1)

2 −{ea,eb,ec}

and T
(i−1)

2 −{ea,eb∗ ,ec} yield the same forest, T
(i)

2 . ut

T1 T2 T1 T2

ρρ

c

c

(a) Case 1

T1 T2 T1 T2

ρ

a c

rac

a c

rac

ρ

rac

(a,c)

rac

(a,c)

(b) Case 2

T1 T2 T1 T2

a

rabc

ρ

a
c

rac

a

rab

rabc

ρ

a c

rac

b
c

b
c

(c) Case 3, a ∼T2
c

T1 T2 T1 T2

ρ

a c

rac

a b c

ρ

a c

rac

a b c

(d) Case 3, a �T2
c

Fig. 4. The three cases of the approximation algorithm for rooted MAF.

9



4.3 3-Approximation for Rooted MAAF (Hybridization Number)

The algorithm for approximating rooted MAAF consists of two stages. First we run the algorithm for rooted

MAF to obtain an approximation F of an MAF of T1 and T2. That algorithm, as described in Section 4.1,

computes only an approximation of the number of edges that need to be cut to obtain an MAF. However, it

is easy to extend this algorithm so that every edge in T
(i)

2 stores a pointer to one of the edges of T2 that have

been contracted into it. Thus, whenever an application of Case 3 cuts an edge in T
(i−1)

2 , we can also cut the

corresponding edge in T2. The forced contractions necessary to obtain F are then easily performed in linear

time once the algorithm terminates.

Given an agreement forest F of T1 and T2, it remains to identify and break cycles. Whenever we cut an

edge in the process, we increase D by one, starting with the value of D at the end of the MAF algorithm. Our

algorithm maintains two sets, Rd and Rt , of roots of trees in F . Rd contains a set of roots that do not form

any cycles with each other. Rt contains roots that may be involved in cycles. Initially, Rd = /0 and Rt contains

all roots of trees in F . Each iteration of the algorithm removes a root a from Rt and tests whether a forms a

cycle with a root b ∈ Rd . If not, we add a to Rd and move on to the next root in Rt . If there is a root b ∈ Rd

such that (a,b) is a cycle pair, we remove one of the two edges incident to each of a and b and increase D by

two. This breaks the two trees in F with roots a and b into two subtrees each; their roots are the children of

a and b in F . We add these children to Rt and then move on to the next iteration. The algorithm terminates

when Rt = /0, at which point F has been refined to an acyclic agreement forest of T1 and T2.

After spending linear time to label every node in T1 and T2 with its preorder number and with the interval

of preorder numbers of its descendants, checking whether two nodes a and b form a cycle takes constant

time, as (a,b) is a cycle pair if and only if a’s preorder interval in T1 contains b’s, and b’s preorder interval

in T2 contains a’s. The total number of nodes added to Rt throughout the algorithm is at most the number

of nodes in F , which is O(n). Hence, Rd also never has size greater than O(n), and checking every node in

Rt against every node in Rd takes O(n2) time in total. In Appendix C, we discuss how to reduce the running

time to O(n logn) by taking a geometric view of the problem. Thus, we have the following result.

Theorem 10. Given two unrooted X-trees T1 and T2, a 3-approximation of ē(T1,T2,T2) = hyb(T1,T2) can

be computed in O(n logn) time.

Proof. We have already discussed the running time of the algorithm. To prove the approximation bound,

consider all iterations over the two phases of the algorithm. As in the proof of Theorem 8, an iteration that

leaves D unchanged also leaves ē(T1,T2,F) unchanged, by Lemmas 1 and 2. By Theorems 4 and 7, every

iteration that changes D decreases ē(T1,T2,F) by at least one, as each such iteration is an invocation of

Case 3 of the MAF algorithm or cuts two edges ea and eb in the current agreement forest F , where (a,b)
is a cycle pair. Hence, the number k′ of such iterations is at most ē(T1,T2,T2). Each such iteration increases

