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1. Introduction 

Natural and human-made disasters have become an ever-present risk, and several extreme 

natural disasters and large-scale evacuations in recent years highlight the vulnerability of cities 

to the impacts of the extreme disasters. In the past decade, hurricanes, wildfires, and tsunamis 

have broadened the understanding of evacuations and helped identify challenges, gaps, and 

opportunities for improvement. It has been observed that without any improvement strategy, 

alternatively countermeasure applied, conventional evacuation generally associates 

spontaneous behavior of evacuees leading to disorganization and consequently to a 

prolonged and/or incomplete evacuation. Countermeasure in the context of a mass 

evacuation intends to efficiently manage evacuation traffic demand and improve traffic 

operations in the network. Previous studies revealed that only auto-based evacuation may 

take a longer time to evacuate a city and/or lead to an incomplete evacuation. For example, 

the mass evacuation that resulted from Hurricane Florence in 2018 caused hundreds of 

thousands of people to use personal vehicles to evacuate the city, resulting in backed-up traffic 

on I-95 (Wilson, 2018). The estimated automobile evacuation time along the South Carolina 

Coast during Hurricane Florence was 36 to 48 hours (Marshall, 2018). Alam et al. (2019) found 

that it takes 22 hours to evacuate 65,000 evacuees by auto from the Halifax Peninsula, which is 

alarming and warrants a more efficient evacuation system. Lessons learned from the past 

evacuations assert that if there needs to be a large-scale evacuation within a short timeframe, 

all modes of transportation available within the network should play a role in evacuating 

people from the affected area in an efficient manner. However, most of the existing evacuation 

plans across North America rarely address the role of all modes in the evacuation plan due to 

the complexity of developing legislation, arranging coordination among agencies of interests, 

and the associated liabilities. Existing studies identified the over-arching problem with the use 

of buses in evacuation, which is the lack of suitable emergency response and evacuation plans 

that can adequately explain the role of transit and school buses in evacuation (TRB, 2008; Clark 

and Habib, 2010; Hess and Gotham, 2007). For example, although an evacuation plan is in 

place for Halifax, Canada, bus-based evacuation is not explicitly identified (Clark and Habib, 

2010). A national survey of hurricane evacuation revealed that low mobility and special needs 

groups are underrepresented in evacuation plans (Wolshon et al., 2001). Specifically, the 

challenges with the use of buses in evacuation include the identification of vulnerable 

populations, coordination among stakeholders, marshal point location identification, 

resource identification and allocations, shelter arrangements with an assurance of food, water, 

medical care, and security (Cavusoglu et al., 2013; Litman, 2006). It is also vital to train human 

resources, including drivers for government-assisted evacuation planning. The challenge with 

arranging training is that transit agencies are reluctant to such sessions as they do not have 

enough staff to backfill the positions (Renne et al., 2008). This study aims to ensure that all 

modes available in Halifax, such as cars, public transit, and school buses are adequately 

evaluated in evacuation plans and are utilized during evacuation operations. The associated 

challenge is that there is an ethical dilemma in how to allocate the resources. Allocating buses 

for transit-dependent populations has been in practice since Hurricane Katrina in 2005; 

however, optimizing an evacuation operation using all modes has not been adequately 
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explored. For example, optimizing the allocation of buses to individuals based on their 

urgencies is very often overlooked. There will be two types of riders during an evacuation: 

choice-based transit riders and captive transit riders. Based on our previous research (Alam et 

al., 2019; Alam and Habib, 2020; Alam and Habib, 2021), the evacuation of the auto and captive 

transit users from the Halifax Peninsula takes 22-33 hours. On the other hand, during Hurricane 

Harvey 2017 in Houston, there was no evacuation order as it was thought that evacuating 

within the short amount of time available was logistically impossible (Wang et al., 2017). 

Therefore, the interplay between network demand and supply must be optimized to obtain a 

successful composition of auto-bus mix in the network to ensure that (i) the entire population 

is evacuated, (ii) the mode-specific capacity is optimally utilized, and (iii) the network 

congestion and evacuation time are reduced. The novelty of this study is that it develops a 

combined dynamic programming-based optimization and traffic microsimulation modelling 

framework that yields an optimum composition of auto and buses for evacuating a large 

population while considering both resource constraints (e.g., bus capacity) and the exposures 

of the population to vulnerabilities.  

