Smoke Free/Scent Free Dalhousie

Providing a Healthy Work and Study Environment

To protect people from involuntary exposure to tobacco smoke, in 2003, Dalhousie declared the University entirely smoke-free. The No Smoking Policy prohibits smoking in all University buildings, including University residences, on University property and in University Vehicles.

Under this policy, those wishing to smoke are asked to leave University property (http://safety.dal.ca/programs_services/smokefree/property.php). While smoking on public property, smokers are asked to avoid littering, to be respectful of others, and of course to abide by the municipal by-law.

The University has also acted to support its many students and employees who report that they are harmed when they are exposed to scents which are present in many scented personal care products. Scents in perfume, cologne, hair-spray, after-shave, and even some soap and fabric softeners, cause serious illness in people who are sensitive to these chemicals.

To provide an environment which supports teaching and learning, Dalhousie asks students, staff, faculty and visitors, to refrain from using such scented products while at the University. The scent reduction program is part of a broader effort to limit, to the fullest extent practical, exposure to all chemicals in our buildings.

For more information on the Smoking Policy and the Scent Reduction Program, contact the Safety Office by email at Safety.Office@dal.ca or consult the web sites http://safety.dal.ca/programs_services/scentfree/ and http://safety.dal.ca/programs_services/smokefree/.
Table of Contents

Academic Dates 2012/2013 ..1
Admission Dates 2012/2013 ..2
Definitions ..3
Dalhousie University ..6
University Regulations ...8
General ..8
Rescission of Acceptance into a Program8
Official Examination Regulations ..8
Policy in the Event that a Formal Examination Cannot be
Completed at the Regularly Scheduled Time8
Policy for the Scheduling of Classes/Examinations8
Retention of Student Work ...9
Freedom of Information and Protection of Privacy9
Release of Information About Students9
Accommodation Policy For Students ..9
Policy on Submission of Student Papers11
Intelectual Honesty ...11
Discipline ..12
Academic Dishonesty ...12
Senate Discipline Committee ..14
Code of Student Conduct ...15
Protection of Property ..18
Senate Appeals Committee ...18
Acceptable Use of Information Technology Resources19
Faculty of Graduate Studies ...20
 Agriculture ...37
 Anatomy and Neurobiology ..42
 Architecture ...45
 Atmospheric Science ..56
 Biochemistry & Molecular Biology ...56
 Bioethics ..60
 Biology ...61
 Biomedical Engineering ...65
 Business Administration ...70
 Chemistry ..84
 Civil and Resource Engineering ..89
 Civil Engineering Program ...90
 Mineral Resource Engineering Program92
 Classics ..95
 Clinical Vision Science ..98
 Community Health and Epidemiology101
 Computational Biology and Bioinformatics103
 Computer Science ...104
 Earth Sciences ...110
 Economics ..114
 Electrical and Computer Engineering118
 Electronic Commerce ...121
 Engineering ...124
 Engineering Mathematics ..131
 English ..132
 Environmental Engineering ..140
 Environmental Studies ..142
 French ..146

 German ..150
 Health Administration ..152
 Health and Human Performance ..156
 Health Informatics ...161
 History ...164
 Human Communication Disorders ..170
 Industrial Engineering ..174
 Information Management ...176
 Interdisciplinary PhD Program ..182
 International Development Studies183
 Internetworking ...186
 Interprofessional Health Education188
 Journalism ..188
 Law ..190
 Marine Affairs Program ...192
 Mathematics and Statistics ...195
 Mathematics ..196
 MD/PhD Programs /Combined ..199
 Mechanical Engineering ...199
 Medical Sciences ..203
 Microbiology and Immunology ...204
 Musicology ..206
 Neuroscience ..208
 Nursing ...210
 Occupational Therapy ..216
 Oceanography ...225
 Oral and Maxillofacial Surgery ..229
 Pathology ...231
 Periodontics ..233
 Petroleum Engineering ...235
 Pharmacology ...236
 Pharmacy ...238
 Philosophy ...240
 Physics and Atmospheric Science244
 Physiology and Biophysics ..248
 Physiotherapy ...251
 Planning ..255
 Political Science ...261
 Process Engineering and Applied Science265
 Biological Engineering Program266
 Chemical Engineering Program268
 Food Science Program ..269
 Materials Engineering Program271
 Prosthodontics ...273
 Psychology ...273
 Public Administration ..281
 Social Work ..289
 Sociology and Social Anthropology293
 Statistics ..296
 Centres and Institutes ...299
 Resources and Services ..306
 Financial Aid ..313
 Fees ...315
 Awards ...320
 Index ..332
 Awards Index ...336
 Campus Map ..339
Important Notices

Students are advised that the matters dealt with in this Calendar are subject to continuing review and revision. This Calendar is printed some months before the year for which it is intended to provide guidance. Students are further advised that the content of this calendar is subject to change without notice, other than through the regular processes of Dalhousie University, and every student accepted for registration in the University shall be deemed to have agreed to any such deletion, revision or addition whether made before or after said acceptance. Additionally, students are advised that this calendar is not an all-inclusive set of rules and regulations but represents only a portion of the rules and regulations that will govern the student's relationship with the University. Other rules and regulations are contained in additional publications that are available to the student from the Registrar's Office, and/or the relevant faculty, department or school.

The University reserves the right to limit enrolment in any program. Students should be aware that enrolment in many programs is limited and that students who are admitted to programs at Dalhousie are normally required to pay deposits on tuition fees to confirm their acceptance of offers of admission. These deposits may be either non-refundable or refundable in part, depending on the program in question. While the University will make every reasonable effort to offer classes as required within programs, prospective students should note that admission to a degree or other program does not guarantee admission to any given class. However, no student in a graduating year may be excluded from a class required by that student to meet degree requirements because of lack of space (This rule does not apply to elective courses or to preferred sections of classes.). Students should select optional classes early in order to ensure that classes are taken at the most appropriate time within their schedule. In some fields of study, admission to upper level classes may require more than minimal standing in prerequisite classes.

Dalhousie University does not accept any responsibility for loss or damage suffered or incurred by any student as a result of suspension or termination of services, classes or courses caused by reason of strikes, lockouts, riots, weather, damage to university property or for any other cause beyond the reasonable control of Dalhousie University.

Inquiries should be directed to:

The Registrar
Dalhousie University
Halifax, Nova Scotia
P.O. Box 15000
Canada B3H 4R2
Telephone: (902) 494-2450
Fax: (902) 494-1630
E-mail: Registrar@dal.ca

Dalhousie Calendars on the Web
Dalhousie University calendars are available in electronic form on the Web at http://www.registrar.dal.ca. Please note that the electronic versions of the calendars are provided for your convenience. Formatting of the electronic version may differ from the official printed version. Where differences occur, please contact the Registrar’s Office at registrar@dal.ca.

Other Programs
Information on programs offered by the Faculties of Architecture and Planning, Arts and Social Sciences, Computer Science, Engineering, Health Professions, Management, and Science can be found in the Undergraduate calendar. Information on programs offered by the Faculties of Dentistry, Law, and Medicine can be found in the Dentistry, Law, Medicine Calendar.
Academic Dates 2012/2013

ACADEMIC CLASS ADD/DROP DATES (For financial deadlines and refund dates, visit www.dal.ca/studentaccounts.)

<table>
<thead>
<tr>
<th>Term Identifier</th>
<th>Part of Term Description</th>
<th>Duration of Classes</th>
<th>Last Day to Register</th>
<th>Last Day to Cancel and Add Classes for registered students</th>
<th>Last Day to Drop without "W"</th>
<th>Last Day to Change from Audit to Credit and Vice Versa</th>
<th>Last Day to Drop with "W"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Term 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Term 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X/Y</td>
<td>Full Year Class</td>
<td>September 6, 2012 - April 8, 2013</td>
<td>September 6, 2012</td>
<td>September 21, 2012</td>
<td>November 9, 2012</td>
<td>February 8, 2013</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Full Term</td>
<td>September 6 - December 4, 2012</td>
<td>September 6, 2012</td>
<td>September 21, 2012</td>
<td>October 5, 2012</td>
<td>November 5, 2012</td>
<td></td>
</tr>
<tr>
<td>Winter Term 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Term 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3-week Term</td>
<td>July 2 - July 24, 2013</td>
<td>July 2, 2013</td>
<td>July 9, 2013</td>
<td>July 17, 2013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Academic Dates

2012

May
- Monday, 7: Summer Academic Term begins
- Monday, 21: Victoria Day - University closed
- Tuesday, 22: - Wednesday, May 30 - Spring Convocations

July
- Monday, 2: In lieu of Canada Day - University closed
- Wednesday, 4: Last day to apply to Graduate in October
- Monday, 9: Last day for those expecting PhD degrees in October to submit a PhD submission form plus the External Examiner’s unbound copy of completed thesis. Master’s students consult with department

August
- Monday, 6: Halifax/Dartmouth Natal Day - University closed
- Monday, 12: Last day to have Leave of Absence or change of student status approved by Graduate Studies for September

September
- Monday, 3: Labour Day - University closed
- Thursday, 6: Classes begin, fall term

October
- Monday, 1- Wednesday 3: Fall Convocations
- Monday, 8: Thanksgiving Day - University closed

November
- Friday, 2: Last day for those expecting PhD degrees in May and only registering in the fall term to submit a PhD submission form plus the External Examiner’s unbound copy of completed thesis. Master’s students consult with department
- Monday, 12: In lieu of Remembrance Day - University closed
- Tuesday, 13: Study Day
December
Monday, 3 Last day to submit an Intent to Graduate form
Tuesday, 4 Classed end, fall term
Thursday, 6 Examinations begin
Friday, 14 Last day to make electronic submission to FGS for those convocating in May and only registering in the fall term
http://dalgrad.dal.ca/currentstudents/thesesanddefences/etheses
Monday, 17 Examinations end
Thursday, 20 Last day to have Leave of Absence or change in student status approved for winter term

2013
January
Tuesday, 1 New Year’s Day - University closed
Monday, 7 Classes begin, winter term

February
Friday, 1 Munro Day - University closed
Friday, 15 Last day for those expecting PhD degrees in May to submit a PhD submission form plus the External Examiner’s unbound copy of completed thesis
Master’s students consult with department
Monday, 25 Study break begins

March
Monday, 4 Classes resume
Friday, 29 Good Friday - University closed

April
Friday, 5 Last day for those expecting to receive graduate degrees in May to make electronic submission to FGS
http://dalgrad.dal.ca/currentstudents/thesesanddefences/ etheses
Monday, 8 Classes end, regular session (unless otherwise indicated)
Thursday, 11 Examinations begin, regular session
Friday, 26 Examinations end, regular session
Friday, 26 Last day to have Leave of Absence or change in student status approved for summer term

May
Monday, 20 Victoria Day - University closed
Tuesday, 21 - Thursday, May 30 Spring convocations

July
Monday, 1 Canada Day - University closed
Tuesday, 2 Last day to apply to graduate in October
Friday, 12 Last day for those expecting PhD degrees in October to submit a PhD submission form plus the External Examiner’s unbound copy of completed thesis
Masters students consult with department

August
Monday, 5 Halifax/Dartmouth Natal Day - University closed
Friday, 30 Last day to have Leave of Absence or change of student status approved by Graduate Studies for September

Admission Dates 2012/2013

Final Dates for Receipt of Applications for Admission

Regular Session - September Start Date
• Graduate Studies\(^1\)\(^2\) (except as below) June 1
• Non-Canadian Students (Graduate Studies) April 1

Several programs have different application deadlines. Please refer to the specific departmental sections in the calendar for these dates

1 All supporting documentation must be submitted by the appropriate deadline.
2 For Graduate Studies Scholarship consideration applications must be complete (including application, fee and all supporting documents) by March 1. For consideration for Killam and other University scholarships, complete applications must be received by January 31.

Admission in January or May
Some programs allow for a student to start either January 1 or May 1. Check the detailed program descriptions or with the department directly to see if such start dates are permitted. See Faculty Regulation 4.2, for appropriate application deadlines.

<table>
<thead>
<tr>
<th>General Application Deadlines</th>
<th>Canadian Applicants</th>
<th>Non-Canadian Applicants</th>
</tr>
</thead>
<tbody>
<tr>
<td>For September Admission</td>
<td>June 1</td>
<td>April 1</td>
</tr>
<tr>
<td>For January Admission</td>
<td>October 31</td>
<td>August 31</td>
</tr>
<tr>
<td>For May Admission</td>
<td>February 28</td>
<td>December 31</td>
</tr>
</tbody>
</table>
Definitions

The following definitions are intended to facilitate an understanding of the calendar and not to define all words and phrases used in the calendar which may have specific meanings.

Academic Dismissal
A student's required withdrawal from a program due to unsatisfactory academic performance. Please refer to Faculty of Graduate Studies Regulation 5.2.5, page 25.

Academic Program
A distinct group of classes and other requirements which lead to eligibility for a degree or other university-awarded credential.

Academic Sessions
- Fall term: September - December
- Winter term: January - April
- Summer term: May - August
- Regular session: September - April

Audit Student
A student permitted to attend classes but not expected to prepare assignments, write papers, tests or examinations. Credit is not given nor is a mark awarded for classes. Classes appear on the transcript with the term "Aud". Audit students must apply in the normal way. Students may register to audit a class only after the last day to add classes in the term.

Candidate
The term candidate for a doctoral degree is used to identify a student who has fulfilled all the requirements for the PhD except for the submission and defence of the thesis; thus, a candidate will have successfully completed the residency requirement, all course work, qualifying and comprehensive examinations (as applicable), and the thesis proposal defence (if applicable). This status is equivalent to the common terms "all but the thesis" or "all but dissertation" used at some institutions. The term candidate cannot be employed with regard to a Masters degree student.

Class
A unit of instruction in a particular subject identified by a name and number.

Clerkship
See Internship

Clinical Practice
See Internship

Continuing Fees
The tuition fees charged to graduate students who have fulfilled their program fee requirements but have yet to complete all their degree requirements. See Faculty of Graduate Studies Regulation 5.3.5.

Co-operative Education
A program where academic study is combined with career related work experience.

Co-requisite
Requirement which must be fulfilled concurrently with the class being considered.

Course
The term "class" is used in place of the word course.

Credit
A unit by which University class work is measured. A full year class, i.e. September - April, is normally worth one full credit.

Credit Hours
One full credit is equal to six credit hours and one half credit is equal to three credit hours.

CRN (Class Registration Number)
Each class has a CRN attached to it (class registration number). This number is to be used when registering for classes.

Crosslisted Classes
Classes are crosslisted based upon course content that deals with more than one subject area in a substantive way. The crosslisting recognizes the interdisciplinary nature of the class.

Email
E-mail is an authorized means of communication for academic and administrative purposes within Dalhousie. The University will assign all students an official e-mail address. This address will remain in effect while the student remains a student and for one academic term following a student's last registration. This is the only e-mail address that will be used for communication with students regarding all academic and administrative matters. Any redirection of e-mail will be at the student’s own risk. Each student is expected to check her or his official e-mail address frequently in order to stay current with Dalhousie communications.

Exclusion
Students may not register for a class which lists, as an exclusion, a class the student is also taking or has already passed.

Externship
See Internship.

Fieldwork
See Internship.

Full-time Students
Those registered for three half credit classes or more in a term.

GSIS
Graduate Student Information System. The Electronic database used to approve student program requirements and progress.

Graduate Student (Regular)
A student with a Bachelor’s degree, usually with Honours or equivalent, enrolled in a Master’s or Doctoral program, or a graduate diploma program.

Internship, Fieldwork, Clinical Practice, Externship, Practicum, Clerkship
Practical professional educational experiences that are conducted in a non-university setting such as a health or social service agency.

Letter of Permission
A Letter of Permission authorizes a Dalhousie student to take a class(es) at another institution for credit towards a Dalhousie qualification. Such permission must be obtained in advance of taking the class(es). See Regulation 7.6.6.

Non-thesis Program
A Master’s program of study based on class work which may also include a research project. This includes many of the professional graduate programs. Some of these programs also offer a thesis option.

Part-Time Student (Program Fee)
A part-time graduate student paying program fees (see Section 2.3, page 21) is a student who has been approved by the department and the Faculty of Graduate Studies as working part-time on their graduate degree. A part-time graduate student is taking less than nine credit hours per term.
Part-Time Student (Per Course Fee)
A student who is taking less than nine credit hours (three half-credit classes) in a term is considered a part-time student.

Per Course Fee
The fees charged to students in a Per-Class Fee Degree. Students pay fees according to the number of classes taken in any given term. Please refer to Faculty of Graduate Studies Regulations 2.3 and 5.1.

Practicum
See Internship.

Prerequisite
A requirement that must be fulfilled prior to registering in a specific class.

Program Fees
The tuition fees charged to students in a program-fee degree. The program fee is based on total tuition for a specified number of years, varying according to academic program. Students who have not completed their program after the specified number of years are required to pay a continuing fee. Please refer to Faculty of Graduate Studies Regulation 2.3, page 21 and 5.1.

Qualifying Students (Master’s only)
A full-time or part-time student with a Bachelor’s degree or its equivalent in whom a department has expressed an interest as a potential graduate student, but who is without a sufficient GPA or academic background in a particular discipline to be enrolled directly in a Master’s program. See Faculty Regulation 5.3.6.

Residency
The period of time that graduate students are expected to be on campus for fulfillment of their formal program requirements. In some programs, part of the residency period may, with permission, include some time off campus (e.g. for fieldwork or research).

Special Student - Graduate Studies (SSGS)
A student who is not registered in a graduate program but is taking graduate classes. Special students must satisfy normal admission requirements. See Faculty Regulation 5.3.7.

Supervisor
The supervisor is a member of Faculty of Graduate Studies who is directly responsible for the supervision of a graduate student's program. In this capacity, the supervisor assists the student in planning a program, ensures that the student is aware of all program requirements, degree regulations, and general regulations of the department and Faculty of Graduate Studies, provides counsel on all aspects of the program, and stays informed about the student's research activities and progress. The supervisor is also charged with ensuring that a student's research is effective, safe, productive and ethical. Specific duties of the supervisor include preparation of a program of study with the student, arrangement of and attendance at all supervisory committee meetings and candidate examinations, while ensuring that these exams are scheduled and held in accordance with Faculty of Graduate Studies and Departmental regulations, and reviewing the thesis both in draft and in final form.

Thesis Only Fees
See Continuing Fees.

Thesis Program
A Master’s or Doctoral program of study involving a major research component in the form of a written thesis. Some programs offer a non-thesis option.

Transcript
A transcript is a complete history of a student’s academic record at Dalhousie. Partial transcripts, e.g., a portion of a student’s record pertaining to registration in a particular degree or faculty only, are not issued.

Transfer Student
A transfer student is one who is awarded credit towards a Dalhousie degree for academic work completed at a previous university or equivalent institution of higher learning.

Visiting Student Graduate Studies (VSGS)
a. A person permitted to take classes at Dalhousie for transfer of credit to another university (Letter of Permission required).
b. A person permitted to work with a Dalhousie researcher for thesis work at another university (Research).

Work Term
Career related work experience required in Co-operative Education programs. Work terms are usually of 13-16 weeks duration.

Class Codes

Numbers
1000-level classes are introductory
2000-4000 level classes are advanced
5000-9000 level are Graduate level (with some exceptions)

Credit Hours - examples only
0.06 credit hours = 1 full credit
0.03 credit hours = ½ credit
0.00 credit hours = no credit

Four letter codes are used to describe the department offering a particular class as follows:

AGRI - Agriculture
ANAT - Anatomy & Neurobiology
ARBC - Arabic
ARCH - Architecture
ARTC - Applied Health Services Research
ASSC - Arts and Social Sciences Interdisciplinary
BCBD - Community Building and Design
BIOC - Biochemistry and Molecular Biology
BIOE - Biological Engineering
BIOI - Biology
BIOT - Bioethics
BMNG - Biomedical Engineering
BUSI - Business Administration
CANA - Canadian Studies
CHEM - Chemistry
CHIN - Chinese
CLAS - Classics
CIVL - Civil Engineering
CNLT - Centre for Learning and Teaching
COMM - Commerce
CPST - Complimentary Studies
CRWR - Creative Writing
CSCI - Computer Science
CTMP - Contemporary Studies
DCYT - Diagnostic Cytology
DEHY - Dental Hygiene
DENQ - Dentistry Qualifying
DENT - Dentistry
DISM - Disability Management
DMUT - Diagnostic Medical Ultrasound Technology
ECED - Electrical and Computer Engineering
ECMM - Electronic Commerce
ECON - Economics
EDUC - Education
EMSP - Early Modern Studies
ENGI - Engineering
ENGL - English
ENGM - Engineering Math
ENSL - English Language (CE)
ENVE - Environmental Engineering
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVI</td>
<td>Environmental Studies</td>
</tr>
<tr>
<td>ENVS</td>
<td>Environmental Science</td>
</tr>
<tr>
<td>ERTH</td>
<td>Earth Sciences</td>
</tr>
<tr>
<td>EURO</td>
<td>European Studies</td>
</tr>
<tr>
<td>FOSC</td>
<td>Food Science & Technology</td>
</tr>
<tr>
<td>FREN</td>
<td>French</td>
</tr>
<tr>
<td>GEOG</td>
<td>Geography</td>
</tr>
<tr>
<td>GERM</td>
<td>German</td>
</tr>
<tr>
<td>GWST</td>
<td>Gender and Women’s Studies</td>
</tr>
<tr>
<td>HAHF</td>
<td>Health and Human Performance</td>
</tr>
<tr>
<td>HEED</td>
<td>Health Education</td>
</tr>
<tr>
<td>HESA</td>
<td>Health Administration</td>
</tr>
<tr>
<td>HINF</td>
<td>Health Informatics</td>
</tr>
<tr>
<td>HIST</td>
<td>History</td>
</tr>
<tr>
<td>HLTH</td>
<td>Health Professions</td>
</tr>
<tr>
<td>HPRO</td>
<td>Health Promotion</td>
</tr>
<tr>
<td>HSCE</td>
<td>Health Sciences Education</td>
</tr>
<tr>
<td>HSTC</td>
<td>History of Science and Technology</td>
</tr>
<tr>
<td>HUCD</td>
<td>Human Communication Disorders</td>
</tr>
<tr>
<td>IDIS</td>
<td>Interdisciplinary Studies</td>
</tr>
<tr>
<td>IENG</td>
<td>Industrial Engineering</td>
</tr>
<tr>
<td>INFO</td>
<td>Information Management</td>
</tr>
<tr>
<td>INFX</td>
<td>Informatics</td>
</tr>
<tr>
<td>INTD</td>
<td>International Development Studies</td>
</tr>
<tr>
<td>INTE</td>
<td>Interdisciplinary Studies (Graduate)</td>
</tr>
<tr>
<td>INWK</td>
<td>Engineering Internetworking</td>
</tr>
<tr>
<td>IPHE</td>
<td>Interprofessional Health Professions</td>
</tr>
<tr>
<td>ITAL</td>
<td>Italian</td>
</tr>
<tr>
<td>JOUR</td>
<td>Journalism</td>
</tr>
<tr>
<td>KINE</td>
<td>Kinesiology</td>
</tr>
<tr>
<td>KING</td>
<td>King’s Foundation Year Programme</td>
</tr>
<tr>
<td>LAWS</td>
<td>Law</td>
</tr>
<tr>
<td>LEIS</td>
<td>Leisure Studies</td>
</tr>
<tr>
<td>MARA</td>
<td>Marine Affairs</td>
</tr>
<tr>
<td>MARI</td>
<td>Marine Biology</td>
</tr>
<tr>
<td>MATL</td>
<td>Materials Engineering</td>
</tr>
<tr>
<td>MATH</td>
<td>Mathematics</td>
</tr>
<tr>
<td>MDLT</td>
<td>Medical Lab Technology</td>
</tr>
<tr>
<td>MECH</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>MEDI</td>
<td>Medicine</td>
</tr>
<tr>
<td>MEDS</td>
<td>Medical Science</td>
</tr>
<tr>
<td>MGMT</td>
<td>Management</td>
</tr>
<tr>
<td>MICI</td>
<td>Microbiology & Immunology</td>
</tr>
<tr>
<td>MINE</td>
<td>Mineral Resource Engineering</td>
</tr>
<tr>
<td>MUSC</td>
<td>Music</td>
</tr>
<tr>
<td>NESC</td>
<td>Neuroscience</td>
</tr>
<tr>
<td>NUMT</td>
<td>Nuclear Medicine Technology</td>
</tr>
<tr>
<td>NURS</td>
<td>Nursing</td>
</tr>
<tr>
<td>OCCU</td>
<td>Occupational Therapy</td>
</tr>
<tr>
<td>OCEA</td>
<td>Oceanography</td>
</tr>
<tr>
<td>ORAL</td>
<td>Oral & Maxillofacial Surgery</td>
</tr>
<tr>
<td>PATH</td>
<td>Pathology</td>
</tr>
<tr>
<td>PEAS</td>
<td>Process Engineering and Applied Science</td>
</tr>
<tr>
<td>PERI</td>
<td>Periodontics</td>
</tr>
<tr>
<td>PETR</td>
<td>Petroleum Engineering</td>
</tr>
<tr>
<td>PGMD</td>
<td>Post-Graduate Medicine</td>
</tr>
<tr>
<td>PGPH</td>
<td>Post-Graduate Pharmacy</td>
</tr>
<tr>
<td>PHAC</td>
<td>Pharmacology</td>
</tr>
<tr>
<td>PHAR</td>
<td>Pharmacy</td>
</tr>
<tr>
<td>PHL</td>
<td>Philosophy</td>
</tr>
<tr>
<td>PHDP</td>
<td>PHD Program</td>
</tr>
<tr>
<td>PHYC</td>
<td>Physics and Atmospheric Science</td>
</tr>
<tr>
<td>PHYL</td>
<td>Physiology</td>
</tr>
<tr>
<td>PHYT</td>
<td>Physiotherapy</td>
</tr>
<tr>
<td>PLAN</td>
<td>Planning</td>
</tr>
<tr>
<td>POLI</td>
<td>Political Science</td>
</tr>
<tr>
<td>PROD</td>
<td>Prosthodontics</td>
</tr>
<tr>
<td>PSYO</td>
<td>Psychology</td>
</tr>
<tr>
<td>PUAD</td>
<td>Public Administration</td>
</tr>
<tr>
<td>RADT</td>
<td>Radiological Technology</td>
</tr>
<tr>
<td>REGN</td>
<td>Registration Course - Graduate</td>
</tr>
<tr>
<td>RELS</td>
<td>Religious Studies</td>
</tr>
</tbody>
</table>

Definitions
Dalhousie University, located in the heart of Halifax, Nova Scotia, an international port city known for its scenic beauty, vibrant culture and rich heritage, is one of Canada’s leading universities. We are widely recognized for outstanding academic quality and the opportunities presented by our broad range of educational and research activities.

Since 1818, Dalhousie has a long tradition of excellence and achievement. Dalhousie offers more than 3,600 diverse courses in over 180 undergraduate, graduate and professional degrees. We also encourage students learning through exchange programs, fieldwork, community service and co-operative education. Our collaborative learning environment encourages our nearly 17,000 students to interact with one another and with faculty experts to share ideas and offer new perspectives.

Our collaborative spirit extends off campus, as well. We conduct research in partnership with teaching hospitals, professional organizations, businesses, nonprofit agencies, and other universities. As Atlantic Canada’s leading research university, we attract more than $93 million in research grants and awards annually, allowing us to conduct a wide variety of research projects.

In 1997, the Technical University of Nova Scotia amalgamated with Dalhousie University, creating dynamic new centre of advanced technical education and research in Nova Scotia, in the areas of architecture, computer science and engineering.

The University of King’s College, situated adjacent to the Dalhousie campus, is an affiliated institution, and its students in Arts and Science receive Dalhousie degrees in the name of both institutions. Degrees in agriculture, awarded to students of the Nova Scotia Agricultural College, are awarded by Dalhousie in co-operation with the College.

Dalhousie University is a member of the Association of Universities and Colleges of Canada, the Association of Atlantic Universities, and the Association of Commonwealth Universities.

Executive Officers

President and Vice-Chancellor
Tom Traves, BA, MA, PhD

Vice Presidents

Academic and Provost
Carolyn Watters, BSc, MSc, MLS(Western), PhD (TUNS)

Finance and Administration
Ken Burt, BA, MBA

External
Floyd W. Dykeman, BA, MPL

Student Services
Bonnie Neuman, BA, MA, EdD

Research
Martha Crago, BA, MSc (A), PhD

Associate Vice-President Academic
Keith F. Taylor, BSc (St. FX),PhD (Alberta)

Associate Vice-President Academic
Susan Spence Wach, MHA

Assistant Vice-President, Academic Success Services
Meri Kim Oliver, BA, MTS

Assistant Vice-President, Ancillary Services
Heather Sutherland, BSc, MEd

Assistant Vice-President and Chief Development Officer
Peter Fardy, BA, MBA

Assistant Vice-President, Communications and Marketing
Catherine Bagnell Styles, BA, ABC

Assistant Vice-President, Enrolment Management and Registrar
Ása Kachan, BA, MLIS

Assistant Vice-President, Facilities Management
Jeffrey W. Lamb, BEng, MEng, (Royal Military College)

Assistant Vice-President, Financial Services
Ian Nason, BComm

Assistant Vice-President, Government Relations
Gillian Wood, BA, MA (Economics)

Assistant Vice-President, Human Resources
Katherine Sheehan, BA, CHRP

Assistant Vice-President, Industry Relations and Executive Director, ILI
Stephen Hartlen, BComm, MBA

Assistant Vice-President, Information Technology Services
Dwight Fischer, BSc, MSc, EMBA

Assistant Vice-President, Student Affairs
Marc Braithwaite, BBA, MBA

University Legal Counsel
Karen Crombie, BA (Hon), JD

University Librarian
Donna Bourne-Tyson, BA, MA, MLIS

Deans of Faculties

Architecture and Planning
Christine Macy, BA (Arch) (California at Berkley), MArch (MIT), Reg. Arch. (WA)

Arts and Social Sciences
Robert Summerby-Murray, ATCL. (Trinity College, London), BA, MA, (Canterbury), PhD (Toronto)

Computer Science
Michael Shepherd, MSc, PhD (Western)

Dentistry
Thomas Boran, DDS, MEd (Dalhousie)

Engineering
L. Joshua Leon, BSc, MSc, PhD (Dal), PEng

Graduate Studies
Bernard Boudreau, BSc (UNB), MS (Texas A +M), MPhil, PhD (Yale), FRSC

Health Professions
William G. Webster, BSc (Hon), MA, PhD
Under the University’s statues, the Board of Governors is responsible for the operation of the University. The Board consists of representatives named by the Government of Nova Scotia, the alumni, the Student Union and certain other bodies. Internal regulation of the University is the primary concern of the Senate, subject to approval of the Board of Governors.