D by at most three. Thus, D ≤ 3k′ ≤ 3ē(T1,T2,T2) at the end of the algorithm. On the other hand, once the

algorithm terminates, Rt is empty, and the roots in Rd do not form cycles. The resulting agreement forest is

therefore acyclic, and we cut D edges to obtain it. Thus, ē(T1,T2,T2) ≤ D. Together with the upper bound,

this shows that the final value of D is a 3-approximation of ē(T1,T2,T2). ut

5 Fixed-Parameter Algorithms

The approximation algorithms discussed in the previous section are easily modified to obtain fixed-parameter

algorithms for the respective problems. As is customary when discussing such algorithms, we focus on the

decision version: “Given two X-trees T1 and T2, a distance measure d(·, ·), and a parameter k, is d(T1,T2) ≤
k?” If this decision version can be solved in O(ckpoly(n)) time, then the exact distance d = d(T1,T2) can be

found in O(cdpoly(n)) time by iteratively trying larger guesses of k until we obtain the first positive answer.
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To obtain such a decision algorithm for (rooted or unrooted) MAF, we modify the approximation algo-

rithm from Section 4.1. We denote an invocation of the algorithm on tree T and forest F and with distance

bound k by A (T,F,k). If k ≥ 0 and T and F have at most two nodes each, the algorithm returns “yes”.

Otherwise, whenever the approximation algorithm applies Case 1 or 2, so does A (T,F,k). When the ap-

proximation algorithm would apply Case 3, A (T,F,k) recurses. In the rooted case, the algorithm makes

three recursive calls: A (T,F −{ea},k− 1), A (T,F −{eb},k− 1), and A (T,F −{ec},k− 1). A (T,F,k)
returns “yes” if and only if one of these recursive calls does. In the rooted case, the algorithm makes four re-

cursive calls: A (T,F−{ea},k−1), A (T,F−{eb},k−1), A (T,F−{ec},k−1), and A (T,F−{ed},k−1)
and again returns “yes” if and only if one of these recursive calls does.

Theorem 11. For two rooted X-trees T1 and T2 and a parameter k, it takes O(3kn) time to decide whether

e(T1,T2) ≤ k. In the unrooted case, it takes O(4kn) time.

Proof. First we prove the algorithm’s correctness. By Lemmas 1 and 2, whenever we remove a singleton

or contract a sibling pair without recursing, e(T1,T2) does not change. For two rooted X-trees T1 and T2

and a sibling pair (a,c) as in Case 3, Theorem 4 states that e(T,F −{ex}) = e(T,F)− 1, for at least one

x ∈ {a,b,c}, while e(T,F −{ex}) ≥ e(T,F)− 1, for all x ∈ {a,b,c}. Hence, e(T,F) ≤ k if and only if

e(T,F −{ex}) ≤ k − 1 for at least one x ∈ {a,b,c}. Thus, the algorithm gives the correct answer. In the

unrooted case, the correctness of the algorithm follows from a similar argument using Theorem 5.

As for the running time of the algorithm, we can view each recursive call as a truncated invocation of

the approximation algorithm from Section 4.1 that recurses as soon as it would invoke Case 3. Hence, each

recursive call takes O(n) time. Since each recursive call decreases k by one, and the recursion stops no later

than when k = 0, the recursion tree has height at most k. In the rooted case, each non-leaf node has three

children; in the unrooted case, four. Hence, the number of recursive calls is O(3k) in the rooted case and

O(4k) in the unrooted case. This gives the claimed running times of O(3kn) and O(4kn), respectively. ut

In order to obtain an FPT algorithm for MAAF, we augment the above algorithm for rooted MAF

as follows. For every recursive call A (T,F,k) that would output “yes”, we compute the corresponding

agreement forest F ′ of the two original trees T1 and T2. Note that F ′ is not necessarily an MAF, as k may be

greater than e(T1,T2). If F ′ is acyclic, the algorithm answers “yes”. Otherwise, it invokes a second recursive

algorithm B(F ′,k). This invocation returns “yes” if k ≥ 0 and F ′ contains no cycle, and “no” if k < 0.

If k ≥ 0 and F ′ contains a cycle pair (a,b), B(F ′,k) makes two recursive calls B(F ′ −{ea},k − 1) and

B(F ′−{eb},k−1) and returns “yes” if and only if one of the two calls does.

Theorem 12. For two rooted X-trees T1 and T2 and a parameter k, it takes O(3kn logn) time to decide

whether ē(T1,T2,T2) ≤ k.

