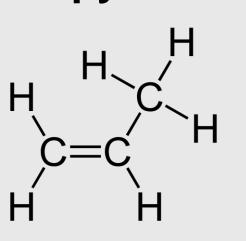
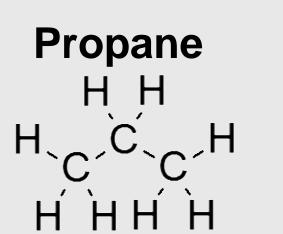
DALHOUSIE **UNIVERSITY**

FACULTY OF ENGINEERING

Department of Process Engineering and Applied Science


Introduction

The purpose of this project was to design a C_3 upgrading stream for an ethylene plant located in Goldboro, NS.

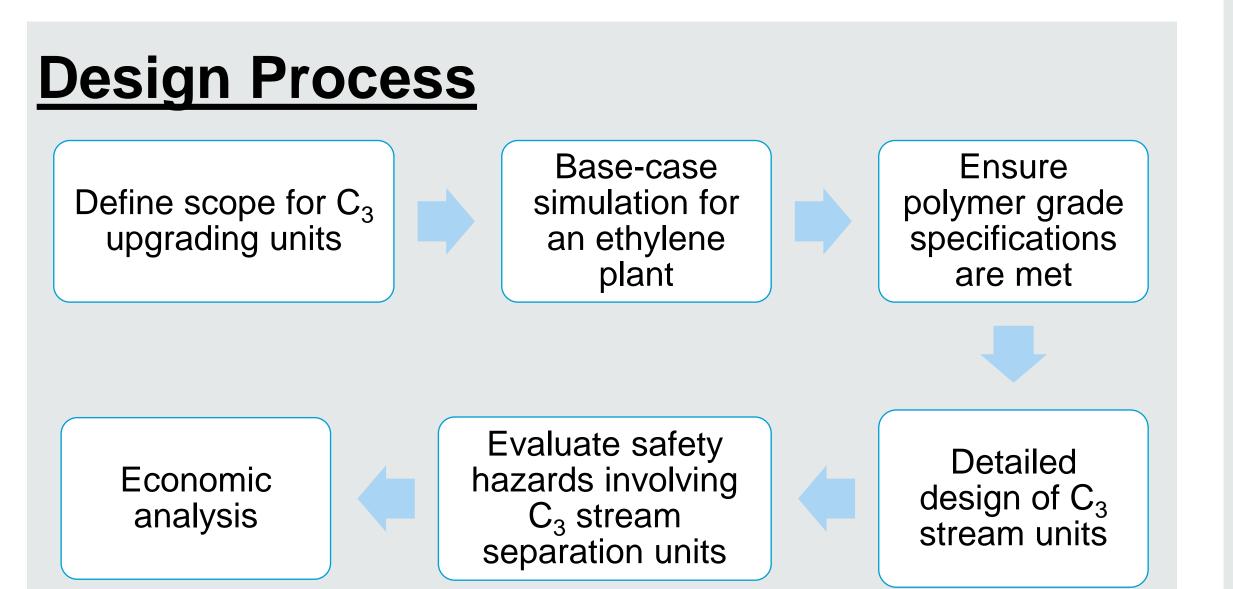

Ethylene Quick Facts:

- Polyethylene is the most used plastic worldwide
- Approximately 60% of ethylene (C_2H_4) produced is used to manufacture polyethene^[3]
- Ethylene plants produce several valuable co-products, two of which are propylene and propane

Propylene

- Used as an intermediate in the production of acetone, isopropanol, propylene oxide, etc.
- Two-thirds of the propylene produced globally are used to produce polypropylene, which is used in plastics ^[5]

- Primarily used as fuel
- Propane can be used to produce ethylene


The following design was developed using a 2-stage approach, objectives are separated accordingly:

1. Ethylene Plant Simulation

- Simulate operations of an ethylene pant to produce 1000 kMTA of polymer-grade ethylene
- Using ethane feedstock
- Polymer grade ethylene 99.9 wt% ethylene ^[7]

2. Detailed Design of C₃ Upgrading Stream

- Utilize the bottoms stream of T-101 to simulate upgrading of the C_3 stream of an ethylene plant
- Produce polymer grade propylene 99.5 wt% propylene ^[7]
- Produce commercial propane^[1]
- Evaluate potential hazards involving C_3 stream units
- Perform an economic analysis.

