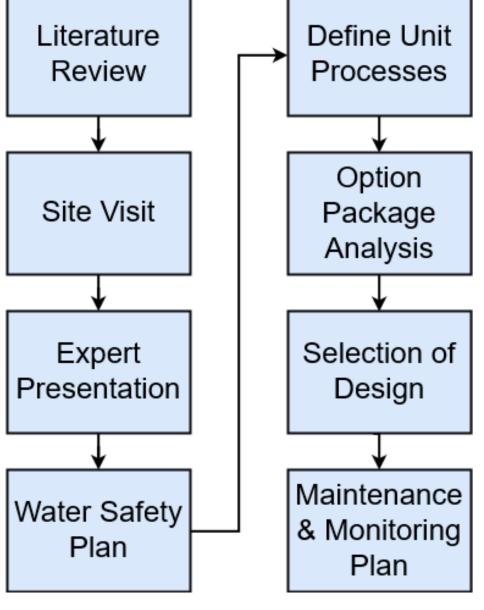
FACULTY OF ENGINEERING

DALHOUSIE

UNIVERSITY

Department of Civil & Resource Engineering

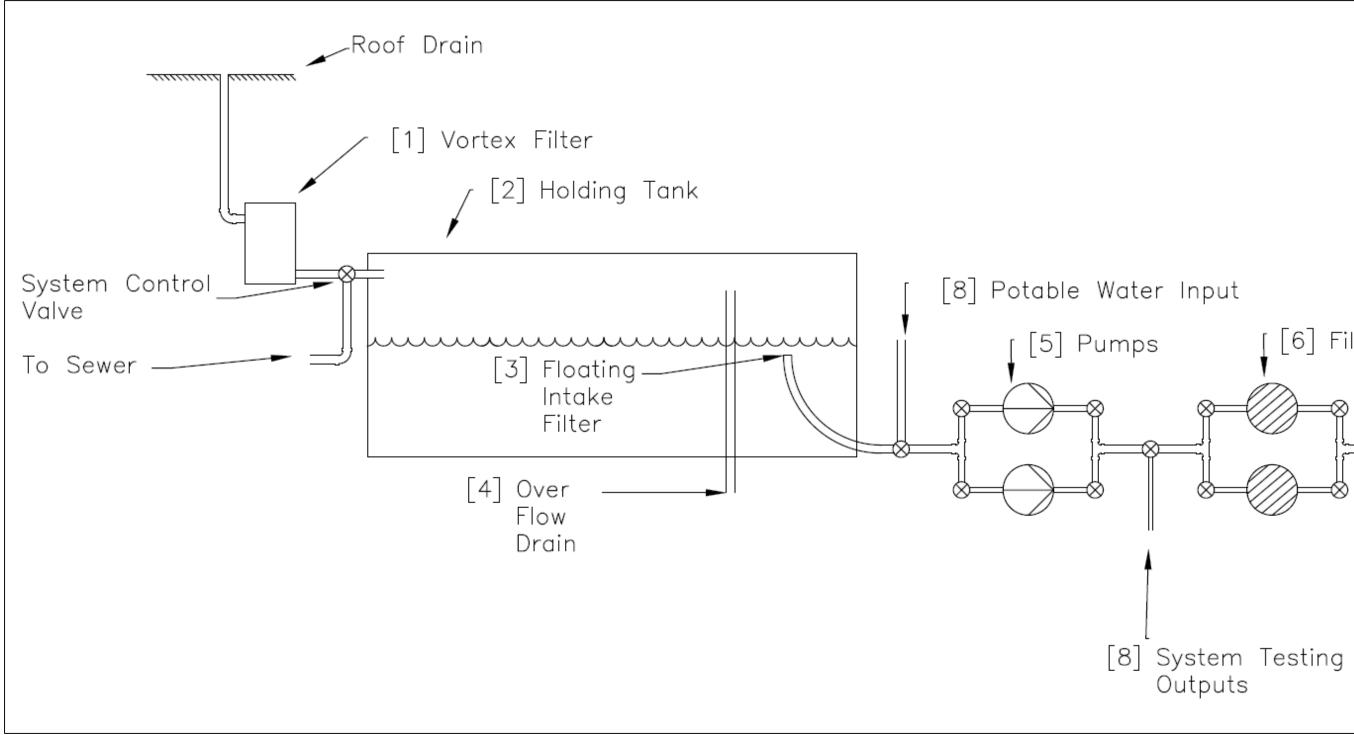
Ŧ


Abstract

Dalhousie University has three rainwater harvesting and treatment systems on their campuses which are used to supply non-potable water for toilet flushing. The objective of this project is to improve upon these systems by increasing reliability and reducing maintenance frequency while limiting capital costs.

