

Introduction

The navigation assistance technology for the visually impaired and the blind has been an active research topic for decades. In recent years, developers have begun to try to design robots or external devices to help blind people travel more conveniently and safely.

Objective

Optimize AI Technology Solutions has tasked us designing a solution to collect data and provide real-time support for low vision and blind people to safely navigate sidewalks and pathways independently.

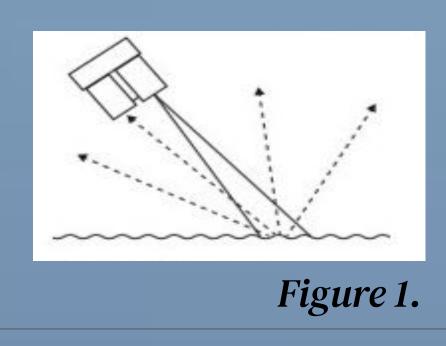
Short Term Work Plan

- Understand the challenge of Low Vision and Blind People
- Find hardware components
- Solution to function in all weather conditions

Design Process

Long Term Work Plan

- Get all the electrical hardware
- Build the device in summer term
- Conduct detection test
- Adjust output signal
- Design AI calculator and training of Al


Conclusion

- The use of lidar and millimeter-wave radar can collect more and more accurate environmental data, supplemented by ultrasonic radar can correct the error caused by the deviation of the laser reflection signal under rainy or other extreme weather conditions. The final inspection can be verified by comparing the image data collected by the video camera.
- Data processing is mainly divided into two stages. It will first be manually marked, such as adding a timestamp, etc., and then the marked data will be handed over to artificial intelligence for training. A well-trained AI will be well qualified for the navigation of the blind in the city.
- Canadian Patents Database / Patent 2256863 Summary. (2008, Dec, 9). GPS NAVIGATION SYSTEM. Retrieved from: https://www.ic.gc.ca/opic-cipo/cpd/eng/patent/2256863/summary.html?query=navigation+&type=basic_searc • Canadian Patents Database / Patent 1338479 Summary. (1996, Jul, 23). NEAR OBSTACLE DETECTION SYSTEM. Retrieved from: https://www.ic.gc.ca/opic-cipo/cpd/eng/patent/1338479/summary.html?query=radar+detection&type=basic_s earch • Canadian Patents Database / Patent 2747337 Summary. (2017, Sep, 26). MULTIPLE OBJECT SPEED TRACKING SYSTEM. Retrieved from: https://www.ic.gc.ca/opic-cipo/cpd/eng/patent/2747337/summary.html?query=radar+speed&type=basic_sear

- ch

Safe Sidewalk Navigation

Week 1 Planning phase Week 2 Case study Week 3 Research on hardware, AI training Week 4 Research: Visually impaired people Week 5 Weather condition Week 6 Periodic summarize Week 7 Avaliable sensors Week 8 Avaliable processor

Lar • Budget Summary B • System Architecture **Data Collection Stage** Initial • Lid • mi • ult • im INS Data Processing Store data that

References

- _search c_search

Group by group #7: Membe

> Instruc Superv Advisor

Detials of design

Options Explored

erformance	Infrared Sensor	Lidar	mmWave Radar	Ultrasonic Sensor	Video Camera	
Cost	Mid	High (>\$100)	Mid (\$50)	Low (<\$50)	Mid (\$50)	
tection Angle	30-60 deg.	15-360 deg.	10-70 deg.	15-120 deg.	30-180 deg.	
ght Detection	Strong	Strong	Strong	Strong	Weak	
All-weather	Weak	Weak	Strong	Mid	Weak	
raffic signal lentification	×	×	×	×	\checkmark	
ne departure warning	×	\checkmark	×	×	\checkmark	

	Sensors	Processor	Battary	Wearable device for fixation	Wiring
udget(CAD)	300	TBD	50	50	50

l ideas: lars installed on the shoulder llimeter wave radar installed on the foot rasonic radar installed on the back age collection device (e.g. GoPro) stalled on the head	Initi • c • k d • d
	• d
a Processing	

Mark the objects that appear in the record

Time stamp should be set

The collected data will be stored separately in an SD card, and during this process all the data will also be converted into numerical values.

• Canadian Patents Database / Patent 2149328 Summary. (1998, Sep, 22). RADAR DISTANCE MEASURING DEVICE. Retrieved from:

https://www.ic.gc.ca/opic-cipo/cpd/eng/patent/2149328/summary.html?query=radar++distance&type=basic

• Canadian Patents Database / Patent 2297191 Summary. (1999, Jul, 15). A VOCODER-BASED VOICE **RECOGNIZER.** Retrieved from:

https://www.ic.gc.ca/opic-cipo/cpd/eng/patent/2297191/summary.html?query=voice+recognition&type=basi

• Figure 1. GARMIN. (September, 2016). Lidar Lite v3 Operation Manual and Technical Specifications. Retrieved from https://www.robotshop.com/media/files/pdf2/pli-06-instruction.pdf

	Qihang Zhai	B00760910	
ers	Zirui Xu	B00757950	
	Jiawei Huang	B00761596	
	Qinyu Li	B00764111	
tor	Jose Gonzalez-Cueto		
visor	Jennifer LaPlante		
r _	Jeremy Brown		

Application Testing Stage:

ial ideas:

- cancel the image collection device keep radars to continue the detection
- data processor should be used

Marked data will be handed over to Al