DALHOUSIE UNIVERSITY



FACULTY OF ENGINEERING

# Background

The Dalhousie Ships of Opportunity System can be installed on a ship to autonomously collect ocean water data. The proposed project is to replace the system's current unreliable PLC controller with an embedded solution.

## **Scope of Work**

### **Control Panel**

- The new controller must integrate with the same implementation as the PLC controller.
- This includes detecting the mode selector switch position, button presses and controlling LED indicators.

#### **User Interface**

The user must be able to connect to the controller via a terminal for debugging.

#### GPS

- Receive GPRMC sentences and determine if the ship is outside a pre-defined geofence.
- If the ship is outside the geofence, the pump is safe to turn on.

### **Pump Control**

- Control a pump via a relay.
- Detect motor faults and measure instantaneous currents via hall sensors and filters.

### **SmartGuard Instrument Hub**

Send diagnostic strings to the SmartGuard via UART.

### **SD** Card

Send diagnostic strings to the SD card that is on the controller board (new feature).

### **Old PLC Controller**





# Dalhousie Ships of Opportunity (Dal-SOOP) System Controller Brandon Allen, Juntian Chen, Yiwei Zhai (Group 20)

External Supervisor: Dr. Aaron MacNeil, Internal Supervisor: Dr. Ghada Koleilat



**CERC OCEAN** 



- Added multiple supports leg to
- Modified the second order DC Isolation filter for less output
- Isolated the high AC voltage signals from the DC ground.