

Department of Electrical Engineering

Employer Info

The CERC Ocean lab intends to create an automated underwater vehicle (AUV), which allows the user to have:

- A multipurpose scalable network of AUVs
- AUVs will be sensor agnostic

This is intended to help improve the ability to conduct research underwater

Project Breakdown

We focused the code developed into an oil detection algorithm and navigation interrupt. To accomplish this, our team had to:

- Create the trigger for the oil searching program initialization.
- Develop intercommunication between Python, and C.
- Develop the trigger parameters of Conductivity and Turbidity for oil searching. This works as a demo for the fluorescence sensor which will be used in the final version for oil search.
- Create 2 new coordinates for the AUV for oil searching

Figure 1: ecoSUB Navigation Mapping

Project Resource Allocation

This project was code based, as a result the process was dependent on proper **communication** of the project's weekly and monthly goals, as well as time management. Rather than monetary budget constraints.

Team **7**:

Walter Porcel Adil Shaikh Shahzaib Cheema

Micro AUV Oil Detection

Project Task

We were tasked with developin With our team's code, the AUV <u>Step 1:</u>

- Interrupt its current navigatio
- 2 New points are generated

Search the points generated Step 2:

AUV Checks the first point g

AUV backtracks and heads t <u>Step 3:</u>

AUV checks the second point <u>Step 4 :</u>

AUV returns to its initial naviga

Figure 2: e

Performance Testing

The code developed was not tested in a real-world environment. The testing was done through theoretical analysis of code performance:

ng the code for oil detection near ocean surface. V is supposed to (Referring to fig.2 below):		Ini lat lon
on based on sensor values		Fir lat
for oil patches		lon
generated. no oil detected		Sec lat
owards the second point generated		lon
nt generated and finds oil.		Fig
ation instructions		
AUV continues initial navigation instructions	ſ	
4		Con
Sensors see AUV is getting further		Reco
as oil 2		A bas
		goal r
Oil Detected Initialize maneuvering		Keal-
		• Ma
ecoSUBAUV		• Oi
		Over
ecoSUB Navigation Interrupt		scena
		code

Secondary code was written to test different parts of the main code. Samples of researched real-world sensor readings were tested.

ond new coordinate: : 44.480444 g: 45.605768

gure 3: Testing New coordinates

clusion and ommendations

sic code architecture to achieve the necessary has been implemented. -world testing could help improve:

aneuvering upon oil detection

l detection interrupt values

all, further testing in a real-world ario is necessary for guaranteeing performance.

References

EcoSUB Robotics https://www.ecosub.uk/