Chancellor
Dr. Frederick Fountain

Chancellor Emeritis
Dr. Rueben Cohen
Sir Graham Day
Dr. Ruth Goldbloom
Dr. Richard Goldbloom

Officers
Dr. Jim Spatz, Chair
Mr. William Black, Vice-Chair
Ms. Nancy MacCready Williams, Honorary Secretary
Mr. Lawrence Stordy, Honorary Treasurer
Dr. Tom Traves, President and Vice-Chancellor

Members
Mr. Jay Abbass
Ms. Michelle Awad
Mr. John Baxter

Ms. Joyce Carter
Mr. Wadih Fares
Dr. Frederick Fountain
Dr. Lloyd A. Fraser
Mr. Dustin Griffin
Ms. Lynn Irving
Mr. Max Ma
Mr. George McLe lan
Mr. Aubrey Pal mter
Mr. Chris Saulnier
Mr. Chris Smith
Mr. Stan Spavold
Ms. Candace Thomas
Ms. Gail Tomblin Murphy
Mr. Jim Wilson

University Secretary
Ms. Susan Brousseau

Observer for Faculty Association
Dr. Anthony Stewart

Senate
The Senate is the University’s senior academic decision-making body. It is responsible for the approval of new programs and academic units and it manages the reviews of Faculties, Centers and Institutes. Senate approves the granting of degrees and diplomas, including the conferral of Honorary Degrees. It is responsible for setting academic regulations which affect the University as a whole, including regulations governing student conduct and discipline, as well as regulations concerning faculty tenure and promotion.

Senate has 73 members—49 elected Faculty representatives, 16 academic administrators (President, Vice-President Academic and Provost, Vice-President Research, University Librarian, and the Deans of each faculty), six students elected by the Dalhousie Student Union, and representative from the University of King’s College and the Nova Scotia Agricultural College.

Senate normally meets on the second Monday of each month from 4:00 - 6:00 p.m. In addition, if there are sufficient items of business, Senate will meet on the forth Monday of the month, from 4:00 - 6:00pm.

Chair of Senate
Lloyd A. Fraser, EdD

Vice-Chair (Academic Programs)
Carol lan McLarney, PhD

Vice-Chair (Student Affairs)
Alan Pinder, BSc, PhD
University Regulations

General

1. The Senate is charged with the internal regulations of the University, including all matters relating to academic affairs and discipline, subject to the approval of the Board of Governors. Within the general policies approved by Senate, academic requirements are administered by the Faculty concerned.

2. All students must agree to obey all the regulations of the University already made or to be made. Students must also comply with the regulations of the Faculty in which they are registered, and pay the required fees and deposits before entering any class or taking any examinations. Additionally, students are advised that this Calendar is not an all-inclusive set of rules and regulations but represents only a portion of the rules and regulations that will govern the student’s relationship with the University. Other rules and regulations contained in additional publications that are available to the student from the Registrar’s Office and/or the relevant Faculty, Department or School.

3. Students are bound by the regulations of the home faculty regardless of the faculty in which the student takes classes.

4. Students should be aware that certain classes at the University involve required laboratory work where radioactive isotopes are present and are used by students. Since there are potential health risks associated with the improper handling of such radioactive isotopes, Dalhousie University requires that, as a condition of taking a class where radioactive isotopes are to be used, students read and agree to comply with the instructions for the safe handling of such radioactive isotopes. In the event that students do not comply with the instructions for the safe handling of radioactive isotopes, students will receive no credit for the required laboratory work unless other acceptable alternatives are arranged with the instructor. In many cases, alternate arrangements are not possible and students should consider enrolling in a different class.

Rescission of Acceptance into a Program

Dalhousie University reserves the right to rescind any acceptance of an applicant into a program or to rescind an offer of admission of an applicant into a program. Such rescission shall be in writing and may be made by the President or the Vice-President (Academic) and Provost, in consultation with the appropriate Dean, at any time prior to the applicant’s registration being confirmed by the Registrar. Any such rescission shall be reported to the Senate in camera.

Official Examination Regulations

1. Candidates will not be admitted to the Examination Room more than thirty minutes after the beginning of the examination. Candidates will not be permitted to leave the examination within the first thirty minutes.

2. Candidates are required to present their valid Dalhousie ID card at all examinations scheduled during the official examination periods and sign the signature list when used.

3. No articles such as books, papers, etc. may be taken into the examination room unless provision has been made by the examiner for reference books and materials to be allowed to the students. All electronic computing, data storage and communication devices must be turned off, placed and sealed in the opaque storage bag on the exam writing surface. Calculators may be used at the discretion of the invigilator.

4. Candidates may not leave their seats during an examination except with the consent of the invigilator.

5. If more than one book is used, the total number should be marked in the space provided above. The other books should be properly marked and placed inside the first book. All books supplied must be returned to the invigilator.

6. Candidates found communicating with one another in any way or under any pretext whatever, or having unauthorized books, papers, electronic computing, data storage, or communication devices in their possession, even if their use be not proved, will be investigated by the Chief Invigilator. A written report will be submitted to the Faculty Academic Integrity Officer.

7. After the first thirty minutes have elapsed, students may hand in their examination book(s) to an invigilator and quietly leave the examination room. Candidates may not leave the examination room during the last fifteen minutes of the examination.

Policy in the Event that a Formal Examination Cannot be Completed at the Regularly Scheduled Time

Formal examinations, up to three hours in length, are scheduled by the Registrar each December and April during formal examination periods, as laid out in the Calendar. If, in the unusual event that one of these examinations must be postponed or abandoned at short notice, the following policies will apply.

1. If more than fifty percent of the time allocated for the examination has elapsed, students' work up to the premature end of the examination, but prorated for the actual time written, will lead to the mark to be obtained from the formal examination.

2. If less than fifty percent of the time allocated for any examination has elapsed, the examination will be rewritten as soon as possible, normally on a day when examinations are not scheduled. Students will be informed by the Registrar of the time and place of the rewrite on the Website of the Registrar (http://www.registrar.dal.ca).

3. In all cases in which a formal examination cannot be written at its scheduled time and special arrangements must be made, it is essential that faculty ensure that all students in the class are treated fairly and equitably and according to the evaluative criteria in the class description given to students at the beginning of the term. If an examination is terminated as under point #1, any student who feels disadvantaged by not having been able to write an examination for the length specified in the class description, may appeal through the appropriate departmental or school appeal mechanism for an examination of the specified length. Appeals will be in writing and in a timely fashion. If the appeal is granted, arrangements for such a makeup examination will be made between the student and the class professor.

4. If a formal examination cannot be written at its scheduled time, it is the responsibility of students to check the Registrar’s Website for when the examination will be rewritten. Announcements will be made as soon as possible after the original time, normally within 24 hours, and rewrites will normally take place within the regular examination period.

Policy for the Scheduling of Classes/Examinations

Normally, the University schedules and conducts classes on weekdays, i.e., Monday to Friday, and sometimes Saturday, and examinations on weekdays and Saturdays, but not Sundays or statutory Holidays. However the University reserves the right, in exceptional circumstances and with the approval of Senate, to schedule classes or examinations on Sundays or statutory holidays, as the case may be.

Requests for an Alternative Final Examination Time

A student requesting an alternative time for a final examination will be granted that request only in exceptional circumstances. Such circumstances include illness (with medical certificate) or other mitigating circumstances outside the control of the student. Elective arrangements (such as travel plans) are not considered acceptable grounds for granting an alternative examination time. In cases where it is necessary to make changes to examination arrangements late in the term, or Senate has approved exceptional examination arrangements, a special effort will be made to accommodate difficulties the changes may cause for individual students.
The decision whether to grant a student’s request for an alternative examination time lies with the instructor of the course concerned as does the responsibility for making the alternative arrangements. This policy may also be applied at the discretion of the instructor to tests and examinations other than final examinations.

Retention of Student Work

Faculties of Architecture and Planning and Engineering

All work executed by students as part of their academic programs in the Faculties of Architecture and Planning and Engineering automatically becomes the property of the University and may be retained for exhibition or other purposes at any time and for an indefinite period.

Faculty of Computer Science

The Faculty of Computer Science has the right to retain the original or a copy of any work handed in by students. This will only be used for evaluation or for administrative purposes. The permission of the originator of the work is required if it is to be used in any other way.

Communication with Students

1. All students must report their local address while attending the University to the Office of the Registrar, on registration or as soon as possible thereafter. Subsequent changes must be reported promptly.

2. Email is an authorized means of communication for academic and administrative purposes within Dalhousie. The University will assign all students an official email address. This address will remain in effect while the student remains a student and for one academic term following a student’s last registration. This is the only email address that will be used for communication with students regarding all academic and administrative matters. Any redirection of email will be at the student’s own risk. Each student is expected to check her or his official email address frequently in order to stay current with Dalhousie communications.

3. Students who change their name while attending Dalhousie must provide proof of name change to the Registrar’s Office.

Freedom of Information and Protection of Privacy

The Freedom of Information and Protection of Privacy Act (FOIPOP) provides for the protection of an individual’s right to privacy but also requires that certain records be disclosed upon request unless they are exempted from disclosure. The Act requires that the University not disclose personal information if that information would constitute an unreasonable invasion of personal privacy. Applicants to Dalhousie are notified that information they provide along with other information placed in a student file will be used in conjunction with university practices for internal university use and will not be disclosed to third parties except in compliance with the FOIPOP Act or as otherwise required by law.

Release of Information About Students

The following information is available, without application through the Freedom of Information and Protection of Privacy Act:

I. Disclosure to students of their own records

1. A transcript is a complete history of a student’s academic record at Dalhousie. Partial transcripts, e.g., a portion of a student’s record pertaining to registration in a particular degree, faculty or level of study only, are not issued.

2. Students have the right to inspect their academic record. An employee of the Registrar’s Office will be present during such an inspection.

3. Students will, on submission of a signed request and payment of a fee where appropriate, have the right to receive transcripts of their own academic record. These transcripts will be marked “ISSUED TO STUDENT”. Official transcripts will be sent on a student’s request to other universities, or to business organizations, etc. The University will not release copies of transcripts if students owe monies to the University.

4. If transcripts are issued for a student while a senate discipline case is pending and the committee subsequently makes a decision that affects the student’s transcript, revised transcripts will be sent to recipients if transcripts are issued while the case was pending.

II. Disclosure to Faculty, Administrative Officers, and Committees of the University

Information on students may be disclosed without the consent of the student to University officials or committees deemed to have a legitimate educational interest.

III. Disclosure to Third Parties

1. The following information is considered public information and may be released without restriction:

- Name
- Period of Registration
- Certificates, Diplomas, Degrees awarded
- Field of Study (as relates to degree awarded)
- Hometown and Awards/Distinctions*

*As indicated in the convocation program.

2. Information will be released without student consent to persons in compliance with a judicial order or subpoena or as required by federal or provincial legislation.

3. Necessary information may be released without student consent in an emergency, if the knowledge of that information is required to protect the health or safety of the student or other persons. Such requests should be directed to the Registrar.

4. In compliance with Statistics Canada requirements, a student’s national personal identification number assigned by the university or college first attended will routinely appear on a student’s transcript of record.

5. The Federal Statistics Act provides the legal authority for Statistics Canada to obtain access to personal information held by educational institutions. The information may be used only for statistical purposes, and the confidentiality provisions of the Statistics Act prevent the information from being released in any way that would identify a student.

Students who do not wish to have their information used are able to ask Statistics Canada to remove their identifying information from the national database by contacting us by:

Email: PSIS-SIEP_contact@statcan.gc.ca

Mail: Institutional Surveys Section, Centre for Education Statistics, Statistics Canada, Main Building SC2100-K Tunney’s Pasture, Ottawa, ON K1A 0T6

Students should also be aware that the Maritime Provinces Higher Education Commission (MPHEC) collects data on behalf of Statistics Canada, and that it uses the data for similar purposes. Statistics Canada will notify the MPHEC of any student choosing to have their personal information removed from the national database, and their information will subsequently be removed from the MPHEC’s database.

Further information on the use of this information can be obtained from the Statistics Canada Website: http://www.statcan.gc.ca.

6. Other than in the above situations, information on students will be released to third parties only at the written request of the student, or where the student has signed an agreement with a third party, one of the conditions of which is access to her/his record (e.g., in financial aid). This restriction applies to requests from parents, spouses, credit bureaus and police.

Accommodation Policy For Students

Dalhousie University recognizes the diversity of its students and is committed to providing a learning environment and community in which students are able to participate without discrimination on grounds prohibited by the Nova Scotia Human Rights Act. In particular, the University is committed to facilitating students’ access to the University’s academic programs, activities, facilities and services.
The University’s commitment to safeguarding students and employees from prohibited discrimination is set out in the Statement on Prohibited Discrimination, and the procedures for addressing alleged violations of the Statement by employees are set out in the Statement on Prohibited Discrimination Procedure for Complaints against an Employee of the University.

As stated in the Statement on Prohibited Discrimination:

1. In this policy, “academic accommodation” means accommodation in relation to the student’s participation in an academic program or particular class;

2. “administrative head” means the individual with day-to-day operational responsibility for a University operation, activity, service or non-academic program;

3. “non-academic accommodation” means accommodation in relation to University activities and services that are not otherwise considered academic accommodation;

4. “student” shall include individuals enrolled at the University;

5. “Student Accommodation Liaison” means the individual or committee assigned responsibility for managing accommodation requests by each Faculty in accordance with section 3 of this policy.

Role of Student Accommodation Office, Faculty and Administrative Heads

2. Subject to the terms of this policy, the Student Accommodation Office will be responsible for administering student requests for accommodation, in consultation with the Faculty’s Student Accommodation Liaison in relation to academic accommodation, and in consultation with the relevant administrative head in relation to non-academic accommodation.

3. Each Faculty shall either assign a senior academic administrator or a Faculty, School or Department committee the responsibility to act on behalf of the Faculty in relation to academic accommodation requests under this Policy. Such individuals or committee shall be referred to in this policy as the Student Accommodation Liaison.

4. Prior to the commencement of each academic year, the Student Accommodation Liaison shall be responsible for approving parameters for academic accommodations relative to the Faculty’s particular academic program and class requirements.

Requests for accommodation

5. It is the student’s responsibility to make a request for accommodation in accordance with this policy. The request for accommodation must be made reasonably in advance of the event or process in relation to which accommodation is being sought so that a decision can be made. Except in rare circumstances when significant psychological or mental health issues arise, there should be no “after-the-fact” accommodation. The University will consider a request for accommodation made by a third party (physician, family member, caregiver, advocate or other representative) only where the student has provided prior written consent.

6. A request for accommodation shall be made by the student in writing to The Office of Student Accessibility and Accommodation, and shall contain the following information:

a) the reasons for the accommodation (i.e. particulars of the discriminatory impact on the student on one of the prohibited grounds) and any supporting documentation;

b) the accommodation being requested and/or any suggestions as to how the accommodation can be achieved;

c) where a medical condition is relevant to the request, copies of medical reports or additional medical documentation to substantiate the request and/or to assist in identifying the most appropriate means of accommodation; and

d) where the request relates to academic accommodation in relation to a learning disability, a current psycho-educational report describing the nature of the learning disability.

Assessment and Decisions concerning accommodation

7. The assessment by The Office of Student Accessibility and Accommodation is a two-step process. First, The Office of Student Accessibility and Accommodation screens the requests to ensure that only requests arising in relation to one of the prohibited grounds of discrimination are permitted to proceed. If the request does arise in relation to one of the prohibited grounds, The Office of Student Accessibility and Accommodation shall proceed to the second step, and shall consider all relevant factors in making a preliminary assessment as to whether an accommodation could be made without imposing an undue hardship to the University. In making such an assessment, The Office of Student Accessibility and Accommodation will usually consult with the student making the request. Relevant factors include, but are not limited to, the following:

a) Linkage – whether the proposed accommodation will have the practical effect of eliminating or reducing the identified barrier;

b) Safety – whether the proposed accommodation would pose a safety risk to faculty, staff or other students or to the student seeking accommodation;

c) Financial Cost – what are the costs (estimate out-of-pocket expenses) to put the accommodation in place together with any long-term
costs to sustain the proposed accommodation), and would such costs be prohibitive;
d) Size and nature of the program or service – how disruptive would the proposed accommodation be to the program or service, considering the number of students, faculty and staff and the nature and inter-relationships of their roles;
e) Impact on academic requirements – whether the proposed accommodation will substantially undermine the academic requirements of the program; and
f) Alternatives – where a requested accommodation appears to create an undue hardship based on the above factors, whether an alternative accommodation may be available.

8. Where the request is for academic accommodation, The Office of Student Accessibility and Accommodation, in consultation with the class instructor, shall assess the recommendation in light of the factors set out in section 7 above, and the parameters for academic accommodation approved by the Faculty responsible for the delivery of the class, and shall make a decision concerning the accommodation. Where the circumstances are not addressed by the approved parameters, The Office of Student Accessibility and Accommodation shall also consult with the Student Accommodation Liaison. The Office of Student Accessibility and Accommodation shall inform the student, those who are necessary for the implementation of the decision (such as the course instructor), and the Student Accommodation Liaison of the decision. Except in extraordinary circumstances, decisions concerning accommodation shall be communicated within five (5) working days of the student’s request. A request can be expedited at the request of the student if circumstances warrant. In consultation with the Student Accommodation Liaison, and class instructor as required, The Office of Student Accessibility and Accommodation may review accommodation plans from time to time to determine whether any adjustments to the accommodation plan are necessary.

9. Where the request is for non-academic accommodation, The Office of Student Accessibility and Accommodation shall work with the appropriate administrative head to determine what accommodation should be provided, consulting others, including the student making the request, as necessary. The Office of Student Accessibility and Accommodation shall communicate the decision to the student. Accommodation plans may be reviewed from time to time to determine whether any adjustments to the accommodation plan are necessary.

10. The Office of Student Accessibility and Accommodation in consultation with the Student Accommodation Delegates and the administrative heads, as appropriate, will monitor accommodation plans from time to time to ensure that they have been implemented in accordance with this policy.

Appeals

11. There shall be an Accommodation Appeals Committee comprising two members appointed by the Vice-President Finance and Administration, two members appointed by the Vice-President Academic and Provost, two members appointed by the Vice-President Student Services, and three students appointed by the Vice-President Student Services.

12. Where a student believes that his or her request for accommodation has not been handled in accordance with this policy or is not satisfied with the type of accommodation provided, the student may appeal such decision by providing written notice to The Office of Student Accessibility and Accommodation within ten working days of the date of the decision. Upon receipt of such notice, The Office of Student Accessibility and Accommodation shall ask the Vice-President Academic to select a hearing panel comprising three employees and two student members of the Accommodation Appeals Committee to hear the appeal.

13. The Accommodation Appeals Committee hearing panel may uphold the initial decision concerning the accommodation or may determine that an alternate form of accommodation should be provided. The decision of the hearing panel is final, and cannot be appealed further.

Confidentiality

14. Particulars of requests for accommodation, including supporting documentation, shall be treated as strictly confidential, and shall not be disclosed to other persons without the consent of the student requesting accommodation, except and to the extent that such disclosure is reasonably necessary for the effective implementation of the accommodation plan.

Cooperation

15. All faculty, staff and students shall cooperate with accommodation plans implemented under this policy. Failure to cooperate may be considered prohibited discrimination under the Statement on Prohibited Discrimination.

16. Notwithstanding anything in this policy, students have the right at any time to seek the assistance of the Nova Scotia Human Rights Commission.

 Procedures

1. Requests for accommodation under section 5 of the policy shall be on Form A.

2. The notice of appeal described under section 10 of the policy shall be on Form B.

Support Services

Dalhousie University endeavours to provide a broad range of support services to all of its students. Students wishing to obtain assistance from the University shall be expected to undertake a reasonable measure of self-advocacy to ensure that they are provided with the support services necessary. Such support services may include personal counselling, academic counselling, academic advising, and academic skill training.

NOTE: Accommodation of a student’s needs due to disability will be facilitated if the student self-discloses and makes prior arrangements. Accommodation may be hindered if advance notification and/or prior arrangements have not been made

Policy on Submission of Student Papers

Any instructor may require student papers to be submitted in both written and electronic (computer-readable) form, e.g., a text file on floppy disk or as an email attachment, as defined by the instructor. The instructor may submit the material to a third-party computer-based assessment system(s) for the purpose of assessing the originality of the paper. The results of such assessment may be used as evidence in any disciplinary action taken by the Senate.

 Intellectual Honesty

A university should be a model of intellectual honesty. As such Dalhousie University shares in the academic values of honesty, trust, respect, fairness and responsibility. The University is committed to ensuring that its members are informed about the values of academic honesty and take reasonable measures to ensure that they are provided with the support services necessary. The length of time a student has attended university, the presence of a dishonest intent and other circumstances may all be relevant to the seriousness with which the matter is viewed.

Violations of intellectual honesty are offensive to the entire academic community, not just to the individual faculty member and students in whose class an offence occurs.

Instructors are responsible for setting examinations and assignments as part of the learning process and for evaluating those examinations and assignments, including ensuring that any rules stated for the procedures used in an examination or assignment are followed. Any violation of such stated rules that could result in a student gaining an unfair or unearned advantage may be considered to be an academic offence.

Examples of Academic Offences

There are many possible forms of academic dishonesty. Since it is not possible to list all instances of academic dishonesty, the following list of examples should be considered only as a guide. The omission of a dishonest action from this list does not prevent the University from prosecuting an alleged instance of that action.
A. Plagiarism

Members of academic communities are privileged to share in knowledge generated through the efforts of many. In return, each member of the community has the responsibility to acknowledge the source of the information used and to contribute knowledge that can in turn, be trusted and used by others. Consequently, the University attaches great importance to the contribution of original thought to learning and scholarship. It attaches equal importance to the appropriate acknowledgement of sources from which facts and opinions have been obtained.

Dalhousie University defines plagiarism as the submission or presentation of the work of another as if it were one's own.

Plagiarism is considered a serious academic offence that may lead to the assignment of a failing grade, suspension or expulsion from the University. If a penalty results in a student no longer meeting the requirements of a degree that has been awarded, the University may rescind that degree.

Some examples of plagiarism are:
- failure to attribute authorship when using a broad spectrum of sources such as written or oral work, computer codes/programs, artistic or architectural works, scientific projects, performances, web page designs, graphical representations, diagrams, videos, and images;
- downloading all or part of the work of another from the Internet and submitting as one's own; and
- the use of a paper prepared by any person other than the individual claiming to be the author.

The proper use of footnotes and other methods of acknowledgement vary from one field of study to another. Failure to cite sources as required in the particular field of study in the preparation of essays, term papers and dissertations or theses may, in some cases, be considered to be plagiarism.

Students who are in any doubt about how to acknowledge sources should discuss the matter in advance with the faculty members for whom they are preparing assignments. In many academic departments, written statements on matters of this kind are made available as a matter of routine or can be obtained on request. Students may also take advantage of the information used and to contribute knowledge that can in turn, be trusted and used by others. Consequently, the University attaches great importance to the appropriate acknowledgement of sources from which facts and opinions have been obtained.

B. Irregularities in the Presentation of Data from Experiments, Field Studies, etc.

Academic research is based on the presentation of accurate information and data that are obtained honestly. The trustworthiness of our findings is essential to building knowledge in and across fields of study. Therefore, the falsification of data in reports, theses, dissertations and other presentations is a serious academic offence, equivalent in degree to plagiarism, for which the penalties may include the assignment of a failing grade, suspension or expulsion from the University or the withdrawal of a degree previously awarded.

C. Other Irregularities

Dalhousie University strives to provide equal opportunities for learners to demonstrate and to be recognized for their abilities. Any behaviour intended to gain an unearned advantage over another person violates this principle. A member of the University who attempts, or who assists any other person in an attempt, to fulfill, by irregular procedures, any requirements for a class, commits an academic offence and is subject to a penalty.

In the absence of specific approval from the instructor of a class, all students should assume that every assignment is to be completed independently, without any form of collaboration.

Students should take reasonable precautions to prevent other students from having access, without permission, to their tests, assignments, essays or term papers.

The following are some examples of irregular procedures. The list should be used only as a guide since it is not possible to cover all situations that may be considered by the Senate Discipline Committee to be irregular.
- writing an examination or test for someone else;
- attempting to obtain or accepting assistance from any other person during an examination or test;
- during the time one is writing an examination or test, having material that is not specifically approved by the instructor;
- without authorization, obtaining a copy of an examination or test, topic for an essay or paper, or other work;
- without authorization from the faculty member in charge of that class, submitting any work for academic credit when one is not the sole author or creator;
- without authorization submitting any work that has been previously accepted for academic credit in any other class in any degree, diploma or certificate program, or has been completed as part of employment within the University, for example, as research activity. A repeated class is considered to be a separate class.

D. Aiding in the Commission of an Academic Offence

No student may encourage or aid another student in the commission of an academic offence, for example,
- by lending another student an assignment knowing that he or she may copy it for submission;
- by allowing another student to copy answers during an examination.

E. Misrepresentation

Any person who provides false or misleading information during an investigation of a suspected academic offence is guilty of an offence.

Discipline

1. Members of the University, both students and staff, are expected to comply with the general laws of the community, within the University as well as outside it.

2. Alleged breaches of discipline relating to student activities under the supervision of the Dalhousie Student Union are dealt with by the Student Union. Alleged breaches of discipline relating to life in the residences are dealt with by the residence discipline policy unless the President determines that some non-residence University interests are involved. Senate is charged with the authority to deal with cases of alleged academic offenses, see examples above, as well as with certain other offenses that are incompatible with constructive participation in an academic community.

3. On report of a serious breach of the law, or a serious academic offence deemed by the President, or in his or her absence by a Vice-President or the Dean of a Faculty, to affect vital University interests, a student involved may be temporarily suspended and denied admission to classes or to the University by the President, Vice-President or Dean, but any suspension shall be reported to the Senate, together with the reasons for it, without delay.

4. No refund of fees will be made to any student required to lose credit for any class taken, required to withdraw or who is suspended or dismissed from any class or any Faculty of the University.

Academic Dishonesty

Faculty Discipline Procedures Concerning Allegations of Academic Offences

I. Preamble

These procedures deal with allegations of academic offences and do not deal with violations of the student code of conduct. The purpose of these procedures is to delegate assessment of certain allegations of academic offences to the Faculty level.

Guideline for Evaluators

An alleged first or later breach of any academic standard by a student should never be dealt with by an evaluator, but in all instances, should be referred to the Academic Integrity Officer in accordance with these procedures. Any attempt by any person or body other than the Senate, the Senate Discipline Committee, or the Academic Integrity Officers to impose a penalty for an alleged offence is null and void and leaves the student still liable to discipline for that offence. Further, a student remains liable to discipline for a suspected offence notwithstanding a failure on the part of an evaluator to report the allegation in accordance with these procedures.
Where an allegation of a breach of academic standards has been made or is pending, the evaluator should not reveal the mark or grade to anyone until the Vice Chair (Academic Administration) has confirmed the disposition of the matter by the Senate Discipline Committee or the Academic Integrity Officer.

II. Academic Integrity Officers

1. Academic Integrity Officers are associated with the Faculties of Dalhousie University.

2. The Academic Integrity Officer shall act between the student and instructor, and may appear at Hearing Panels of the Discipline Committee or the Discipline Appeals Board to present the case against the student.

3. The Academic Integrity Officer is the Dean of the Faculty. The Dean may further delegate this role to one or more members of his/her academic staff except those who are Senate Officers, who are otherwise involved in the student discipline process, or who otherwise are in a potential conflict of interest relative to this role. Annually the name of the delegate(s) shall be communicated in writing to the Vice-Chair (Student Affairs) who shall report to Senate.

4. The Academic Integrity Officers shall meet as a group with the Senate Discipline Committee (SDC) at least once a year to discuss relevant policy issues and training requirements with a view to maximizing consistency and predictability in the administration of academic offences across the University. Such meetings will be convened and chaired by the Vice-Chair (Student Affairs).

5. Penalties:

Penalties shall follow the guidelines contained within the University’s Academic Regulations and the Senate Discipline Committee terms of reference set out in Section 10 of the Senate Constitution, which are reproduced below for convenience:

“The range of penalties which may be imposed by the Senate Discipline Committee is circumscribed only by the requirement that such penalty or penalties be of an academic nature and, without restricting the generality of the foregoing, may include any one or more of:

1) notation of the fact of discipline on the offender’s transcript for a period of one (1) or core years, but not exceed five (5) years;
2) repeat of the assignment that triggered the discipline;
3) a failing grade or mark or assessment in the piece of work triggering the discipline;
4) failure of the class or seminar or program;
5) failure of the academic year;
6) suspension for an academic term or year (to a maximum suspension of three (3) academic years);
7) expulsion from the University;
8) loss of a current or continuing scholarship, or both, or loss of eligibility to receive or to maintain scholarships or prizes or bursaries; and
9) removal from the Dean’s List.”

6. Faculty Procedures

When an academic offence is suspected, the instructor shall submit a signed statement outlining the basis of the allegation, together with all relevant supporting evidence, to the Academic Integrity Officer of the Faculty who is responsible for the delivery of the course at issue, or in the case of an allegation in relation to a graduate thesis or other non course graduate materials, to the Academic Integrity Officer of the Faculty of Graduate Studies, within 10 working days of becoming aware of the alleged offence, but in any event no later than the deadline for submission of final grades to the Registrar, except in extraordinary circumstances, as determined by the Academic Integrity Officer.

7. Upon receipt of the material from the instructor, the Academic Integrity Officer shall determine whether or not the material supports a prima facie case that the student has committed an academic offence. If no prima facie case is made out, no further steps are taken in relation to the allegation, and the instructor and student will be so advised in writing.

8. If a prima facie case is established, then the Academic Integrity Officer will take the following further steps:

a) Check the academic discipline database maintained by the Senate Office to determine if the student(s) has a record of prior academic offence(s);

b) With the exception of cases involving 2 or more students facing allegations arising from the same fact situation (“common allegation”) which shall proceed in accordance with paragraph 9, if the student(s) has a record of prior academic offence(s), forward the allegation to the Senate Discipline Committee;

c) If the allegation appears to be a first offense, and in all cases of 2 or more students facing a common allegation, inform the student(s) in writing of the nature of the allegation, the instructor’s statement, the evidence, the procedures to be followed, the possible penalties, and possible sources of advice and support (will be a standard document);

d) Convene a meeting with the student(s), the student(s)’s advisor, if any, and the instructor within 5 working days upon receipt of the allegation by the student, which time may be extended at the request of the student, instructor, or Academic Integrity Officer, in appropriate circumstances;

e) If the meeting does not take place within the time set out above, the Academic Integrity Officer has the discretion to convene another meeting with the student(s), the student(s)’s advisor, if any, and the instructor. The Academic Integrity Officer also has the discretion to convene additional meetings as may be reasonably required. In the event an initial meeting does not occur within a reasonable time after a prima facie case is established, the Academic Integrity Officer shall refer the allegation to the Senate Discipline Committee.

9. Notwithstanding paragraph 8b, in the case of 2 or more students facing allegations arising from the same fact situation (“common allegation”), the Academic Integrity Officer has the authority to convene a meeting with all such students in accordance with paragraphs 8d and 8e and to make findings for all such students under these Procedures, regardless of the fact that one or more of such students may have a record of prior academic offence(s). If the Academic Integrity Officer’s assessment is that there is sufficient evidence to support a finding that a student facing a common allegation has committed an academic offence, and that the student has no record of prior academic offence(s), subject to paragraph 14, the Academic Integrity Officer shall assess an appropriate penalty for the student in accordance with these Procedures; and for any such student who has a record of prior academic offence(s), the Academic Integrity Officer shall forward the matter to the Senate Discipline Committee for assessment of an appropriate penalty.