Project Scope

- Design a rainwater harvesting and treatment system.
- Meet Canadian non-potable water standards.
- Consider capital and operating costs.
- Create monitoring and maintenance plan.
- Develop recommendations based on improved design.

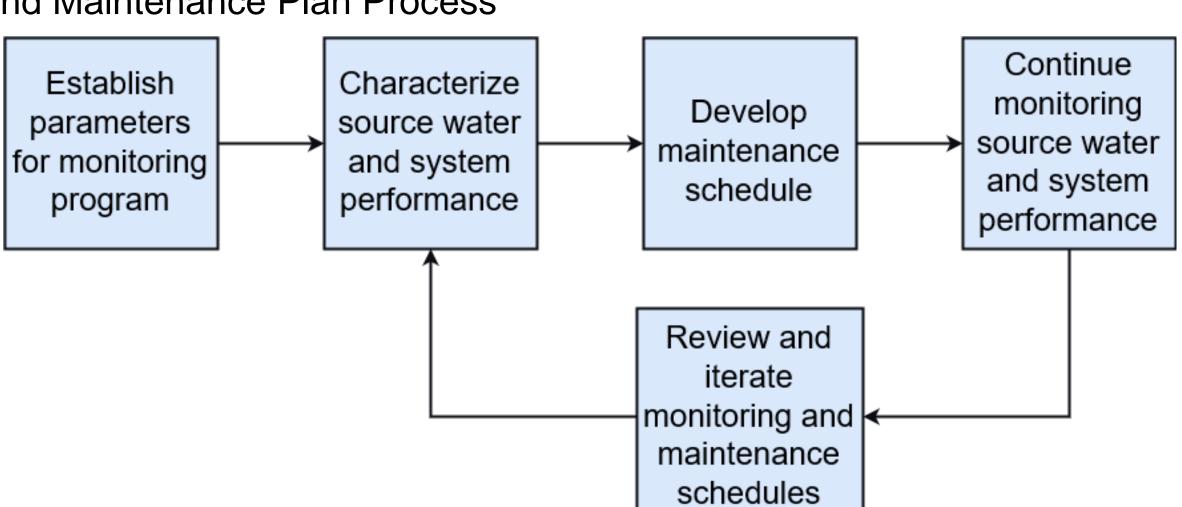


Treatment Guidelines (CSA 2018)

Likelihood of Exposure										
End uses		Ingestio	on	Inhalation		Skin contact	Overall			
Toilet and urinal flushing		Rare		Possible		Possible	Possible			
Performance Criteria										
Log Reduction (% Reduction)										
Viruses		Bacteria			Protozoa					
0		2 (99%)			2 (99%)					
Treatment Requirements										
Potential for human		Minimum prescriptive requirements								
contact		UV Filtration			UV disinfection					
Medium		5 µm			16 mJ/cm ²					
Output Water Quality Requirement										
End use tier Para		meter		Turbidity	H		РС			
				(NTU)		(100 CFU/mL)				
2	Median			≤2		<500				
	Maximum		5			_				

Martin Earle Corey McNamara

Design of System


Schematic of design, not to scale.

Collected Data

	Rain Cistern	Raw Data for N	lona Campbe	II Building
Pre-filtration	Season	Turbidity (NTU)	TOC (mg/L)	DOC (mg/L)
	Summer	0.66	2.31	2.11
	Winter	1.05	0.26	0.28
Post Filtration	Season	Turbidity (NTU)	TOC (mg/L)	DOC (mg/L)
	Summer	0.27	2.17	2.18
	Winter	0.71	0.24	0.21

Recommendations

Monitoring and Maintenance Plan Process

- Water storage should be considered early in building design process.
- Treatment processes should have redundancy and the ability to be isolated.
- Pumps and filters should be oversized to reduce maintenance.
- Potable water hookup should bypass filtration and UV processes.
- System operators should be educated in precautionary and responsive maintenance.