The study develops a comprehensive ‘All Mode Evacuation Decision Support Tool (AMEDST)’ 

that considers population vulnerabilities to allocate all modes of transportation available in 

the network for evacuation. Therefore, the objectives of this study are to (i) develop an agent-

based All-Mode Allocation Module (AMAM) accounting for the vulnerabilities to which the 

evacuees are exposed,  and their mode-specific capacities, and (ii) utilize a traffic evacuation 

microsimulation model that implements evacuation scenarios and feeds the AMAM with 

information regarding network supply sufficiency (i.e., bus capacity) to facilitate optimization 

of the bus allocation. This study formulates a dynamic Knapsack problem (Pan and Zhang, 

2018) where bus capacity represents the component “Knapsack” and vulnerability is the 

component to be maximized. The maximization of the vulnerability scores indicates that 

people with higher exposure to vulnerabilities are prioritized for bus allocation. A vulnerability 

score comprising social and mobility vulnerability measurements obtained from a 

vulnerability assessment model (Alam and Habib, 2019) is utilized to demonstrate the degrees 

of individuals’ exposure to vulnerabilities. A Dynamic Programming algorithm is used to solve 

the Knapsack optimization problem within a Python platform. The optimization process is 

iterated to test and evaluate alternative scenarios within AMAM and the traffic evacuation 

microsimulation model. The combined AMAM and traffic microsimulation model optimally use 

all modes for evacuation. All modes in this study refer to those modes available in Halifax, 

which include cars and buses. Trucks are mainly used for commercial purposes, and no current 

plan is in place to use trucks and trains for evacuations. However, the traffic microsimulation 

model can incorporate multiple types of modes for simulation, including light rail, truck, and 

train, among others. The optimization can also be performed for each mode using the mode-

specific demand. Traffic operation outputs by modes can be obtained from the simulation 

model, which feedback the All-Mode Allocation Module. This research will help emergency 

professionals identify the optimum resource allocation plan for an efficient evacuation 

following an iterative approach. The results are beneficial when any empirical evidence or 

training data on optimum composition of auto-bus mix in the network is limited due to the 
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impossibility of observing an evacuation event and/or conducting a mass evacuation drill. The 

scenario testing within the traffic evacuation microsimulation model demonstrates an 

improvement of overall evacuation performance in terms of network clearance time and the 

performance of traffic flow indicators.    

 

2. Literature Review 

Auto-based evacuation studies are abundant in the existing literature and have been enriched 

over the past few years. Many studies identified challenges with auto-based evacuation, 

including traffic congestion and proposed improvement strategies to make evacuations 

efficient and safer (Naghawi and Wolshon, 2011; Abdelgawad and Abdulhai, 2009; Wolshon, 

2002; Urbina, 2002; Ng, and Waller, 2009). During the 2005 Hurricane Katrina in New Orleans, 

evacuation primarily relied on automobiles. The evacuation plan implemented for this 

hurricane did not consider the use of all modes, including public transit and school buses. As 

a result, a mammoth auto traffic fleet created unprecedented traffic congestion. This 

congestion caused vehicles to run out of fuel due to long clearance times of approximately 20 

hours, leaving many people, including the transit-dependent population, with no option but 

to stay at home. The estimated number of buses required to evacuate New Orleans was 2000, 

but the city only had 500 transit and school buses available. Due to a lack of proactive planning, 

the evacuation for Hurricane Katrina was not as successful as it should have been (Litman, 

2006).  

Existing evacuation literature has discussed the planning for and modelling of auto-based, 

bus-based, and multi-modal evacuations. In the case of evacuations involving buses, public 

transit was mainly used for evacuating the vulnerable population who do not have cars or 

other options for evacuation. Although transit is not predominantly considered in evacuations, 

individuals who willingly choose buses or need to use buses as their method to evacuate have 

never received attention in the literature. Since Hurricane Katrina, several studies have shed 

light on how to evacuate transit-dependent and carless populations using public 

transportation. These studies focused more on the bus operations, trip sequences and fleet 

sizes. Bolia (2019) developed an optimization model to determine the number of bus trips and 

bus trip sequences to evacuate a known demand in response to a disaster. The study was not 

meant to formalize the allocation of any available mode, including buses, to whoever needs 

them by any logical means. Instead, the study solely focused on transit network operation and 

how to improve bus evacuation. The study solved a transit network design problem by 

considering uncertainties, including bus failure amid evacuation. Khulshretha et al. (2014) and 

Alam et al. (2019) developed optimization models to further enhance bus evacuations by 

optimizing pick-up locations and bus routes. Cavusoglu et al. (2013) developed a simulation 

model that operated through two scenarios, one which considered transit-dependent 

populations and one that did not. The study's objective was to evaluate network performance 

during evacuation while considering both vehicle and transit operations. It was discovered that 

average travel speed reduced, and delays increased. The general purpose of this study was to 

explore potential impacts that may result from the evacuation of the vulnerable populations; 
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however, the evacuation scenario that utilized buses to evacuate the carless population 

experienced no changes in terms of traffic impacts. Nevertheless, there is a significant 

knowledge gap regarding the demand for buses due to evacuees’ exposure to different 

vulnerabilities, including social and mobility vulnerability. 

The aforementioned studies address several topics: challenges associated with auto-based 

evacuation, transportation needs of the transit-dependent and carless populations, and the 

service requirements for a transit operation during an evacuation. What is not adequately 

addressed in these studies include (i) access to all transportation modes for all evacuees so 

that they can choose specific modes based on their needs or uncertainties that may appear 

amid evacuation, and (ii) the desired composition of auto – bus mix in the network to achieve 

an efficient transport network for evacuation. Lessons learned from Hurricanes Katrina and 

Rita highlight the significance of involving all modes in evacuations. Evacuation plans must 

account for all evacuating modes, including automobiles and buses available in the network 

(Wendell, 2006). Otherwise, the sudden spike in traffic demand may create large-scale 

congestion. Consequently, should it be either vehicular traffic or buses, people could be 

stranded on the road as it occurred in Houston during the Hurricane Rita evacuation (Renne et 

al., 2008; Zhao et al., 2010).  