10. Following the meeting convened in accordance with paragraph 8, the Academic Integrity Officer shall make a preliminary assessment of whether there is sufficient evidence to support a finding that the student has committed an academic offence, and if there is sufficient evidence, make a preliminary assessment of what penalty would be appropriate in the circumstances. In making the latter assessment, the Academic Integrity Officer shall exercise broad discretion in considering possible mitigating circumstances including but not limited to extraordinary personal circumstances and lack of educational experience.

11. If the Academic Integrity Officer’s assessment is that there is insufficient evidence to support a finding that the student has committed an academic offence, s/he shall inform the student in writing with a copy to the Instructor within 5 working days of the meeting. This does not preclude an Academic Integrity Officer from proceeding with the allegation at a later date, should new evidence become available.

12. If the Academic Integrity Officer’s assessment is that there is sufficient evidence to support a finding that the student has committed an academic offence, AND that the appropriate penalty for the student’s conduct is any of the penalties described in paragraph 5, above, except those listed in subparagraphs 5 to 9 the Academic Integrity Officer shall provide the student with the option of accepting the finding and the proposed penalty, or of proceeding to the Senate Discipline Committee for a full hearing. The option shall be presented to the student within 5 working days of the meeting, and the student shall have 2 working days to respond. In the event that the student elects to accept the finding, the proposed penalty, the Academic Integrity Officer shall so advise the Vice-Chair (Student Affairs).

13. Within 14 calendar days of the Vice-Chair (Student Affairs) being advised of the finding and agreed penalty under paragraph 12, the Vice-Chair (Student Affairs), or in his or her absence, the Chair or Vice-
Chair (Academic Programs), and a student Senator appointed by the Dalhousie Student Union shall jointly review the finding and agreed penalty to determine whether the process is consistent with the Faculty Discipline Procedures Concerning Allegations of Academic Offences. If so, they shall ratify the matter on behalf of Senate and the Vice-Chair shall notify the student and the Academic Integrity Officer of such ratification. For ratification to occur, the decision must be unanimous. The finding and agreed penalty shall stand, despite possible judicial procedural errors. The Vice-Chair (Student Affairs) shall ensure that the offence is recorded on the Senate Discipline database and that the Registrar and any others are notified of the finding and penalty for immediate implementation. If the Vice-Chair (Academic Administration) and/or the student Senator have any material concerns about the process, the Vice-Chair (Student Affairs) shall consult with the Academic Integrity Officer to determine whether the concerns can be resolved. If the Vice-Chair (Academic Administration) and/or the academic Integrity Officer are unable to resolve any concerns, the matter shall be referred back to the Academic Integrity Officer for further consideration under these Procedures, after which the Vice-Chair (Academic Administration) and a student Senator shall jointly re-consider ratification. Should ratification still not occur, the matter shall be referred to the Senate Discipline Committee for a hearing.

14. If the Academic Integrity Officer’s assessment is that there is sufficient evidence to support a finding that the student has committed an academic offence, but that the appropriate penalty for the student’s conduct is one of those listed in subparagraphs 5 to 9 of paragraph 5 of these Procedures, the Academic Integrity Officer shall, within 5 working days of the meeting, notify the student in writing, with a copy to the instructor, that the matter will be forwarded to the Senate Discipline Committee for a full hearing.

15. Should a student request that an allegation be referred back to the Academic Integrity Officer after it has been forwarded to the Senate Discipline Committee, the Academic Integrity Officer has the discretion to grant such a request. A student’s request shall be in writing, and delivered to the Vice-Chair (Student Affairs) within 5 working days of the date the allegation letter is sent to the student by the Vice-Chair (Student Affairs).

16. Prior to a hearing by the Senate Discipline Committee of an allegation against a student, the Academic Integrity Officer shall provide a written allegation to the Senate office identifying the evidence initially presented by the instructor pursuant to paragraph 6 and any additional evidence obtained by the instructor in the course of the assessment of the matter. The written allegation shall not include reference to whether or not any meeting(s) did occur pursuant to paragraph 8d or 8e, any statements that may have been made by the student at such meeting(s), or any alternate versions of the facts and circumstances that may have been presented by one or more students at such meeting(s). The student shall have the opportunity to provide a written submission in response prior to the hearing by the Senate Discipline Committee. Notwithstanding the foregoing, in the event of a statement made by a student at a hearing of the Senate Discipline Committee that is inconsistent with a statement previously made by that student in the meeting(s) with the Academic Integrity Officer, then the Academic Integrity Officer may refer to statements that may have been made by the student at such meeting(s).

17. Confidentiality must be maintained by those involved in each case when an academic offence is suspected and the instructor submits an allegation to the Academic Integrity Officer, except as is reasonably necessary to implement the finding and agreed penalty or as required in subsequent disciplinary proceedings related to the same matter.

Senate Discipline Committee

Jurisdiction of the Senate Discipline Committee

1. The Senate Discipline Committee has jurisdiction to hear:

a) Allegations of academic offences referred to the Senate Discipline Committee under the Faculty Discipline Procedures Concerning Allegations of Academic Offences ("Integrity Allegations").

2. For the purpose of these procedures, the following definitions shall apply:

a) Allegation means a Code Complaint or an Integrity Allegation as the context requires.

b) University Representative means the President of the University or his/her designate in the case of Code Complaints, or the Academic Integrity Officer in the case of Integrity Allegations.

3. The Senate Discipline Committee’s jurisdiction extends to Allegations against a student who, before or during the course of the disciplinary process involving him or her, but prior to adjudication, has:

i) been compelled to withdraw academically;

ii) chosen to withdraw from the class, the program, or the University prior to being disciplined, or;

iii) chosen not to register at the University.

4. In the case of Integrity Allegations, a Hearing Panel of the Senate Discipline Committee may:

a) dismiss the allegation; or

b) impose any of the following:

i) notation of the fact of discipline on the offender’s transcript for a period of one (1) or more years, but not exceeding five (5) years;

ii) repeat of the assignment that triggered the discipline;

iii) a failing grade or mark or assessment in the piece of work triggering the discipline;

iv) an imposed limit on the grade that can be given for the assignment or class;

v) failure of the class;

vi) suspension for an academic term or year (to a maximum suspension of three (3) academic years);

vii) expulsion from the University;

viii) any other remedy of an academic nature that is within the power of Senate to grant.

5. In the case of a Code Complaint, a Hearing Panel of the Senate Discipline Committee may:

a) dismiss the complaint; or

b) impose any of the penalties set out under the Code of Student Conduct.

6. In the case where an Allegation is proven and is not dismissed under section 4(a) or 5(a), the Hearing Panel of the Senate Discipline Committee may consider any mitigating or aggravating circumstances in its determination of the appropriate penalty.

Initiating a Hearing / Pre-Hearing Procedures

7. To initiate a hearing of the Senate Discipline Committee the University Representative shall submit a written request to the Senate Vice-Chair (Student Affairs), or designate. The request shall include a written submission outlining the Allegation together with all supporting evidence, documentation and a list of the witnesses on which the University Representative intends to rely.

8. The Senate Vice-Chair (Student Affairs) shall provide the student with a notice of the Allegation that shall include:

a) The material filed by the University Representative under section 7;

b) Notice of the deadline for the student to submit a written defence, any supporting evidence and a list of individuals who will attend at the hearing on the student’s behalf; and

c) Notification of the student’s right to be represented.

9. The student shall provide the Senate Vice-Chair (Student Affairs) with a written defence, supporting evidence and a list of the individuals who will also be attending, as well as their capacity (i.e. witness, support person, advocate) no later than the date specified in the notice of allegation. Any evidence or documentation provided after the deadline for submission may be ruled inadmissible by the Hearing Panel at the hearing.

10. The Chair of the Senate Discipline Committee shall constitute a Hearing Panel in a timely manner comprising three faculty and two students. No faculty member who is a current instructor of the accused student may serve as a member of the Hearing Panel. The student member of a Hearing Panel shall not be a member of the class from which the complaint originates. In the event that no student members of the Committee are able to participate on a Hearing Panel due to the provisions of this paragraph, the Dalhousie Student Union shall appoint an ad hoc member to the applicable Hearing Panel. The Committee Chair or an alternate faculty member shall chair the hearing.
11. The Student and University Representative shall be notified of the date, time and location of the hearing, as well as the names of all individuals who will be in attendance, no less than ten (10) working days in advance of the hearing.

12. Preliminary objections or issues must be raised as far in advance of the hearing as reasonably possible. The Chair of the Hearing Panel has sole discretion to rule on any preliminary issues or objections raised by either party that must be dealt with prior to the commencement of the hearing. The Hearing Panel may rule on any preliminary issues or objections raised at the commencement of the hearing.

Hearing Procedures

13. The Chair of the Hearing Panel shall determine procedures for the hearing in a manner that is consistent with the principles of natural justice and these Procedures.

14. In extenuating circumstances, the Chair of the Hearing Panel may decide to proceed with the hearing in the absence of one faculty member of the Hearing Panel.

15. In the event that the student fails to appear at the hearing, the Hearing Panel shall satisfy itself that reasonable efforts were made to notify the student and may proceed in the student’s absence.

16. The student may participate at an oral hearing in person, by way of teleconference, or by such other means approved in advance by the Hearing Panel. The student may waive the right to an oral hearing and choose to proceed solely by written submissions.

17. Hearings shall be in camera.

18. At the commencement of the hearing, the Chair of the Hearing Panel shall explain the procedures to be followed and provide an opportunity for introductions as well as any questions, objections, or opening statements.

19. The University Representative shall present the Allegation and witnesses, if any. The student and any members of the Hearing Panel may question the University Representative and the University Representative’s witnesses following the presentation of the Allegation.

20. The student may present his or her defence and witnesses, if any, following the University Representative’s presentation. The University Representative and any members of the Hearing Panel may question the student and any of the student’s witnesses following the presentation of the defence.

21. At the discretion of the Chair of the Hearing Panel, the parties may make final arguments following the presentations. The student shall have the last word.

22. At the discretion of the Hearing Panel, any evidence sought to be admitted by either party from witnesses who are not available to give evidence in person may be received in writing or in some other form.

23. The student is considered innocent until the Allegation is proven on a balance of probabilities, the burden of which lies with the University Representative.

24. The decision of the Hearing Panel shall be by majority.

25. The Hearing Panel shall report its decision including reasons for the decision and any penalty imposed, to the Vice-Chair (Student Affairs) who shall forward a copy of the decision to the student and the University Representative.

26. An audio recording of each oral hearing shall be made. The recording and all correspondence and documentary evidence relating to appeal proceedings shall be kept in accordance with the records management policies of the University Secretariat. The student may obtain a copy of the audio recording by making written request to the Senate Vice-Chair (Student Affairs) and may use such recording only for the purpose of an appeal of the decision in question.

27. Appeals from decisions of the Senate Discipline Committee may be made to the Senate Appeals Committee in accordance with the Senate Appeals Committee -Jurisdiction and Appeals Procedures.

28. The Senate shall maintain a confidential database of discipline decisions for the purposes of general reporting and proper adjudication of repeat offences.

University of King’s College

The University of King’s College Registrar shall notify the Dalhousie Registrar in the event that academic discipline proceedings have been commenced in relation to a Dalhousie student, and shall advise the Dalhousie Registrar of the outcome of such proceedings, including any sanctions imposed against the student. Where the student has been previously sanctioned for academic misconduct, the Dalhousie Registrar will provide the University of King’s College Registrar with particulars of the offence and the sanction imposed.

I. Commentary on Penalties

A. Proactive Measures

Dalhousie University emphasizes education and proactive engagement, therefore a Proactive Measure, which is a form of recommendation, may be prescribed as an educational aid in addition to a Penalty. It may include but not necessarily be restricted to suggesting that the student seek some form of professional help from the Academic Advising Office or Counseling Services or elsewhere which, for example may be time management or stress management, etc., and / or an apology for the infraction. The main purpose of a Proactive Measure is to help the student learn how to reduce the likelihood of future violations of academic integrity. It is important to note that it is the student’s responsibility to decide whether or not to follow the Proactive Measure since it is not a formal Penalty but rather a recommendation. Therefore, there is normally no oversight by the University (AIO or SDC) to ensure that a Proactive Measure is followed.

B. Consequence

A Consequence is an outcome of the application of a Penalty. A Consequence is not imposed by the University’s academic integrity policies but arises from the University’s academic policies. For example the consequences of the Penalty of a failing grade may include but not necessarily be limited to: failure in a program, delay of graduation, loss of full-time student status, change in visa status (for a visa student), loss of eligibility for student aid, removal from the Dean’s list. Similarly a notation on a transcript may have serious unforeseen consequences for future opportunities, etc. This list is not intended to be exhaustive. Therefore, while the university’s academic integrity procedures (AIO or SDC) may foresee some consequences, ultimately the student bears the responsibility for any consequences of a Penalty.

Code of Student Conduct

I. Background

Dalhousie University is a community of faculty, staff and students, involved in teaching, research, learning and other activities. Students are members of the University for the period of their registration in an academic program and are subject to the disciplinary authority of the University during that time.

The University does not stand in loco parentis to its students. In the exercise of its disciplinary authority, the University treats students as adults free to organize their own personal lives, behaviour and associations subject only to the law, and to University regulations that are necessary to protect:

• the freedom of members of the University to participate reasonably in teaching, research, learning and other activities.
• the peaceful and safe enjoyment of University facilities by other members of the University and the public;
• the freedom of members of the University to participate reasonably in the programs of the University and in activities on the University’s premises;
• the property of the University or its members.

Other than this, regulation of student behaviour by the University is neither necessary nor appropriate.

Members of the University, including students, are not immune from the criminal and civil law. Provisions for non-academic discipline should not attempt to shelter students from the normal responsibilities of adult citizens nor add unnecessarily to these responsibilities. Thus, conduct that violates the Criminal Code or other statute should ordinarily be dealt with by the police and criminal courts. In cases, however, in which criminal or civil proceedings would not adequately protect the University’s interest and responsibilities as defined above, proceedings may be brought under the Code of Student Conduct.
The University may also define standards of professional conduct for students in programs where these are appropriate, and this Code is not intended to replace or supersede such standards.

II. Code Of Conduct

A. Definitions

1. In this Code, the word “premises” includes lands, buildings and grounds of the University, or other places or facilities used for the provision of the University’s programs or services or for University-approved events and activities.

2. In this Code, “student” means a person:
 a) engaged in any academic work or placement which leads to the recording and/or issue of a mark, grade or statement of performance by the appropriate authority in the University or another institution; and/or
 b) registered in, enrolled in, or attending any course or class, or otherwise participating as a learner in any activity which entitles the person to the use of a University library, library materials, library resources, computer facility or dataset.

3. In this Code, the words “Dalhousie University” refer to Dalhousie University and include any institutions affiliated with it, where such inclusion has been agreed upon by the University and the affiliated institution, with respect to the premises, facilities, equipment, services, activities, students and other members of the affiliated institution.

4. Unless otherwise stated, a student will only be liable for conduct that she or he knew or ought reasonably to have known would constitute conduct prohibited under this Code.

5. Nothing in this Code shall be construed to prohibit peaceful assemblies and demonstrations, or lawful picketing, or to inhibit freedom of speech.

B. Application

Conduct shall be deemed to be an offence under this Code, when committed by a student of Dalhousie University, provided that such conduct:
1. occurs on the premises of Dalhousie University;
2. occurs elsewhere in the course of activities sponsored by Dalhousie University (or by any of its faculties, schools or departments), or where the conduct is alleged to adversely affect, disrupt or interfere with another person’s reasonable participation in Dalhousie University programs or activities, or
3. occurs in the context of a relationship between the student and a third party and involves the student’s standing, status or academic record at the University.

However, this Code will not apply to conduct that:
4. is specifically assigned to another disciplinary body within the University; or
5. is subject to action as an alleged failure to meet standards of professional conduct as required by a college, faculty or school; or
6. is subject to action under a residence discipline policy unless some non-residence University interests are deemed to be involved, in which case the President may specifically authorize proceedings under this Code; or
7. is committed by a student in her or his capacity as an employee of the University unless some non-employment University interests are deemed to be involved, in which case the President may specifically authorize proceedings under this Code; or
8. is subject to the disciplinary authority of the Dalhousie Student Union.

C. Offences

1. Offences Against Persons
 a) No student shall assault another person sexually, or threaten any other person with sexual assault or commit an act of sexual harassment toward another person.
 b) No student shall otherwise assault another person, threaten any other person with bodily harm, or cause any other person to fear bodily harm.
 c) No student shall create a condition that unnecessarily endangers the health or safety of other persons.
 d) No student shall threaten any other person with damage to such person’s property, or cause any other person to fear damage to her or his property.
 e) No student shall engage in a course of vexatious conduct, harassment or discrimination that is directed at one or more specific persons and that is based on the age, race, colour, religion, creed, sex, sexual orientation, physical disability, mental disability, an irrational fear of contracting an illness or disease, ethnic or racial or aboriginal origin, family status, marital status, source of income, political belief or affiliation or activity of that person or of those with whom he or she associates.
 f) No student shall engage in unwelcome or persistent conduct that the student knows, or ought to reasonably know, would cause another person to feel demeaned, intimidated or harassed.

Examples of such conduct include, but are not limited to:
 i) following another person, or anyone known to that person;
 ii) unwanted communication with another person or anyone known to that person;
 iii) watching the residence or place of work of another person or anyone known to that person;
 iv) threatening another person or any member of the family, friends or colleagues of the other person;
 v) coercing, enticing or inciting a person to commit an act that is humiliating or demeaning to that other person or to others.

2. Disruption

No student shall, by action, threat or otherwise, disrupt, obstruct or adversely affect any activity organized by Dalhousie University or by any of its faculties, schools or departments, or the right of other persons to carry on their legitimate activities, to speak or to associate with others.

3. Offences Involving Property

 a) No student shall take without authorization, misuse, destroy, deface or damage the property of Dalhousie University, or property that is not her or his own, or information or intellectual property belonging to Dalhousie University or to any of its members.
 b) No student shall possess the property of Dalhousie University, property in the custody of Dalhousie University, or property that is not her or his own, if the student knows that property to have been taken without authorization.
 c) No student shall create a condition that unnecessarily endangers or threatens destruction of the property of Dalhousie University or of any of its members.

4. Unauthorized Use of University Facilities, Equipment or Services

 a) No student shall use any facility, equipment or service of the University, or enter or remain on any premises, to which he or she does not have legitimate access, or contrary to the expressed instruction of authorized persons.
 b) No student shall use any University computing equipment, facility, network or system for any disruptive or unauthorized purpose, or in a manner that violates any law, Dalhousie University regulations, policies and procedures or in any way that is incompatible with the principles in the Acceptable Use of Information Technology Resources sections. Examples of inappropriate use of computer equipment, facilities, networks and systems include, but are not limited to:
 i) copying, removing or distributing software and/or data without authorization;
 ii) using another person’s account, or misrepresenting themselves as another user;
 iii) disclosing confidential passwords, access codes, etc., assigned to themselves or others;
 iv) interfering with the work of others using computing equipment, facilities, networks, systems or accounts;
 v) displaying, transmitting, distributing or making available information that is discriminatory, obscene, abusive, derogatory, harassing or otherwise objectionable;
 vi) breaching terms and conditions of software licensing agreements;
 vii) interfering with the normal operation of computing equipment, facilities, networks or systems by, among other things, flooding
the network with messages, sending chain letters or pyramid solicitations;

viii) using the University’s computing equipment, facilities, networks and systems for profit or commercial gain.

c) No student shall destroy, misplace, misfile, or render inoperable any stored information such as books, film, data files or programs from a library, computer or other information storage, processing or retrieval system.

5. **Aiding in the Commission of an Offence**

No student shall encourage or aid another student in the commission of an offence defined in this Code, or encourage or aid behaviour by a non-student which, if committed by a student, would be an offence under this Code.

6. **Alcohol and Drug Use**

No student shall contravene the Liquor License Act of Nova Scotia or a provision of the Campus Alcohol Policy, nor shall any student possess, use or sell a drug to which access is restricted by the Narcotics Control Act.

7. **False Information and Identification**

a) No student shall knowingly furnish false information to any person or office acting on behalf of the University.

b) No student shall forge, alter or misuse any document, record or instrument of identification.

c) No student shall knowingly furnish false information to any person regarding his or her standing, status or academic record at Dalhousie University.

8. **Unauthorized Possession of a Firearm or Weapon**

No student shall possess a firearm or other weapon on the University premises without the specific written permission of the Chief of Security.

9. **Contravention of University Regulations**

When a rule, regulation or policy of the University prohibits or proscribes certain conduct but does not provide any penalty for breaches of the rule, regulation or policy, breaches shall be dealt with under this Code.

10. **Other**

No student shall contravene any provision of the Criminal Code or any other federal, provincial or municipal statute on the premises of the University or in the course of the University’s programs or services, or University-approved events or activities.

D. Procedures

1. Whenever possible and appropriate, reason and informal measures shall be used to resolve issues of individual behaviour before resort is made to formal disciplinary procedures.

2. Any person may make a complaint against any student for misconduct. A complaint shall be prepared in writing and directed to the Vice-President, Student Services. Any complaint should be submitted as soon as possible after the event takes place. All complaints shall be presented to the accused student in written form. Along with notice of the complaint the accused student shall be advised of her/his right to be represented throughout the process, including by a Student Advocate.

3. The Vice-President, Student Services, or designate shall conduct an investigation to determine if the complaint has merit and/or if it can be disposed of informally by mutual consent of the parties involved on a basis acceptable to the Vice-President, Student Services, or designate. If an informal disposition of the complaint results, such disposition shall be final, and there shall be no subsequent proceedings.

4. An agreement that a student will withdraw from the University for a period of time, or not re-register, may be part of an informal disposition of a complaint. In such instances this will not be recorded on the student’s academic record, but a “block” on further registration may be entered in the student information system.

5. The Vice-President, Student Services, shall report annually to Senate regarding the number and nature of complaints that are disposed of informally.

6. If the complaint cannot be resolved informally through the procedures described in Section 3, or if in the judgment of the Vice-President, Student Services, it is not appropriate for the complaint to be so resolved, the Vice-President, Student Services, shall refer the complaint to the Senate Discipline Committee for a formal hearing. In determining whether to refer a case to the Senate Discipline Committee, the Vice-President, Student Services, may seek advice from a student Discipline Advisor or other appropriate source.

7. Where there are criminal or civil proceedings pending against the student for conduct related to the complaint, the Vice-President, Student Services, may defer prosecution of the complaint on such terms and conditions as are appropriate in the circumstances (including an interim suspension) until the conclusion of all or part of such proceedings where the circumstances of the case warrant. Conviction of a criminal offence will be considered prima facie evidence of a parallel offence under this Code.

8. Any statements an accused student makes to the Vice-President, Student Services, or designate in the course of an attempt to resolve a complaint informally may not be submitted to the Senate Discipline Committee as evidence.

9. Hearings shall be conducted by the Senate Discipline Committee according to procedures determined by the Committee. In other than exceptional circumstances, a hearing by the Senate Discipline Committee shall occur within sixty calendar days of the referral of a complaint to the Committee.

10. The President or designate shall appoint a person to present the complaint.

11. If a student fails to appear at a hearing, the hearing may proceed, provided that the student has been given adequate notice. Except in the case of a student charged with failing to obey the summons of the Committee or University officially, no student may be found to have violated the Student Code solely because the student failed to appear before the Committee. In all cases, the evidence in support of the complaint shall be presented and considered.

E. Sanctions

1. In each case in which the Senate Discipline Committee determines that a student has violated the Student Code, the sanction(s) shall be determined and imposed by the Committee.

2. The following sanctions may be imposed upon any student found to have violated the Student Code:

 - a) **Warning** – A notice in writing to the student that the student is violating or has violated institutional regulations.

 - b) **Probation** – A written reprimand for violation of specified regulations. Probation is for a designated period of time and includes the probability of more severe disciplinary sanctions if the student is found to be violating any institutional regulation(s) during the probationary period.

 - c) **Loss of Privileges** – Denial of specified privileges for a designated period of time.

 - d) **Restitution** – Compensation for loss, damage or injury. This may take the form of appropriate service and/or monetary or material replacement.

 - e) **Discretionary Sanctions** – Work assignments, service to the University or other such discretionary assignments that are considered appropriate by the Discipline Committee.

 - f) **Conditions** – Conditions may be imposed upon a student’s continued attendance.

 - g) **University Suspension** – Suspension of the student from the University for a specified period of time, after which the student is eligible to return. Conditions for readmission may be specified.

 - h) **University Expulsion** – Permanent separation of the student from the University.

3. More than one of the sanctions listed above may be imposed for any single violation.

4. Other than expulsion from the University and suspension for the duration of its effect, disciplinary sanctions shall not be made part of the student’s academic record, but shall be kept on file in the Office of the Vice-President, Student Services, for use in the event of further breaches of this Code.

5. No student found guilty of an offence under this Code shall refuse to comply with a sanction or sanctions imposed under the procedures of this Code. Such refusal will constitute grounds for the imposition of additional sanctions.
6. The Committee may direct that a sanction be held in abeyance if a student’s registration at the University is interrupted for any reason.

F. Interim Suspension

In the following circumstances, the President of the University, or a designate, may impose an interim suspension prior to the hearing before the Committee.

1. Interim suspension may be imposed only: (a) to ensure the safety and well-being of members of the University community or preservation of University property; (b) to ensure the student’s own physical or emotional safety and well-being; or (c) if the student poses a threat of disruption or of interference with the operations of the University or the activities of its members.

2. During the interim suspension, students may be denied access to specified campus facilities (including classes) and/or any other University activities or privileges for which the student might otherwise be eligible, as the President or the designate may determine to be appropriate.

3. A student who is the subject of an interim suspension may request a hearing before the Senate Discipline Committee on the issue of the interim suspension itself. This request shall be submitted in writing, with reasons, to the Secretary of Senate. The Committee shall hear the matter, including submissions by the President or designate, within ten working days, and shall have the authority to confine, negate, or alter the terms of the interim suspension.

Protection of Property

1. Dalhousie University is the owner and/or occupier of the lands and buildings which comprise its campuses. In addition to all other processes set out in this Calendar (including the Code of Student conduct), the University reserves the right to exercise all rights and remedies available to it pursuant to any statute, by-law, regulation, ordinance, order, or otherwise, in order to protect campus property and those who use it.

2. Without limiting the foregoing, Dalhousie University may issue a notice against a student pursuant to the Protection of Property Act prohibiting entry to all or part of the campuses or prohibiting a particular activity or activities on all or part of the campuses, where circumstances warrant. Such a notice may be issued either separately or in conjunction with the procedures set out in the Code of Student Conduct. The notice may be in force for the period stated in the notice which will normally be for up to one calendar year. If considered appropriate by the Vice-President, Student Services, a notice may be renewed for further periods.

3. A notice under the Protection of Property Act may also be issued by Dalhousie University in relation to the Student Union Building at the request of the Student Union. In the case of urgent or emergency situations, such a notice may be issued immediately. If the Student Union request is to have a prohibition extend beyond seven (7) days for a registered Dalhousie University student, the Student Union shall make a written request to the Vice-President, Student Services, providing detailed reasons for the request and the process followed leading up to the request for the notice, including details of when the student was advised that his or her behaviour or activities were inappropriate and ought to cease, the reasons provided to the student, and whether the student was afforded the opportunity to respond or to rectify behaviors or cease the inappropriate activity.

4. A Dalhousie University student may appeal any notice issued against him or her under the Protection of Property Act in writing to the Vice-President, Student Services.

Senate Appeals Committee

Jurisdiction of the Senate Appeals Committee

1. The Senate Appeals Committee has appellate jurisdiction.

2. The Senate Appeals Committee is not an investigative body.

3. The Senate Appeals Committee does not receive or determine: a) allegations of discrimination, which are addressed under the Statement on Prohibited Discrimination, or b) requests for accommodation, which are addressed under the Accommodation Policy for Students.

4. The Senate Appeals Committee shall consider the following appeals initiated by students:
 a) Academic appeals from decisions or the refusal to make decisions at the Faculty level regarding academic standards, academic evaluation, academic progression, academic advancement, or the application of other University or Faculty academic regulations.
 b) Discipline appeals from decisions of the Senate Discipline Committee.

5. An appeal may be initiated on the following grounds:
 a) the decision under appeal was made without jurisdiction,
 b) a denial of natural justice, or
 c) unfairness in the application of the relevant regulations regarding academic standards, academic evaluation, academic progression, academic advancement, or other University or Faculty academic regulations.

6. The Senate Appeals Committee shall not consider appeals:
 a) by students in an academic appeal who have not exhausted the approved appeal processes of the relevant Faculty,
 b) by students from the decision of a Faculty regarding professional unsuitability, said appeals falling under the jurisdiction of the Senate Steering Committee,
 c) by a Faculty or faculty members,
 d) by applicants for admission to University programs, or
 e) by applicants for scholarships, awards or bursaries.

7. A Hearing Panel of the Senate Appeals Committee may:
 a) dismiss the appeal,
 b) allow the decision under appeal to stand, despite possible insubstantial procedural errors,
 c) in an academic appeal, allow the appeal, with an appropriate remedy within the authority of Senate,
 d) in a discipline appeal, allow the appeal and:
 i) quash the decision of the Senate Discipline Committee in its entirety,
 ii) re-hear the matter itself, with the consent of the Appellant and the Faculty, or
 iii) direct a re-hearing on the merits by a newly constituted panel of the Senate Discipline Committee, no members of which were on the hearing panel whose decision was under appeal.

8. In an academic appeal, the Hearing Panel shall not conduct a substantive evaluation of the work of a student, but if unfairness in the evaluation procedure is established, the Panel may direct a re-evaluation of the work to be conducted by qualified persons designated by the Panel.

Appeals Procedures

1. An appeal shall be initiated by submitting a written Notice of Appeal to the Senate Vice-Chair (Student Affairs), or designate, containing:
 a) the name, Banner identification number and mailing address of the Appellant,
 b) a copy of the decision giving rise to the appeal,
 c) a description of the matter under appeal,
 d) the grounds for the appeal, and
 e) the remedy sought by the Appellant.

2. An academic appeal alleging the refusal to make a decision at the Faculty level shall be submitted with reasonable promptness. All other appeals shall be submitted within 30 calendar days of the date that the decision under appeal was sent to the student. An extension of time to submit an appeal may be permitted by the Senate Vice-Chair (Academic Administration), or designate, if the Appellant establishes reasonable grounds for granting the extension.

3. The parties to an appeal are the student, as Appellant, and the Faculty, as Respondent. In an academic appeal, the Dean of the applicable Faculty shall designate one or more representatives to respond to the appeal. In a discipline appeal, the Academic Integrity Officer of the applicable Faculty, or designate, shall respond to the appeal.

4. Upon receiving notice of an academic appeal, the Senate Vice-Chair (Student Affairs) shall require a statement from the Dean of the applicable Faculty confirming that all appeal processes of the Faculty have been exhausted.

5. For each appeal, the Chair of the Committee shall constitute a Hearing Panel in a timely manner. The Hearing Panel shall consist of four faculty members and one student member of the Committee, and shall
choose its own Chair. None of the faculty members of a Hearing Panel shall be a member of the Faculty from which the appeal originally emanates or belong to the department or program in which the student is or was enrolled. The student member of a Hearing Panel shall not be a member of the class, department, program, School or College from which the appeal emanates. In the event neither student member of the Committee is able to participate on a Hearing Panel due to the provisions of this paragraph, the Dalhousie Student Union shall appoint an ad hoc member to the applicable Hearing Panel.

