

FACULTY OF ENGINEERING Department of Mechanical Engineering

Coloursmith Labs

Coloursmith Labs Inc. is a nanotechnology company that designs optical light filters to improve lenses and vision. Optical filters are created through thin-film application and treated by the company.

Project Scope

- Thin film applicators are very expensive, and Coloursmith uses solvents that have highly corrosive chemicals.
- The purpose of this project was to build an economical, repeatable, thin-film applicator to apply a thin film onto glass slides. The material used in the design must be compatible with Coloursmith solvents. In addition, the equipment must be easily integrated into Coloursmith's existing R&D process.
- Common issues Coloursmith experiences with their existing application method are inconsistent layers of thin-film, long coating times, and large solvent waste.

Requirements

- Apply 20-50-micron layer of thin film to slides.
- Repeatable with tolerance of 2 microns.
- Use a maximum of 2 mL of solvent per slide.
- Cost less than \$1 000 CAD to build.
- Require less than 5 minutes per slide to coat.
- Coat only one side of the glass slide.
- Usable for range of solvent viscosities 0.024 1.3 kg/m*min.

Spin Coater

- Spin coaters were the optimal technique to apply thin film with minimal manual interference, and high repeatability.
- Spin coaters apply thin film through centripetal force. The thickness of the thin film is adjustable by varying the viscosity, spin time and/or altering motor speed.
- This application had fixed viscosities; therefore, motor speeds and spin times were adjusted to achieve desired thickness.

(Ali et. al., 2019)

Duohan Cui, Dawson Copeland, Alanna Gravelle & Michelle Pellerin

Spin Coater for Thin Film Application

Design Process

- Two enclosures, and three motor mount prototypes were created.
- Enclosure part sizes were minimized to reduce weight and material, and openings to insert parts were enlarged for ease of use.
- Accessible point of entries were put into second enclosure build for operator to adjust slides with more ease.
- Damping material was added on top of the motor mount to minimize vibration and excessive sound.
- Motor mount material was changed to PET-G for better heat resistance, and longer supports were added to improve the rigidity of the part.

Set Screw

RPM Dial

Allen Key Entrance

Knob alters motor RPM

shaft

Mechanical Design

Electrical Design

Top Panel

Prototype

Final

Aluminum, handles for easy use, glass top to see experiment when running

Glass Tray Holder

Aluminum, custom chuck to attach to motor shaft. Glass slide sits on top with 6 screws to hold it down

Chemical Enclosure

Aluminum, internal ridge to hold chemical excess spun off glass slides

Electrical Enclosure

Explained in section below

Power Cables

Rubber Washer Damper between top panel and motor for vibration

Motor Mount 7000 RPM Motor

- position should be equivalent.

parameter.

- one glass slide per run.
- thickness of the coating:
- A(absorbance) = E(extinction coefficient)*L (path length(thickness))*c (concentration)

Ali, H., Al-Sharafi, A., & Yilbas, B. S. (2019). Self-cleaning of surfaces and water droplet mobility. Chalcogenide Glasses.

Electrical Box

Coloursmith

Results

If thin-film thickness is unform, the peak absorbances of each

Consistent layers of thin-film measured at 5 different locations with peak absorbances around 0.022 (AU).

Repeatable thin-film created for different trials with close average peak absorbance of 0.023 AU with same coating

Conclusion

Spin coater creates uniform, repeatable thin film thickness

Recommendations

Increase the size of the glass tray holder to spin more than

In the future, calculation can be performed to find the exact

References