This study fills this gap by developing a novel framework to utilize all modes in an evacuation 

and estimate an optimum auto-bus mix composition that improves network performance 

during an evacuation. The study formulates and solves a mode allocation problem while the 

entire evacuation demand must be evacuated, and the mode-specific capacities are 

respected. There is always an ethical dilemma in how to allocate resources during an 

emergency. It is of utmost importance that resource allocation addresses the urgency of each 

evacuee. For example, evacuees exposed to a higher degree of social or mobility vulnerability 

should be prioritized for bus allocation. That being said, one’s vulnerability status may or may 

not be related to personal vehicle ownership. This research utilizes a score to explain the 

exposure of the evacuees to different vulnerabilities, including mobility vulnerability obtained 

from the traffic microsimulation model used in this study. 

 According to a national hurricane survey in the US, most cities do not have a sufficient number 

of buses to evacuate carless and transit-dependent populations leading to a limited bus 

capacity situation (Wolshon et al., 2001). For example, during Hurricane Katrina's evacuation, 

only a quarter of estimated buses were available to evacuate carless populations (Litman, 

2006). The issue is even more critical when considering a bus-based evacuation of the residents 

in need of transportation assistance. Moreover, the risk of flooding of buses or driver 

unavailability may be significant, as occurred in New Orleans during the evacuation (Renne et 

al., 2011; Litman, 2006). Although a bus-based evacuation may not be as successful as planned 

and predicted due to various risks, there is an immediate demand to develop an optimal bus 

allocation plan to make bus operation reliable and earn the evacuees’ credence on the bus 

service during an emergency. Given the evidence of the limited bus availability in most 

jurisdictions, this study formulates an evacuation problem under a limited resource condition. 

The resource allocation problem for an evacuation involves two components: demand 
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(resource receivers/evacuees) and resource constraints (e.g., bus capacity) that change with 

the progression of evacuation time. When demands at different evacuation times and the 

measurements of evacuees’ exposure to vulnerabilities are given, the resource allocation (e.g., 

bus allocation) is then a combinatorial optimization problem. The optimization process finds 

an optimum set of demand for bus allocation while ensuring the prioritization of individuals 

with higher vulnerabilities, and the limited resources (i.e., bus capacity) are optimally utilized. 

Several widely used combinatorial optimization problems include the Traveling Salesman, 

Vehicle routing, and Knapsack problems. A Knapsack problem involves maximizing the 

number of items (e.g., evacuees) and item values (e.g., vulnerability scores) while the Knapsack 

capacity (e.g., bus capacity) must be satisfied. Therefore, the proposed optimization problem 

in this study completely assimilates to the Knapsack problem of combinatorial optimization. 

Knapsack is a widely known NP-complete problem, and unfortunately, there is no known 

polynomial solution algorithm to solve this nature of problem that is fast and exact (Cormen 

et al., 2009; Welch, 1982). However, there are several solutions that can solve NP-complete 

problems in polynomial time, including the Brute Force method, Dynamic Programming, 

Branch and Bound algorithm, Branch and Cut algorithm, and Greedy algorithm (Hristakeva 

and Shrestha, 2005). Brute Force is a straightforward problem-solving algorithm that 

systematically enumerates all possible combinations (2n) of the target items and identifies one 

with the maximum value. 2n is the total combination as there are two options for each of the   

items: accept or reject. Thus, the complexity of this algorithm grows exponentially following 

O(2n). Due to complexity, this algorithm is suitable for small Knapsack problem instances, while 

evacuation often involves a larger optimization problem. Other abovementioned algorithms 

have their own advantages. Branch and Bound can solve some large optimization problems 

due to its capability to discard a subset of the solution set even before its construction if it 

cannot generate a solution within the estimated lower and upper bounds in the optimal 

solutions. Nonetheless, it still suffers from the exponential complexity (Hristakeva and 

Shrestha, 2005; Goerigk et al., 2014). However, the Dynamic Programming (DP) algorithm 

appears to be more suitable for solving a Knapsack problem. DP is efficient in dealing with the 

problems involving the re-occurrence of sub-problems. It computes a sub-problem only once 

and stores it in a table for later use. Thus, the algorithm efficiently reduces computation time 

by avoiding the solving of recurrent sub-problems each time. Moreover, it can efficiently be 

used until the capacity is less than the demand, which represents an evacuation condition. 

Therefore, this study adopts a Dynamic Programming algorithm for solving the proposed 

combinatorial optimization problem. This study will also improve the solution approach using 

DP to solve a large-scale evacuation optimization problem, while algorithms are used to solve 

other large-scale evacuation problems (Kulshrestha et al., 2014; Goerigk et al., 2014; Alam et 

al., 2019) may suffer from exponential complexity or local optima.       