6. The Appellant is entitled to an oral hearing, in accordance with the principles of natural justice. The Appellant may participate at an oral hearing in person, or at their expense, by way of teleconference, or by such other means approved in advance by the Hearing Panel. The Appellant may waive the right to an oral hearing and choose to proceed solely by written submissions.

7. Each party is responsible for presenting to the Hearing Panel all relevant evidence and submissions for the Panel to consider in the determination of the appeal. Written submissions are required from each party and shall contain:
 a) copies of all documents relevant to the appeal,
 b) supporting arguments,
 c) a list of all witnesses for that party and a brief description of their anticipated evidence, and
 d) the decision and any remedy being sought.

8. Written submissions shall be made:
 a) by the Appellant, within 15 calendar days of the Senate Vice-Chair (Student Affairs) requesting the submission, and
 b) by the Respondent, within 15 calendar days of receiving the Appellant’s submission, but these timelines may be extended or abridged by the Senate Vice-Chair (Student Affairs), or designate, in appropriate circumstances.

9. The hearing of each appeal shall be in camera. The Chair of the Hearing Panel shall determine procedures for the hearing in a manner consistent with the principles of natural justice and these Procedures. In extenuating circumstances, the Chair of the Hearing Panel may decide to proceed with the hearing in the absence of one faculty member of the Hearing Panel.

10. The decision of the Hearing Panel shall be by majority. The Hearing Panel shall deliver written reasons for its decision to the Senate Vice-Chair (Student Affairs). The decision of the Hearing Panel shall be final and binding on the parties, with no further appeal.

11. An audio recording of each oral hearing shall be made. The recording and all correspondence and documentary evidence relating to appeal proceedings shall be kept for a period of three calendar years from the date of the decision of the Hearing Panel, in accordance with the policy of the University Secretariat.

Acceptable Use of Information Technology Resources

A. Purpose

The purpose of this policy is to outline appropriate use of Information Technology Resources owned, leased, controlled and/or operated by the University.

B. Application

This policy applies to all individuals who have been granted a NetID and/or Banner account by the University.

This policy does not replace other policies, procedures or guidelines concerning the use of specific IT Resources or data management but rather sets out a minimum standard of acceptable use.

C. Definitions

In this Policy,
\n\n“User Account” means a NetID and/or Banner account issued by the University;
\n“Information Technology Resources”, or “IT Resources”, means computing equipment, peripherals, facilities, networks or systems owned, leased, controlled or operated by the University, including those purchased through research funds;
\n“User” means an individual who has been issued a User Account.

D. Policy

1. Accounts

1.1 Authorized access to IT Resources requires a User Account. User Accounts are non-transferable.

1.2 Users are responsible for any and all uses of their User Account and are expected to take reasonable steps to ensure the security of their User Account.

2. Acceptable Use

2.1 Users shall use IT Resources for authorized purposes only.

2.2 No User shall use IT Resources for any disruptive or unauthorized purpose, or in a manner that violates any law, University regulations, policies or procedures. Examples of unacceptable uses of IT Resources include, but are not limited to, the following:

2.2.1 using another person’s User Account, or misrepresenting themselves as another User;

2.2.2 disclosing passwords or other access codes assigned to themselves or others;

2.2.3 interfering with the normal operation of IT Resources by, among other things, unauthorized network interception, network traffic flooding the network with messages, sending chain letters or pyramid solicitations;

2.2.4 copying, removing or distributing proprietary software and/or data without authorization;

2.2.5 breaching terms and conditions of software licensing agreements;

2.2.6 accessing, displaying, transmitting, or otherwise making available information that is discriminatory, obscene, abusive, derogatory, harassing or otherwise objectionable in a university setting;

2.2.7 destroying, misplacing, misfiling, or rendering inoperable any stored information on a University administered computer or other information storage, processing or retrieval system;

2.2.8 unauthorized use of IT Resources for profit or commercial gain; and

2.2.9 attempting to or circumventing security facilities on any system or network.

3. Consequences of Unacceptable Use

3.1 If there is reason to suspect that a User has violated this policy, the Assistant Vice-President, Information Technology Services or the Information Security Manager may temporarily revoke or restrict User Account access privileges of any User, pending further investigation by the Information Security Manager.

3.2 To aid in the investigation of a suspected violation of this policy, the Information Security Manager may examine a User’s User Account information, including, but not limited to, emails, files, and any other material or data connected with the User Account, provided that s/he obtains the Assistant Vice-President Information Technology Services’ prior written approval. If the User in issue works within the Information Technology Services Department, then approval must be obtained from the President.

3.3 If the investigation concludes that a violation of this policy has occurred, the Assistant Vice-President Information Technology Services may restrict, suspend or revoke the User’s access to any or all of the University’s IT Resources, and may

3.3.1 in the case of students, initiate disciplinary proceedings under the Code of Student Conduct;

3.3.2 in the case of employees, refer the matter for consideration of discipline in accordance with applicable collective agreements or human resource policies, as appropriate.
Faculty of Graduate Studies

Office of the Dean
Location: Henry Hicks Academic Administration Building Room 314 Studley Campus P.O. Box 15000 Halifax, NS B3H 4R2 Telephone: (902) 494-2485 Fax: (902) 494-8797 Email: graduate.studies@dal.ca Website: http://www.dalgrad.dal.ca

Administrative Officers
Dean
Boudreau, B.P., BSc (UNB), MS (Texas A&M), MPhil, PhD (Yale), FRSC

Associate Dean
Pelzer, D.J., MD (Heidelberg), DSc (Homburg)

Program Officer
Fletcher, W., BA, BEd (Dalhousie), MA (Calgary)

Admissions and Convocation Officer
Nowlan, H., BSc (Saint Francis Xavier)

Administrative Officer
Scott, M.

Scholarship Officer
Pottie, D.

Faculty Council (2011-2012)
Baldridge, W., 2012, Anatomy & Neurobiology
Bearne, S., 2013, Biochemistry & Molecular Biology
Boudreau, B. P., Dean of FGS, Chair
Cada, M., 2013, Electrical & Computer Engineering
Ellis, P., Assistant University Librarian
Fedortchouk, Y., 2013, Earth Science
Fenety, A., 2012, Physiotherapy
Gao, Q., 2014, Computer Science
Grant, J., 2014, Planning
Johnson, K., 2014, Mathematics & Statistics
Kipouros, G., 2013, Process Engineering & Applied Science
Kozey, J., 2014, Health & Human Performance
Maitzen, R., 2012, English
Paroll, S., 2013, Architecture
Patterson, D., 2014, Agriculture
Pelzer,D., Associate Dean, FGS
Schepp, N., 2012, Chemistry
Scherkoske, G., 2014, Philosophy
Tamlyn, D., 2014, Nursing
Toughill, K., 2014, Journalism
Tyedmers, P., 2012, Resource & Environmental Studies
West, A., Postdoctoral Fellow
Whalen, E., 2014, Sociology & Social Anthropology
Whitehead, H., 2014, Biology
Zhao, Y., 2014, Business Schools

The Manual for Policies, Governance and Procedures is available on the Faculty of Graduate Studies website: http://www.dal.ca/grad/. Detailed information about particular programs will be found in the Departmental entries in the subsequent sections of this calendar, or they may be obtained from Departmental publications. It is the responsibility of all graduate students to familiarize themselves with the regulations that govern the programs of study at the University. Except where noted, Faculty of Graduate Studies regulations take precedence over Faculty/Departmental regulations. The Faculty of Graduate Studies regulations are subject to change. Up to date regulations can be found on the Faculty of Graduate Studies website: http://www.dal.ca/grad/ regulations/. The Faculty of Graduate Studies forms are available on the Faculty of Graduate Studies website at http://www.dal.ca/grad. Forms are updated on a regular basis.

The Faculty of Graduate Studies has responsibility for Post-Doctoral Fellows at Dalhousie University. Working with Faculty Council, Personnel and Payroll, the Faculty of Graduate Studies develops, implements and administers policies for Post-Doctoral Fellows.

I. Membership in the Faculty of Graduate Studies

Any person who supervises a graduate student or serves on a supervisory or examination committee of a graduate student must be a member of the Faculty of Graduate Studies.

Membership is obtained by application to the Faculty of Graduate Studies, and the following membership classifications are available.

Regular Members
Adjunct Members
Adjunct Professor (Associate, Assistant Professor, Lecturer)
Adjunct Research Associate
External Scholars
Within Dalhousie University
Non-Dalhousie Scholars

Limits to Terms of Membership
a. Regular members have membership for the length of their academic appointment.
b. Adjunct members are subject to limited terms as specified in their letter of appointment, normally 3 to 5 years.
c. External Scholar is limited to the duration of existence of the student committee on which they serve or the duration of the course they teach.

Detailed descriptions of the membership classifications, the roles and the Membership Application forms and procedures can be found on the Faculty of Graduate Studies website at http://www.dal.ca/grad/faculty/membership/.

Appointment and continuation of appointments are subject to approval of the Dean of the Faculty of Graduate Studies.

II. Graduate Programs

Graduate programs are offered at Dalhousie University in a variety of research and professional fields at the Diploma, Master’s and Doctoral level.

2.1 Degree Programs
Departments in the Faculty of Graduate Studies offer programs leading to the following degrees and diplomas:
- Doctor of Philosophy (PhD)
- Doctor in the Science of Law (JSD)
- Master of Applied Computer Science (MACSc)
- Master of Applied Health Services Research (MAHSR)
- Master of Applied Science (MASc)
- Master of Applied Science (Biomedical Engineering) with Diploma in Prosthodontics
- Master of Applied Science/Master of Planning (MASc/MPlan)
- Master of Architecture (MArch)
- Master of Architecture (Post-Professional) [MArch (Post-Pro)]
- Master of Arts (MA)
- Master of Business Administration (MBACR)
- Master of Business Administration (Financial Services) [MBA(FS)]
- Master of Business Administration/Master of Engineering (MBA/ MEng)

The Faculty of Graduate Studies website at http://www.dal.ca/grad/ can be found on the Faculty of Graduate Studies website: http://www.dal.ca/grad/faculty/
• Master of Business Administration/Juris Doctor (JD/MBA)
• Master of Computer Science (MCSc)
• Master of Development Economics (MDE)
• Master of Electronic Commerce (MEC)
• Master of Engineering (MEng)
• Master of Engineering/Master of Planning (MEng/MPlan)
• Master of Environmental Design Studies (MEDS)
• Master of Environmental Studies (MES)
• Master of Health Informatics (MHI)
• Master of Health Administration (MHA)
• Master of Health Administration/JD (JD/MHA)
• Master of Health Administration/Master of Nursing (MN/MHA)
• Master of Information Management (MIM)
• Master of Journalism (MJ)
• Master of Laws (LLM)
• Master of Library and Information Studies (MLIS)
• Master of Library and Information Studies/Juris Doctor (JD/MLIS)
• Master of Library and Information Studies/Master of Public Administration (MLIS/MPA)
• Master of Library and Information Studies/Master of Resource and Environmental Management (MLIS/MREM)
• Master of Marine Management (MMM)
• Master of Marine Management (MM)
• Master of Nursing (MN)
• Master of Nursing/Master of Health Administration (MN/MHA)
• Master of Planning (MPlan)
• Master of Planning Studies (MPS)
• Master of Public Administration (MPA)
• Master of Public Administration (Management) [MPA(Mgmt)]
• Master of Public Administration/Juris Doctor (JD/MPA)
• Master of Resource and Environmental Management (MREM)
• Master of Resource and Environmental Management/Master of Library and Information Studies (MREM/MLIS)
• Master of Science (MSc)
• Master of Science (Clinical Vision Science) with concurrent Graduate Diploma in Orthoptics and Ophthalmic Medical Technology
• Master of Science (Clinical Vision Science) with concurrent Graduate Diploma in Orthoptics and Ophthalmic Medical Technology
• Doctor of Medicine/Master of Science (Oral and Maxillofacial Surgery) (MD/MSc)
• Master of Social Work (MSW)
• Graduate Diploma in Public Administration (GDPA)

2.2 Program Administration
Graduate programs at Dalhousie are administered at the Faculty, unit and program levels.

2.2.1 Unit/Program Level
At the unit level all graduate programs are administered through a Graduate Coordinator.

2.3 Program Definition and Fee Requirements
At Dalhousie, the graduate studies academic year is divided into three terms: Fall (September-December), Winter (January-April), and Summer (May-August). Graduate degree programs are based either on a program fee structure (e.g., a one-year program) or a per-class fee structure (e.g., a 10-class program).

Program Fee Degrees
Most graduate programs at Dalhousie University have a minimum period for program fee payment and residency requirements. For example, a student admitted to a one-year, full-time Master’s program is required to pay three consecutive terms of full-time program fees. Some Master’s programs require students to pay their three terms of full-time program fees over two terms, rather than three terms. Students are expected to register for three consecutive terms even when given permission to take classes or undertake research elsewhere. If admitted to a two-year, full-time program, students (either Master’s or Doctoral) are required to pay full-time program fees for 6 consecutive terms, even if degree requirements are met prior to the sixth term.

Students continuing beyond their initial program fee requirement period will be assessed continuing fees on a per-term basis. Students must maintain continuous registration until their program requirements are complete or granted a formal Leave of Absence. Students in Master’s thesis programs should normally expect to take 6 to 12 months beyond the program fee requirement period to complete their studies. Students in Doctoral programs should expect to take 12 to 24 months beyond the program fee requirement period to complete their studies.

Students entering or switching to a part-time Master’s program are required to pay the part-time equivalent of full-time program fees. In other words, part-time Master’s students will pay the same amount of fees as a full-time student at a rate of 3 part-time terms being equivalent to one full-time term. For example, a Master’s student entering a one-year, part-time Master’s program must pay 9 consecutive terms of part-time fees. Master’s students entering a two-year, part-time Master’s program must pay 18 consecutive terms of part-time fees. If a Master’s student completes a part-time program earlier than the 9 or 18 terms, they will be required to pay part-time program fees for any outstanding terms before they are approved for graduation. Part-time Master’s students who do not finish their degree requirements in the required number of part-time, program terms must register and pay fees on a part-time continuing basis.

There are no part-time PhD programs at Dalhousie.

It should be noted that under the program or continuing fee, students may take only the courses approved by their department on the student’s Graduate Program Form. If courses are not approved additional fees will apply.

Program fee students include those in the following programs: LLM, JSD, MA, MSc, PhD, MArchPP, MASc, MSc, MACSc, MEC, MEng, MREM, MHI, MMM, MM, MBA, and all combined programs (MN/MHA, JD/MBA, JD/MHA, JD/MLIS, MD/MSc, MD/PHD, MAs/MURP, MAs/MPLAN, MEng/MURP, MEng/MPLAN).

Per-Class Fee Degrees
Some graduate programs at Dalhousie University are based on a per-class fee, and students pay fees according to the number of classes they take in any given term. All such degrees have a minimum number of classes required to be completed for graduation. Per-class fee degrees apply to the following programs:
• Master of Architecture
• Master of Business Administration (Financial Services)
• Master of Engineering - Only Internetworking
• Master of Health Administration
• Master of Information Management
• Master of Journalism
• Master of Library and Information Studies
• Master of Planning
• Master of Planning Studies
• Master of Public Administration
• Master of Public Administration (Management)
• Master of Resource and Environmental Management
• Master of Social Work
• Qualifying, Visiting or Special Graduate Students

Fee schedule can be found on the Student Account’s website at: http://as01.ucis.dal.ca/student/fees.cfm

2.3.1 General Program Definitions - Master's Level
Master’s programs are usually structured in one of three ways: 1. coursework plus a thesis; 2. coursework plus a graduate project; or 3. coursework only. Some programs also have a work or internship component in addition to coursework and project/thesis requirements, and this usually adds to the time necessary for completion.

A thesis-based master’s degree normally consists of a total of at least 30 credit hours of study, where the majority of the work is dedicated to independent research.
3.1 Admission Requirements

The Faculty of Graduate Studies sets the minimum admission standards that are required for entry into graduate programs. Individual Departments may require additional qualifications of their candidates, and enrollment limitations usually mean that successful applicants possess qualifications that considerably exceed the minimum requirements. The Faculty of Graduate Studies reserves the sole right to reject applications from candidates who meet or exceed the minimum admission requirements. Final decisions on all admissions are made by the Faculty of Graduate Studies, and there are no appeals on admission decisions.

In all cases, candidates for admission must possess degrees which are deemed by the Faculty of Graduate Studies to be equivalent to those granted by Dalhousie University, and which have been granted by institutions that are fully recognized by Dalhousie.

3.2 Master’s Degree Program

Candidates for admission must hold at least a four year Bachelor’s Degree with a minimum B average in the last 60 credit hours from a university of recognized standing, with the following conditions:

a. For entry into a Master’s program with a thesis requirement, candidates must hold a four year Bachelor’s Degree with an honours or the equivalent of honours standing as granted by Dalhousie University in the area in which graduate work is to be done or an area which is relevant to the graduate work. A four (4)-year Bachelor’s degree may be considered as equivalent of honours if there is evidence of independent research capacity (such as a research project as part of a class) or if the degree is officially approved as an honours equivalent. In those cases where a candidate has a three (3)-year degree and a four (4)-year degree honours program was not available to them, first-class candidates will be considered for admission to a two-year program fee program.

b. Dalhousie University recognizes 3-year degrees in some programs from select universities from Bologna-signatory countries as equivalent to a 4-year honours degree, but makes decisions in this regard on a case-by-case basis. To be considered for admission, such an applicant must also meet the following criteria: (1) evidence of senior matriculation at the high school level (e.g., A-level exams in Britain, the baccalaureate in France, Abitur in Germany), (2) a university program of study with completion of 180 to 240 ECTS, (3) an ECTS-based average of B or better, and (4) evidence of independent research capacity (e.g., senior paper or thesis).

c. For entry into all other programs, candidates must hold a four year Bachelor’s Degree with at least four (4) classes, or their equivalent, taken at a senior undergraduate level in the area in which graduate work is to be done or an area which is relevant to the graduate work. Candidates must achieve an average of at least a B in those four classes, as well as the overall B average in the last 60 credit hours for their degree.

d. Some professional programs offer a one-year Master’s program for which an honours degree or equivalent is not required for admission. See Departmental Listings for details of individual program admissions.

e. In those cases where a candidate has a three (3)-year degree and a four (4)-year degree honours program was not available, first-class candidates may be considered for admission. Students may be accepted to a two-year program fee program or they may be accepted to a Qualifying year.

f. A small number of mid-career professional Master’s degrees (see 6.4.3) may be admitted either with or without a Bachelor’s degree, depending on the qualifications of the applicant. Admission to such programs, as with all graduate programs, is at the discretion of the Faculty of Graduate Studies.

g. All applicants whose first language is not English are reminded that they must also demonstrate English language competency (see section 3.4 in this Calendar).

3.3 Doctoral Degree Programs

The criteria for admission to Doctoral programs are more rigorous than for Master’s programs. The successful completion of a Master’s degree does not guarantee admission to a PhD program. Typically a PhD thesis must represent an original contribution which advances the field of learning in the subject. It must be a significant piece of research and only those with a demonstrated ability to perform research at an advanced level will be considered for admission.

Candidates must hold:

a. a first-class thesis Master’s Degree, or its equivalent, from a recognized university, for entry into a Doctoral program with a three (3)-year program fee and residency requirement. The identification of a first class Master’s degree is based on grades in class work; evidence of a well-written, high quality thesis, and other indicators, such as publications in refereed journals, presentations at scholarly conferences, etc.; or

b. a Bachelor’s Degree from a recognized university with a first-class (i.e. a minimum of an A- average) honours standing (including a research dissertation) as granted by Dalhousie University, for entry into a Doctoral program with a three (3)-year program fee and residency requirement. Dalhousie University recognizes 3-year degrees in some programs from select universities from Bologna-signatory countries as equivalent to a 4-year honours degree, but makes decisions in this regard on a case-by-case basis. To be considered for admission, such an applicant must also meet the following criteria: (1) evidence of senior matriculation at the high school level (e.g., A-level exams in Britain, the baccalaureate in France, Abitur in Germany), (2) a university program
of study with completion of 180 to 240 ECTS, (3) an ECTS-based average of B or better, and (4) evidence of independent research capacity (e.g., senior paper or thesis).

c. a first-class non-thesis Master's Degree may be considered for admission to the PhD on a case by case basis by FGS where evidence of independent research can be clearly demonstrated, such as a major research paper, presentation at scholarly conferences, publications in journals, etc. Such candidates may also be admitted into a Master's program with the possibility of transferring into the Doctoral program, as described below.

d. A Master's Degree from select universities from Bologna-signatory countries consists of 120 to 240 ECTS beyond the bachelor's degree and includes evidence of independent research capacity.

e. All applicants whose first language is not English are reminded that they must also demonstrate English language competency (see section 3.4 in this Calendar).

3.3.1 Transferring from a Master's to a PhD Program

A few departments will admit a Bachelor's graduate with a first-class honours degree into the Master's program and recommend them for transfer to the Doctoral program. Also, in exceptional circumstances a student with a non-thesis Master's degree of first-class standing (average class grade of A- or better) may be admitted into a thesis Master's program with the possibility of transferring into a PhD on the basis of outstanding academic and research potential. Students who wish to transfer from a Master's to a Doctoral program should do so within the first five terms of initial registration. Such requests must be made prior to the term in which the transfer is to take effect.

3.4 English Language Competency

English is the language of study at Dalhousie; therefore all applicants whose first language is not English must demonstrate their capacity to pursue a graduate-level program in English before admission. The standard test is the TOEFL. The Faculty of Graduate Studies sets a minimum acceptable score of 580 for the written TOEFL and 92 for the internet-based test. Some programs within the Faculty of Graduate Studies set a higher minimum, such as a written TOEFL of at least 600. (See departmental listings for individual program admission requirements.) It is also recommended that potential students taking the non-computer TOEFL test should also take the Test of Written English (TWE) component. The following other tests will also be accepted with the following minimum scores: MELAB, 85; IELTS, 7; CanTest, average of at least 4.5 with no band score lower than 4.0; CAEL, 70 overall, with no band score lower than 60; College of Continuing Education, A-.

The language competency test may be waived if the applicant has completed a degree at a recognized university where the language of instruction is English; claims for this waiver must be verified by the Registrar's Office of Dalhousie University. Test scores are valid for two (2) years from the date the test was written. Some programs have higher English language requirements for admission. Please contact the Faculty of Graduate Studies.

Further information on these tests may be obtained from:

1. Test of English as a Foreign Language (TOEFL)
 TOEFL/TSE Service
 P.O. Box 6151
 Princeton, NJ
 USA (88541)
 toefl@ets.org
 http://www.toefl.org

2. Michigan English Language Assessment Battery (MELAB)
 English Language Institute (ELI)
 TCF Building
 University of Michigan
 401E. Liberty, Ste 350
 Ann Arbor, MI
 USA 48104-2298
 melabelium@umich.edu
 http://www.lsa.umich.edu/el/melab.htm

3. International English Language Testing System (IELTS)
 University of Cambridge Local Examinations Syndicate
 1 Hills Road
 Cambridge, UK
 CB12EU
 ielts@ucles.org.uk
 http://www.ielts.org

4. Canadian Test of English for Scholars and Trainees (CanTest)
 CanTEST Project Office
 Second Language Institute
 University of Ottawa
 600 King Edward Avenue
 Ottawa, ON
 K1N 6N5
 cantes@uottawa.ca
 http://www.arts.uottawa.ca/ils/eng/cantest_register.html

5. Canadian Academic English Language Assessment (CAEL)
 CAEL Assessment Testing Office
 School of Linguistics and Applied Language Studies
 Carleton University
 126 Paterson Hall, 1125 Colonel By Drive
 Ottawa, ON
 K1S 5B6
 cael@carleton.ca
 http://www.cael.ca

6. Dalhousie University College of Continuing Education
 Continuing Technical Education
 1459 Le Marchant St., Suite 2201
 Halifax, NS
 B3H 4R2
 cte@dal.ca
 http://www.cte.dal.ca

3.5 Conditional Admissions

If a conditional admission is approved, the condition must be met within the specified period of time. If the condition is not met by the stated deadline, the student's registration will be terminated. Conditions on admission cannot subsequently be waived.

3.6 Graduate Examination

Some departments require GRE or GMAT scores of applicants as a criterion for program admission. Check departmental listings in this calendar for information on specific program admission requirements.

3.7 Advanced Placement

Upon admission, a student may be granted advanced placement credits based on classes completed previously with content equivalent to a graduate class at Dalhousie University. Graduate classes that have not been counted towards a previous degree may be awarded transfer credit (see section 3.8). For classes that have been counted towards a previous degree, advanced placement does not normally reduce the overall course requirements in the Dalhousie program, but may replace one or more required classes. Advanced placement must be approved by the academic unit and by the Faculty of Graduate Studies and must be clearly annotated on the student's Graduate Program requirement in the Graduate Student Information System (GSIS). Advanced placement classes are not noted on the student's Dalhousie transcript. Combined advanced placement, letter of permission, and transfer credits normally cannot exceed 33% of the program's overall course requirements.

3.8 Transfer Credit

A transfer credit allows for courses completed outside of the student's program, normally at another institution, to be used as part of the student's degree requirements. Such courses cannot have been used for credit for another degree and cannot exceed 33% of the students overall requirements. This total of 33% would also include any courses taken on Letter of Permission (see Section 7.6.6) and Advanced Placement. Application for transfer credits must be made within the first term following admission and must be approved by the home department and
the Faculty of Graduate Studies. An original transcript and course equivalency is required if the course was not completed at Dalhousie. In order to be eligible courses must satisfy any time period restrictions that may apply.

3.9 Students with Learning Disabilities
See Accommodation Policy For Students in the University Regulations section of this calendar.

IV. Graduate Application Process

4.1 Faculty Application Forms and Supporting Materials
All applicants for graduate programs at Dalhousie must complete the Faculty of Graduate Studies Application for Admission Form. Students can apply online at http://www.dal.ca/grad/prospectivestudents/admissions. A printable version of the Application Form can be found on the Registrar’s web site at: http://www.register.dal.ca/forms. The application must be accompanied with the application fee. All supporting materials (including reference letters, official transcripts from all post-secondary institutions attended, official GMAT or GRE scores, official TOEFL scores, etc.) are to be sent directly to the department to which the student is applying. Interdisciplinary PhD Program applicants send all materials to the Faculty of Graduate Studies c/o the Director of the IDPhD program. Note that supporting documents (transcripts, letter of reference, etc.) will be verified for authenticity. Applicants submitting fraudulent documents may have their names published on the listserv of the Association of Registrars of Universities and Colleges in Canada and have their acceptance rescinded. Documents submitted as part of the application cannot be returned or photocopied for the student.

4.2 Application Deadlines
The Faculty of Graduate Studies normally admits students to commence their programs in the fall term (September). See Admission Dates, page 2. However, some academic units may allow applicants to commence in the winter term (January) or the summer term (May) or may have different deadlines. General Deadlines for applications are as follows:

<table>
<thead>
<tr>
<th>General Application Deadlines</th>
<th>Canadian Applicants</th>
<th>Non-Canadian Applicants</th>
</tr>
</thead>
<tbody>
<tr>
<td>For September Admission</td>
<td>June 1</td>
<td>April 1</td>
</tr>
<tr>
<td>For January Admission</td>
<td>October 31</td>
<td>August 31</td>
</tr>
<tr>
<td>For Summer Admission</td>
<td>February 28</td>
<td>December 31</td>
</tr>
</tbody>
</table>

Check departmental listings in this calendar for information on specific program admission requirements.

Visa processing is lengthy; therefore, international applicants should apply at least two months before the deadline, e.g. by April 1 for September admission.

4.2.1 Specific Program Deadlines
Several programs have different application deadlines. Please refer to the specific departmental listings in this calendar for these dates.

Applicants who wish to be considered for university scholarship support are advised to apply by January 15 if they intend to register for the following September. (There is no application form for university or faculty scholarships, as all eligible applicants are automatically considered with their application for admission.) All eligible candidates should also apply for external awards. Consult with your chosen department to determine scholarship availability and eligibility. Please note, some departments have deadlines that are much earlier than the Faculty of Graduate Studies deadlines.

Applicants who require a student visa and are not funded by the University or an officially recognized funding agency must provide proof of financial ability with their application. Canadian immigration is increasingly rigorous about requiring proof of sufficient financial support to complete the program of studies.

4.3 Departmental and Faculty Approval
All applications are reviewed by departments, and the departments then make a recommendation to the Faculty of Graduate Studies for acceptance or rejection, including any required conditions of admission. At this stage, many departments will contact the applicants to let them know of a positive recommendation to the Faculty. While this may be a useful indication to the applicant that their application is progressing, it does not constitute official acceptance into the graduate program, even if it is in the form of a written letter. Official acceptance is achieved when the department recommendation has been approved by the Faculty Graduate Studies, and a formal letter of acceptance is issued by the Registrar’s Office to the student.

4.4 Official Response
All applicants will receive an official letter by mail from the Registrar’s Office indicating whether or not they have been accepted into the graduate program. This letter is the only official notification that the university sends out. All other forms of communication, including letters from a department or a faculty, do not constitute official acceptance or rejection by the university.

4.5 Scholarship Awards
Successful applicants who are also approved for a graduate scholarship will receive an email or letter of notification of their award from the Faculty of Graduate Studies. Scholarship offers can be made at the time of an admission offer or later, depending upon when the decision on funding is made. Letters from supervisors or departments do not constitute official offers of financial support by the university.

4.6 Deferrals
Newly accepted applicants who, for reasons beyond their control, are unable to take up their position on the date for which they were accepted, may request a deferral of their start date to a later term. Students may request a deferral of one, two, or three terms, and no student may receive more than one deferral. Students wishing to request a deferral should contact the department to which they were accepted as soon as possible, and all deferrals are subject to the approval of the Faculty of Graduate Studies. If students request a deferral after they have registered, it is the student’s responsibility to cancel their registration.

V. Registration Procedures and Regulations
It is the student’s responsibility to register. Registration is the process by which students officially establish with the University (through the Office of the Registrar) their degree program (MA, MSc, PhD, etc.) and status (full-time, part-time, etc.) and pay the appropriate academic fees (Student Accounts). Both aspects of the process (program/status and fee payment) must be completed before a student can be considered registered. Graduate students must maintain their registration status on a continuous basis and pay the required fees.

5.1 Registration Status and Fees for Graduate Students
Program-Fee Programs
Graduate students in program-fee programs must maintain their registration on a continuing basis. Program-Fee students must register for REGN 9999 in all three terms. REGN 9999 is listed in the Academic Timetable as “Registration Course - Graduate”. In addition to REGN 9999, Program Fee students should be registered in a course, project or thesis every term. If graduate students allow their registration to lapse they will be considered to have withdrawn and will be required to apply for readmission.