Group 16 Aaron McPhee, B00802410 Pierina Leon, BÓ0716306

Upgrading of the C₃ Stream Separation Units of an Ethylene Plant

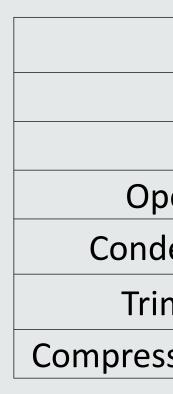
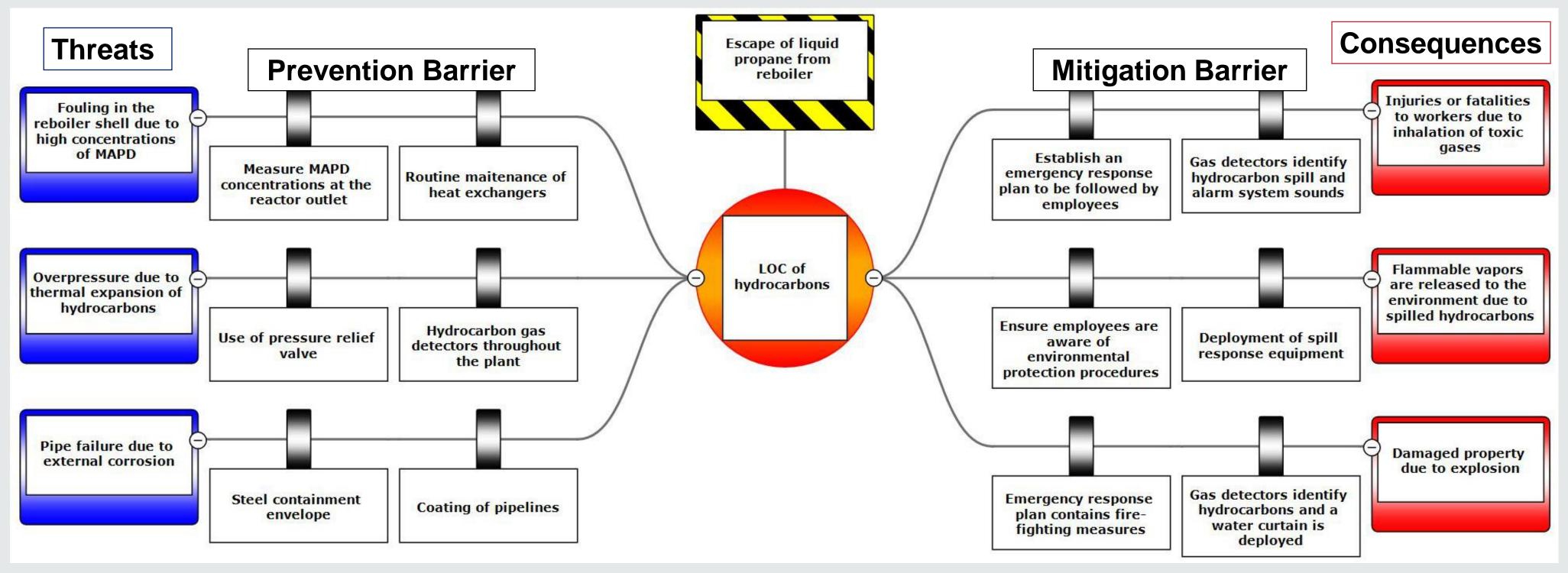



Figure 1 – Ethylene Plant Flow Diagram

Table 3 – Reactor Design Parameters				
	R-201	R-202		
Length (m)	1.56	1.411		
Diameter (m)	0.519	0.470		
Volume (m3)	0.327	0.245		
Operating Pressure (bar)	24	24		



Safety Considerations

The figure below is a bowtie analysis which represents potential threats and consequences involving the C_3 upgrading stream.

