

FACULTY OF ENGINEERING

DALHOUSIE

UNIVERSITY

Department of Chemical Engineering

Pressurized Chemical Looping Reforming (PCLR) Syngas Production

Introduction

Initial Operating Conditions						
Parameter	Value	Unit				
Fuel Reactor Temperature	800	°C				
Air Reactor Temperature	1050	°C				
Operating Pressure	2240	kPa				
Fuel Pre-Heat Temperature	600	°C				
Compressed Air Inlet Temperature	345	°C				
Make-up Oxygen Carrier Inlet Temperature	25	°C				

Project Objective:

The purpose of this report is to design and simulate an industrial scale pressurized chemical looping reforming (PCLR) process to produce syngas suitable for downstream gas-toliquid processes

- Elevated pressures facilitate high pressure steam generation for production of electricity.
- High pressures are required to achieve high efficiency and conversion in F-T synthesis.
- PCLRs can be configured for syngas, heat, power, or steam generation processes and carbon capture
- Syngas is produced from a variety of feedstocks (natural gas, residual oil, petroleum coke, coal, and biomass)
- PCLRs may be a competitive alternative to syngas production over SMR and ATR process
- Chemical looping reforming has been implemented into many industries; however, it is not yet commercialized for industrial processing of syngas.

Design Process

- Difficult to simulate Gas-Solid reactions in ASPEN HYSYS therefore, hand calculations, general correlations and heuristics were used for the design of major components.
- Fluidization velocities were calculated to determine the reactors fluidization regime and required velocity through the reactors.
- Overall reactor height determined from calculated bed height, Transport disengaging height (TDH), and cyclone regions.
- General design of cyclone and distributor plate using academic correlations.
- Elevated temperatures in both reactors facilitate steam production in both the in-bed and convective heat exchangers. Heat generated is used to pre-heat reactants entering the fuel reactor.
- Elevated pressures enable power generation via a high temperature expansion turbine resulting in sufficient shaft work to operate the air compressor.

Birju Bhalodi - Evan Gallant - Carlin Newcombe - Evan McInroy Team H

Details of Design

Both reactors utilize fluidized beds

Fuel Reactor

Reactor Design Parameters				
Parameter	neter Value			
	Air Reactor	Fuel Rea		
Minimum Fluidization Velocity (U_{mf})	0.019	0.02		
Minimum Bubbling Velocity (U_{mb})	0.146	0.16		
Superficial Velocity (U)	0.155	0.17		
Reactor Diameter	3.1	3.1		
Bed Length	4	3		
TDH Length	3	3		
Cyclone Height	4	6		
Reactor Length	11	12		
Reactor Volume	83	91		

Reactor Cyclones & Distribution Plates

Cyclone Dimensions Calculator							
		High Efficiency		Conventional		High Throughput	
Model Number		(1)	(2)	(3)	(4)	(5)	(6)
Body Diameter	Dcyc/D/cyc	1	1	1	1	1	1
Height of Inlet	Hcyc/Dcyc	0.5	0.44	0.5	0.5	0.75	0.8
Width of Inlet	Wcyc/Dcyc	0.2	0.21	0.25	0.25	0.375	0.35
Diameter of Gas Outlet	Decyc/Dcyc	0.5	0.4	0.5	0.5	0.75	0.75
Length of Vortex Finder	Scyc/Dcyc	0.5	0.5	0.625	0.6	0.6	0.875
Length of Body	Lbcyc/Dcyc	1.5	0.4	2	1.75	1.5	1.7
Length of Cone	Lccyc/Dcyc	2.5	2.5	2	2	2.5	2
Diameter of Dust Outlet	Ddcyc/Dcyc	0.375	0.375	0.25	0.4	0.375	0.4

Fuel reactor used a bubble cap plate distributor, with hole diameters of 4 mm, and 30,000 holes across the 3.1 m plate. Air reactor used a perforated plate distributor, with hole diameters of 0.1 mm, and 43,810,294 holes across the 3.1 m plate.

S&T Heat Exchanger for Syngas Cooling

Heat Exchanger Design Parameters					
Parameters	Values	Units			
Tube O.D.	0.02	m			
Shell O.D.	0.68	m			
Length	3	m			
Total Heat Transfer Area	60.43	m^2			
No. of Baffles	16	-			
No. of Tubes	384	-			
Syngas In	750 800	kg/hr °C			
Syngas Out	750 350	kg/hr °C			
Pre-heated Water In	7500 200	kg/hr °C			
Steam Out	7500 255	kg/hr °C			

Internal Cooling for Air Reactor

- Section cut for the bed portion of the air reactor, showcasing the air cooling heat exchanger.
- High pressure cooling water enters the bed portion of the air reactor to remove energy released from the exothermic reactions to maintain a constant temperature of 1050°C.

Symonds, R., Hughes, W. R., Lu, D. (2018). Systems analysis of pressurized chemical looping combustion for SAGD applications. International Journal of Greenhouse Gas Control. Vol 73, Pg 111-123. https://doi.org/10.1016/j.ijggc.2018.03.008

Symonds, R, T., Sun, Z., Ashrafi, O., Navarri, P., Lu, D, Y., Hughes, R, W (2019). Ilmenite ore as an oxygen carrier for pressurized chemical looping reforming. International Journal of Greenhouse Gas Control. Pg 240-258. https://doi.org/10.1016/j.ijggc.2018.12.006