Per-Class Fee Programs
With approval of the student’s department and the Faculty of Graduate Studies (e.g. for a summer term when no appropriate classes are offered), graduate students in programs where fees are paid on a per class basis can allow their registration to lapse for one term without penalty. Students who allow their registration to lapse for more than one term will be considered to have withdrawn.
Thesis or Project Registration
Once graduate students begin their thesis or project, they must continue to register in their thesis every term and work toward its completion until all degree requirements are met.

5.2 Registration Procedures
All registration is carried out via the web at http://www.dal.ca/online. Students are encouraged to register early and are reminded that they must keep their mailing address up to date.

Continuing students who require an extension to their program or have an outstanding annual progress report will not be permitted to register until the extension or annual progress report has been officially approved by the Faculty of Graduate Studies.

5.2.1 Registration Deadline
All students must be registered by the deadline for each term. Students who do not register on or before the university’s last day to register must submit a course add/drop form (approved by the department) to the Faculty of Graduate Studies for permission to register. A financial penalty will apply. Any student who fails to register by the official deadlines will not receive any service from the University during that term. Students who fail to register by the final deadline will have to apply for readmission during the next available admissions cycle (see 5.2.6).

5.2.2 Thesis only for per-course fee students
A per course fee student, at the thesis only stage of their degree requirements, such as MARCH, MLIS, MSW must register for REGN 9999 and Master’s Thesis, every term, in order to maintain their status as a thesis student.

5.2.3 Failure to Register (Program Fee Students)
Students who fail to register within the approved deadlines will be considered to have lapsed registration. Such students will not be permitted to submit a thesis, nor will they receive any services from the University during that academic term. Students who allow their registration to lapse will be considered to have withdrawn and will be required to apply for readmission. (See section 5.2.6.1).

5.2.4 Voluntary Withdrawal
Students who withdraw from a degree program are to inform the Graduate Coordinator of their program immediately and the Faculty of Graduate Studies in writing. The immediacy of notification is important since the amount and speed of possible fee reimbursement is influenced by the date of withdrawal. Students must contact Student Accounts directly to make arrangements to receive their fee reimbursement. Please see “Academic Dates” for financial and academic implications of withdrawal. A withdrawal is not official until it has been processed by the Faculty of Graduate Studies and received in the Registrar’s Office. Under no circumstances will the Faculty of Graduate Studies back-date a withdrawal notice.

5.2.5 Academic Dismissal
A student may be required to withdraw from a program for academic reasons (e.g., failure to meet admission or program requirements or lack of academic progress), for academic offences such as plagiarism, irregularities in the presentation of data, etc., (see Intellectual Honesty, page 11 and Senate Discipline Committee, page 14), for non-academic reasons, (see Code of Student Conduct, page 15), or for failing to maintain registration status (see 5.1 above). The student will be notified by the appropriate body of the reason for the required withdrawal. Academic work completed at another institution while on Academic Dismissal may not be used for credit at Dalhousie.

5.2.6 Readmission of Students
A student who is academically dismissed may apply in writing to their department for immediate reinstatement (see 7.6.2.1 and 2, page 29 Grading Policy). Reinstatement is not automatic. Upon the recommendation of the graduate coordinator and approval by the Faculty of Graduate Studies, a student may be immediately reinstated only once during the course of their program.

A student who is withdrawn for academic reasons, voluntarily withdraws, or whose registration has lapsed may apply for readmission within ten years of initial registration. Readmission is not automatic, and requires the permission of the department and the Faculty of Graduate Studies.

5.2.6.1 Readmitted students (program fee students)
Students who fail to register and pay tuition fees for any term before the degree program requirements have been fulfilled are considered to have withdrawn and will be required to apply for readmission. Readmitted program fee students (except those who were withdrawn for academic reasons) must pay fees for the terms in which they were not registered to a maximum of three terms at the current continuing fee rate. Readmitted students who were academically withdrawn will not be charged make-up fees for the three terms immediately following the official date of withdrawal. Make-up fees will be charged for any term thereafter, to a maximum of three terms, until the student is registered. Students in thesis programs who have not maintained registration are normally required to have a satisfactory thesis in hand or a timetable for completion, approved by the department’s Graduate Coordinator and signed by the student and thesis supervisor, before they can be readmitted. Students may be readmitted only once during the course of their program. Application for readmission must meet normal application deadlines, and all outstanding fees must be paid.

5.2.6.2 Readmitted students (per course fee students)
With written approval of the department and the Faculty of Graduate Studies, per course fee students can allow their registration to lapse for one term per academic year without penalty (e.g. for a summer term when no appropriate courses are offered). Students who fail to register and pay tuition fees for more than one term per academic year before the degree program requirements have been fulfilled are considered to have withdrawn and will be required to apply for readmission. Readmitted students (except those who were withdrawn for academic reasons) must pay fees for the terms in which they were not registered, to a maximum of three terms at the current continuing fee rate.

5.2.7 Concurrent Registration
A student may, with permission from both Deans, register for two concurrent programs or diploma programs, either at Dalhousie or one at Dalhousie and one elsewhere, for a maximum of twelve months, usually the first academic year of the Dalhousie graduate program. This does not apply to a prerequisite degree student finishing a Master’s degree who has been accepted into a PhD program. In that case, the student must first complete the Master’s and then register in the PhD program in January, May or September as applicable and approved by the department. If the student fails to complete the Master’s degree for a particular entry point, the department must request deferral of the admission to the next available start date.

5.3 Student Categories
All graduate students must be registered in each year and in each term of their graduate program in one of the categories listed below. Students wishing to change status from full-time to part-time or vice versa, must submit their request, with departmental approval, to the Faculty of Graduate Studies. Such requests must be made prior to the start of the term in which the change of status is to take effect.

5.3.1 Full-Time Student (Program Fee)
A full-time graduate student paying program fees (see section 2.3) is a student who has been approved by the department and the Faculty of Graduate Studies as working full-time on their graduate degree. All Doctoral students register full-time throughout their studies, and they pay full-time program fees for the first two or three years of study, as designated at the time of admission and continuing fees for subsequent terms. Program fee students must maintain their registration for the summer, fall and winter terms. Only the following programs pay fees for two terms per academic year only: LLM, MEC, MHI, MAHSR and MSc(HUCD).
5.3.2 Full-Time Student (Per Course Fee)
A student who is taking a minimum of nine credit hours per term is considered full-time. Per course fee students who have completed all degree requirements except their thesis may be considered full-time or part-time. Full-time or part-time status for these students is determined based on the student's full time or part time thesis work.

5.3.3 Part-Time Student (Program Fee)
At the masters level a part-time student paying program fees (see Section 2.3) is a student who has been approved by the department and the Faculty of Graduate Studies as working part-time on their graduate degree. A part-time graduate student cannot carry more than 8 credit hours per term. Program fee students must maintain their registration for the summer, fall and winter terms.

5.3.4 Part-Time Student (Per Course Fee)
A student who is taking less than nine credit hours in a semester is considered part-time.

5.3.5 Continuing Student (Program-Fee Programs Only)
This status applies to a student in a program that charges a program fee and who has completed the program fee requirement but has not yet finished all the degree requirements (usually the thesis). The student is required to pay a Continuing Fee on a per term basis.

5.3.6 Qualifying Student (Master's only)
Students who hold a recognized undergraduate degree, as defined in section 3.2, but who do not meet all admission requirements for a specific program, may be recommended for admission to a qualifying program. Admission to a qualifying program may be recommended by academic units for students in the following circumstances.

a. The student has the required GPA in a recognized undergraduate degree program, but may not have the required background for graduate studies in a specific discipline. The academic unit will specify the required advanced undergraduate classes that must be completed with B- or higher marks to qualify for admission to the graduate program.

b. The student does not meet the overall GPA requirements for admission to graduate programs. The academic unit will specify a set of advanced undergraduate classes that, upon satisfactory completion, will raise the GPA to the level defined in section 3.2.

c. The student has a three (3)-year degree. First-class candidates may be considered for admission to a Qualifying year. Qualifying Graduate Students (QGS) are required to complete 8-10 senior undergraduate classes with a minimum grade of B-.

Qualifying students can be full-time or part-time; take as little as one half-credit (0.5) class or as many as ten one-half (10 x 0.5) credit classes chosen from undergraduate classes or a mixture of undergraduate and graduate classes. Because it is a prerequisite, a qualifying program cannot be used to reduce the length of a subsequent regular graduate program. Qualifying students are not eligible for scholarship or bursary support and must apply for admission to the appropriate graduate program in the usual way towards the end of the qualifying period. Qualifying students must pass all the classes with no grades below a B- and a minimum average of at least B, and fulfill additional requirements as deemed by their department and the Faculty of Graduate Studies.

There is no Qualifying Year for Doctoral students; however, some departments admit students to the Master's program first and then consider them for transfer into the Doctoral program at a later date (see Section 3.3.1).

5.3.7 Special Student-Graduate Studies (SSGS)
With permission from the Faculty of Graduate Studies, it is possible for individuals to take classes outside of a program for personal or professional enrichment. The registration category for non-program students taking graduate classes is Special Student-Graduate Studies (SSGS). Such students may take a maximum of two full-credit classes (four half classes) with the permission of the class instructor and the appropriate graduate coordinator. Because all graduate classes must be taught at a consistent standard to graduate level students, non-program students must have records which meet the minimum entrance requirements as for a graduate program. Hence they must be approved by the Faculty of Graduate Studies as admissible to a graduate program and should adhere to the same application deadlines as much as possible.

Students are ineligible to apply for Special Student status in a class if they have been declined admission to the program because of academic standing, or have been academically withdrawn from the program.

Students who register in this category do so normally as an enrichment to their professional fields. Students trying to qualify for entry to a graduate program must follow a different route: either a Qualifying Year program, if eligible, or a program of study as a Special Student in an undergraduate faculty.

Classes completed under SSGS status can be used for credits towards formal graduate programs with approval by the Faculty of Graduate Studies at the time of admission.

5.3.8 Visiting Students

5.3.8.1 Visiting Student Graduate Studies (VSGS)- Letter of Permission
Students registered as graduate students at another university may register at Dalhousie to take classes on a Letter of Permission (LOP) from their home university. Visiting students must have records that meet the minimum entrance requirements for the class for which they are registering and must receive permission from the Dalhousie professor teaching the class(es). Students must submit the graduate application, the application fee and an approved Letter of Permission to the Registrar's Office.

5.3.8.2 Visiting Student Graduate Studies (VSGS) - Research
Students registered as graduate students at another university may register at Dalhousie to conduct research under the supervision of a Dalhousie researcher as a visiting research student. They are not attending Dalhousie University under the auspices of a signed, bilateral exchange agreement and will not be attending classes.

Visiting research students are at Dalhousie for up to three terms, and while here, they are expected to work full time on their research. They must provide to FGS written support for their research from their home university and from their Dalhousie supervisor. Students must submit the graduate application and the application fee to the Registrar's Office. A copy of the application plus the two letters of support must be submitted to the Faculty of Graduate Studies.

International visiting research students are responsible for Health Insurance fees (both international and DSU insurance), and they will be charged ancillary service fees each term they are registered. International VSGS are not eligible for paid employment while in Canada, and if here for more than six months, they are required to apply for a study permit.

5.3.9 Letters of Confirmation
A letter confirming a student’s registration and/or scholarship status can be produced on request. Students should contact the Faculty of Graduate Studies Office for information on this service. Confirmation letter request forms are located on the Faculty of Graduate Studies web site:

http://www.dal.ca/grad/currentstudents/forms/

5.4 Leave of Absence and Parental Leave
The Faculty of Graduate Studies may approve a Leave of Absence for medical reasons or because of a serious problem outside the student's control if supporting documentation is provided. The student’s Supervisor and Graduate Coordinator must recommend the Leave in writing, and it can be for a maximum length of one year per individual program. An application must be completed by the student, in consultation with the student's supervisor.

5.4.1 Parental Leave
Parental Leave will be granted, without prejudice to academic standing or eligibility for financial support, at the time of pregnancy, birth or adoption. A parent may request up to three terms of leave, which must be completed within twelve months of the date of birth or custody. Students may request a parental leave with each new baby born during the
duration of their program. While on parental leave, students do not register or pay fees to the University. It also releases the University from the obligation to provide student services, such as consultation with professors and library privileges. Only under well-documented extenuating circumstances will retroactive approval be given for parental leave.

5.4.2 Terms of a Leave of Absence and Parental leave

Students may not hold any Dalhousie Scholarships during a leave of absence, nor may they study elsewhere and receive credit at Dalhousie University. An official Leave of Absence does not count toward time in a program (in effect, the clock stops ticking).

A leave of absence frees a student from paying tuition fees, it also releases the university from providing student services, such as consultation with professors and library privileges.

5.4.3 Periods and Application Deadlines for Leaves of Absence

A Leave of Absence is granted on a per term basis: fall, winter and summer. Students may request successive term leaves, up to a maximum of three terms (one year) during the course of their program.

Applications for a Leave of Absence must be received prior to the term for which it is to take effect. Under no circumstances will retroactive approval be given for a Leave of Absence.

5.5 Program Continuance

Prior to the start of a student’s thesis only stage, and with their Graduate Coordinator’s support, the Dean of Graduate Studies may approve a program continuance. The purpose of the Continuance is to allow students to take part in an exceptional academic or career opportunity and maintain their student status as “in good standing” for a maximum duration of one year. Please see the following web address for the application form and further details: http://www.dal.ca/grad/currentstudents/forms

5.6 Suspension of Studies

Unexpected emergencies that arise during the term cannot be accommodated by a Leave of Absence. Such cases can be accommodated through a suspension of studies, but no fee rebate is possible. A student must apply in writing to the Faculty of Graduate Studies for a suspension of studies, stating the reasons and the length of time requested, and it must be supported by the Graduate Coordinator. A suspension relieves the student from responsibilities for completing coursework and other program requirements during the period of suspension, but it does contribute to time in the program (i.e. the clock does not stop ticking).

Normally, a suspension of studies shall be for no longer than one term. Disposition of class registrations for the term of suspension of studies must be agreed upon by the department and approved by the Faculty of Graduate Studies.

5.7 Differential Fees for International Students

Non-Canadian students are required to pay an additional Differential Fee (the amount being determined by the University); in addition to the regular fees, according to the following schedule:

- **Full-time Master’s student (except Oral and Maxillofacial Surgery)** 2 years (or equivalent)
- **Full-time Master’s/MD student Oral and Maxillofacial Surgery** 4 years
- **Part-time Master’s student** 6 years
- **2-year, program fee PhD student (following a Master’s degree)** 2 years
- **3-year, program fee PhD student (following a Bachelor’s degree)** 4 years

The annual graduate program differential fee is charged over two terms for programs requiring two terms of fee payment.

This fee is applied to each new graduate degree in which the student registers.

Per-course fee Master’s students’ differential fee is changed per term in proportion to course registration(s).

5.8 Identification (ID) Cards

Full-time, part-time and continuing students in a degree program will receive ID cards entitling them to University services. Distance education students should consult their department. ID cards must be presented to write an officially scheduled examination or to use the library facilities. In addition some services, such as the issuance of bursary or scholarship cheques, require the presentation of a valid Dalhousie ID.

5.9 Notification of Address

Students are required to ensure that address changes are kept up-to-date. This should be done on Dal Online: http://www.dal.ca/online.

5.10 Student Email Addresses

The University issues an @dal.ca email address to all students. This is the official email address and the only email address that the University will use for communication with students regarding academic and administrative matters. This address is entered automatically in the Student Information System as the preferred email address, it will be the address to which all general email messages to students will be sent, and it will be the address provided to faculty members when they request distribution lists for the sending of messages to students in their classes. A message sent by the University, or a faculty or staff member, to your @dal.ca address will be considered to have been delivered to you. Students should visit my.dal.ca for detailed instructions on how to activate their @dal.ca account.

VI. Intellectual Property and Conflict of Interest

At all times, faculty members and graduate students must maintain the highest levels of integrity in their research, teaching, and educational endeavours.

6.1 Conflict of Interest

Faculty members and students are expected to declare any conflict of interest of a personal or financial nature that may influence explicitly or implicitly their participation in graduate programs and university administration. In a small community such conflicts are sometimes unavoidable. It should nonetheless be possible to avoid conflict of interest in the following cases:

- No faculty member shall evaluate in a teaching context or supervise the thesis or project of a student who is a daughter, son, spouse, partner or other close relative.
- A faculty member is not eligible to act as supervisor for either: a) another faculty member who holds his or her primary academic appointment in the same academic unit; or b) an employee who is in a direct reporting relationship with him or her.

Employees must inform the Dean of the Faculty of Graduate Studies in writing before they apply to enrol in a graduate program in the unit in which they are employed.

No student or supervisor shall have a financial or family interest in the industry or business in which the student is pursuing his/her thesis research. If a student is employed by the company in which the research is being conducted or the student’s research is marketable under terms of the supervisor’s grant or contract used to provide support for the student, protection must be given to the student’s contribution to the research by means of an appropriate contract, finalized before the research for the degree is commenced and signed by all parties involved.

6.2 Intellectual Honesty and Plagiarism

All students should read and be familiar with the University policies on Intellectual Honesty, as described in the University Regulations section of this Calendar.

6.3 Policy on Integrity in Scholarly Activity

In accordance with the Senate Policy on Integrity in Scholarly Activity, the Faculty of Graduate Studies has adopted guidelines which focus upon the involvement of graduate students in research and scholarly activity.
6.4 Policy on Intellectual Property
The Faculty of Graduate Studies is developing a policy on Intellectual Property, which will be available on the Faculty of Graduate Studies website: http://www.dal.ca/grad

If students and/or faculty have concerns or doubts about any issue pertaining to any part of Section 6, consult with your Chair, Graduate Coordinator, or Supervisor, or contact the Faculty of Graduate Studies for advice. If you feel uncomfortable with approaching your immediate supervisor, then go to the next level and ask to be heard in confidence.

6.5 Policy on Graduate Teaching
No graduate student can teach a graduate class without completing all the preliminary program requirements, and the graduate student cannot be the "professor of record". The class must not include any of the graduate student's peers (e.g. a PhD student can teach only Master's students). Graduate students in the programs offered in the Faculty of Engineering are not permitted to teach undergraduate courses.

VII. Degree Requirements
Graduate students have a maximum period of time within which to complete all of the requirements for their graduate program.

The normal upper time limits for the completion of degrees are:

- One-year Master’s, full-time: Four years
- One-year Master’s, part-time: Five years
- Two-year Master’s, full-time: Six years
- Two-year Master’s, part-time: Seven years
- PhD and JSD, full-time only: Eight years
- MBA-FS: Seven years
- MPA (Management): Seven years

7.1 Program Requirements
Every graduate student must have an individually approved program of studies. The program of study for each graduate student must be approved by the Graduate Coordinator in each department or program and submitted for final approval to the Faculty of Graduate Studies. The Graduate Department will enter the proposed program (with the total number of credits required, the names and numbers of all classes required, including ancillary classes and any other requirements and conditions) on GSIS. The graduate program requirements must be approved electronically by the student, supervisor (where applicable), the Graduate Coordinator and the Faculty of Graduate Studies. Once approved, the Program requirements in GSIS constitutes an agreed contract between the student and the university and is used to audit the student's file for graduation. Any changes to the approved Program requirement must be agreed to by the Graduate Coordinator and the Faculty of Graduate Studies by way of update to the existing requirements already approved in GSIS.

7.2 Annual Progress Report
Every graduate student is required to submit an Annual Progress Report on GSIS to the Faculty of Graduate Studies, through their Graduate Coordinator. This report is due on an annual basis, one month prior to the anniversary of the student's admission date. Failure to submit this report will result in delays in registration and funding.

Students who have external funding administered by the University are required to submit annual progress reports one month in advance of the one year anniversary of the start date of their award. This report will also satisfy the FGS progress report requirements.

7.3 Maximum Time for Degree Completion and Extensions
A first extension of one year may be granted by the Faculty of Graduate Studies on the recommendation of the department, along with a satisfactory Progress Report form completed and signed by the student and the supervisor. Under no circumstances can a student be registered in a program for more than 10 years.

Requests for one further one-year extension, the Final Extension, must include a Progress Report form for the previous year, together with a detailed plan and timetable for completion of the thesis within the following twelve (12) month period. The student is then expected to defend and submit the approved thesis within that academic year. A further extension will only be given for one term to provide for necessary revisions to the thesis following defence.

Under no circumstances can a student be registered in a program beyond 10 years from their initial registration in the program.

7.4 Requirements for the Master's Degree
Two types of Master’s degree are offered: one based primarily on research (involving a thesis) and the other based primarily on formal classes. The class-based programs are usually terminal degrees, while the thesis-based programs can lead to Doctoral studies. Master’s programs may also have additional requirements such as graduate projects, practicums, or internships.

7.4.1 Thesis-based Master's Degrees
The course of study for the research degree (MA, MAsC, MArch, MCSc, MSc, MDE, MEDS, MES, MURP and the thesis options available in the LLM, MArch (Post-Prof), MEDS, MEC, MHI, MSc in Human Communication Disorders, MN, MLIS and MSW) may include graduate classes, seminars, preparation of fields of study, comprehensive examinations, demonstrations of foreign language proficiency, a thesis, and oral presentation and defence of the thesis.

Requirements vary considerably from program to program, and even within the same program, depending upon student's previous experience and qualifications.

7.4.2 Class-based Master’s Degrees
Non-thesis Master’s programs include the MACSc, MBA, MEng, MHA, MIM, MMM, MPA, MREM, MPLAN and non-thesis options in the MArch (Post-Prof), MEC, MEDS, MHI, LLM, MCSc, MN, MLIS and MSW, and certain MA and MSc programs. The number of classes varies and a graduate research project is often required.

7.4.3 Specialty and Mid-Career Master's Degrees
A number of specialty Master’s degrees have been and continue to be developed to meet specific needs and demands for graduate education in commerce, public service, and industry. Some, but not all, of these programs are degrees designed for mid-career professionals. These are primarily class-based programs, with some component of work and professional experience (either as part of the program or as pre-requisites for admission). All or part of the classes may be offered in a distance education mode. They currently include the MBA (Financial Services), MPA (Management), MEng (Internetworking), and MIM.

7.5 Requirements for the Doctoral Degree
A candidate must demonstrate the ability to carry out research of high quality leading to an advance of knowledge in his/her area of study. In general, at least four (4) terms must be spent in full-time study on the Dalhousie campus. The candidate’s course of study will be initiated with the advice and direction of a supervisory committee. The Supervisory Committee must consist of the research supervisor and at least two (2) other members. The course of study must include a preliminary examination and/or a comprehensive examination (to be taken in the second year of the program, or not later than the beginning of the third year, and in no case less than one (1) year before submission of the thesis) and preparation and oral defence of a thesis.

The course of study may include classes, seminars, comprehensive examinations, qualifying examinations, preparation of fields of study, demonstrations of foreign language proficiency, and any other requirements considered necessary for the clear demonstration of post-Master’s-level comprehension, scholarship, and ability in the candidate’s particular area of study. Comprehensive exams are only taken after all coursework is completed.
7.6 Classes and Grades
Classes may be full or half year (full or half credit respectively) and may be designated by the candidate’s committee as “Required” (pass mark is B-) or “Ancillary.” Some departments cross-list graduate classes with senior undergraduate classes: in which case the requirements for graduate students are more demanding than those for undergraduates.

If a student is permitted to take an undergraduate class (with an appropriate additional work requirement as approved by the FGS Curriculum Committee) as part of their graduate coursework, the minimum B- grade also applies.

In those Doctoral programs that require completion of a specific number of graduate credits, students are not permitted to take undergraduate classes for credit, although such classes may be included within the required program of study (i.e., they are in addition to the required number of graduate credits).

7.6.1 Academic Transcript
The academic transcript is a reflection of academic progress and, therefore reflects both passes and failures. It cannot be altered after the fact. Accordingly, it is essential that students be fully aware of the deadlines for adding and withdrawing from graduate classes.

7.6.2 Class Assessment and Grading Policy
Class examinations may be oral, written (closed or open book) under supervision, take home or a combination.

Students will be provided with a class outline by the instructor at the first meeting of the class. In order to complete a class satisfactorily, a student must fulfill all the requirements as set down in the class outline. Changes to the outline which affect assessment components, the weight of individual assessment components, or examination requirements with a value of 10 percent or more must have the approval of at least two-thirds of enrolled students in order to be valid.

When collaboration is included as part of class expectations as in group projects or group assignments, the instructor will provide in the class outline a statement of the degree of collaboration permitted in preparation and submission of assignments.

Within four weeks after the beginning of each term, class outlines will be placed on file with the appropriate home faculty/school/college.

All instructors of graduate classes (i.e., designated 5000 and above), with the exception of a few classes for which a pass/fail grading scheme has been approved, will use the following grading scheme:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Numerical (%) Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>90-100</td>
</tr>
<tr>
<td>A</td>
<td>85-89</td>
</tr>
<tr>
<td>A-</td>
<td>80-84</td>
</tr>
<tr>
<td>B+</td>
<td>77-79</td>
</tr>
<tr>
<td>B</td>
<td>73-76</td>
</tr>
<tr>
<td>B-</td>
<td>70-72</td>
</tr>
<tr>
<td>F</td>
<td>< 70</td>
</tr>
</tbody>
</table>

Students can expect that their final grade will appear on their record seven (7) calendar days after an exam scheduled by the Registrar or fourteen (14) days after the last class where there is no final exam scheduled by the Registrar.

Reassessment of a Final Grade
Students who have questions about final grades that are assigned are encouraged to discuss them with the class instructor. In addition, students may consult the chair of the department, director of the school/college, dean of the faculty, the Student Advocate or the Ombud. If their concerns cannot be resolved, students may also use the formal process that follows for the re-assessment of final grades.

Once a final class grade has been submitted to the Registrar, a student who wishes to have a final grade re-assessed should make a written request to the Registrar and pay the requisite fee of $50.00 per class. The request must identify the specific component that the student wishes re-assessed and the grounds for the request. Such requests must be made by:

When such a request is received, the Registrar will forward it to the Dean of the Faculty of Graduate Studies. The re-assessment will be conducted according to procedures developed for the purpose by the faculty/school/college. These should reflect the nature of the academic disciplines and assessment involved and should provide for a review of the assessment by a qualified person or persons not responsible for the original evaluation. The student will be notified, of the outcome of the re-assessment by the Office of the Registrar within 60 days of submitting their request. If the re-assessment results in the assignment of a grade that is different (higher or lower) from the original one, the new grade will replace the original one and the $50.00 will be refunded.

Students who wish information about grade re-assessment procedures should contact their faculty/school/college office.

7.6.3 Ancillary Classes
Undergraduate classes recommended by a department as advisable additional background to a graduate degree program, but not specifically required for that program, are termed ancillary classes and must normally be taken in a department other than the one in which the student is registered. The pass grade in ancillary classes is the same as for all graduate course requirements. Ancillary classes must be listed on the Graduate Student Information System, but do not count towards the required number of classes for the graduate program. Normally students are limited to one ancillary class (6 credit hours) during their program. Students who take ancillary classes on a Letter of Permission are responsible for the tuition fees at the other institution.

Students are not permitted to register for undergraduate classes that are not part of their program requirements, unless they do so as a “Special Student Undergraduate” (SSUG) with program and Faculty of Graduate Studies approval. Classes taken as an SSUG must be admitted, registered and paid for separately. SSUG classes will appear on the student’s transcript under the distinct heading of Special Student Undergraduate, and these will not be included as part of the student’s graduate program.
7.6.4 Audits
Students may take one audit (equivalent of 6 credit hours) in each residency year of their formal program. Audits must be listed as program requirements in GSIS, must be relevant to the student’s program of study, and must have departmental and the Faculty of Graduate Studies approval. For program fee students, audits not approved as part of their program of study will be subject to additional tuition on the student's account. Per course fee students will be charged the normal audit tuition for each audit registration. Audits cannot be taken on Letter of Permission and will not be approved as part of a Qualifying program.

7.6.5 Independent Study, Directed Readings, and Special Topics Classes
Students may not register for more than two independent study, directed readings, or special topics classes in any graduate program, and such cases require written approval of the Graduate Coordinator of the unit.

Each student will be provided with a class outline by the instructor. In order to complete the class satisfactorily, a student must fulfill all the requirements as set down in the class outline. By the end of the first week of class, the Independent Study / Directed Reading / Special Topics form must be submitted to the Faculty of Graduate Studies and placed in the student’s file. Changes to the outline that affect assessment components, the weight of individual assessment components, or examination requirements with a value of ten percent or more must have the approval of the enrolled student(s) in order to be valid and must also be sent to Faculty of Graduate Studies for the student file no later than four weeks after the beginning of the term in which the class is conducted.

When collaboration is included as part of class expectations, as in group projects or group assignments, the instructor will provide in the class outline a statement of the degree of collaboration permitted in the preparation and submission of assignments.

7.6.6 Letters of Permission
(i) Classes approved by the department and Faculty of Graduate Studies (after examination of class descriptions) can be taken at other universities as part of the graduate degree program, provided the class is not available at Dalhousie.

Students in good academic standing, with no holds on their registration may receive permission to take classes at another university. For the graduate student letter of permission form and guidelines, see http://www.dal.ca/grad/currentstudents/forms/

Students may not take classes outside Dalhousie for graduate credit unless prior approval has been given by the Faculty of Graduate Studies. Classes are never approved retroactively.

The maximum number of classes taken outside Dalhousie University shall normally be confined to 33% of the class requirements, except in cases where a university-level agreement, governing specific cooperative arrangements, has been negotiated and is in operation.

The normal regulations governing grading policy (7.6.2) apply to classes taken at other institutions (e.g., a C+ on a graduate class taken elsewhere will be deemed an “F” in the student’s program and may render him/her liable to academic withdrawal). Students who fail a class may not replace that class as Letter of Permission except by special permission from the Faculty of Graduate Studies.

Dalhousie will normally pay the tuition for students who pay a program fee to take classes offered at other Maritime universities, to the equivalent cost of a Dalhousie class, provided the class is not available at Dalhousie. Any class charges above that amount are the responsibility of the student. Students who are required to take classes at other institutions outside the Maritimes will be considered on a case by case basis, e.g. if the class is a necessary component of a student’s program. The tuition for an approved class taken at a university outside the Maritimes is normally the responsibility of the student. Students who receive approval to take classes at institutions within or outside the Maritimes for convenience or for non-academic reasons do so at their own expense.

Graduate Students who pay a program fee must be registered at Dalhousie and have paid appropriate fees before receiving approval. Students who pay on a per class fee basis are responsible for paying fees for classes taken outside Dalhousie.

(ii) Credit Classes at Non-Canadian Universities
Grades received at an international institution will be recorded on the student’s Dalhousie record as either “Pass” or “Fail”.

(iii) Graduate International Exchange and Study Abroad Programs
A number of graduate programs enable Dalhousie University students to pursue part of their studies in another country and culture. These are coordinated by the Study Abroad and Exchange Advisor in the International Centre (IC). Additional information is available at www.isd.dal.ca.

7.6.7 Withdrawal From Classes
The last dates for adding and deleting classes are published in the schedule of Academic Class Add/Drop Dates at the front of this calendar.

Students may not transfer from full to part-time status by withdrawing from classes after the deadlines listed in the schedule of Academic Class/ Add Drop dates.

A class may be added or dropped on the web at http://www.dal.ca/online by the deadline listed in Academic Class Add/Drop Dates on page 1 of academic dates/deadlines).