Proof. We show the correctness for each of the two types of recursive calls. As for rooted MAF, whenever we

eliminate a singleton or contract a sibling pair in an invocation A (T,F,k) without recursing, Lemmas 1 and 2

show that this does not alter ē(T1,T2,F). When an invocation A (T,F,k) makes recursive calls A (T,F −
{ea},k− 1), A (T,F −{eb},k− 1), and A (T,F −{ec},k− 1), Theorem 4 implies that ē(T1,T2,F) ≤ k if

and only if ē(T1,T2,F −{ex})≤ k−1, for some x ∈ {a,b,c}. Hence, we output the right answer in this case.

If A (T,F,k) makes a recursive call B(F ′,k), F already yields an agreement forest F ′ of T and F . Hence,

ē(T1,T2,F) ≤ k if and only if we can find k edges in F ′ such that cutting them yields an acyclic forest. As

we show next, B(F ′,k) returns “yes” if and only if this is the case.

For an invocation B(F ′,k) such that F ′ contains a cycle pair (a,b), Theorem 7 states that F ′ contains a

set E of k edges such that F ′−E yields an acyclic forest if and only if F ′−{ea} or F ′−{eb} contains such

a set of of size k−1. Since the latter is equivalent to B(F ′−{ea},k−1) or B(F ′−{eb},k−1) returning

“yes”, B(F ′,k) gives the right answer.
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To bound the running time, we again observe that every recursive call of the algorithm can be seen as a

truncated version of the approximation algorithm for MAF or MAAF and, hence, takes O(n logn) time. The

depth of the recursion is at most k again, and every node has at most three children. Hence, there are O(3k)
recursive calls overall, and the running time of the algorithm is O(3kn logn). ut

Using known kernelizations [2,9,10], we can reduce the two input trees T1 and T2 to trees T ′
1 and T ′

2 such

that e(T1,T2) ≤ k or ē(T1,T2,T2) ≤ k if and only if e(T ′
1 ,T

′
2) ≤ k or ē(T ′

1,T
′

2 ,T
′

2) ≤ k, respectively, and trees

T ′
1 and T ′

2 have size O(k). These kernelizations take O(n3) time. Hence, we obtain the following corollary.

Corollary 1. For two rooted X-trees T1 and T2 and a parameter k, it takes O(3kk + n3) time to decide

whether e(T1,T2) ≤ k and O(3kk logk +n3) time to decide whether ē(T1,T2,T2) ≤ k. In the unrooted case, it

takes O(4kk +n3) time to decide whether e(T1,T2) ≤ k.
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Fig. 5. The three cases of the approximation algorithm for unrooted MAF.

B Linear-Time Implementation of Rooted MAF Approximation

In this appendix, we discuss how to represent the two trees in the rooted MAF approximation algorithm

from Section 4.1 to ensure that each of the O(n) iterations of the algorithm takes constant time, resulting in

a total running time of O(n) for the algorithm.

We represent each tree as a collection of nodes, each of which points to its parent, left child, and right

child. In addition, every labelled node stores a pointer to its counterpart in the other tree. For T1, we maintain

a list of sibling pairs, and every labelled node of T1 stores a pointer to the pair it belongs to, if any. For T2,

we maintain a list of singletons.

While the singleton list is non-empty, we remove its next element c. Given the above pointers, it takes

constant time to identify node c in T1 and its parent, to remove c from T1 and splice out its parent. Thus, we

can check in constant time whether Case 1 applies and, if so, apply it. If c belonged to a sibling pair in T1,

we can eliminate it from the list of sibling pairs. Moreover, c’s sibling a in T1 may now be the sibling of

another leaf c′ in T1, and we may need to add the pair (a,c′) to the list of sibling pairs. This is the case if a’s

new sibling c′ has no children, which is also easily checked in constant time. This concludes the discussion

of Case 1.

To implement Cases 2 and 3, we retrieve the next sibling pair (a,c) of T1. The pair (a,c) is a sibling pair

of T2 if and only if a and c have the same parent in T2. This allows us to distinguish between Cases 2 and 3

in constant time.

In Case 2, we remove a and c from both trees and set up pointers between the two parents in T1 and T2

(which become labelled as a result of the contraction). If rac has no parent in T2, it is now a singleton and is

added to the singleton list. Additionally, if rac has a leaf a′ for a sibling in T1, then (a′,rac) is a sibling pair

in T1, which must be added to the list of sibling pairs.