This study establishes a feedback loop between optimization and traffic microsimulation 

models within the proposed AMEDST. Optimization results are used in a traffic 

microsimulation model to determine whether any improvement in evacuation operation is 

achieved and/or if the fleet capacity is exhausted. The traffic microsimulation model updates 

the optimization module with this information to facilitate further testing of sequential 
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scenarios. The iterations for testing sequential scenarios can be terminated upon achieving 

one or both of the criteria mentioned above. The proposed AMEDST will help emergency 

managers and professionals iteratively evaluate contrasting evacuation scenarios involving 

resource allocation to reach an optimal decision.

  

3. Methodology  

This study develops an ‘All-Mode Evacuation Decision Support Tool’ framework, which 

accounts for evacuees’ exposure to different vulnerabilities and mode-specific capacity in the 

vehicle allocation process for a mass evacuation. The framework allows emergency 

professionals to iteratively investigate whether the available vehicle fleets can accommodate 

the entire evacuation demand if the demand is optimally assigned to all available modes. The 

tool enables evaluating alternative scenarios using a feedback loop between vehicle allocation 

and the traffic microsimulation models, following an “if-else” mechanism. Therefore, the 

methodology of this study is two-fold: (i) development of an all-mode allocation module 

(AMAM) that follows a “Knapsack optimization” and adopts the solution algorithm “Dynamic 

Programming” to prioritize individuals with higher levels of vulnerabilities for bus allocation 

and optimize the use of limited bus capacity, and (ii) utilizing the traffic evacuation 

microsimulation model to simulate all-mode evacuation scenarios and update AMAM with bus 

capacity information for sequential scenario testing and evaluation. The study uses a scoring 

system to estimate the degrees of evacuees’ exposure to social and mobility vulnerabilities. 

The social vulnerability score for each individual is obtained from a Bayesian Belief Network-

based vulnerability assessment model (Alam and Habib, 2019). The mobility vulnerability is 

estimated based on the average time required to travel from an origin zone to destination 

shelters. The traffic microsimulation model calculates travel time between origin and 

destination for each individual using auto in the network.  Individuals are selected from a 

synthesized population of Halifax obtained from integrated Transport Land Use and Energy 

(iTLE) modelling system (Fatmi and Habib, 2018). Figure 1 presents an overall framework of the 

proposed AMEDST. 
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Figure 1: A Framework of All-Mode Evacuation Decision Support Tool (AMEDST) 

 

3.1. Knapsack Problem Formulation 

This study formulates a combinatorial optimization problem called “Knapsack problem” 

aiming to best utilize the available Knapsack capacity (i.e., bus capacity) while prioritizing the 

maximum number of vulnerable evacuees for bus allocation. Let C represents bus capacity 

and I represent a set of individuals attributed by departure time segment, i . Each time 

segment, i contains a certain number of individuals, iq  obtained from a traffic evacuation 

microsimulation model. Each time segment, i is characterized by a score, 
iv  reflecting 

individuals’ exposure to vulnerabilities within that time segment. The optimization can then 

be formulated as follows: 
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i
i n

max v



                    (1) 

Subjected to: 

i
i n

q C



                    (2) 

 0,1,2,3.......,i s=
                   (3) 

,  as integer and ,  as double or integeri ii q v
 

Knapsack problem is an NP-complete optimization problem, and no exact and fast algorithm 

is known to solve Knapsack in polynomial time. This study follows dynamic programming (DP) 

algorithm to solve the stated optimization problem. DP is a technique to design and 

implement an algorithm that disaggregates a large optimization problem into smaller sub-

problems. The uniqueness of this algorithm is that it stores the solution of sub-problems for 

recursive for later. 

 

3.1.1. Dynamic Programming for Sub-Problem Formulation 

Dynamic programming algorithm develops a matrix, K with a dimension of 1n+   rows and 

1C + columns, where solutions to sub-problems are subjected to memorization for later use 

repeatedly. Each cell ( i , j ) of the matrix, K  represents the total Knapsack value that is 

calculated by including a subset of individuals preceding the current group in time segment, 

i  while not exceeding the Knapsack capacity. At this point, the obtained Knapsack value may 

result from including or not including the current group of individuals. Note that the first row 

and column of K are set to zero. Then, the formula to determine the solutions to sub-problems 

starting from top-left corner to right-bottom corner of the matrix can be identified as follows: 
 

[ ][ ] [ 1][ ]K i r K i r= − , when  [ ]iq i r                    (4) 

[ ][ ] max[ [ 1][ ], [ 1][ [ ]] ]i iK i r K i r K i r q i v= − − − + , when  [ ]iq i r               (5) 

[0][ ] 0K r = , when  [ ][0] 0K i =                      (6) 

 0,1,2,3.......,r C=                   (7) 

Finally, the values corresponding to [ ][ ]K s C represent the Knapsack value calculated by 

assigning buses to individuals exposed to higher vulnerabilities without exceeding the bus 

capacity. This value represents the optimal value to the original Knapsack problem. The study 

also adds a function used to track individuals in different time segments that contributed to 

the optimal solution. This function starts tracking individuals using the value at [ ][ ]K n W   and 
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ends at [0][0]K . Individuals, 
iw  at time segment, i are considered in the Knapsack solution 

if the following condition is met: 

[ ][ ]! [ 1][ ]K Rows Column K Row Column= − , where, Row = s , and Column =C             (8) 

 

If the condition is met, the function proceeds to the preceding group of individuals by shifting 

the cell to (Row-1, Column - [ ]iq i   ). The process continues until it reaches [0][0]K  . 