Please note that dropping or changing classes may affect your eligibility for student aid.

Non-attendance does not, in itself, constitute withdrawal. Withdrawals are effective when a student withdraws from classes on the web at http://www.dal.ca/online or written notification is received at the Faculty of Graduate Studies.

7.6.8 Incomplete Classes
A student who fails to complete the required work for a particular class during the normal period of the class will receive a grade of “F”. However, where circumstances warrant, a grade of “Incomplete” (INC) may be assigned. Subsequent completion of the work following the end of the class may result in a change of grade by the class instructor, as long as the work is completed before the following deadlines:

Fall term classes .. February 1
Winter and Regular (Sept.-April) term classes June 1
May-June classes ... August 1
July-August classes ... October 1
MBA(FS) - Please consult departmental entry.

For GPA purposes a grade of INC holds a credit value of 0.0.

After these deadlines, an “INC” cannot be changed without permission of the Faculty of Graduate Studies.

Where the formal deadline for completion of work is beyond the INC deadline, the class instructor can request the Faculty of Graduate Studies extend the INC for an approved period of time.

At the discretion of the class instructor, alternate arrangements for examinations, tests or the completion of assignments may be made for students who are ill, or in other exceptional circumstances. All outstanding grades, including ILL or INC, must be addressed prior to registration for the next term. If grades are still outstanding into the next term and no arrangements have been made, students may be required to re-register in the class.

7.6.9 Incomplete due to Illness
Where illness is involved, a certificate from the student’s physician is required. This certificate must indicate the dates and duration of the illness, and it should describe the impact on the student’s ability to fulfill academic requirements, and any other information the physician considers relevant and appropriate. To obtain a medical certificate, students who miss examinations, tests or the completion of other
assignments should contact University Health Services or their physician at the time they are ill and should submit a medical certificate to their class instructor as soon thereafter as possible. Such certificates will not normally be accepted after a lapse of more than one week from the examination or assignment completion date.

All outstanding grades, including ILL or INC, must be addressed prior to registration for the next term. If grades are still outstanding into the next term and no arrangements have been made, students may be required to re-register in the class.

7.6.10 In Progress Classes
The grade of “In Progress” (IP) may be used only to report thesis classes, research project classes, classes designated as “open to independent completion of study”, and seminars requiring continuous registration until degree completion. Final submission of grades for project and independent study classes is April 30 for Fall term classes and August 31 for Winter term classes. Students must continue to register for the class each term until a final grade has been assigned.

7.6.11 Academic Standards
When the work of a student becomes unsatisfactory, (including insufficient progress), or a student’s attendance is irregular without sufficient reason, the Faculty of Graduate Studies may require withdrawal from one or more classes, or academic dismissal from the Faculty.

VIII. Examinations
There are five types of examinations for graduate students: 1. Class Examinations; 2. Qualifying or Preliminary Examinations; 3. Comprehensive Examinations; 4. Thesis Proposal Examinations (Defences); and 5. Thesis Examinations (Defenses). This section deals with 1., 2., and 3. Thesis examinations are covered in Section 10.

8.1 Class Examinations
Examinations will normally be the method of grade assessment in graduate classes. There are no supplementary examinations for Graduate Students. Refer to Grading Policy 7.6.2, page 29 for information on grade scheme.

8.2 Qualifying or Preliminary Examinations
Some Doctoral programs require Qualifying or Preliminary Examinations. These occur early in the Doctoral program (often within the first year) and are sometimes used to assess the transfer of a student from a Master’s to a Doctoral program. The exam may take the form of the presentation and defence of a Doctoral research project, or it may involve a written or oral examination.

8.3 Comprehensive Examinations
These examinations in the candidate’s area of study are part of Master’s degree programs in some departments and all PhD degree programs. Refer to particular departmental entries for details. It is the responsibility of departments to make the necessary arrangements for these examinations. Comprehensive exams may only be taken after the completion of all required coursework.

The Comprehensive Examination may be oral, written, or both and covers subjects relevant to the general area of the candidate’s research and teaching competency. Departments are required to set out their rules on PhD examinations in writing and to give a copy to each PhD student on or before registration and to the Faculty of Graduate Studies Office if the Departmental handbook provides insufficient detail. Failure to pass will result in academic dismissal. However, on the recommendation of the department a student may be readmitted and permitted to repeat the examination (once) within twelve months of readmission. The Faculty of Graduate Studies Office must be notified immediately upon the successful completion of the examination process, and the result becomes part of the student’s official record.

8.4 Thesis Proposal Defence
Some programs/units require a formal defence of a thesis proposal/proposition for PhD students. Such defences are considered a form of graduate examination and are subject to FGS regulation. The thesis Proposal Defence may be oral, written, or both. During such an examination a student should defend a proposed thesis question and the method(s) required to answer that question, and prove that they have the depth of knowledge needed to answer the question. Departments are required to set out their rules on thesis proposal defences in writing and to give a copy to each PhD student well before the examination. Failure to pass will result in academic dismissal. However, on the recommendation of the department, a student may be re-admitted and permitted to repeat the examination (once) within twelve months of readmission. The Faculty of Graduate Studies Office must be notified immediately upon the successful completion of the examination process, and the result becomes part of the student’s official record.

8.5 Academic Accommodation for Students with Learning Disabilities
See page 9 of the University Regulations section of this calendar.

IX. Thesis Supervisors and Supervisory Committees
All thesis students must have a Supervisor (or two co-supervisors) and a Supervisory Committee. In many departments, especially in the natural sciences and engineering, the appointment of a supervisor is a prerequisite for admission into the program. All graduate research projects must have an Advisor who supervises the project work and thus acts as an effective supervisor. In some departments, graduate research projects also require an Advisory or Guiding Committee. The membership and changes of these committees are part of the student’s program requirements in GSIS.

9.1 Qualifications of the Supervisor
A thesis supervisor or co-supervisor must be a member of the Faculty of Graduate Studies and will normally be from within the student’s academic department or program.

Depending on the unit, experience on supervisory or examining committees, teaching graduate classes, or acting as a co-supervisor may be necessary before undertaking the role of thesis or project supervisor. Most natural science and engineering departments require faculty research funding as a criterion for supervision. All programs must lodge a copy of their criteria for supervision with the Faculty of Graduate Studies.

A Doctoral student must be supervised by a faculty member with a PhD or its equivalent, and a Master’s student must be supervised by a faculty member with at least a Master’s degree or its equivalent. Equivalency must be based on a faculty member’s record of research activity and supervisory experience. In the case of co-supervision of a PhD student, at least one of the supervisors must have a Doctoral degree or its equivalent (or in the case of a Master’s thesis, a Master’s degree or its equivalent). In the event of a dispute over equivalency, the Faculty of Graduate Studies’ Academic Planning and Curriculum Committee will be the final arbiter. Members holding post-retirement appointments or active in research in retirement cannot normally take on new students to supervise, but they can co-supervise with a full-time member of the Faculty of Graduate Studies.

9.2 Co-supervision
The Faculty of Graduate Studies recognizes four types of co-supervision:

1. that dictated by regulation 9.1 above where a co-supervisor is added because the other supervisor does not have an appropriate academic qualification (e.g. a Doctoral degree or equivalent);
2. that which arises from the desire of a student to draw equally upon the expertise of two individuals, or where an interdisciplinary project may require the equal expertise of two supervisors from different disciplines;
3. that which introduces a new faculty member to the standards of the department by providing an opportunity to work with an experienced supervisor; and
4. that which conforms to the Faculty of Graduate Studies practice regarding external supervisors or supervisors not from the student’s department or program. An Adjunct faculty member may be the
academic co-supervisor of a Dalhousie student provided the student also has an internal supervisor to handle the administrative details.

9.3 Supervisory Committees
All departments maintain supervisory committees for graduate students in thesis programs, and many maintain them for graduate research projects as well. All members of supervisory committees are full or adjunct members of the Faculty of Graduate Studies. Supervisory Committees are selected by the supervisor in consultation with the student. A supervisor committee should complement the expertise available to the student in completing their research program. The selection of all Supervisory Committees and only changes are approved and recorded on the student’s program update form and recorded by the department on the GSIS.

Supervisory Committees should meet at least twice a year during the thesis research period and more often in the writing stages of a student’s program. Normally the agreement of all committee members is required before a department brings forward a thesis for examination.

9.4 Guidelines for the Supervision of Graduate Students
The responsibilities and rights of students, supervisors and departments outlined in the sections below have been developed for students in thesis programs; however, where appropriate units are encouraged to adopt these practices for project students and their supervisors.

9.4.1 Selection of Supervisor
In disciplines that do not assign supervisors at the time of admission, the selection of a supervisor should be based primarily upon competence in
- to advise and help the student to approach other faculty members for supervision when on leave, possibly with arrangements
- to know the departmental and University regulations and standards to which the writer of a thesis is required to conform
- to indicate clearly when a draft is in a satisfactory final form or, if it is not, that the thesis cannot be successfully completed, to advise the student accordingly
- to provide reasonable access to their student(s) and to be available for consultation at relatively short notice
- to be as helpful as possible in suggesting research topics and in assisting students to define their theses
- to tell students approximately how long it will be before written work, such as drafts of chapters, can be returned with comments
- to be thorough in their examination of thesis chapters, supplying, where appropriate, detailed comments on such matters as literary form, structure, use of evidence, relation of the thesis to published work on the subject, footnoting, and bibliographical techniques, and making constructive suggestions for rewriting and improving the draft
- to indicate clearly when a draft is in a satisfactory final form or, if it is clear to the supervisor that the thesis cannot be successfully completed, to advise the student accordingly
- to know the departmental and University regulations and standards to which the writer of a thesis is required to conform, and to make sure that the student is aware of them
- to continue supervision when on leave, possibly with arrangements also being made for members of the supervisory committee to assist the student for the leave period
- to advise and help the student to approach other faculty members for assistance with specific problems or even to request the reading of a chapter or section of the thesis
- to see that all ethics and animal care approvals, as appropriate, are secured.

9.4.3 Responsibilities of Students
When graduate students undertake the writing of a thesis, they assume several responsibilities:
- to choose a topic (with the supervisor’s aid and advice) and to produce a thesis that is essentially their own work
- to produce a thesis which meets the standards of scholarship required by the University and the department, including demonstration of their capacity for independent scholarship and research in their field
- to acknowledge direct assistance or borrowed material from other scholars or researchers
- to realize that the supervisor has undergraduate or other duties which may at times delay the student’s access to the supervisor at short notice
- to give serious and considered attention to advice and direction from the supervisor
- to submit their work to the judgment of the department and to abide by its decision when any rights of appeal, if exercised, have been exhausted
- to know the departmental and University regulations and standards to which the writer of a thesis is required to conform
- to comply with all ethics and animal care requirements

9.4.4 Rights of Supervisors
Supervisors have the following rights:
- to expect students to give serious and considered attention to their advice concerning what they regard as essential changes in the research and thesis
- to terminate supervision and advise the student to find another supervisor if the student does not heed advice and ignores recommendations for changes in the research and thesis, or if the student is not putting forth a reasonable effort
- to have their thesis supervision properly credited by the department as an intrinsic part of their workload so that, in the assignment of duties, they are not overburdened to the point of having their effectiveness impaired as supervisors
- to have the thesis-writer acknowledge, by footnoting, all portions of the supervisor’s own research over which the supervisor wants to retain future rights of authorship
- to have thesis-writers give permission for the results of their research to be used for the benefit of a larger project when they are working as assistants with their supervisor on research that is part of such a project — this is always with the understanding that students will retain scholarly credit for their own work and be given acknowledgment of their contribution to the larger project.

9.4.5 Rights of Students
Students have the following rights:
- to have a clear understanding of what is expected in thesis writing (expected length, acceptable methodology, validity of topic, notification of progress)
- to expect help from their supervisor in establishing a feasible topic, in solving problems and assessing progress as the thesis is being written
- to receive a fair assessment of the completed thesis and explanations of negative criticism
- to be allowed to have a new supervisor when they can offer convincing reasons to the department for the change and the change can be reasonably accommodated by the department
- to be protected from exploitation by their supervisor or other faculty members if the latter should:
 a) intrude upon the student’s right of authorship or fail to give a student authorship credit for team research (where applicable, the department’s protocols on authorship should be provided to students before they embark on research), or
 b) divert the student’s efforts from the timely completion of the thesis
- to submit a thesis even if the supervisor is not satisfied, although such action should be taken only in extreme cases and after full consultation with the department.
9.4.6 Responsibilities of the Department

Departments have certain responsibilities in supporting and maintaining their graduate programs:

- to provide necessary facilities and supervision for each student admitted, and not to accept more candidates than can be offered effective supervision; therefore departments should consider carefully such matters as faculty retirements, sabbatical leaves, teaching loads, and library resources before admitting each student with a declared research interest. When, as is often the case in many disciplines, applicants are unable to choose a field of research until they have had some experience in graduate study or in a particular department, the department should still regulate admissions according to the number of faculty members available for supervision;
- to uphold a high academic standard for theses;
- to provide adequate supervision at all times, so that, when a supervisor leaves the University for another permanent position, substitute arrangements are made as soon as possible;
- to allow students to change supervisors if their research interests shift or develop in a new direction and a change of supervisor will not deprive them of financial support and if the change can be reasonably accommodated by the department;
- to provide procedures which assist and encourage students to complete the thesis, such as early review and approval of topic and methodology, guidelines on access and appeals, oversight of the students’ schedule, and a clearly stated system of thesis review and evaluation;
- to regard supervision of graduate students as a major consideration in making replacement appointments for faculty;
- to encourage students to give papers as they proceed, so that they can test their ideas on a wider audience than the supervisory committee;
- to ensure that the graduate coordinator acts as a general overseer of student progress;
- to instruct all students (or see that they attend Faculty-level workshops) on research ethics;
- to explain to students the University’s policies on intellectual property rights.

X. Thesis Regulations

10.1 Ethical Review

All thesis research involving human subjects must be approved by a Human Ethics Review Board. Reviews are coordinated through the Office of Research Services. Application guidelines are available from the Human Research Ethics Office. Students should allow six to eight weeks for processing. To ensure proper reporting, projects that require approval by a hospital research ethics board must be accompanied by a letter that identifies the proposal as a student thesis research project. Students are required to include a copy of all ethics approvals with completed thesis and projects.

10.2 Preparation of Manuscript and Submission of Theses

Thesis manuscripts must be prepared in accordance with Faculty of Graduate Studies guidelines.

10.2.1 Preparation of Graduate Theses

All graduate theses, whether for Master’s or Doctoral, must be completed according to the formal Faculty of Graduate Studies regulations for thesis preparation and submission. All thesis students must obtain a copy of these regulations, and students are responsible for ensuring that their theses comply with all aspects of these regulations. Failure to do so may cause delays in completion and may even result in the cancellation of a scheduled defence or examination.

For all graduate students: the Faculty of Graduate Studies Thesis Format Guidelines are available on the Faculty of Graduate Studies web site.

10.2.2 Thesis Originality and Editing

The thesis must represent a coherent body of original work by the student. It must display a scholarly approach and thorough knowledge of the subject.

Plagiarism in any form is unacceptable (http://plagiarism.dal.ca/).

In some disciplines it may be appropriate for the thesis to include published or submitted manuscripts, papers, or reports authored or co-authored by the student. Students who wish to pursue this option must have the prior consent of their supervisory committees and must obtain appropriate copyright permission.

It is expected that the student has made a substantial contribution to any such manuscripts. Where co-authored manuscript(s) are included in the thesis, the student’s contribution must be clearly indicated. (http://www.dal.ca/grad/currentstudents/thesisanddefences/forms/).

The publication or acceptance of such manuscripts before the thesis defence in no way supersedes the examination committee’s evaluation of the work, including requesting revisions.

The thesis is the primary and permanent record of the student's work. As such, it is important that it both be written by the student (with appropriate editorial advice as needed) and conforms to normal academic standards. Assistance in improving writing skills is available at both the faculty and university levels (e.g., Writing Workshop: http://www.dal.ca/~workshop/). The full Dalhousie Thesis Guidelines, including details on thesis preparation and formatting, can be found at http://www.dal.ca/grad/currentstudents/thesisanddefences/forms/.

10.2.3 Submission and Registration Deadlines

All thesis students must refer to the Schedule of Academic Dates in this calendar for submission deadlines and registration deadlines. Students must be registered for the term in which they present their approved electronic theses to the Faculty of Graduate Studies Office, as well as for the term in which they have their defence. Students will not be permitted to submit their thesis or proceed to defence unless they are appropriately registered and all fees have been paid.

Deadlines for the submission of fully completed and approved theses (following examination and revision) are final in all cases. Failure to meet the deadlines will result in additional registration fees.

It is the responsibility of the student to ensure that all regulations have been met. Failure to comply with the regulations can result in delay in graduation.

10.3 Master’s Theses

Theses for the Master’s degree must be presented no later than the published deadlines (see Academic Dates).

10.3.1 Supervision and Examination

The mode of supervision and examination of Master’s theses varies somewhat from department to department. This diversity recognizes differences in the nature of theses within Master’s programs and differences in the culture of thesis examination within different disciplines at the Master’s level. The Faculty of Graduate Studies requires the following minimum arrangements for the supervision and examination of Master’s theses.

A. Master’s Thesis Supervisory Committee

Each Master’s thesis candidate shall have a Supervisory Committee, comprised of at least two faculty members of the student’s graduate department, one of whom shall be the supervisor. The supervisor may act as the Chair of the Committee, or an independent Chair may be appointed.

Additional full or adjunct members of the Faculty of Graduate Studies may be appointed as appropriate. Additional members of the Committee who are not members of the Faculty of Graduate Studies, including members of the non-university community (such as a practicing profession), may be appointed to the Supervisory Committee where their particular expertise makes it appropriate. See B) 3. below.

B. Master’s Thesis Examining Committee

Each Master’s thesis shall be examined by an Examining Committee, which shall consist of:

1. A Chair, who shall be a department representative (either the Graduate Coordinator or designate) and who was not a regular member of the Supervisory Committee. If the Supervisory Committee has an
The Faculty of Graduate Studies Office shall summarize the outcome of the examination process, the final decision and any conditions attached. In the case of an outright failure or failure with a right to submit by a specific date, the Graduate Coordinator must send a written notification of failure to the Faculty of Graduate Studies.

10.3.2 Departmental Modifications

The above regulations with regard to master’s Thesis Examinations (10.3.1B) constitute the minimum requirements of the Faculty of Graduate Studies. Department may add further requirements but such additions must be approved by FGS Faculty Council and Senate.

10.4 Doctoral Theses

Doctoral theses must display original scholarly work, expressed in satisfactory literary form, consistent with the discipline concerned, and be of such value as to merit publication.

10.4.1 Doctoral Supervisory Committees

Within the first year of their program, all Doctoral students must have a formally constituted Supervisory Committee, consisting of the Thesis Supervisor and at least two other members of the Faculty of Graduate Studies who are knowledgeable in the field of research. Membership of all Doctoral Supervisory Committees must be approved formally by the Faculty of Graduate Studies.

10.5 Deadline for Graduation

For thesis students the published deadlines for the final approval thesis to the Faculty of Graduate Studies Office in order to be eligible to graduate in May or October are final in all cases.

10.6 Regulations for the Defence of a Doctoral Thesis

All Doctoral theses must be examined in a public oral defence, to be conducted by an examining committee, recommended by the department and approved by the Faculty of Graduate Studies. A candidate shall not be permitted to proceed with the oral defence and examination until all of the following requirements have been met: (i) all required coursework completed successfully; (ii) comprehensive examination passed; (iii) thesis title approved; (iv) Examining Committee established; (v) the style and format of the thesis meets the requirements of the University and appropriate copies of the thesis have been submitted as per regulations and deadlines in paragraphs 1-10 below. Normally a candidate proceeds to oral defence with the approval of the supervisor and Supervisory Committee. A candidate may proceed without the consent of the supervisor and committee, but a signed declaration included on the Thesis Submission Form is required by the Faculty of Graduate Studies.

10.6.1 Doctoral Defence Procedures

1. Appointment of External Examiner: The Chairperson of the Department (or Graduate Coordinator where appropriate) shall recommend to the Associate Dean of the Faculty of Graduate Studies three names (with C.V. for the first choice), listed in order of preference as submitted by the thesis supervisor (and approved by the Supervisory Committee). Appointment of an external examiner at least three months before the anticipated date of defence. The persons suggested should be acknowledged experts in the field or discipline of the research being examined in the thesis, must not have been directly involved in the student’s research in any way, should possess a Doctoral degree or equivalent, and should have demonstrated experience of Doctoral supervision to degree completion and examination. Evidence of these qualifications must be explicit in the C.V. submitted for the first external candidate. The choice of the external examiner must be approved by the Faculty of Graduate Studies. If the first choice is unacceptable to the Faculty or if that person is unavailable, then the other names will be considered in order of identified priority. The Graduate Coordinator may then confirm the availability of the external examiner and proposed dated and time for the defence. The formal invitation to the external examiner is issued by the Faculty of Graduate Studies (see para. 6. below).

2. Copies of Thesis Required for Examination: A minimum of five copies of the thesis are required, more if the Examining Committee is larger than the minimum Faculty requirements. The candidate shall submit one unbound paper copy of the completed thesis and an electronic copy (via thesis@dal.ca) to the Faculty of Graduate Studies Office, together with the Thesis Submission Form and the candidate’s C.V. The
thesis will then be given a preliminary check for formatting and style. The deadlines for submitting unbound PhD theses to departments (see the Schedule of Academic Dates in the Faculty of Graduate Studies) and the deadlines for submission of the unbound and electronic copies (with completed PhD Thesis Submission Form) to the Faculty of Graduate Studies are also listed. The paper copy is then sent to the External Examiner by the Faculty of Graduate Studies office once a date and time of defence are determined. That at that time the candidate shall have a correct copy of the abstract page from their thesis and a brief biographical sketch for publication in a public notice of the defence (this material must be submitted in Word compatible format and emailed to the Faculty of Graduate Studies Office).

6. The Associate Dean of Graduate Studies will issue a formal invitation to the chairperson of the department, the Graduate Coordinator, and the research supervisor, the Faculty of Graduate Studies will establish a time and place for the examination.

3. Committee and Department Copies: The other four (or more as required) copies of the thesis will be submitted by the candidate to the departmental graduate coordinator, who will distribute them immediately to local members of the examining committee. One copy will be placed in the department secretary’s office for use by interested faculty and students. Interdisciplinary PhD students must submit this final copy to the Director of the Interdisciplinary PhD program.

4. In consultation with the chairperson of the department, the Graduate Coordinator, and the research supervisor, the Faculty of Graduate Studies will establish a time and place for the examination. No arrangements will be made for the oral examination until all these requirements are fulfilled. The examination will be held no earlier than four weeks after submission of the thesis, thereby allowing adequate time for the thesis to be read by the external examiner. Wherever possible the Coburg Board Room in the Mona Campbell building will be used.

5. The external examiner will submit by mail, fax, or email a constructive critical and analytical report (the Examiner’s Report) to the Faculty of Graduate Studies Office at least one week prior to the scheduled date of the defence. A copy will be sent to the department Chair or Graduate Coordinator. The Examiner’s Report must include a recommendation on whether or not the thesis should proceed to defence. Where the recommendation is not to proceed, the report should indicate what, if anything, would be required to make the thesis acceptable. Note that a decision to proceed to defence does not imply that the thesis is approved, only that it is acceptable for defence. The external examiner (and the examining committee) will have questions that must be answered to their satisfaction, and a thesis can be rejected at this stage. The written permission of the Faculty of Graduate Studies is required) copies of the thesis will be submitted by the candidate to the Faculty of Graduate Studies Office.

6. Oral Examination of a Doctoral thesis is the culmination of the candidate’s research program. It exposes the work to scholarly criticism and gives to the candidate the opportunity to defend the thesis in public.

1. The Defence: The Examination is chaired by a member of the Panel of PhD Defence Chairs.

2. Examining Committee: The examining committee consists of the research supervisor or co-supervisors, at least two additional members (Readers who shall normally have been members of the Supervisory Committee), and the external examiner who shall be from outside the University. A departmental representative (the chair of the department or a designee) is included as a non-voting and non-examining member of the committee. All members of the examining committee must have current membership in the Faculty of Graduate Studies. (see section I)

3. The Departmental Representative attends the public and in camera sessions of defence. The role of the Departmental Representative is to ensure departmental expectations are adhered to and reports such to the Defence Chair.

4. Order of Examination Proceedings: (i) the Chair of the Defence opens the proceeding with a brief description of the protocol; (ii) the candidate is questioned on the thesis following a summary presentation no longer than 20 minutes; (iii) the candidate may be questioned on all parts of the thesis; (iv) the chair reserves the right to question specific parts of the thesis; (v) the Chair adjourns the examination when the examining committee decides that further questioning is unnecessary, and the candidate and all members of the audience are required to leave the room; (vi) the Chair then proceeds over the examining committee during its deliberations in camera; (vii) following the in camera session, the candidate is invited back into the room and is informed of the decision of the committee; (viii) The Chair oversees the completion of the signature sheet as appropriate and completes the Defence Report and returns it immediately to the Faculty of Graduate Studies Office.

5. In camera Deliberations and Grading: The decision of the Examining Committee is based on the thesis and the candidate’s ability to defend it. No thesis shall be approved without the agreement of an external examiner, except that a negative opinion of an external examiner who does not attend the examination should not prevail over the unanimous opinion of the other examiners present and voting. The thesis is graded “approved” or “not approved”. A thesis can be rejected by the Examining Committee as submitted; accepted on condition that specific corrections are made; rejected with permission to submit a revised thesis (within 12 months of the first defence); rejected with permission to submit a revised thesis (within 12 months of the first defence) or rejected outright with no possibility of re-submission. It should be stressed that theses can be rejected on grounds of form as well as content. If specific corrections are required, the thesis will be returned to the candidate and a time limit during which the corrections must be completed will be decided upon by the Examining Committee. Specific corrections will normally be left to the satisfaction of the local committee and research supervisor.

6. Proceedings in the Case of Rejection: If the thesis is rejected with permission to submit a revised thesis (within 12 months of the first defence), the revised thesis will be re-read by an Examining Committee, at least two of whose members were on the original committee. The thesis shall be submitted to an external examiner who may be the original external examiner if the Associate Dean of Graduate Studies considers this to be desirable. The candidate shall defend the thesis before an Examining Committee, with no possibility of re-submission. If the thesis is rejected, there will be no third examination, and the candidate will not be recommended for graduation from the Doctoral program.

7. In all cases, the recommendation for degree must be approved by the Faculty of Graduate Studies and by the Senate.

8. Variation of the procedures stipulated above may be permitted only with the written permission of the Faculty of Graduate Studies.
The dean(s) of the faculty in which the student is enrolled cannot intercede in matters related to the defence of a thesis (Masters or PhD).

10.7 Electronic Submission of Final Approved Theses
All final, approved Master’s and PhD theses-that is, after examination and approval of any required changes-are submitted directly to the Faculty of Graduate Studies as PDF/A files via DalSpace. These files are termed “electronic theses” or “E-theses”. The procedures for E-thesis approval and submission can be found on the Faculty of Graduate Studies website at: http://www.dal.ca/grad/currentstudents/thesesanddefences/etheses/. It is the student’s responsibility to meet Faculty of Graduate Studies formatting requirements for the thesis and to ensure that the thesis has been converted into a compatible PDF/A version. Electronic submission of the thesis must be accompanied by original, paper forms, which are retained on file at Faculty of Graduate Studies. These include: the National Library Theses Non-Exclusive License Form with original signature, the title page of the thesis, the signature page (Page ii) with original signatures (the E-thesis does not contain signatures), the copyright page (Page iii) with original signature of the student, the ethics pages, the copyright permission and student contribution to manuscripts form (if applicable).

Once submitted, the E-thesis is sent to the Dalhousie Institutional Repository (DalSpace) from which it is then harvested by Theses Canada, sent to the National Library, Ottawa and listed in Dissertation Abstracts International or Masters Abstracts International. The National Library can then circulate such copy according to the International Inter-Library Loan Code, with full copyright protection for the author. Similarly, E-theses are also stored by DalSpace where they are searchable and available to the public via the internet. Where protection of intellectual property is a concern the thesis may, with Faculty of Graduate Studies approval, be retained for a maximum of one year before publication and distribution.

Faculty of Graduate Studies will not accept or bind paper copies of theses. Students wishing to obtain bound copies for themselves, supervisors, departments, or other parties, are free to do so. Contact information for some thesis binderies may be found at the website above.

XI. Convocation
Convocation ceremonies are held in May and October.

11.1 Intent to Graduate Forms
Intent to Graduate forms should be submitted to the Registrar’s Office by December 1, for May convocation and by July 1 for October convocation. Dates and forms are available on line from the Registrar's Office website at: http://www.registrar.dal.ca

11.2 Letter of Confirmation for Completion of Degree
When a student has fulfilled all the requirements for the degree in advance of the official graduation date, a letter to that effect can be obtained from the Faculty of Graduate Studies Office. The Confirmation Letter Request Form is located on the Faculty of Graduate Studies website under Forms and Documents of Students.

11.3 Confering of Degrees
Successful candidates for degrees are invited to appear at Convocation in the proper academic dress to have the degree conferred upon them. Any graduating student who is unable to appear at the convocation is expected to notify the Registrar in writing prior to May 4 for the Spring Convocation, or October 1 for Fall convocation, giving the address to which the degree or diploma is to be mailed.

Detailed information regarding the upcoming ceremony dates, location, dress etc. is available on the Convocation website: http://www.convocation.dal.ca

11.4 Academic Dress
Graduates of the University are entitled to wear gowns and hoods of black material. The distinctive part of the costume is the lining of the hood, which for the various degrees currently offered are as follows:

<table>
<thead>
<tr>
<th>Degree</th>
<th>Lining</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>Crimson silk</td>
</tr>
<tr>
<td>MArch</td>
<td>White/two parallel stripes of red corded border</td>
</tr>
<tr>
<td>MArch (Post-Prof.):</td>
<td>White/vermilion border</td>
</tr>
<tr>
<td>MAHSR</td>
<td>White/sky blue border with white piping</td>
</tr>
<tr>
<td>MACsc</td>
<td>Emerald green/gold border with white piping</td>
</tr>
<tr>
<td>MAsc</td>
<td>Blue/gold border with white piping</td>
</tr>
<tr>
<td>MBA</td>
<td>Turquoise silk</td>
</tr>
<tr>
<td>MSc</td>
<td>Emerald green/gold border with white piping</td>
</tr>
<tr>
<td>MDE</td>
<td>Medium blue/scarlet border</td>
</tr>
<tr>
<td>MEC</td>
<td>Emerald green/purple border with turquoise piping</td>
</tr>
<tr>
<td>MDS</td>
<td>White/three parallel stripes of white and vermilion corded border</td>
</tr>
<tr>
<td>MEng</td>
<td>Blue/gold border</td>
</tr>
<tr>
<td>MES</td>
<td>Brown silk</td>
</tr>
<tr>
<td>MHA</td>
<td>Sky blue silk/white border</td>
</tr>
<tr>
<td>MHE</td>
<td>Scarlet silk/emerald green border</td>
</tr>
<tr>
<td>MIM</td>
<td>Mint green satin/white border</td>
</tr>
<tr>
<td>MLIS</td>
<td>Mid-forest Green silk</td>
</tr>
<tr>
<td>MMM</td>
<td>Navy silk/seagreen border</td>
</tr>
<tr>
<td>MN</td>
<td>Apricot silk</td>
</tr>
<tr>
<td>MPA</td>
<td>Sky Blue silk</td>
</tr>
<tr>
<td>MPer</td>
<td>Gold silk/scarlet silk border</td>
</tr>
<tr>
<td>MPLAN</td>
<td>Peacock blue/green corded border</td>
</tr>
<tr>
<td>MREM</td>
<td>Brown silk/white border</td>
</tr>
<tr>
<td>MSc</td>
<td>Scarlet silk</td>
</tr>
<tr>
<td>MSc (Agriculture):</td>
<td>Scarlet silk/gold chevron</td>
</tr>
<tr>
<td>MSW</td>
<td>Citron silk</td>
</tr>
<tr>
<td>PhD</td>
<td>Black gown faced with yellow silk; black hood with a lining of yellow silk; biretum is the doctor's bonnet of black velvet with yellow cord</td>
</tr>
</tbody>
</table>

XII. Appeals
Appeals related to class examinations, qualifying and preliminary examinations, comprehensive examinations, thesis proposal defenses, and Master’s thesis defenses are subject to the normal appeals procedures that begin with the unit (program, department, school, Faculty). If not resolved at the home Faculty level, the student may appeal to the Faculty of Graduate Studies on the grounds below. Appeals related to Doctoral defenses should be directed to Faculty of Graduate Studies in the first instance. There are no appeals on admission decisions, or decisions on scholarships, grants or bursaries.