In Case 3, we identify the sibling b of a in T2 by following two pointers. Then edges ea, eb, and ec can

be removed in constant time. We need to add a and c to the list of singletons, and also node b if it is a leaf.

Finally, we need to remove rab from T2 and splice out its parent, if any. The parent rc of node c also needs to
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be removed or spliced out, depending on whether it has a parent. Moreover, if rc is removed and the sibling

d of c is a leaf, then d is now a singleton and needs to be added to the singleton list. Again, all these are

local pointer manipulations that can be carried out in constant time.

The last remaining issue is that, in Case 3, we are required to choose a and c so that the distance from

a to the root r of its component of T
(i)

2 is no less than that from c to r when a ∼
T

(i)
2

c. Observe that this

condition is used only to ensure that c /∈ B. The latter, however, is true also if a has the greater depth than c

in the initial input tree T
(0)

2 . Hence, after using a standard linear-time depth-first traversal of T2 to label all

its nodes with their depths, we can choose a to be the node with the greater depth label in constant time in

each application of Case 3.

C An O(n logn) Time Implementation of the MAAF Approximation

This appendix provides the details of how to implement the MAAF approximation algorithm described

in Section 4.3 in O(n logn) time. Both the O(n2)-time and the O(n logn)-time implementations require a

method to test quickly whether a pair of roots, (a,b), is a cycle pair of the current forest. We discuss this in

Section C.1. In Section C.2, we discuss how to avoid testing all pairs of roots by reducing the elimination

of cycle pairs to a geometric problem very similar to orthogonal line segment intersection. Throughout this

section, we consider an agreement forest F of two rooted X-trees T1 and T2.

C.1 Testing Cycles in Constant Time

In order to decide whether a pair of roots (a,b) in F is a cycle pair, we need to be able to identify the nodes

corresponding to a and b in T1 and T2 and be able to test for any two nodes in T1 or T2 whether one is an

ancestor of the other.

Testing for ancestry. Given a tree T , we can test whether a node x ∈ T is an ancestor of a node y ∈ T by

computing a preorder numbering of T and labelling every node of T with the interval of preorder numbers

of its descendants. We denote the interval associated with node x by I(x). Such an assignment of intervals

can be computed in O(n) time using a DFS-traversal of T . Given two nodes x,y ∈ T , x is an ancestor of y if

and only if I(y) ⊂ I(x), which can be tested in constant time.

Mapping nodes from F to T1 and T2. We discuss how to identify the nodes in T1 corresponding to the nodes

in F . The same procedure can be used to identify the corresponding nodes in T2.

First we use the linear-time algorithm of Bender and Farach-Colton [6] to preprocess T1 for lowest-

common ancestor (LCA) queries, where the lowest common ancestor of two nodes x and y is the node

farthest away from the root that is an ancestor of both x and y. The structure constructed by the algorithm

of [6] supports such queries in constant time.

For a node x ∈ F , let Xx be the set of labels of all descendant leaves of x in F . Then the node in T1

corresponding to x is the lowest node that is an ancestor of all leaves in Xx. Assuming the children, l and r,

of x have already been mapped to nodes in T1, it is easy to see that the node corresponding to x is nothing else

than the LCA of the nodes corresponding to l and r. Hence, we can compute all nodes in T1 corresponding

to nodes in F by traversing the trees of F in postorder, that is, bottom-up; for every visited node x, we

can find the node in T1 corresponding to x in constant time by answering an LCA query for the two nodes

corresponding to its children in F .

Preprocessing T1 for LCA queries takes linear time. There are O(n) nodes in F , and each gives rise to

a constant-time LCA query. Hence, the nodes in T1 corresponding to the nodes in F can be found in linear

time.
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Putting it together. To be able to test for cycle pairs in F , we compute intervals I(x) for all nodes x ∈ T1 and

x ∈ T2, and we use the method just described to find the nodes in T1 and T2 corresponding to each node in F .

This preprocessing takes linear time.

Given a pair of nodes (a,b) in F , we can now find their corresponding nodes in T1 and T2 in constant

time, including their preorder intervals. It now takes constant time to decide whether IT1
(a) ⊂ IT1

(b) and

IT2
(b) ⊂ IT2

(a). If so, (a,b) is a cycle pair. Otherwise, it is not.