 

3.2. Traffic Evacuation Microsimulation Model 

This study utilizes a traffic microsimulation model developed by Alam et al. (2019). The model 

combines an auto and a bus road network for a mixed traffic evacuation of Halifax, Canada. A 

brief description of the model is presented below for a better understanding of its components 

and functions. 

 

3.2.1. Transport Network Model 

Auto Road Network Elements – The transport network is modelled at a finer level within PTV’s 

VISSIM platform. Links and connectors are coded in detail and include geometric information, 

permitted vehicle types and classes, and permitted driving maneuvers, for example, lane 

change and restrictions. The model includes 1784 links and connectors to represent the Halifax 

transport network. Traffic analysis zones are represented by using parking lot command in the 

microsimulation model. Parking lots are the origin and destination of an OD pair, and a zone 

may comprise multiple parking lots. In total, 111 parking lots are built in the model to represent 

56 traffic analysis zones, two evacuation shelters, and one external zone representing a friend’s 

or relative’s place. Note that multiple parking lots in the simulator can represent a zone. Figure 

2a illustrates road network elements within the traffic microsimulation model. 

Transit Road Network Elements – Transit network consists of transit routes and pick-up and 

drop-off points (see Figure 2a and Figure 2b). The model includes twelve transit routes (see 

Figure 2b) and 135 bus stops obtained from Alam et al. (2019).   

 

3.2.2. Traffic Controls 

Traffic controls are placed on the road network to avoid vehicle-vehicle and vehicle-pedestrian 

conflicts during traffic movements in the microsimulation model. The microsimulation model 

includes all the necessary traffic control measures such as signal and stop sign-controlled 

intersections, priority rules, reduced speed areas, and traffic lights with phase and split time. 

There are 41 intersections, and each of them contains a signal controller. The signal controller 

operates traffic lights at an intersection based on the distribution of green-amber-red time 

across approaches. A command in the model “Conflict Areas” is used to resolve turning 

conflicts at the intersections. Alam and Habib (2020) provided a detailed description regarding 

the intersection of the traffic microsimulation model. 
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Figure 2: a(top), and b(bottom): (a) Road network elements of Halifax transport network, 

including bus stops in traffic microsimulation model, and (b) Bus routes obtained from the 

optimization study by Alam et al. (2019). 

Transit lines 

Legend 

Links 

a 
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3.2.3. Vehicle Loading into Traffic Microsimulation Model  

Vehicles are generated following a Poisson distribution based on an average time gap between 

two consecutive vehicles. Each vehicle is assigned a route based on the traffic congestions in 

the network. The route assignment process is facilitated by the DTA process described below. 

 

3.2.4. Dynamic Traffic Assignment   

The traffic simulation model follows a dynamic traffic assignment process to capture dynamic 

traffic congestion and subsequent route choices in the network. The model evaluates traffic 

conditions at a given time interval and updates the driver’s decisions accordingly. The required 

inventories to perform DTA include origin-destination matrix, simulation parameters such as 

the maximum number of iterations, convergence criteria and its tolerance, and additional cost 

components such as link surcharges. At the starting iteration of DTA, distance is used as a proxy 

of travel time to search for the best routes. Travel time is repeatedly calculated from sequential 

iterations and used for path search. The study utilizes equation 9 (PTV, 2014) for travel time 

estimation at the given evaluation interval during simulation. Suppose a vehicle operates on 

an edge for more than one evaluation interval. In that case, the model continues measuring 

the travel time for that vehicle, thus carrying forward the congestion effects with the 

progression of time in the network. The DTA process is iterated until the convergence criteria 

are satisfied. Convergence criteria includes minimizing the deviation in traffic flow indicators, 

for example, traffic volume, and edge travel time between consecutive iterations.   