The grounds for appeal are limited to the following:
1. procedural unfairness;
2. bias; or
3. irregularity in procedure.

Once an appellant has exhausted all available and appropriate appeal avenues within their home department and Faculty, s/he may appeal to the Faculty of Graduate Studies. A written appeal must be submitted to the Dean of the Faculty of Graduate Studies within sixty (60) days following a) the event or circumstances appealed, or b) notification to the appellant of the outcome of the appeal at the unit level, whichever is later. The submission must include:

i) a description of the exact nature of the appeal including a summary of events and chronology
ii) specific details of the alleged unfairness, bias or irregularity; and
iii) any other relevant consideration or information

In an appeals process the student has the right to representation. The student is required to inform the Dean, in writing, if s/he will have a representative presenting the appeal.

Decisions of the Appeals Committee are forwarded to the Dean. Students may appeal the final Faculty of Graduate Studies decision to the Secretary of Senate within 15 working days of the receipt of the Faculty decision. See the Senate office website at http://senate.dal.ca/Files/tor/saac/pdf.
XIII. Departmental and Program Listings

The following entries are designed to provide general information about particular graduate programs. Although general Faculty of Graduate Studies requirements apply to all graduate programs, the methods of fulfilling these requirements vary considerably among Departments.

Detailed, up-to-date information is located in departmental publications.

Each departmental or program entry includes the following information:

1. A list of faculty members engaged in the teaching of graduate classes and/or the direction of graduate research. Faculty members whose major appointments are in other departments are so indicated. In addition, the names of other researchers in the department and adjunct appointees may be listed. Beside each name there may be a list of keywords indicating the major areas of research expertise and interest of the faculty member.

2. A description of facilities available may be included. Some general regulations may be described.

3. A list of admission requirements in addition to those of the Faculty of Graduate Studies. In some cases the minimum requirements outlined in Section 2 are not sufficient for entry into a particular program. Other particular requirements may be listed.

4. A description of degree program requirements includes:
 a) Minimum time required to complete the program
 b) Tuition Fees (based on the previous year’s fees)
 c) Class work required
 d) Other academic requirements
 e) Thesis requirement
 f) Other requirements

5. A representative list of class offerings and brief class descriptions. Not all of the classes will necessarily be offered in a given year.

6. An extensive list of areas of specialization.

XIV. Centre for Learning and Teaching

The Centre for Learning and Teaching (CLT) works in partnership with academic units, faculty members, and graduate students to enhance the practice and scholarship of learning and teaching at Dalhousie University. CLT takes an evidence-based approach to advocating for effective learning and teaching practices, curriculum planning, services to support the use of technology in education, and institutional policies and infrastructure to enhance the Dalhousie learning environment. (See page 306 for more information about CLT services and resources).

Certificate in University Teaching and Learning: The Certificate program is offered to graduate students by the CLT in collaboration with the Faculty of Graduate Studies. The purpose of the program is to assist academic departments in preparing students for their teaching responsibilities and to enhance their professional development opportunities for other careers.

CLT also offers a non-credit course: Learning and Teaching in Higher Education (CNLT 5000). This course may be taken as part of the Certificate program, or separately. CNLT 5000 is a seminar course designed to bring together practical and theoretical aspects of learning and teaching in post-secondary settings.

Agriculture

Location: Nova Scotia Agricultural College
Truro, NS B2N 5E3
Telephone: (902) 893-6502
Fax: (902) 893-3430

Professors

Ablett, R.F., BSc (Reading), MSc (Sterling), PhD (Oregon), Engineering Department and CEO, Atlantic BioVenture Centre, Bioresources, nutraceuticals, cosmeceuticals, value-added product development
Acs, D.M., BSc, MSc (Man), PhD (Sask), Plant and Animal Sciences Department. Nutrition and metabolism of the monogastric species; swine, fish, poultry, management of swine
Asiedu, S., BSc (Agr), MSc, PhD (McGill), Plant and Animal Sciences Department. Plant-microbe Interactions, Post-harvest physiology, pathology of horticultural crops, potato physiology, production management. Head.
Astatkie, T., BSc, MSc (Addis Ababa), PhD (Queen’s), Engineering Department. Time series analysis, linear, nonlinear and nonparametric regression, and design of experiments
Benkel, B.F., BSc (Brock), PhD (Ottawa), Plant and Animal Sciences Department. Animal genomics. The use of comparative genomics to identify genes underlying economically important traits in livestock species. Naturally-occurring resistance to disease. The identification of genes conferring disease resistance in animals. The use of genomics-based technologies in breed improvement
Burton, D.L., BSc (Dalhousie), MSc (Guelph), PhD (Alberta), Environmental Sciences. Climate change, greenhouse gases, soil microbiology, soil quality, sustainable manure management practices
Caldwell, C.D., BSc (MtlA), MSc (Dal), PhD (East Anglia), Plant and Animal Sciences Department. Crop physiology, carbon & nitrogen assimilation, water relations, cereals & oil seeds management, new crop development
Clark, J.S., BA (Guelph), MSc (Sask), PhD (North Carolina), Business and Social Sciences Department. Econometrics and time series analysis. Tests of competition under general equilibrium. Statistical and economic aspects of climate change
Duston, J., BSc (Bath), PhD (Aston), Plant and Animal Sciences Department. Fish biology in Aquaculture. Environmental physiology, photoperiodism, biological clocks, osmoregulation, fish life history strategies and age at maturity
Farid, A., BSc (Bishops), MSc (Shiraz), PhD (Alta), Plant and Animal Sciences Department. Quantitative genetics, animal breeding, population genetics, application of molecular genetics in animal improvement, genetics of growth and carcass composition, sheep production and management
Freden, A.H., BSc (Sask), MSc, Guelph), PhD (Davis), Plant and Animal Sciences Department. Ruminant nutrition, dairy systems analysis, milk composition, dairy products, greenhouse gas emission, pasture-based dairy production, sustainable, ecological organic dairying
Grant, K. G., BA (Acadia), MA, PhD (Western), Business and Social Sciences Department. Research methods for economics and business, agricultural markets and prices
Hoyle, J., BA (York), BA (Open Univ, UK), BEd (Dalhousie), MSc (Leeds), PhD (Dalhousie), Environmental Sciences Department. GC-MS, Organic Agriculture, Organosulfur Chemistry, Environmental Chemistry, River Studies, Innovative Teaching Methods
Lada, R.R., BSc (Hort), MSc (Hort) (TNAU, Coimbatore), PhD (Adelaide), Plant and Animal Sciences Department. Environmental stress physiology and metabolism. Biostress defense molecules, inter & intra-plant communication, environmental regulation of plant development, bulking physiology, resource competition modelling
Agriculture

Wang-Pruski, G., BSc (Tian Jin), PhD (Alberta), Plant and Animal Sciences

Tennessen, T., BSc, MSc, PhD (Alta), Plant and Animal Sciences

Sibley, K., BSc (Agr Eng), MSc (McGill), PhD (Wageningen), Plant and Animal Sciences

Rouvinen-Watt, K., BSc, MSc, PhD (Kuopio), Plant and Animal Sciences

France, R., BSc, MSc (Manitoba), PhD (Toronto), Environmental Sciences

Associate Professors

Boyd, N., BSc (Dalhousie), MSc (Dalhousie/NSAC), PhD (Manitoba), Environmental Sciences Department. Integrated weed management systems, horticultural crop production, plant population dynamics and ecology; organic crop production

Brewer, G., BA (Hon), MSc, PhD (Western), Environmental Sciences Department. Soil erosion monitoring and modelling, physical characterization of turfgrass root zone media, soil quality analysis, human impact on soil physical properties

Cutler, G.C., BSc (MUN), MSc (SFU), PhD (Guelph), Environmental Sciences Department. Insect biology and ecology, insect toxicology, and development of ecologically sound and pragmatic insect pest management programs

France, R., BSc, MSc (Manitoba), PhD (Toronto), Environmental Sciences Department. Watershed management, limnology, ecorestoration, conservation biology, land-use planning, environmental engineering and BMP design.

Goodyear, S.N., BSc (Agr) (McGill), MSc, PhD (Guelph), Plant and Animal Sciences Department. Vegetable production management and cultivar evaluation, physiology of vegetable crops, ecological/sustainable farming practices

Havard, P.L., BSc (Agr Eng), MSc, PhD (McGill), Engineering Department. Water and energy conservation, instrumentation and computer control, system modelling.

Lynch, D.H., BSc (Agr), MSc (Agr) (McGill), PhD (Guelph), Canada Research Chair in Organic Agriculture, Plant and Animal Sciences Department. Organic production systems. Nutrient cycling in agro-ecosystems. Soil organic matter dynamics. Soil microbiology. Legume physiology. Composting and management of manures and organic wastes

Mapplebeck, L.R., BSc, MSc (Guelph), Environmental Sciences Department. Greenhouse crop production and floriculture, nursery crop production, plant propagation and culinary/tea/medicinal herbs

Pitts, N.L., BSc (Agr), MSc (McGill), PhD (Guelph), E,Ed. M. N. A. E. D (St. FX), Environmental Sciences Department. Food chemistry, food quality, food safety, modified atmosphere packaged food, chemical analysis of essential oils

Prithviraj, B., BSc (Agr) (Annamalai), MSc, PhD (BUH), Plant and Animal Sciences Department. Plant stress physiology, marine bio-products in animal and plant health, plant-microbe interactions, plant pathology, natural anti-infective compounds

Pruski, K.W., BSc, MSc (Alberta), PhD (Wageningen), Plant and Animal Sciences Department. Plant Propogation. Tissue culture propagation technologies, plant physiology, ornamental and fruit crops, potato physiology and post-harvest

Rupasinghe, H.P.V., BSc (Peradeniya), MSc (Iowa), PhD (Guelph), Canada Research Chair in Fruit Biochemistry and Bio products. Environmental Sciences Department. Bio-products, functional foods, nutraceuticals and natural health products; phytochemicals and human health; postharvest biotechnology, shelf-life and quality

Russell, S.G., BSc (Agr) (Guelph), MBA (Saint Mary’s), PhD (Bradford), Business and Social Sciences Department. Micro and small enterprise management including strategic marketing, financial management, human resource management and operations management. Family business issues such as succession and financing. Entrepreneurship in international settings, including international project management.

Sanderson, L.L., BSc (Agr.), MSc (Guelph), Business and Social Sciences Department. Qualitative and quantitative research methodologies in the social sciences (survey methodology), family, safety, and health.

Stackhouse, J.B., BSc (Agr Ec), MSc (Guelph), Business and Social Sciences Department. Business Math, Mathematical Economics, Introductory Microeconomics, Mathematical programming

Yiridoe, E.K., BSc (Un. of Science and Technology, Ghana), MSc, PhD (Guelph), Business and Social Sciences Department. Agricultural production economics, farm and agribusiness management and natural resource and environmental economics

Zaman, Q., BSc, MSc (U. of Agriculture Faisalabad), PhD (U. of Newcastle upon Tyne), Engineering Department. Precision agriculture, GPS, GIS, Sensors, remote sensing, VPT

Assistant Professors

Barrett, D.M.W., BSc (M), MSc, PhD (Sask), Plant and Animal Sciences Department. Ruminant reproduction, endocrinology, gonad, seasonality, and puberty

Cameron, G. A., BA Hon (St. FX), MA (York), PhD (SOAS), Business and Social Sciences Department. Agrarian political economy, democratization transitions, the politics of East Africa, food security, rural organizations

Corscadden, K.W., BEng (Bolton, UK), MSc, PhD (UMIST, UK), PEng (APENS), CEng (IET), Engineering Department. Electrical engineering, energy conservation, process optimization, renewable energy technology

Dukeshire, S.R., BComm, BA (St. Mary’s), MASC, PhD (Waterloo), Business and Social Sciences Department. Dietary decision making and behaviour, injury prevention, predicting and changing human beliefs, attitudes and behaviour, social judgement and decision making, companion animal-human interaction

Jendral, M., BSc (McMaster), MSc, PhD (Alberta), Plant and Animal Sciences Department

Lu, J., BA (Renmin), MA (Beijing Normal), PhD (McGill), Business and Social Sciences Department. Consumer eating behavior. Dietary consumption decision making Agri-food business marketing. Public health policy on healthy eating

McLean, N., BSc (Agr), MSc (Macdonald), PhD (Dalhousie), Plant and Animal Sciences Department. Forage legume breeding and biotechnology for improved production and persistence

Nguyen-Quang, T., BSc (Eng), MSc (Grenoble), PhD (Mediterranean), PhD (Montreal), Engineering Department. Mathematical models for biological processes, Biostystem Modeling

Price, G.W., BSc (BC), MSc, PhD (Guelph), Engineering Department. Alternative uses of organic by-products, nutrient management,
management of specified risk material (SRMs), soil organic matter dynamics, soil nitrogen dynamics.

Sharifi, M., BSc, MSc, PhD (IUT), Environmental Sciences Department. Nutrient management in arable and horticultural crops. Development and validation of new soil tests. Sustainable nutrient management practices. Manure and compost management. Green manure and cover crops. Evaluation of agricultural, industrial and municipal by-products as soil amendment.

Adjunct Professors
Al-Mughrabi, K.I., BSc (Agr Eng), MSc (Jordan), PhD (Dalhousie)
Benchaar, C., MSc (Algiers), PhD (Toulouse)
Boyle, D., BSc (Queen’s), MSc (Dal), PhD (Laval)
De Koeyer, D., BSc (Agr) (Guelph), MSc, PhD (Minnesota)
Eaton, L.J., BSc (Acadia), MSc, PhD (Dal)
Embree, B., BSc (OAC), MSc (UBC)
Falk, K., BSc, MSc (Guelph), PhD (Sask)
Garbary, D., BSc, MSc (Acadia), PhD (Liverpool)
MacLeod, J.A., BSc (Agr), MSc (McGill), PhD (Cornell)
Murray, G. B., BSc (Agr) (NSAC), MSc (McGill), MBA (Executive) (Saint Mary’s), PhD (Dalhousie)
Norrie, J.
Papadopoulos, Y.A., BSc, MSc, PhD (Guelph)
Patterson, G. T., BSc (Agr) (Alberta), MSc (Guelph)
Prange, R.K., BSc (Acadia), MSc (BC), PhD (Guelph)
Rathgeber, B., BSc (Agr) (Sask), MSc (Arkansas), PhD (Sask)
Robinson, R.
Schumann, A.W., BSc, MSc (Univ of Natal), PhD (Georgia)
Shahidi, F.
Small, J.A., BSc (Agr) (Guelph), MSc (Manitoba), PhD (BC)
Wang, Y.
Warman, P.R., BSc (Agr) (Rutgers), MSc, PhD (Guelph)
Zebarth, B., BSc (Agr), MSc (Guelph), PhD (Sask)

The above NSAC faculty and adjunct professors are members of the Faculty of Graduate Studies, Dalhousie University.

I. Admission
The Nova Scotia Agricultural College has facilities for advanced study and research leading to an MSc in Agriculture.

The Master of Science degree is granted by Dalhousie University in cooperation with the Nova Scotia Agricultural College.

Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies. All inquiries for admission should be addressed to: The Research & Graduate Studies Office, Nova Scotia Agricultural College, P.O. Box 550, Truro, Nova Scotia B2N 5E3.

Please refer to the Admission Dates section for final dates for receipt of application for admission.

A. MSc Degree Program
The Master of Science degree is granted by Dalhousie University in association with the Nova Scotia Agricultural College, the only educational institution in the Atlantic Region with the faculty and facilities capable of providing such a program of study.

Graduate students attend classes at the Nova Scotia Agricultural College and, on occasion, supplement their program with classes at Dalhousie University. Students may choose to concentrate their studies in any of the following areas:

- Animal Science: Nutrition, Animal Behaviour, Genetics and Breeding, Animal Product Technology, Physiology, Animal Management, Aquaculture (Shell-Fish & Fin-Fish culture)
- Plant Science: Cropping Systems Management, Plant Genetics, Nutrition, Pathology, Physiology, Biotechnology, Horticulture

The MSc in Agriculture program is research centred. All students must complete a research thesis embodying original contribution in the thesis field of study. The thesis is defended at an oral examination.

Students are required to take a minimum of four (4) graduate courses (0.5 credit hours each). The graduate class AGRI 5700.03 Communication Skills and Graduate Seminar is a required class. The remaining three (3) courses are selected by the student in consultation with his or her supervisor.

In addition, students must demonstrate in the laboratory of at least one undergraduate class in order to gain knowledge and experience in classroom instruction, must present at one Graduate Research Day, and must be admitted to candidacy within the first four to six months of their program.

II. Class Descriptions
Graduate classes are intended only for students registered in the MSc program and may be taken by undergraduate students only under exceptional circumstances, where they meet normal MSc admission requirements.

Not all classes are offered every year. Please check the current timetable to see whether a particular class is being offered.

AGRI 5230.03: Directed Studies in Environmental Sciences.
This course aims to provide to graduate students an opportunity for detailed study and critical thinking in an environmental sciences research area of interest. Through individual study and research, and guidance and instruction provided by a professor, students will leave the course with comprehensive knowledge of a contemporary topic(s) in the discipline, with improved skills in comprehension, problem formulation, writing/communication and critical thinking.

COORDINATOR: R. Lada
FORMAT: Individual work/discussion with instructor
PREREQUISITE: Permission of the instructor

AGRI 5250.03: Soil Microbiology.
This class is designed to provide an intensive study of the microbiology of soils and will emphasize nutrient cycling and biodegradation. Topics covered include the relationships between the abiotic and biotic components of soils; the microbial biochemistry of the carbon, nitrogen, sulphur, phosphorus, and selected micronutrient cycles; heavy metal cycling; and the microbial degradation of industrial wastes and pesticides. The laboratory classes will concentrate on techniques to monitor the microbial biomass in soil and the microbial components of nutrient cycles. These include new advances in bacterial taxonomy and identification and the use of gas chromatography and high performance liquid chromatography in quantitating nutrient cycling. In addition to a major term paper, a comprehensive laboratory report on the entire term’s lab work, and a single take-home examination, graduate students will be required to:

a) modify the term paper into a critical review of some aspect of soil microbiology (chosen in consultation with the instructor); the review must be current and in depth; it must be written in manuscript format and will be graded accordingly,

b) perform additional laboratory exercises not assigned to undergraduate students; use more replicates; perform a full statistical analysis of data; provide a report in manuscript format,

c) give a seminar to the class on their term paper topic.

INSTRUCTOR(S): D. Burton
FORMAT: Lecture 3 hours, lab 4 hours
CROSS-LISTING: MICR 4000

AGRI 5260.03: Special Topics in Plant Pathology.
This class will be custom-designed to meet the specific needs of graduate students specializing in the area of plant pathology who need further specific knowledge and/or skills.

INSTRUCTOR(S): Dept. of Plant and Animal Sciences Faculty
FORMAT: Lecture 3 hours

AGRI 5270.03: Economic Entomology.
Insect pest management in agriculture with emphasis on a selection of non-chemical approaches to insect control, e.g. natural, mechanical, physical, cultural, biological, biochemical, and/or legal control. According
to student(s) interest, a section on chemical control can be included. This class is consistently in accord with the theory and principles of integrated pest management (IPM) and consequently, the term assignments will incorporate the study of sampling techniques and monitoring methods of insect pests and related beneficial arthropods. Attendance at certain relevant seminars may be required and directed readings may be assigned. A case history of a major agricultural insect pest will be included to satisfy the class requirement. The material will be submitted in term paper format and also delivered in oral presentation. The case history will include the life cycle, host plants, pest status, damage, losses, control measures, research needs and IPM programs pertinent to the particular species.

INSTRUCTOR(S): C. Cutler
FORMAT: Lecture 2 hours, tutorial 1 hour

AGRI 5280.03: Directed Studies in Pest Management.
This course aims to provide to graduate students an opportunity for detailed study and critical thinking in a pest management research area of interest. Through individual study and research, and guidance and instruction provided by a professor, students will leave the course with comprehensive knowledge of a contemporary topic(s) in the discipline, with improved skills in comprehension, problem formulation, writing / communication and critical thinking.
COORDINATOR: C. Cutler
FORMAT: Individual work/discussion with instructor
PREREQUISITE: Permission of the instructor

AGRI 5310.03: Special Topics in Applied Ethology.
Class content will vary. Topics covered will be chosen so as to meet the requirements of individual graduate students. Aspects could include the assessment of farm animal welfare, foraging behaviour, environmental enrichment, social dynamics of livestock, early rearing environment and the effect on later behaviour.
INSTRUCTOR(S): M. Jendral
FORMAT: Lecture 3 hours

AGRI 5320.03: Special Topics in Animal Nutrition.
The class is designed to provide an opportunity to study specific aspects of animal nutrition. Aspects could include study of a particular nutrient, a process in nutrition, a nutritional state, or nutrient metabolism of a specific species with focus on the research method. Students are advised to consult with their supervisor to determine the specific scope of the topic to be studied.
INSTRUCTOR(S): D. Anderson, A. Fredeen, or K. Rouvinen-Watt
FORMAT: Lecture 3 hours

AGRI 5340.03: Special Topics in Animal Physiology.
This class is for students with a major interest in animal physiology. The class will consist of discussions, term papers and presentations. Students will be expected to nominate topics for consideration and to prepare major reviews and class presentations of selected topics.
INSTRUCTOR(S): L. MacLaren, K. Rouvinen-Watt, or J. Duston
FORMAT: Lecture 3 hours

AGRI 5350.03: Animal Research Methods.
This class is designed for students who are, or expect to be, working in Animal Science, or who have an interest in the methodology and ethics of animal research. The class will include consideration of some of the common or promising laboratory and field methods associated with domestic animal research, ethics of animal research, and the analysis, interpretation and reporting of results. Students will be expected to participate in exercises, to contribute to discussions, and to present reviews on various aspects.
INSTRUCTOR(S): Dept. of Plant and Animal Sciences Faculty
FORMAT: Lecture 3 hours

AGRI 5360.03: Protein Nutrition.
A study of the sources, availability and metabolism of protein and amino acids for the domestic animal. Subjects addressed include discussion of sources of protein, factors affecting digestibility of protein, digestion and absorption of protein and nitrogen, urea recycling, individual amino acid metabolism, excretion of nitrogenous wastes in birds and mammals, and protein and amino acid requirements of animals.
INSTRUCTOR(S): D. Anderson
FORMAT: Lecture 3 hours

AGRI 5365.03: Vitamins in Animal Nutrition.
Vitamins and vitamin-like compounds are discussed in relation to the normal function of the animal. Vitamin metabolic interrelationships, assessments of adequacy, treatments of deficiency, and sources both natural and synthetic are addressed for all vitamins. Current literature relating to each vitamin as bioactive molecules is discussed.
Winter semester – to be arranged with instructor. Offered in alternate years.
INSTRUCTOR(S): Prof. Anderson
FORMAT: 3 lectures and 1 discussion group per week
PREREQUISITE: Undergraduate Nutrition Course, for example, NUTR3000

AGRI 5370.03: Special Topics in Animal Breeding and Genetics.
Provides students with an opportunity to pursue more detailed studies in animal breeding and genetics. Topics will be decided on by the student in consultation with faculty members for the purpose of meeting the student’s specific needs as defined by the thesis research. Delivery will be a combination of directed reading and tutorial discussions.
INSTRUCTOR(S): Dept. of Plant and Animal Sciences Faculty
FORMAT: Lecture 3 hours

AGRI 5380.03: Quantitative Genetics.
An introduction to quantitative genetics theory and to statistical techniques used in domestic animal improvement. Computing and statistical techniques will be demonstrated and presented, and relevant literature will be surveyed. Reference will be made throughout to performance recording programs used in Canada and around the world.
INSTRUCTOR(S): Dept. of Plant and Animal Sciences Faculty
FORMAT: Lecture 3 hours

AGRI 5390.03: Molecular Genetic Analysis of Populations.
This class is designed to give graduate students some understanding of the theoretical aspects of population and molecular genetics. Various DNA fingerprinting techniques, such as minisatellites, microsatellites, RAPD-PCR, RFLP-PCR and SSOP-PCR, and their applications in population genetic studies will be discussed. Students will acquire hands-on experience with some of these techniques. Analysis of molecular data to estimate intrapopulation populations (heterozygosity, Hardy-Weinberg equilibrium) and interpopulation parameters (test of heterogeneity of allele frequency distributions, genetic distances, phylegetic analysis, bootstrapping, F-statistics) will be covered.
INSTRUCTOR(S): A. Farid
FORMAT: Lecture 3 hours, labs 4 hours

AGRI 5400.03: Directed Studies in Soil Science.
This course aims to provide to graduate students an opportunity for detailed study and critical thinking in soil science research area of interest. Through individual study and research, and guidance and instruction provide by a professor, students will leave the course with comprehensive knowledge of a contemporary topic(s) in the discipline, with improved skills in comprehension, problem formulation, writing / communication and critical thinking.
COORDINATOR: D. Burton
FORMAT: Individual work/discussion with instructor
PREREQUISITE: Permission of instructor

AGRI 5440.03: Organic Environmental Analysis.
This class has limited enrollment. The class will involve the study of the analytical chemical techniques used in the analysis of environmental samples obtained from the atmosphere, hydrosphere, and lithosphere. Included in this study will be the sampling methods used for air, water, soil, food and wastes, and modelling of environmental contamination. In addition, government regulations, hazard assessment and public awareness of these issues will be discussed. In addition to successfully completing examinations, graduate students will be required to:
(a) Write a major paper on an important topical issue,
(b) Present that paper as a seminar before Departmental faculty, staff and students; and
(c) To write a research proposal prior to starting the laboratory project.
INSTRUCTOR(S): J. Hoyle
FORMAT: Lecture 3 hours, labs 4 hours
AGRI 5450.03: Environmental Soil Chemistry.
This class is designed to provide an opportunity to study specific aspects of environmental soil chemistry. Topics may include the chemical composition of soils with special attention to soil biochemistry and soil organic matter with an emphasis on organic matter-clay interactions, soil organic N, P and S, and soil enzymology. Graduate students will be expected to participate in lecture/discussion sessions and complete required reading assignments. In addition, graduate students will be required to complete research papers and present their findings at in-class seminars.
INSTRUCTOR(S): J. Hoyle
FORMAT: Lecture 3 hours, labs 4 hours
CROSS-LISTING: SOIL 4000

AGRI 5460.03: Special Topics in Soil and Water Management.
This class will discuss state-of-the-art soil and water management practices in either humid or arid regions, depending on the specific needs of the graduate students. Topics may include: fundamentals of soil and water properties; drainage and water table control; management of farm irrigation and drainage systems; salinity control; irrigation water requirements; drainage requirements for humid and arid regions; soil conservation; and computer modelling of irrigation and drainage systems. Guest speakers will be invited to share their experience with students.
INSTRUCTOR(S): P. Havard
FORMAT: Lecture 3 hours

AGRI 5480.03: Directed Studies in Analytical Instrumentation.
This course aims to provide graduate students with an opportunity for detailed study and critical thinking in specific areas of analytical instrumentation as it relates to their research area. Through individual study and research, and guidance and instruction provided by a professor, students will leave the course with comprehensive knowledge of a contemporary topic(s) in the discipline, with improved skills in comprehension, problem formulation, writing/communication and critical thinking.
COORDINATOR: N. Pitts
INSTRUCTOR(S): Individual work/discussion with instructor
PREREQUISITE: Permission of the instructor

AGRI 5510.03: Special Topics in Plant Breeding.
This class will be designed to meet the specific needs of graduate students specializing in the area of Plant Breeding who need further specific knowledge and/or skills.
INSTRUCTOR(S): Dept. of Plant and Animal Sciences Faculty
FORMAT: Lecture 3 hours

AGRI 5520.03: Plant Breeding Methods.
Genetic and statistical principles underlying modern plant breeding methods are introduced. Those principles will be reinforced throughout the use of computer models. Cultivar development techniques for self-and cross-pollinated species are examined in detail. Applications of tissue culture, genetic engineering, and marker-facilitated selection are discussed. This class is open to students who have had introductory courses in genetics, plant breeding, statistics, and molecular biology.
INSTRUCTOR(S): Dept. of Plant and Animal Sciences Faculty
FORMAT: Lecture 3 hours, labs 2 hours

AGRI 5530.03: Nitrogen in Crop Production.
Students will study the transformations of N in air, soil, water, and plants and consider crop requirements for N. Topics include the chemistry of N, the N cycle, N transformations in soil, N metabolism in plants, N transport in plants, N-fixation, N losses in agricultural systems and an evaluation of N fertilizer in these systems.
INSTRUCTOR(S): D. Burton, D. Lynch
FORMAT: Lecture 3 hours

AGRI 5540.03: Special Topics in Crop Physiology.
This class will be designed to meet the specific needs of graduate students specializing in the area of Crop Physiology who need further specific knowledge and/or skills.
INSTRUCTOR(S): C. Caldwell, S. Asiedu, N. Goodyear, R. Martin, R. Lada
FORMAT: Lecture 3 hours

AGRI 5560.03: Advanced Crop Physiology.
Physiological processes relevant to crop plant development and production of harvestable yield will be examined.
INSTRUCTOR(S): C. Caldwell
FORMAT: Lecture 3 hours

AGRI 5570.03: Special Topics in Agricultural Biotechnology.
This course will be designed to meet the specific needs of graduate students specializing in the area of Agricultural Biotechnology who need further specific knowledge and/or skills.
INSTRUCTOR(S): B. Benkel
FORMAT: Lecture 3 hours

AGRI 5610.03: Special Topics in Animal Product Technology.
This class will review areas important in the technology of foods derived from animals (meat, fish, eggs, milk). Such areas could include chemistry (lipid oxidation, Maillard reactions), physics (changes caused by freezing, sol-gel conversion, colour) and microbiology (spoilage, pathogenic organisms, modified-atmosphere packaging, HACCP). Each student will be expected to present a review of a particular topic.
INSTRUCTOR(S): Dept. of Plant and Animal Sciences Faculty
FORMAT: Lecture 3 hours

AGRI 5620.03: Ruminant Digestive Physiology & Metabolism.
This class is designed to provide an intensive study of food intake and digestion, and nutrient absorption and metabolism, in the ruminant animal. The course details current knowledge and focuses on aspects of future research interest. Students are expected to contribute to discussions and present reviews to the class on various aspects of the subject.
INSTRUCTOR(S): A. Fredeen
FORMAT: Lecture 3 hours, lab 2 hours
PREREQUISITE: NUTR 3000, CHEM 3006

AGRI 5630.03: Intermediate Statistical Methods.
Analysis of single-factor experiments, randomized blocks, Latin squares, factorial and two-level fractional factorial designs.
INSTRUCTOR(S): T. Astatkie
FORMAT: Lecture 3 hours, lab 1 hour
PREREQUISITE: STAT 3000 or permission of the instructor
CROSS-LISTING: STAT 4000

AGRI 5700.03: Communication Skills and Graduate Seminar.
Through practical assignment, students will be able to test and develop their communication skills. Topics will include review, criticism and writing of journal papers, grant applications, posters, seminars, lectures and interviews. This course is required for students enrolled in the MSc in Agriculture Programme.
INSTRUCTOR(S): G. Price
FORMAT: Lecture 3 hours, Seminar 1 hour

AGRI 5705.03: Graduate Module Class II.
This course normally consists of three modules. Each module consists of one month of lectures or assignments dealing with a topic in the lecturer's area of expertise. Research interests of incoming students are taken into account each year when module topics are solicited. Students should not apply to take a module unless they have at least a second-year undergraduate background in the focus area. A formal evaluation is made at the end of each module.
Fall/Winter semester: Students registering for the module course in September must complete three modules between September and April (8 months).
Winter/Summer semester: Students registering for the module course in January must complete three modules between January and August (8 months).
COORDINATOR: K. Corscadden
PREREQUISITE: Prerequisite: AGRI5710
AGRI 5710.03: Graduate Module Class I.
This class normally consists of three modules. Each module consists of one month of lectures or assignments (2-3 hours per week) dealing with a topic in the lecturer's area of expertise. Research interests of incoming graduate students are taken into account each year when module topics are solicited. Students should not apply to take a module unless they have at least a second year undergraduate background in related material. A formal evaluation is made at the end of each module.
COORDINATOR: K. Corscadden
NOTE: Fall/winter semester: Students registering for the module course in September must complete three modules between September and April (8months).