Hazard: Escape of liquid propane from reboiler

Equipment ID	Equipment Description
F-101	Cracking Furnace
T-101	De-Ethanizer
R-101	Acetylene Reactor
T-102	De-Methanizer
T-103	C2 Splitter
R-201	MAPD Reactor-1
R-202	MAPD Reactor-2
T-201	De-Propanizer
T-202	C3 Splitter

 	Stream	Description	Production (kMTA)	
I	1	Furnace Outlet	1911.3	
	2	Ethylene	1040.68	
	3	Ethane	693.8	
I	4	Propylene	22.67	
	5	Propane	2.66	
	6	C₄+	65.07	

Table 4 – Distillation Column Design Parameters

T-201	T-202
22.5	60.6
1.5	2.14
28	186
14	8.75
320/27.7	283
-	88.1
0.44	550
	22.5 1.5 28 14 320/27.7 -

• <u>Top Event</u>: Loss of Containment (LOC) of hydrocarbons

Economics

Total Annualized Cost (TAC)	\$7,125,150	
T-202	\$8,114,050	\$1,450,850
R-202	\$335,300	\$9,000
R-201	\$439,760	\$9,000
T-201	\$3,007,600	\$1,690,730
Equipment	Capital Cost (USD)	Operating Cost (USD)

Separated C_3 Streams Revenue Range : • Propane - \$USD 331,284 - \$USD 2,324,800 • Propylene - \$USD 9,740,700 - \$USD 48,111,000

Mixed C_3 Stream Revenue Range: • \$USD 5,035,990 - \$USD 25,217,900

Price ranges based on decade highs and lows ^{[4],[6]} TAC assume 15% interest and 10-year life^[2]

Conclusion & Recommendations

- cracking furnace
- implementing design

References

- Halifax NS; Dalhousie University

- spike-to-a-near-decade-high

Table 5 – Equipment Costs

Workable design of C_3 upgrading stream achieved Minimum annual revenue exceeds total annualized cost Sell propane as product as opposed to recycling to

Further market analysis required to determine viability of

Profit still made on selling mixed C₃ stream

Optimization of designed units should be examined

Analyze the C_{4+} stream for potential refining

ASTM Compass. (2021). Retrieved 24 March 2021, from

https://compass.astm.org/EDIT/html_annot.cgi?D1835+20#tfn00001

Haelssig, J. & Hastie, M. (2021) CHEE 4740: Capital Cost Estimation [Lecture Notes]

Intratec Solutions. (2015). Ethylene production via cracking of ethane-propane. Retrieved 29 March 2021, from https://www.chemengonline.com/ethyleneproduction-via-cracking-ethane-propane/?pagenum=2

Mont Belvieu, TX Propane Spot Price FOB. (2021). Retrieved 24 March 2021, from https://www.eia.gov/dnav/pet/hist/eer_epllpa_pf4_y44mb_dpgD.htm

Propylene. (n.d.). Retrieved on 29 March 2021, from https://webwiser.nlm.nih.gov/substance?substanceId=183&identifier=Propylene&i dentifierType=name&menuItemId=22&catId=24

Torres, A., & Hays, K. (2021). FEATURE:US spot polymer-grade propylene prices spike to a near-decade high | S&P Global Platts. Retrieved 24 March 2021, from https://www.spglobal.com/platts/en/market-insights/latestnews/petrochemicals/020521-featureus-spot-polymer-grade-propylene-prices-

Zimmermann, H., Walzl, R. (2012). Ullmann's Encyclopedia of Industrial Chemistry. (7th, completely rev. ed.). Weinheim: Wiley-VCH