 

, 1, ,1 1
1 * *n j n j n j

ri i iTr T Tm
K n K n

− 
= − + 

+ + 
               (9) 

Where, K  measures the number of preceding iterations that has have effects on the current 

iterations 

 i represents the iterations 

n  represents the evaluation interval 

j  represents edge 

,n j

iTm  is the measured travel time at iteration, i , evaluation interval, n at edge j   

,n j

iTr  is the smoothed travel time at iteration, i  evaluation interval, n at edge j   that will be 

used for path search in the next iteration 

 

3.2.5. Calibration and Validation of the Model  

Once the vehicle assignment process is settled, the next task is to calibrate and validate the 

model. Alam et al. (2018) conducted an extensive calibration of driving behavior parameters 
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(Wiedemann, 1974; Olstam and Tapani, 2004; Miller, 2005) and validated the model based on 

the observed traffic count at key intersections and different link locations in the network. A 

Latin Hypercube Sampling (LHS) is used to generate different combinations of the values of 

driving behavior parameters to identify the desired combination that resembles actual driving 

behavior in the network. Figure 3 illustrates an overview of the calibration and validation 

process of the microsimulation model. 

 

Figure 3: Calibration and validation of the traffic microsimulation model 

 

Simulation is conducted to identify the best combination in terms of network performance for 

each combination of driving behaviour parameters. The driving behavior parameters' 

calibration focuses on the driver’s following behavior, which is governed by the safety distance 

for driving obtained from equation 10. The combination resulted from driving behavior 

parameter calibration yields a value of 1.0 for average standstill distance, 0.6 for additive part 

of safety distance, and 0.7 for multiplicative part of safety distance.     

   d ax bx= +                    (10) 

Where, d is safety distance 

ax  is average standstill distance 

bx adjusts time requirement values which can be written as: 
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 ( )  _   _ * *bx bx add bx mult z v= +       (11) 

Where, 

z  is a value of range [0, 1], which is normally distributed around 0.5 with a standard deviation 

of 0.15, and v is vehicle speed 

Further improvement of the model is conducted through a route choice parameter calibration. 

A link surcharge method is utilized to adjust traffic volume if any link anticipates a volume 

deviated from the observed. Two data sets are used for calibration and validation purposes, 

respectively. The data was collected by the Halifax Regional Municipality using Miovision 

cameras for a normal typical day traffic condition and contains traffic counts at one hundred 

and two locations. The goodness-of-fit of the model in terms of R2 values are 0.81 and 0.82 for 

two morning peak periods, respectively.  

 The simulation is conducted for 73,400 evacuees, where 8400 evacuees are transit-

dependent and must use a bus for an evacuation. On the other hand, the proposed vehicle 

allocation process would identify individuals from the rest of the 65,000 evacuees for being 

evacuated by bus. The traffic microsimulation model informs AMAM with fleet capacity 

information for optimization and estimates evacuation time and network performances for 

sequential evacuation scenario analysis. 

 

4. Scenario Testing and Evaluations 

This study comprehensively tests scenarios of mass evacuation on the Halifax Peninsula within 

the traffic simulation model developed by Alam et al. (2019). The study revealed that it takes 

22 hours to evacuate the Halifax Peninsula without any countermeasure applied. This study 

develops an improvement scenario that utilizes buses to accommodate for different levels of 

evacuation demands considering population vulnerabilities and available fleet capacity. Four 

scenarios are developed where buses are allocated to an incremental demand across 

scenarios to improve evacuation times and network performance gradually. Individuals who 

do not have cars are assigned to buses by default for evacuation. The optimization is 

conducted to identify auto users for bus allocation based on their urgency. To develop 

sequential scenarios, this study assumes the first scenario to develop sequential scenarios, 

which considers 5% of auto users for bus allocations. If further evacuation improvements are 

needed and if there is still bus capacity left that can accommodating more individuals, the 

AMAM performs further iterations for testing successive scenarios. The study increases the 

percent demand for bus allocation by 5% for successive scenarios. Four sequential scenarios 

are considered for the evaluation: (i) Scenario 1 – 5% demand, (i) Scenario 2 – 10% demand, (i) 

Scenario 3 – 15% demand, and (i) Scenario 4 – 20% demand. 

Each scenario is implemented within the AMAM to identify the successful individuals that are 

assigned to a bus. The AMAM takes information from multiple sources to perform optimization, 

such as bus capacity from the traffic microsimulation model, vulnerability scores from the 
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Bayesian Belief Network-based vulnerability assessment model, and simulation results. The 

simulation results for four scenarios are evaluated and compared with respect to a base case 

scenario. Base The base case scenario represents the evacuation by auto and transit while 

transit is used only to evacuate people who do not have cars or other options for evacuation. 

 

5. Results and Discussion 

5.1. Overall Scenario Results 

The proposed framework first serves the target demand using a fleet of 322 buses that Halifax 

Transit owns. There are also around 380 school buses in Halifax. School buses are called within 

the traffic microsimulation model if the transit fleet capacity is exhausted in a scenario. Table 

1 lists all sequential scenarios tested and evaluated within AMEDST. All scenarios are 

compared to a base case scenario taken from the evacuation study by Alam et al. (2019) for the 

same study area, which revealed that it takes 22 hours for an auto-based evacuation of the 

Halifax Peninsula. The improvement in clearance time considering the auto-bus evacuation 

scenario is significant, ranging 9-22.7% with respect to the earlier auto-based evacuation 

scenarios, as shown in Table 1. The results from the scenario analysis reveal that traffic 

congestion can be improved by reducing vehicular traffic by 3.9-7.7% from the network with a 

bus evacuation of 5-20% of individuals that are prioritized based on their vulnerabilities. 