<u>Client</u>: Dalhousie University Office of Sustainability

Design of a Rainwater Harvesting & Treatment System for Non-Potable Use

Details of Design

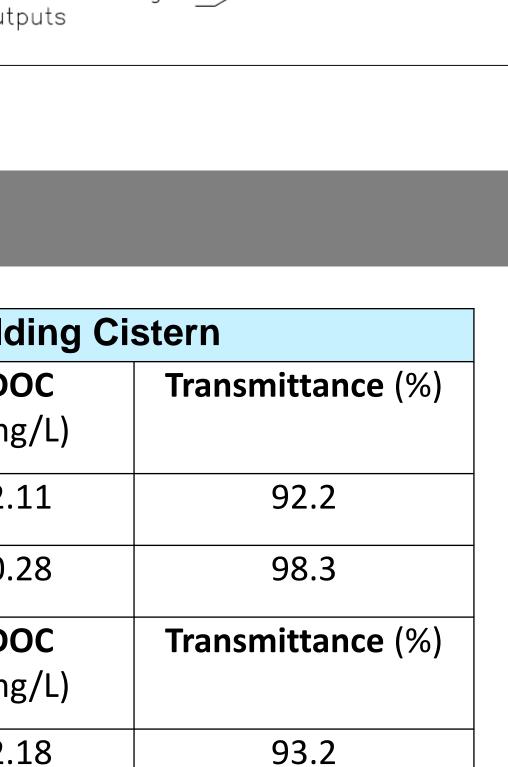
- 33000 ft² catchment area.
- **Cost** \$742

- **Specifications** 40000 L capacity.
- **Cost** \$9000

- from the cistern.
- **Cost** \$685

[4] Overflow Valve

- capacity.
- **Specifications** 4" outlet.
- **Cost** \$309.75


- water through the system.
- **Cost** \$2200/each, \$4400 total

- remove fine sediment.
- **Cost** \$40.48/each, \$196.38 total
- pathogens within the rainwater.
- intensity.
- **Cost** \$1125/each, \$2300 total

Acknowledgements

The team would like to thank the client, Rochelle Owen, for creating the opportunity to work on this project. Also, the team would like to thank Dr. Stoddart for her thoughtful insight and supervision throughout the projects duration. Finally, the team would like to thank the facilities management staff for showing the systems

and for their helpful discussions.

99

[7] UV Treatment

To Building

Office of Sustainability

[1] Vortex Filter

Description – Preliminary filtration system. **Specifications** – 380 µm stainless steel filter, maximum

[2] Cistern

Description – Constructed within the building footprint.

[3] Floating filter

Description – Intake system providing higher quality effluent

• **Specifications** – 300 μm stainless steel filter.

Description – Drains to sewer if cistern reaches maximum

[5] Pump System

• **Description** – Parallel pumps used to boost rainwater or potable **Specifications** – Max. Inlet 72 PSI, Max. Head 180 ft.

[6] Cartridge Filter

Description – Parallel pleated cellulose polyester filters that **Specifications** – 50 μm & 5 μm filters, Diameter 4.5", Height 20".

[7] UV Disinfection

Description – Parallel system uses ultraviolet light to inactivate **Specifications** – Up to 46GPM, 9000 hr usage time, 254 nm UV

References

Acklands Grainger. (2019). Pump, Sprinkler.					
CSA. (2018). Rainwater Harvesting Systems.					
CWW. (2019). Pentek Filter Cartridge.					
ESP Water Products. (2019). VIQUA VP950.					
RMS. (2019). WISY Fine Floating Filter.					
RMS. (2019). WISY Vortex Fine Filter.					
RMS. (2019). WISY Multifunction Overflow Device.					
Tadipol. (2019). Aboveground Horizontal Cistern.					