

DALHOUSIE UNIVERSITY

SCOPE

To design, fabricate and test a semi-automatic soap packaging mechanism to improve the manufacturing process of the packaging production line.

GOAL

To reduce the overall soap packaging production time and its associated manual labour.

OBJECTIVES

- Package a bar of soap in under 2.5 minutes.
- Remain within a footprint of 60 cm X 100 cm.
- Do not exceed a weight limit of 50 lbs.

RESULTS SUMMARY

- 75.4% production increase (w.r.t. client)
- \$4,526 annual savings (w.r.t. client)

- \bullet
- \bullet

- Numb Soap 70
- 12,000

Soap Packaging Mechanism (Production Line)

A

. .

CURRENT PACKAGING PRACTICES

 Manually hand package soap bars independently Soap bar packaging is produced in sets of 70 bars Roughly 12,000 soap bars packaged annually Tedious, time consuming and labour intensive

Current Packaging Numbers.

er of Bars	Packaging Time (min)	Labour Costs
	2.5	\$0.5
	175 (~3.0 hrs)	~\$36.0
	30,000 (500 hrs)	\$6,000

*Minimum wage worker - \$12.00/hr

FOLDING PROCESS

 Order of folding process during soap packaging • All tabs must be pre-folded before packaging

DESIGN FLOWCHART

Department of Mechanical Engineering

Andrew Gregg, Alex MacLean, Jingzhao Huang, Zhengchao Li

KEY DESIGN FEATURES

I Package	70 Packages	Mechanism Production Increase	Annual Production Costs
150 s	175.0 mins	75.4%	\$6,000
53 s	61.8 mins	30.4%	\$2,120
35 s	43.0 mins	NA	\$1,474

B)

Ease of assembly/disassembly. Allows user to clean required parts as necessary (after sets of 70 bars) **UHMW** Plastic 2. Light weight, portable • Structurally durable with low friction, allowing ease of continuous flow

Mechanism requires 165 seconds to \bullet produce the first packaged soap. Subsequent packages are produced in 35 second intervals. Design reduces production bottleneck and associated manual labour via semiautomated packaging production line. Viable packaging process for all users/ages with corresponding safety features including E-stop and 2-button push start, removing pinch point hazard.

https://www.genigraphics.com/templates https://lavendercanada.com/

Functionality

A) Gearbox Assembly (Start)

Inserting soap produces Fold 1 3 servo motors system; Motor 1 produces Folds 2 and 3. Motors 2 & 3 work in synchronization, producing Folds 4 and 5, directing soap and package into Part B.

Bridge Folding Mechanism

No moving parts

• Angled walls produce Folds 6 & 7.

Subsequent soap bars push one

another through Part B.

Soap Holder (End)

¹/₂" walls hold product for adhesive application

Design allows user to apply adhesive to 4 soap packages at once.

Engineering Justification

Modular Design

DISCUSSION

REFERENCES