Moreover, in the earlier study (Alam et al., 2019), 8400 transit-dependent people were 

evacuated by buses while it is 21,400 for the proposed all mode evacuation case, an increase 

of 61%. Figure 4 illustrates the improvement in queue length due to the implementation of the 

proposed scenarios. The queue length results suggest that with the increase in the number of 

individuals allocated buses from scenario 1 to scenario 4, traffic congestion, including queue 

length significantly decreases on major key arterial streets, as shown in Figure 4a to Figure 4d. 

Table 1 Bus Allocation Results and Network Performances 

Scenarios 
Individuals 

allocated bus 

Required 

transit bus 

Required 

School bus  

Vehicle traffic reduction 

w.r.t base case, % 

Clearance time 

improvement w.r.t base 

case, % 

Scenario 1: 

5% demand 
8,725 193 0 3.9 9.0 

Scenario 2: 

10% demand 
14,900 322 5 4.7 13.6 

Scenario 3: 

15% demand 
18,150 322 34 5.5 18.1 

Scenario 4: 

20% demand 
21,400 322  88 7.7 22.7 
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The results demonstrate the effectiveness of AMEDST in considering all modes for evacuation. 

Except for scenario 1, the AMEDST utilizes school buses to accommodate the target demand 

for evacuation when municipal bus capacity is exhausted. Note that the optimization model in 

this study produces results for the best case, and does not reflect the uncertainty in bus 

evacuation, including the uncertainty in demand and bus capacity. However, this study 

provides a range of the evacuation performance. For example, the highest demand scenario 

provides the lower limit, and the base case scenario provides the upper limit of the evacuation 

time in this study. The range can be the basis for the evaluation of other bus evacuation 

scenarios considering the uncertainty. 
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Figure 4: a (top-left), b (top-right), c (bottom-left), and d (bottom-right) Average queue length measured in four vehicle allocation scenarios where 

(a) Scenario 1- 5% demand, (b) Scenario 2- 10% demand, (a) Scenario 3- 15% demand, and (a) Scenario 4- 20% demand

a b 

c 
d 
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The results in Table 1 will assist decision-makers in selecting one of the scenarios to be implemented. 

For example, one may select scenario 4 with the highest improvement in evacuation time, but with a 

high cost to deploy 410 (322 transit buses +88 school buses) buses. They may also select scenario 1 

which only involves 193 municipal buses but demonstrates a small evacuation time improvement. In 

total, 410 buses are used in the highest demand scenario, while there are 702 buses (322 buses of 

Halifax Transit + 380 School buses) available, indicating that the remaining fleet capacity can serve 

more individuals. Decision-makers can easily evaluate municipal budgets and require lee way time to 

safely evacuate people when choosing a scenario.  

 

5.2. Prioritization Accounting for Vulnerabilities 

The proposed bus allocation process in this study prioritizes individuals according to their estimated 

vulnerabilities. The vulnerability score for an individual is calculated by the aggregation of scores for 

social and mobility vulnerability. All vulnerability scores are used to develop twenty classes with an 

interval of 0.05: V1 being the first and the lowest scored class and V20 being the last and the maximum 

scored class. Figure 5 shows the percent of individuals that are assigned to a bus while accounting for 

different vulnerabilities.  

  

Figure 5: Percent individuals assigned to buses based on different vulnerabilities 

 

The results suggest that the percent individuals prioritized across zones for bus allocation comprise a 

large group of individuals with relatively higher vulnerabilities, a category of V12 or above, in almost all 

scenarios, which supports the objectives of this study. Scenario 3 (15% demand) and scenario 4 (20% 

demand) show a similar pattern in bus allocation for individuals within the category mentioned above. 

The percent of individuals assigned to a bus within this category are relatively higher and similar in 
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both scenarios. Scenario 1 represents a 5% auto-based demand that is shifted to buses for evacuation. 

The proposed method intends to evacuate as many vulnerable people as possible by buses; that being 

said, a small 5% demand does not reasonably reflect the distribution of the vulnerable population. The 

results suggest that it requires at least a 10% demand consideration to reflect a reasonable distribution 

of the vulnerable population when allocating buses to evacuees from a wider area for evacuation. 

 

5.3. Addressing of Vulnerabilities across Planning Districts 

This study examines the vulnerability characteristics of individuals who might be allocated buses for 

their evacuations. The study area has been sub-divided into four planning districts “Downtown (DT),”, 

“West-End (WE),”, “North-End (NE),” and “South-End (SE)” for analysis purposes. Figure 6a and Figure 

6b show the vulnerability scores of individuals of different planning districts who are allocated buses 

for their evacuations in scenario 3 and scenario 4. Scenario 1 and scenario 2 serve a smaller demand 

and do not encompass all planning districts while prioritizing individuals with higher vulnerabilities. 

For example, scenario 1 with a target demand of 5% only prioritizes individuals from DT for bus 

allocation. 

