Parasite Control on Organic Sheep Farms in Ontario

Dr. Laura C. Falzon

PhD candidate, Department of Population Medicine, University of Guelph (some slides courtesy of **Dr. Andrew Peregrine** and **Dr. Paula Menzies**, University of Guelph)

Gastro-Intestinal Nematodes

Parasites inhabiting the alimentary tract of small ruminants

- Responsible for severe economic losses caused by:
 - Decreased production
 - Death of infected animals
 - Cost of prevention
 - Cost of treatment

(Barger, 1982; Donald and Waller, 1982)

Gastro-intestinal Nematodes

- Haemonchus
- Teladorsagia
- Trichostrongylus

Haemonchus contortus

- *H. contortus* is the most pathogenic the adult female worm feeds on blood
- Causes:
 - Loss of blood Anaemia
 - Loss of protein Oedema

Clinical Signs of Haemonchus infection

Pale mucous membranes - Anaemia

Bottle-jaw - Oedema

(Courtesy, Dr. Paula Menzies, University of Guelph)

Teladorsagia circumcincta

Trichostrongylus axei

- Adult localized in gastric glands
- Disruption of abomasal mucosa results in increased pH and reduced pepsin production

- Adult embedded in abomasal mucosa
- Disruption of abomasal permeability alters pH and nutrient absorption

Clinical Signs of *Trichostrongylus* and *Teladorsagia* infection

Diarrhea - scouring

Poor weight gain

GIN Life Cycle

- A three-year epidemiological study was conducted in Ontario and Quebec (2006-2009)
- The <u>objectives</u> were:

- To determine the levels of
 GIN in both organic and conventional flocks throughout the year
- To identify farm management practices that can be used to minimise parasite burdens

- A total of **31** farms were visited over the 3 years (23 ON + 8 QB)
- Farms were visited monthly (Apr Oct) and twice in the winter:
 - Questionnaires about management practices
 - Random selection of 10 adults + 10 ewe-lambs
 - Fecal samples
 - Blood samples
 - Clinical Parameters
 - Pasture samples
 - Necropsy of lambs

		AVERAGE	
	(min-max)		
	Certified Organic	Non Certified Organic	Conventional
EWES	118	286	235
	(1 - 4660)	(1 -18940)	(1 -9840)
LAMBS	319	424	417
	(1 - 7060)	(1-25020)	(1-14080)

Table 1. Average fecal egg counts for all ewes and grazing lambs for the total period, by operation type

Note: min = minimum; max = maximum

Fig. 1. Average EWE faecal egg counts (epg) in 32 sheep flocks in Canada (May 2006 – April 2007)

Fig. 2. Average LAMB faecal egg counts (epg) in 32 sheep flocks in Canada (May 2006 – April 2007)

Fig. 3. Pasture infectivity in 32 sheep flocks in Canada (May 2006 – April 2007)

Fig. 4. Faecal egg counts and pasture infectivity in 32 sheep flocks in Canada (May 2006 – April 2007)

- Take-home messages from this study:
 - There was <u>very large</u> variation between farms in the burdens of gastrointestinal nematodes both on pasture and in sheep
 - The months with highest fecal egg counts were May-June for ewes and July-August for lambs
 - The average number of infective nematode larvae (L3) recovered from pasture samples showed 2 main peaks: June-July and September

- It was previously believed that *H. contortus* does not overwinter on pasture
- However, *H. contortus* larvae were found on pasture in spring in the previous study
- The <u>objective</u> of this study was:

 To understand whether the population of *H. contortus* larvae overwintering on pasture is a significant source of infection

- 3 farms in Ontario were selected
 - Set up data-loggers to measure air and ground temperature, air humidity and soil moisture
 - Soil and pasture samples
 collected monthly (Nov-Apr)
 - 5 tracer lambs put out to graze for
 28 days on 1-acre isolated plots –
 slaughtered and GI contents collected

- Environmental data still to be analysed
- Soil and pasture samples few parasite larvae were found in Nov-Dec
- Tracer lambs *H. contortus* adult worms were
 found in the
 abomasum of one
 lamb from one farm

- The take-home messages from this study are:
 - Very few *H. contortus* larvae
 overwinter on pasture
 - Those that survive have low infectivity
 - Pastures are essentially clean
 - of *H. contortus* in the spring

1. Regular Monitoring

- Detect high shedders
- Evaluate success of parasite control strategies

practiced

- June (ewes)
- July (lambs)

- **2.** Pasture Management Strategies
 - 80% of the parasites are in the environment...
 - a) Crop Rotation
 - b) Rest Pastures for more than one year (end of June)
 - c) Low Stocking Densities

2. Pasture Management

d) Mixed-Species/Rotational Grazing

Cows, Horses...

... not Goats or Camelids

- **3. Nutrition**
- Adequate nutrition

 ensures proper immune
 responses towards parasites

- Bypass protein e.g. corn gluten; roasted soybeans
- Especially important in peri-parturient ewes

4. Bioactive Forages

- Some plants are rich in **Condensed Tannins** e.g. Sulla, Chicory, Sanfoin, Birdsfoot trefoil
- Effect may be through increased availability of by-pass protein as well as direct effect on parasites
- May be useful adjuncts for parasite control BUT
 - bioactivity is not specific
 - potentially toxic to sheep

5. Genetic Resistance

- By Breed:
 - Certain breeds are more resistant
 e.g. Gulf Coast Native, Katahdin, St. Croix
 - May have unfavourable side-effects e.g. lower productivity
- Within breed:
 - No genetic marker

- Select animals based on reduced fecal egg output and higher immune response (detected in saliva)
- Selection done on large ram groups

6. Copper Oxide Wire Particles

- Several studies to show it reduces infection of
 Haemonchus contortus
 - Temporarily
 - Reduces FEC
 - Doesn't improve weight gain
- Not effective against other GIN
- Copper toxicity?

7. Antiparasite vaccines

- Work is being done on *H. contortus* vaccines
 - $-\downarrow$ nematode egg output
 - $-\downarrow$ worm burden
- However:
 - In Canada we have mixed

parasite infections – limited use

Not commercially available

Conclusions

- Gastrointestinal nematodes are a problem on many sheep farms in Canada
- Use of multiple control methods should increase the sustainability of parasite control on farms

Monitor the effectiveness of your control program with your veterinarian