

Oil Decanting During Marine Oil Spill Response Operations

Department of Environmental Engineering

Connor Acton, JP Alphonce, Jacob Davis, Katie Fillmore & Naomi McKay

Department of Fisheries and Oceans Canada

Scope of Work

Background

- Decanting of oily wastewater collected during marine oil spill response creates significant storage and treatment savings.
- Discharge of decanted water generally prohibited under the Canada Fisheries Act.
- Current decanting limitations include: vague discharge standards; limited technological development; and, uncertain impact and environmental fate of potential contaminants.

Objectives

- Evaluate factors limiting the use of offshore decanting within the Canadian oil spill response industry.
- Propose alternate decanting methods for effective management and treatment of oily wastewater generated from marine oil spills.

Industry Assessment

Discharge

Detection

Notification

Strategic Response

Onshore Collection

Regulatory Assessment

MARPOL discharge standard of <15 ppm oil-in-water permitted

Decanting permitted on a case-by-case basis, approval unlikely

Response Procedure

- Canadian oil spill response built upon governmentindustry partnership
- Response operations governed by Canada **Coast Guard Incident** Command System
- CCG assumes initial operational command
- RO's accountable for larger response capacity
- Offshore decanting is one of many decisions made prior to initiating the response phase
- Several stakeholders involved in each response phase

Design Approach

Identified Decanting Technologies

Automated Controls, Emulsion Breaking Chemicals, Hydrocyclones, Membrane Separation

Comparison Scenario

Modelling of two spill sizes each for two oils of varying densities

Pairwise Comparison Matrix Development

- Criteria: Operational Safety, Environmental Effects, Technical Efficiency, Feasibility
- Evaluation: Safety Indices, Mass Balance, Literature Review, Stakeholder Input

Oil Spill Modelling

Modelling Software

- Automated Data Inquiry for Oil Spills (ADIOS)
- General NOAA Operational Modelling Environment (GNOME)

Spill Parameters

INCIDENT PHASE

Maritime Casualty

Surveillance Assets Member of Public

Canada Coast Guard

ASSESSMENT PHASE

Canada Coast Guard Transport Canada

Key Stakeholders

RESPONSE PHASE

Canada Coast Guard Government Resource:

Response Organization

RECOVERY PHASE

Government Resource: Response Organization

- Oil Type: Yorba Linda Shell Oil
- Location: Passamaquoddy Bay, NB
- Start Time: March 9th, 2019 00:00
- Sea State: 2°C, Wind Speed Varied
- Quantity: 10,000 tonnes
- Additional scenarios modelled for small quantities, dense oil

Figure 1. ADIOS output of oil budget for a 10,000 tonne spill over 72 hours

Figure 2. GNOME outputs of spill fate for a 10,000 tonne spill at 0, 24, 48, 72 hours

Norway

Canada

International

- Oil spill dispersant application pre-approved for research
- Standardized contingency plan amongst response organizations **United States**
- Planning standard: worst-case discharge

Planning standard: 10,000 tonnes

Decanting pre-approved on a case-by-case basis, otherwise regarded as a last resort

Key Findings

Slick spread largely depends on time, rather than oil type or quantity

- Weathering behavior remains consistent across spill sizes for the same oil type
- Lighter oils exhibit far more extensive weathering than heavier oils
- Heavier oils emulsify at a significantly slower rate than lighter oils

Comparison of Decanting Technologies

		Automated Controls		Membrane Separation		Emulsion Breakers		Hydrocyclones	
Criteria	Importance	Weight	Score	Weight	Score	Weight	Score	Weight	Score
Safety	0.495	0.477	0.236	0.161	0.080	0.280	0.139	0.080	0.040
Environment	0.242	0.289	0.070	0.455	0.110	0.080	0.019	0.175	0.042
Technical	0.178	0.495	0.088	0.242	0.043	0.177	0.032	0.086	0.015
Cost	0.086	0.294	0.025	0.066	0.006	0.479	0.041	0.133	0.011
			0.419		0.239		0.231		0.108

Preference of each criteria ranked from 1 (least preferable) to 4 (most preferable) prior to pairwise comparison of each performance criteria

Results

- Survey response from stakeholders within the oil spill response industry determined that safety to personnel was the primary concern with regards to implementing new response technologies.
- Emulsion breakers present the identified technology with the highest decanting potential in terms of volume, however is unlikely to meet discharge standards.
- Membrane separation has potential to meet discharge requirements, however implementation of on-shore treatment techniques to off-shore response is largely untested.
- Automated controls present the best opportunity for technological development for decanting during marine oil spills.

Conclusions and Recommendations

Industry Assessment

- Decanting during marine response is a small component of the larger operation, but presents a significant opportunity for improved response operations.
- Decanting is an unlikely response method for Atlantic Canadian waters.
- Standard methods for decanting performance evaluation are non-existent.

COMPLIANCE

Regulatory Assessment

- Further research is required to justify the 15 ppm discharge standard, accounting for the effects of oil plume dispersion.
- Use of decanting restricted due to environmental uncertainties, lack of preapproval.

Oil Spill Modelling

- Spill modelling presents opportunities for responders to activate a more tailored response effort
- Worst-case scenario involves high-tonnage spill, low density oil, harsh weather conditions, low viscosity oil

Technological Comparison

- Limited research conducted on the application of on-shore treatment equipment for off-shore spill response.
- Automated controls present the ideal response scenario, however required decanting time presents the same challenges as current decanting procedures.

References

Acknowledgements

- NOAA. (2019). Office of Response and Restoration.
- Government of Canada. (2018). Fisheries Act.
- Government of Canada . (2018). Marine Spills Contingency Plan – National Chapter.
- Yao, Y. et al (2018). Decanting Regulations, Practices and Future Perspectives: A Review.
- Dr. Lei Liu Dalhousie University
- Dr. Naznin Daisy Dalhousie University
- Canada Coast Guard Dartmouth, N.S.
- S.L. Ross Environmental Research Ottawa, ON
- Triox Environmental Emergencies Montreal, QC
- Point Tupper Marine Point Tupper, N.S.