 

Figure 6: a (left), and b (right) Vulnerabilities accounted for bus allocations across planning districts in (a) 

scenario 3-15% demand, and (b) scenario 4-20% demand.  

 

The results suggest that the only difference between Figure 6a and Figure 6b is that the upper whisker 

in Figure 6b is relatively longer in the case of NE and WE.  The reason is that due to the increase in the 

target demand, more people from different zones become eligible for bus allocation based on their 

urgency. 

 

5.4. Addressing of Vulnerabilities across Planning Districts 

This study identifies the critical time segments of an entire evacuation period when it demands bus 

allocation to improve overall evacuation operations. Figure 7a to Figure 7d illustrate the time segments 

when individuals have been assigned to buses. 
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Figure 7: a (left-top), b (right-top), c (left -bottom), and d (right-bottom) Time segments of an evacuation 

period that assigns buses to individuals under four scenarios (a) Scenario 1 –5% demand, (b) Scenario 2 

– 5% demand, (c) Scenario 3 – 5% demand, and (d) Scenario 4 – 5% demand 

 

In the case of a smaller demand for bus evacuation, for example, in scenario 1 (5%) and scenario 2 
(10%), bus allocation in a single time segment is found sufficient (see Figure 7a and Figure 7b). On the 
other hand, in scenario 3 (15%) and scenario 4 (20%), buses were allocated to individuals at different 

time segments to encompass a greater demand from a wider area. The results have certain policy 
implications in helping decision-makers identify critical time segments of an evacuation. For example, 

when individuals need transportation the most and how effectively the demand can be 
accommodated given the limited capacity of buses. 

 

6. Conclusion 

This study presents a novel framework of an All- Mode Evacuation Decision Support Tool that 

combines an All-Mode Allocation Module and a traffic evacuation microsimulation model. The 

contribution of this study is that it recognizes all modes, particularly transit and school buses in 

evacuation operations and determines an optimum auto-bus composition for conducting an efficient 

evacuation in the transport network. Methodologically, the study contributes to solving a mode 

allocation optimization problem by implementing a Dynamic Programming algorithm. In contrast, 

several solution algorithms used in solving other evacuation problems may suffer from local optima 
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or exponential complexity. This study also provides a comprehensive approach to mass evacuation 

microsimulation modelling and scenario testing.  

The study considered a case study of Halifax, Canada to demonstrate the efficacy of the developed 

AMEDST in meeting the transportation needs of the entire population of the Halifax Peninsula, while 

simultaneously ensuring an improvement in evacuation time. Four sequential scenarios representing 

different levels of demand for bus allocation were evaluated within the developed tool. The results 

show that individuals with higher degrees of vulnerability are prioritized for allocating evacuation 

buses in all scenarios. The developed tool can identify the critical time segments of an entire 

evacuation period when bus allocation is critical in improving overall evacuation operations. 

Moreover, if the bus fleet is large enough to accommodate a significant proportion of evacuation 

demand, for example, 15% and 20% in this case, a vehicle traffic reduction of 5.5%-7.7% are 

achievable. This results in a reduction of evacuation times by 18.1%-22.7%. All scenarios tested and 

evaluated demonstrate an improvement in clearance time and network performances. The simulation 

results reveal that a reduction of 9-22.7% in clearance time is achievable if the available bus capacity 

can accommodate 5% to 20% of auto-based evacuation demand. The transport network is also found 

to exhibit an improvement in traffic congestion. Queue length on major evacuation routes is found to 

decrease in all scenarios. In summary, the results from AMEDST support this study's objective and the 

rationale for developing a tool that recognizes the role of all modes in evacuation operations.  

This study has some limitations. For example, the study utilized a DTA module that does not include 

the drivers’ path choice learning process for panicked traffic conditions. It reflects normal day traffic 

congestions and the subsequent drivers’ responses considering a normal state of mind. It would be 

interesting to develop an enhanced DTA module to optimize travel outcomes where a panic situation 

can be considered within the path choice algorithm. The study also does not consider losing bus fleet 

capacity due to the possibility of buses being flooded or failed due to any other uncertainties amid 

evacuation. Moreover, this research used bus demand from a regional transport network model; 

however, external factors, including final-destination of bus-based evacuees, last-mile transportation, 

provision to accommodate staffs and pets in the bus, bus fares and pick-up locations, may influence 

the evacuees’ willingness to adopt bus as their evacuation modes. Future studies should include the 

abovementioned criteria in forecasting demand for bus evacuation. The study also does not consider 

trip chaining problems (e.g., pick-up kids and family members). Further research will be necessary that 

uses activity-based travel demand models for demand estimation and real-time bus supply 

assessment within AMEDST.  

In closing, this study addresses the gaps in evacuation literature by considering and implementing the 

roles of all modes in evacuation operations. The tool has the potential to assist emergency personnel 

in their decision-making process by enabling them to design and test alternative evacuation scenarios 

including resource allocation and management problems, when considering a large-scale mass 

evacuation. 
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