DALHOUSIE **UNIVERSITY**

FACULTY OF ENGINEERING Department of Mechanical Engineering

Introduction

Robotic Spacecraft Simulator

- The Robotic Spacecraft Simulator (RSS) is a robot used to simulate the deorbiting of space debris in 2D
- The robot floats on air bearings and maneuvers using converging, cold gas (air) thrusters
- The air thrusters allow the RSS to match position and rotation of space debris

Artistic rendering of a space debris deorbiting vehicle

Project Scope

- The objective of this project is to design and construct an apparatus to quantify the thrust force of the RSS thruster nozzles
- Thrust characterization will assist with development of the propulsion control system

Requirements

The final design must:

- Support testing of up to 4 thruster nozzles
- Be configurable to test nozzle outlet diameters ranging from 0.2 mm to 1.0 mm
- Measure and vary thruster supply pressure up to 100
- Measure thrust forces up to 2 Newtons
- The experimental results shall be validated via CFD model.

Design Process

- Explored methods to measure thrust including measuring deformation, displacement, acceleration, and volumetric flow rates
- Research into similar experiments to see what solution worked for low thrust applications
- The bending load cell force measurement system was selected due to ease of implementation, cost, and example use in literature
- Two prototypes were developed including a CAD model using SolidWorks and a CFD model using ANSYS

Team 23 – RSS Thrust Measurement System Nolan Cain – Srajit Mehrotra Katrina Mullane – Anthony Newton

How it works:

- 1. The load cell is calibrated using the calibration stand and known masses
- 2. Air is supplied by the air tank at 300 psi
- 3. Air is regulated to desired supply pressure via second stage regulator
- 4. Actuating the solenoid valves provides air flow to the nozzles
- 5. The thrust output from the nozzle mounted on the load cell causes a deformation
- 6. Strain gages internal to the load cell measure the deformation and convert it to an electrical output signal
- 7. The output signal is read by an Arduino and converted to grams of thrust force

Results

CFD Results

- ANSYS Fluent was used to perform CFD analysis on the nozzle
- Nozzle diameter sizes of 0.4, 0.6, and 1.0 mm were analyzed
- Results were compared with the experimental results and are in good agreement
- The error between CFD and the experimental data is hypothesized to be due to frictional effects from wall roughness and boundary layer effects

CFD model velocity profile

Details of Design

Thrust Force vs Outlet Diameter

- The effects of the outlet diameter of the converging nozzle on thrust force was examined to determine the optimal outlet diameter for the RSS The supply pressure was regulated to
- 60 psi to mimic the conditions on the RSS
- The thrust force reaches a maximum using the 0.6mm outlet diameter nozzle

Thrust vs Inlet Pressure

- The effects of the inlet supply pressure on thrust force was examined to determine the optimum supply pressure for the RSS
- The 0.4 mm nozzle was used to mimic conditions on the RSS • Thrust output linearly increases as inlet supply pressure increases

rate

Components 1 Air Supply Tank 2 Second Stage Regulator 3 Solenoid Valves 4 Manifold 5 Thruster Nozzle Holder 6 Load Cell (testing orientation) 7 Load Cell Calibration Stand 7a Load Cell (calibration orientation) 8 Three Thruster Nozzle Holder 9 Circuit Board

Recommendations

- The following is recommended for
- implementation on the RSS:
- Use 0.6mm nozzle to maximize thrust output
- Use 0.2mm nozzle to maximize runtime
- Use maximum allowable supply pressure to maximize thrust output
- The following is recommended to improve the experiment apparatus:
- Minimize tube length and nozzle chamber Purchase an ADC with a faster sampling
- Purchase a second stage regulator with greater precision
- The experiment should be repeated using converging-diverging nozzles and compared to converging nozzle results

References

Gugliotta, G. (2017). Earth, clean up your trash! Retrieved from <u>Earth, Clean Up Your Trash! | Air &</u> Space Magazine | Smithsonian Magazine Vautour, E. (2021). "RSS Design Review Document". Vautour, E. (2021) "RSS Propulsion Capstone -Graduate Student User Requirements".