C.2 A Geometric View of Cycle Elimination

The constant-time cycle testing method from the previous section suffices to obtain an O(n2)-time imple-

mentation of the MAAF approximation algorithm, as there are only O(n2) node pairs to test. By taking a

geometric view, however, we can reduce the running time to O(n logn) using the plane sweep paradigm.

Recall the definition of sets Rd and Rt in Section 4.3. We represent each node a ∈ Rd by a horizontal

line segment ha := (x1,y)–(x2,y), where y is the preorder number of a in T1 and IT2
(a) = [x1,x2]. Each node

b ∈ Rt is represented by a vertical line segment vb := (x,y1)–(x,y2), where x is b’s preorder number in T2

and IT1
(b) = [y1,y2]. Then (a,b) is a cycle pair if and only if ha and vb intersect.

We start by generating the vertical line segments for the nodes in Rt and insert them into a priority

queue Q, in order to be able to process them by increasing x-coordinates to simulate a left-to-right sweep.

The line segments corresponding to the nodes in Rd are represented by a balanced binary search tree T

storing the segments that intersect the sweep line, sorted by their y-coordinates. The left and right endpoints

of the segments in Rd are also added to Q, in order to process them as event points during the sweep. Initially,

T is empty and Q only stores the segments corresponding to nodes in Rt .

To perform the sweep, we now process the elements in Q by increasing x-coordinates. If the next element

is the left endpoint of a horizontal segment ha, we insert ha into T . If it is ha’s right endpoint, we remove ha

from T . This ensures that at all times T stores the horizontal segments intersecting the sweep line. Now, if

the next element to be processed is a vertical segment vb = (x,y1)–(x,y2), vb intersects a horizontal segment

corresponding to a node in Rd if and only if the interval [y1,y2] contains the y-coordinate of a segment ha

currently in T . Deciding this and finding a segment ha that intersects vb requires a search in T to find the

largest y-coordinate no greater than y2. If vb does not intersect a segment ha in Rd , we add b to Rd by adding

the endpoints of hb to Q. If vb intersects a segment ha, (a,b) is a cycle pair and we delete edges ea and eb

from F , thereby removing nodes a and b from F . To reflect this change, we perform the following updates

on Q and T .

1. First we insert the vertical segments vb1
and vb2

corresponding to the children of b into Q. Note that they

are to the right of the sweep line, as the segment coordinates correspond to preorder numbers and the

sweep line is currently at the x-coordinate corresponding to b’s preorder number.

2. Second, we inspect the horizontal segments ha1
and ha2

corresponding to the children of a. If hai
is to

the left of the sweep line, it is discarded. If it is to the right of the sweep line, its endpoints are added

to Q. If it intersects the sweep line, we insert it into T and add its right endpoint to Q. This corresponds

to inserting a1 and a2 into Rd .

The algorithm terminates when Q is empty.

Lemma 4. The approximation algorithm for MAAF from Section 4.3 can be implemented in O(n logn) time.

Proof. The running time is pretty obvious. The total number of segments added to Rd and Rt over the course

of the algorithm is at most equal to the number of nodes in F and is, hence, O(n). Therefore, we process at

most O(n) event points in Q. Processing each event point entails a constant number of updates and queries

on Q and T , each of which takes O(logn) time if T is balanced and Q is implemented using any standard
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efficient priority queue implementation. (A binary heap is good enough.) Therefore, the running time of the

algorithm is O(n logn).
Ignoring the insertions of a1 and a2 into Rd without testing for intersections, the correctness of the

algorithm follows from the fact that we transform a vertical segment into a horizontal one—and, hence,

insert its corresponding node into Rd—only if it intersects no horizontal segments corresponding to nodes

currently in Rd . Hence, the correctness of the algorithm follows if we can argue that neither a1 nor a2 forms

a cycle pair with a node b ∈ Rd when inserting them into Rd as a result of removing their parent a from Rd .

Note, however, that the nodes in Rd are roots of trees in the current forest F . Any node b ∈ Rd that forms a

cycle pair with ai is w.l.o.g. an ancestor of ai in T1 and a descendant of ai in T2. Since b cannot belong to the

tree with root a before the removal of a, this implies that b is also an ancestor of a in T1 and a descendant of

a in T2, making (a,b) a cycle pair. Since a,b ∈ Rd before replacing a with its children, this is a contradiction.

ut
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