DALHOUSIE **UNIVERSITY**

FACULTY OF ENGINEERING

Department of Industrial Engineering

Scheduling And Standardization Of Michelin Quality Control Testing

Process Background and Context

- Before tire production, Michelin manufactures and mixes rubber into sheets
- Sheets are then used to manufacture tires
- Rubber sheets must be sampled and tested for quality to ensure tire quality
- Failure to pass quality control test will lead to halt in tire production and potential recall

Problem Definition

- There are many potential quality tests that vary
- Tests are conducted in an arbitrary fashion with no order and no standardization
- Technicians do labour Lab not have requirements or assignments per shift.
- This leads to excessive autonomy for the technicians
- Autonomy may cause workers to delay the work and leave it for others
- Such autonomy and delays lead to excessive variability in test lead times.

Project Scope

- 2 Testing Labs (GK & GM)
- Preparation Tasks (Cutting, weighing, milling)
- Curing (Based on distinct Cure Laws)
- 4 Quality Tests (QT1, QT2, QT3, QT4)
- Numerous Test variations (QT1A, QT1B, QT1C, etc.)
- Over 100 possible test combinations
- 4 Full-Time Lab Technicians

Conclusion and Recommendations

- data

Yousef Abou-Zidan Ahmad Abdulah Amr Mostafa Kamel Roshdi Dalloul

Solution Methodology – Scheduling App

GK Lab:

- Flow shop with linear process
- Conducted BASIC MOST to determine bottleneck of the system, which was the curing machine.
- Distinct Cure Laws dictate Processing Times

GM Lab:

- Open shop with parallel process
- Minimum 9 hour wait prior to testing
- 1 hour wait after cutting test pieces (Dumbbell shaped)

SPT algorithm helps standardize and track work by graphically informing the lab technician on the jobs to work on, and resulted in a throughput increase of 14.9%. Machine worker chart showed that by altering worker shifts, average time in the system decreased by 63.65%, in worst case scenario conditions with highest ever recorded number of daily samples according to historic

Future PII students may want to build a more complex simulations and test other possible improvements (different scheduling algorithms on individual machines, an additional autoclave) It may be worthwhile for future PII students to look at the throughput through each testing machines that work in parallel, and therefore can be scheduled individually

Michelin Scheduling App - (MSA)								×
GK I	AB J	ob S	ched	uling	Refresh Sche	dule	Print Before	e Milling
Todays dat	te: 30-03-20	<u>21 10:47:41</u>					Print Before/Du	uring Curing
Mix Number 69 169 170 171 172 236 57 173 3 14 45	Perp Number 74284 74317 74317 74317 74317 83895 74284 74317 63839 53910 74279	Test Type T T T T T T T C C C	Sample PT 3700 3700 3700 3700 3700 3700 4200 4200 4200 4200 4200 4200	Cure Law 20 20 20 20 20 20 20 2 2 2 2 2 2 2 2 2	Batch PT 616.6666667 616.6666667 616.6666667 616.6666667 616.6666667 700 700 700 700 700 700	Batch ID 4 4 4 4 4 1 1 1 1 1 1 1 1		•
Before/During Co Mix Number 69 231 238 60 11 38 239 139 11 119	Perp Number 74284 83895 83895 74284 83935 83808 83895 83808 83895 83808 83935 83935 83935 83921 83935 74281	Test Type T T T C C C T C C C C C C C	SAMPLE PT 3700 3700 4200 4200 4200 3200 3200 5700 5700	Cure Law 20 20 20 2 2 2 2 2 1 1 3 3 3	Batch PT 1233.333333 1233.333333 1233.333333 1400 1400 1400 1400 1600 1600 2850 2850 2850	Batch ID 4 4 2 2 2 1 1 3 3 3		▲

- Algorithm on Weighted Batch Processing Times.
- Based on a 4-hour shift length, SPT resulted in a 14.9% increase in throughput in comparison to current operations
- The test schedule utilizes Shortest Processing Time Algorithm on Test Combinations at a refresh rate of 4 hours.
- This is to maximize machine utilization in the lab.

Solution Methodology – Worker Shift Reassignment

Time in System

Baseline

After Improvement

Percentage of Improvem

- 4 Lab Technicians, two 8.5 hour shifts, and two 12 hour shifts
- Chart showed idle time and machine utilization over shift
- in the system according to chart
- GM lab is open for 8.5 hours, two workers in parallel, GK worker can work in GM lab as needed

Milling and Curing schedules utilize Shortest Processing Time

	Hours	Days
	88.823	3.7009
	32.29	1.3453
ent	63.65%	

Worker – Machine activity chart constructed to study system behaviour

Two consecutive 12 hour shifts in GK would lead to greatest throughput