This course is designed to provide practical skills in statistical methods and experimental designs, and an appreciation of situations when more complex models and methods are required. Topics include linear and nonlinear regression, split-plot designs, repeated measures and response surface methods. Students will be expected to successfully complete practical exercises involving real experimental problems and data sets. Students will also be expected to acquire proficiency in at least one advanced statistical software package.
INSTRUCTOR(S): T. Astatkie
FORMAT: Lecture 3 hours
PREREQUISITE: STAT 4000, AGRI 5630 or equivalent

AGRI 5730.03: Directed Studies in Food and BioProduct Science.
This course aims to provide graduate students an opportunity for detailed study and critical thinking in a food and bioproduct research area of interest. Through individual study and research, and guidance and instruction provided by a professor, students will leave the course with comprehensive knowledge of a contemporary topic(s) in the discipline, with improved skills in comprehension, problem formulation, writing/communication and critical thinking.
COORDINATOR: V. Rupasinghe
FORMAT: Individual work/discussion with instructor
PREREQUISITE: Permission of the instructor and graduate coordinator

AGRI 5740.03: Advanced Studies in Food Chemistry.
This course is designed to allow graduate students to explore in detail various aspects of the chemical nature of agri-food products. This may include but is not limited to a study of naturally occurring components (functional foods and nutraceuticals), nutritional changes during value-added processing and product formulation. The exact focus of the class will depend on the expressed interest of student in the course.
INSTRUCTOR(S): N. Pitts
FORMAT: Lecture 1 hour, Discussion 1 hour
PREREQUISITE: One undergraduate food science class or equivalent

AGRI 5750.03: Biotechnology.
The course is to provide students with general information on the theory and technologies that are currently used in biotechnology. Class topics will include gene identification, transformation and expression regulations, tissue culture and cell culture techniques, and other genomics related agricultural applications. Nutriceutical and pharmaceutical applications will also be discussed.
INSTRUCTOR(S): G. Wang-Pruski
FORMAT: Lecture and Lab
PREREQUISITE: Genetics (GENE 2000) or equivalent
CROSS-LISTING: GENE 4003

AGRI 9000.00: MSc Thesis.
Students register for this class when they are engaged in research work for credit towards the MSc in Agriculture degree.

Anatomy and Neurobiology
Location: Sir Charles Tupper Medical Building, 5850 College St., P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-6850
Fax: (902) 494-1212
Website: http://www.anatomy.dal.ca

D.G.J. Campbell Professor and Head of Department
Leslie, R. A.

Professors
Baldridge, W.H., BSc (Toronto), PhD (McMaster), Structure and function of the vertebrate retina
Brownstone, R.M., BSc, MB, ChB (Manchester), MSc (Toronto), FRCS(C), Anatomy, function and rehabilitation of hearing and balance disorders.
Currie, R.W., BSA, MSc, PhD (Manitoba), Heat shock proteins and protection of heart and brain
Darvesh, S., MD (Dal), PhD (UBN), FRCP (C), Synthetic chemistry of neurogenerative disorders, major appointment in Medicine (Neurology)
Leslie, R.A., BSc (Brock), PhD (Cambridge) Neuroimaging and Neuropharmacology of psychiatric illness
Mendez, L, MD, PhD (Western), FRCS(C), Neural transplantation in the mammalian CNS, major appointment in Surgery (Neurosurgery)
Morris, S., BSc (Victoria), MD (Ottawa), MSc (Toronto), FRCS(C), Anatomy and physiology of surgical skin and muscle flaps, major appointment in Surgery
Neumann, P.E., BA, MD (Brown), Development neurogenetics, pattern formation and experimental neuropathology
Perrot, T.S., BSc (Dalhousie), Institute for Biodiagnostics (Atlantic), National Research Council Canada, Functional brain imaging, magnetic resonance imaging (MRI, fMRI), magneto-electro-encephalography (M/EEG), diagnostic imaging, neurology and neurosurgery (Radiology)
Phelps, T., MD, PhD (Prague) Neuroanatomical changes as risk factors for bipolar disorders (Psychiatry)

Associate Professors
Allen, G.V., BSc, PhD (Dal), CNS responses to brain injury
Darley, N., R.C.N., BSc (Victoria), MSc, PhD (Dalhousie), Institute for Biodiagnostics (Atlantic), National Research Council Canada, Functional brain imaging, magnetic resonance imaging (MRI, fMRI), magneto-electro-encephalography (M/EEG), diagnostic imaging, neurology and neurosurgery (Radiology)
Kablar, B., MD, PhD (Zagreb, Pisa), Developmental relationship between skeletal myogenesis, neurogenesis, and osteogenesis
Perrot, T.S., BSc, PhD (Western) Sex differences in stress responding (Psychology/Neuroscience)
Schmidt, M., MSc, MD (Toronto), FRCP(C), Pediatric radiology, major appointment in Radiology
Sinha, G., MBBS (Banaras), Student Advisor to medical and graduate students, Faculty of Medicine
Smith, F.M., BSc, MSc, PhD (UBC), Autonomic control of the circulation
I. Admission Requirements

All general requirements for admission to the Faculty of Graduate Studies must be fulfilled. In addition, applicants are expected to have received a sound training in biological science.

A. Honours Degree Holders in Biological Sciences

Applicants with an excellent background and an A- or better average may apply for direct admission to the PhD program. Others may apply for the MSc program, with option to transfer to the PhD program after one year, contingent upon the recommendation of the student’s advisory committee.

B. Master’s Degree Holders in Biological Sciences

May apply for direct admission to PhD program.

C. Medical Graduates

Individuals showing an aptitude for research may apply for admission to either the MSc or PhD program.

II. Degree Programs

A. Doctor of Philosophy (PhD)

Residency requirements for the PhD degree are summarized in the Faculty of Graduate Studies regulations.

The class requirements for each PhD candidate are decided through consultation with the student, the research supervisor and the student’s Advisory Committee at the beginning of the first year. Students must fulfill a minimum of one credit of required classes if they have not taken core classes in anatomical sciences. Students should maintain an A-average. All PhD candidates must participate in the departmental seminar program during each full year of training. The acquisition of teaching skills is an integral part of the program. Therefore, the student is also required to assist in laboratory teaching (approximately 30-40 hours per year) and to deliver 2-4 hours of lectures during the course of his/her training.

A written thesis (ANAT 9530.00) based on original research of a high calibre must be submitted and defended orally.

Financial assistance may be available for qualified candidates for a period of up to four years.

Evaluation

Students must submit a research proposal to their Advisory Committee by the end of the first year.

All PhD candidates must pass a preliminary examination no later than 1 full year prior to the submission of a thesis. The examination will include material related to the general and specific areas of research. The examining committee will be selected by the student’s Advisory Committee after consultation with the research supervisor and will conduct the examination in accordance with the regulations established by the Department of Anatomy and Neurobiology.

Thesis Examination

MSc and PhD theses will be defended in accordance with the regulations of the Faculty of Graduate Studies.

B. Master of Science (MSc)

Two years is required to complete all requirements for the MSc degree.

Students are required to take two full credits (12 credit hours) at the graduate level, including ANAT 5201.03 and an anatomy elective. A written thesis reporting original research must be submitted and defended orally. The MSc thesis (ANAT 9000.00) counts for three full credits (18 credit hours). All MSc candidates must participate in the departmental seminar program during each year of training. Classes are decided through consultation with the student, research supervisor and the student’s Advisory Committee at the beginning of the first year. For each candidate, classes will be selected from those listed below or, where appropriate, from those offered by other Departments.

The acquisition of teaching skills is an integral part of the program. Therefore, all MSc candidates must assist in laboratory teaching or an equivalent (approximately 30-40 hours) after the first year.

Financial assistance may be available for qualified students for a period of up to two years.

C. Master of Science or Doctor of Philosophy, Anatomy/Neuroscience (MSc/PhD)

Anatomy and Neurobiology also offers a PhD in Anatomy/Neuroscience through the interdisciplinary Neuroscience program.

III. Class Descriptions

Required

ANAT 5030X/Y.06: Human Histology.

The class consists of a series of lectures and laboratories describing the structure of the tissues and organs of the human body. The lecture and the laboratory work is supplemented with tutorials.

COORDINATOR: P. Neumann

NOTE: Students taking this class must register in both X and Y in consecutive terms; credit will only be given if both are completed consecutively.

ANAT 5100.06: Human Neuroanatomy.

This class consists of two parts: lectures and labs in the Fall Term, and seminars in the Winter Term. Lectures and labs are designed to acquaint the student with the anatomy and organization of the human central nervous system. Lecture topics include: cellular morphology; gross and microscopic anatomy of the spinal cord, brain stem, diencephalon (thalamus and hypothalamus), and telencephalon (cerebral hemispheres); blood supply of the CNS, meninges, and cerebrospinal fluid. Laboratory exercises involve exposure to aspects of microscopic and ultrastructural morphology of the CNS, examination of selected cross sections of spinal cord, brain stem, and diencephalon and telencephalon, and dissection of the brain. Seminars in the Winter Term are organized to discuss selected topics in neuroanatomy. Readings selected by the instructor or by students form the basis for discussion. Some sessions are supplemented by lectures. Students take written and practical examinations (Fall Term), give presentations, and write a term paper on a topic agreed upon in consultation with the instructor (Winter Term).

INSTRUCTOR(S): K. Sembé

ANAT 5130X/Y.06: Topics in Mammalian Embryology and Molecular Developmental Biology.

The course will cover various topics in general embryology, histology and molecular developmental biology. Students will learn how and why genetically engineered mice are generated. They will become familiar with...
different phenotypic analyses of mice and mouse embryos that are used as models of human diseases.

COORDINATOR: B. Kablar

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

FORMAT: Lectures/teaching labs, reading assignments, research labs, tutorials

PREREQUISITE: ANAT 5162.03 or consent of the coordinator

ANAT 5162.03: Gross Anatomy of the Head and Neck.

A detailed study of the gross anatomy of the head and neck through lecture, lab and clinical cases. Hands on learning in the labs will focus on the dissection of a human cadaver emphasizing the gross anatomy of the head and neck. Students will have the opportunity to use anatomy videos as a learning tool which will assist in learning the topics covered in the lectures and the lab and will be used as an evaluating tool for students to assess their progress. The session will conclude with an clinical case presentation integrating all topics learnt in lecture and lab.

INSTRUCTOR(S): Sinha, G.

FORMAT: Lectures/labs/tutorials

PREREQUISITE: Undergraduate Degree

EXCLUSION: ANAT 5160.09

ANAT 5170.03: Special Topics.

This is a flexible class permitting a student to work closely with one or several faculty members; the content of the class is determined by the individual student in consultation with the faculty member involved and is intended to enable students to take advantage of specialized educational opportunities that fall outside the normal class offerings of the Department. A description and justification of class content must be prepared and approved by the student’s advisory committee and the Department graduate studies committee.

COORDINATOR: Arranged according to research topic

ANAT 9000.00: MSc Thesis.

ANAT 9530.00: PhD Thesis.
Parcell, S., BArch (Toronto), MArch (Cranbrook), PhD (McGill). Historical definitions of architecture; interdisciplinary alliances with architecture; history and theory of architectural representation.

Associate Professors
Bonnemaison, S., BSc (Concordia), BArch (Pratt), MSc(Arch) (MIT), PhD (UBC). Lightweight and tensile structures, motion studies in architecture, architectural installations, temporary urbanism of festivals, responsive environments and electronic textiles for architectural applications.

Lilley, B., BES (Manitoba), AA Dipl. Ecological and programmatic strategies in design, technical implementation as architectural device, material research in glass, assemblies, and natural ventilation, modernism and aesthetics; computer simulations and cinematic representations.

Molesky, S., BArch (Cal. Poly.), MArch (Cranbrook). Material process and creative imagination, phenomenological and psychological inhabitation, the relationship between body-architecture-landscape, places of memory, natural forms and systems.

Savage, N., BA (Alberta), BEDS, MArch (FP) (TUNS), NSAA. Private practice design work in residential buildings, public buildings, and affordable housing developments; architectural visualization and its graphic applications; building case studies.

Assistant Professors
Hudson, R., BSc, MArch, PhD (Bath). Process design, tool building, building information models.

Mullin, R., BEDS, MArch (FP) (TUNS). Detailing and significance of materials; landscape and buildings in coastal environments; community partnerships; design-build; representation in documentation, design, and construction.

Parsons, A., BSc (McGill), MES (Dal), SMBT (MIT). Wood technology, wood lot management and the environmental impact of forest management practices, building performance of residential wood frame construction systems, timber frame systems.

Venart, C.A.S., Cert. Eng. (Mt. Allison), BFA (Toronto), MArch (SCI-Arc), AK NWF (prof. reg. Germany). Experiential, spatial, and phenomenological methods of documenting, representing and analyzing site, architecture, urban and natural environments; private design practice; multi-disciplinary design strategies for urban and architectural competitions and projects; publication and exhibition design.

Lecturer
Kelly, P., BSc (Dal), MSc (TUNS). The use of multimedia tools in architectural design, geographical information system, and astroarchaeology (astronomical alignments of ancient structures).

Cross-Appointed Faculty
Palermo, F., BArch (Toronto), MArch UD (Harvard) - Planning

Adjunct Professors
Burns, C., BA (Bryn Mawr), BA, MArch (Yale) Carter, B., Dipl. Arch (Nottingham), MArch (Toronto); SUNY Buffalo Gans, D., MArch (Princeton); Pratt Institute Sassenroth, P., Dipl.Arch. (Tech. Univ. Berlin)

Instructor
Jannasch, E., BEDS (TUNS), MArch (FP)(Dal). History and future of building; relationships between film design and material culture.

I. Introduction
The School of Architecture, which is part of the Faculty of Architecture and Planning at Dalhousie University, was established in 1961 to serve the Atlantic region. While it continues to fulfill its original mandate, the School also contributes nationally and internationally to architecture through its dynamic faculty and committed student body. Its primary aim is to educate individuals who intend to become professional architects. The School’s professional degree program includes the two-year Bachelor of Environmental Design Studies degree and the two-year Master of Architecture degree. Most of the program is conducted within the School of Architecture by full-time faculty members. It also includes two co-op
work terms in which students gain practical experience in an architectural office. The curriculum enables architectural education and practice to develop in parallel.

Design
The central activity of the professional degree program is architectural design - the creative study of buildings and cities. In the School’s design studios, students examine historical and contemporary buildings in Canada and abroad, and respond through the design of new architectural projects. From the core studies of the undergraduate program to the elective studies and design thesis of the graduate program, students learn to rely on their artistic skill, their knowledge of history and technology, their social and cultural awareness, and their critical imagination. Architecture is a multi-disciplinary profession, with alliances to the fine arts, the humanities and technologies, and many undergraduate disciplines provide an effective entry into architecture. Conversely, architectural studies provide an excellent foundation for careers in a variety of design-related fields.

Facilities
The School is housed in the original home of the Nova Scotia Technical College, built in 1909 and renamed the Ralph M. Medjuck Building in 2005. Corresponding to the School’s emphasis on architectural design, one-third of the building is devoted to studio spaces that are open to students twenty-four hours a day. The building also has several computer labs with a wide array of equipment, a fully-equipped woodworking shop, an experimental construction lab, a digital modeling shop, photographic and GIS facilities, and a large exhibition hall. The University Library’s architecture collection is located nearby and a student resource centre is housed within the Faculty.

Co-op Work Terms
The School’s professional degree program includes two work terms that provide students with practical experience in building design and responsible professional practice. The School’s Co-op Program has been operating since 1970, and the Faculty of Architecture and Planning’s Co-op Office assists students in finding suitable work term placements. In recent years, Architecture students have been employed in every province and territory in Canada, and approximately one-third have chosen to work abroad - most recently, in Australia, Austria, Bahamas, Bermuda, Denmark, France, Germany, India, Israel, Kuwait, Mexico, Netherlands, New Zealand, Norway, Portugal, Spain, Switzerland, Thailand, United Kingdom, and the United States.

Accreditation
The School’s professional degree program is fully accredited by the Canadian Architectural Certification Board (CACB). The entire six-year program consists of two years of general studies at a recognized university, followed by two years of graduate study at the School of Architecture (BEDS) and two years of graduate study at the School of Architecture (MArch). In Canada, all provincial associations recommend a degree from an accredited professional degree program as a prerequisite for licensure. The Canadian Architectural Certification Board, which is the sole agency authorized to accredit Canadian professional degree programs in architecture, recognizes two types of accredited degrees: the Bachelor of Architecture and the Master of Architecture. A program may be granted a five-year, three-year, or two-year term of accreditation, depending on its degree of conformance with established educational standards. Master’s degree programs may consist of a pre-professional undergraduate degree and a professional graduate degree, which, when earned sequentially, comprise an accredited professional education. However, the pre-professional degree is not, by itself, recognized as an accredited degree.

Professional Registration
After receiving the professional degree, a graduate may fulfill additional requirements for professional registration, including a period of postgraduate practical experience and the completion of registration examinations. In Canada, these additional requirements are determined by provincial organizations that are empowered to register an individual for professional practice. An American citizen who graduates from the School’s MArch program is qualified to become an architectural intern in the United States and to complete the examination for professional registration there. Applicants from other countries are advised to contact their national architectural organization about requirements for professional registration.

II. Classes Open to Non-Majors
The School of Architecture offers several classes that are open to all students in the university:

- ARCH 1000X/Y.06: Introduction to Architecture
- ARCH 1200X/Y.06: Science of the Built Environment
- ARCH 2000.03: Visual Thinking A
- ARCH 2001.03: Visual Thinking B
- ARCH 2025.03: Design Drawing

Please consult the undergraduate calendar for class descriptions. Please consult the university’s academic timetable for available classes. Individuals who are not currently registered at Dalhousie University should refer to the university’s regulations in this calendar for details on Special Student status.

III. Undergraduate Degree Program
The Bachelor of Environmental Design Studies program description is included here in the graduate calendar to provide an overview of the entire professional degree program in the School of Architecture, which includes both the BEDS and the MArch degrees. Please refer to the undergraduate calendar for undergraduate regulations.

Bachelor of Environmental Design Studies
BEDS is a two-year, full-time, pre-professional program for a student who has already completed at least two years of general studies in subjects other than architecture. It consists of four academic terms in residence and a four-month work term. The BEDS degree recognizes a student’s successful completion of a minimum of four years of university study, including two at the School of Architecture.

The BEDS program consists primarily of required classes in Design, Humanities, Technology, Representation, and Professional Practice. These classes provide a base of academic knowledge and design skill from which a student may proceed to a graduate program. The BEDS program leads to the MArch program, as well as to the Faculty’s other graduate programs in Environmental Design Studies and Planning. A BEDS graduate may also choose to continue into another related field in design, environmental studies, management, etc., at Dalhousie or elsewhere.

For Undergraduate admission requirements, see the undergraduate calendar or the School of Architecture website: http://archplan.dal.ca.

IV. Undergraduate Classes Offered
A. Professional Degree Program
The following chart illustrates the distribution of terms throughout the four years of the professional degree program in the School of Architecture. Following the two-year general studies prerequisite, the next two years are Bachelor of Environmental Design Studies and the final two years are Master of Architecture.

<table>
<thead>
<tr>
<th>Year</th>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B1</td>
<td>ARCH 1000X/Y.06</td>
<td>Introduction to Architecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARCH 1200X/Y.06</td>
<td>Science of the Built Environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARCH 2000.03</td>
<td>Visual Thinking A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARCH 2001.03</td>
<td>Visual Thinking B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARCH 2025.03</td>
<td>Design Drawing</td>
</tr>
</tbody>
</table>

B. Bachelor of Environmental Design Studies
Year 3 - Term B1 (Fall)
- ARCH 3001.06: Design
- ARCH 3104.03: Foundations in Architectural History and Theory
- ARCH 3207.03: Building Technology
• ARCH 3001.01: Professional Practice
• ARCH 3501.03: Representation

Year 3 - Term B2 (Winter)
• ARCH 3002.06: Design
• ARCH 3105.03: Architectural History and Theory - 20th Century
• ARCH 3208.03: Building Technology
• ARCH 3302.01: Professional Practice
• ARCH 3502.03: Representation

Year 4 - Term B3 (Summer)
• ARCH 4003.03: Design
• ARCH 4004.03: Free Lab
• ARCH 4110.03: Architectural History and Theory - 14th-18th Century
• ARCH 4211.03: Building Systems Integration
• ARCH 4303.01: Professional Practice
• ARCH 4501.03: Representation

Year 4 - Term B4 (Fall)
• ARCH 4892.03: Professional Practice (Co-op Work Term)

Year 4 - Term B5 (Winter)
• ARCH 4005.06: Design
• ARCH 4111.03: Architectural History and Theory - 19th Century
• ARCH 4212.03: Building Systems Integration
• ARCH 4304.01: Professional Practice
• ARCH 4502.03: Representation

V. Undergraduate Class Descriptions

Third-year and fourth-year classes are restricted to students in the BEDS program.

ARCH 3001.06: Design.
This class studies basic principles of architecture through studio projects using drawings and models. Students design elementary building forms beginning with the room and the pavilion, on various sites. Working with basic building elements of floor, wall and roof, students consider architectural composition and materials at the three scales of detail, building, and site. The class includes historical design studies to understand how other architects have responded to similar problems.
INSTRUCTOR(S): Staff
FORMAT: Lecture/studio
RESTRICTION: Year 3 BEDS students

ARCH 3002.06: Design.
This class studies principles of architecture by focusing on the design of the house. Building on topics from ARCH 3001, it considers issues of composition (structural, volumetric, and spatial), building programs, interior environment, and relations to community context and ecological surroundings. The class includes historical design studies to understand how other architects have responded to these issues.
INSTRUCTOR(S): Staff
FORMAT: Lecture/studio
RESTRICTION: Year 3 BEDS students

ARCH 3104.03: Foundations in Architectural History and Theory.
This class introduces basic topics in architecture and interpretive methods in architectural research. It focuses on selected buildings and the role of the architect in the ancient and medieval eras. To develop research skills and architectural awareness, students interpret local buildings through direct experience and study distant and historical buildings through publications.
INSTRUCTOR(S): S. Parcell
FORMAT: Lecture/seminar
RESTRICTION: Year 3 BEDS students

ARCH 3105.03: Architectural History and Theory - 20th Century.
This class is a survey of late modern architecture, focusing on Europe and North America. Buildings and urban projects are situated in their social and political contexts and the theoretical constructs that influenced their development. Students are exposed to extramural archives and resources to research local modern buildings and their architects.
INSTRUCTOR(S): C. Macy
FORMAT: Lecture/seminar
RESTRICTION: Year 3 BEDS students

ARCH 3207.03: Building Technology.
This class studies aspects of building technology that act as primary generators of architectural form: structure, material, light and sound. Construction process is examined in terms of materials, methods and sequences. Principles of building structure and methods of structural analysis are introduced. The physics and perception of light in built environments are studied. Quizzes and tests are complemented by studio exercises.
INSTRUCTOR(S): D. Gooodz
FORMAT: Lecture/studio
RESTRICTION: Year 3 BEDS Students

ARCH 3208.03: Building Technology.
This class studies aspects of building technology that mediate the relationship between interior and exterior environments. Building materials studies include structural and environmental properties, constructional implications, and principles of assembly and joining. The principles of heat flow, air flow and moisture flow in building enclosures are presented. Students undertake a series of design exercises applying knowledge of topics studied in the class.
INSTRUCTOR(S): E. Jannasch
FORMAT: Lecture/studio
RESTRICTION: Year 3 BEDS students

ARCH 3301.01: Professional Practice.
This class introduces the role and place of the architect in society, with an emphasis on the development of the profession through history. It also studies representation methods employed by architects and their implications for design.
INSTRUCTOR(S): Staff
FORMAT: Lecture/seminar
RESTRICTION: Year 3 BEDS students

ARCH 3302.01: Professional Practice.
In this week-long module students learn about the architect in society; the political, social, economic and ethical environments in which architects operate; and an introduction to office organization and project management.
INSTRUCTOR(S): Staff
FORMAT: Lecture/seminar
RESTRICTION: Year 3 BEDS students

ARCH 3501.03: Representation.
This class studies fundamental concepts, techniques, and applications of architectural representation. Course work involves freehand drawing, orthographic drawing, model making, and digital media. Drafting and modeling equipment are required.
INSTRUCTOR(S): Staff
FORMAT: Lecture/studio
RESTRICTION: Year 3 BEDS students

ARCH 3502.03: Representation.
This class builds on the principles of drawing, modeling, imaging, and composition studied in ARCH 3501. It emphasizes manual skills and concepts of the 2D and 3D interplay in drawing, imaging, and spatial form. Topics include construction of drawings and material devices, tone, texture, composition, perspective, and atmospheric phenomena.
INSTRUCTOR(S): S. Molesky
FORMAT: Lecture/studio
RESTRICTION: Year 3 BEDS students

ARCH 3503.03: Representation.
This class builds on the principles of drawing, modeling, imaging, and composition studied in ARCH 3501. It emphasizes manual skills and concepts of the 2D and 3D interplay in drawing, imaging, and spatial form. Topics include construction of drawings and material devices, tone, texture, composition, perspective, and atmospheric phenomena.
INSTRUCTOR(S): S. Molesky
FORMAT: Lecture/studio
RESTRICTION: Year 3 BEDS students

ARCH 4003.03: Design.
This class studies principles of architecture through the design of a public building. Building on previous courses, it includes the organization of a public program and issues of context and interpretation. As an intensive studio it encourages students to focus on design intentions and to develop an awareness of design process.
INSTRUCTOR(S): Staff
FORMAT: Lecture/studio
RESTRICTION: Year 4 BEDS students
ARCH 4004.03: Free Lab.
To complement studio-based learning, this class is an experimental hands-on workshop in design led by an instructor. Investigations of a particular architectural topic may include design-build, documentary work, landscape installations, community design projects and interdisciplinary work. Projects may be done locally or involve travel to a distant site.
INSTRUCTOR(S): Staff
FORMAT: Lecture/studio
RESTRICTION: Year 4 BEDS students

ARCH 4005.06: Design.
This class studies advanced principles of architectural design through the design of a medium-sized institutional building. Elaborating on topics from the previous design courses, students organize a complex program on an urban site and develop a project that uses building technology strategically and engages relevant issues in architectural history and theory. Emphasis is also placed on fluency in architectural representation.
INSTRUCTOR(S): Staff
FORMAT: Lecture/studio
RESTRICTION: Year 4 BEDS students

ARCH 4110.03: Architectural History and Theory - 14th-18th Century.
This class studies significant buildings and the role of architecture from the Renaissance to the Enlightenmen, mainly in Europe. It follows the transition from master builder to architect, and the humanist search for order and its manifestation in built form. Students analyze the design of significant buildings by studying historical documents and making interpretive drawings and models.
INSTRUCTOR(S): Staff
FORMAT: Lecture/seminar
RESTRICTION: Year 4 BEDS students

ARCH 4111.03: Architectural History and Theory - 19th Century.
This class studies significant buildings and architects in Europe and North America during the early modern era. It focuses on buildings related to influential theories or developments in material culture and technology. To develop skills in research and criticism, students examine primary and secondary sources, including articles, photographs, and drawings.
INSTRUCTOR(S): S. Bonnemaison
FORMAT: Lecture/seminar
RESTRICTION: Year 4 BEDS students

ARCH 4211.03: Building Systems Integration.
This class studies the integration of building structural and enclosure systems in architectural design. Long span structural systems and lateral forces are examined, including their interaction with the enclosure system. Building enclosure studies include the performance of materials in assemblies, the performance of the building envelope, and the sequence of construction. The integration of structure and enclosure is examined through the construction detail. Students complete case studies and design projects integrating structure and enclosure in buildings.
INSTRUCTOR(S): R. Hudson
FORMAT: Lecture/studio
RESTRICTION: Year 4 BEDS students

ARCH 4212.03: Building Systems Integration.
This class studies performance standards related to human activities in buildings, and the systems and configurations required to support those activities. Building systems are considered in relation to climate, urban situation, and the natural environment. Principles of systems thinking, as well as the use of physical and computational modeling methods, are applied to the comprehensive design of a building to achieve defined performance standards and to consider issues of sustainability with regard to energy balance, water conservation, and component materials.
INSTRUCTOR(S): R. Kroeker
FORMAT: Lecture/studio
RESTRICTION: Year 4 BEDS students

ARCH 4303.01: Professional Practice.
This class introduces contemporary office practices and project delivery including marketing, contracts, project phases and contract administration. The class also introduces issues related to the co-op work term, including job placement and the role of the student in a professional office.
INSTRUCTOR(S): B. Nyicum
FORMAT: Lecture/seminar
RESTRICTION: Year 4 BEDS students

ARCH 4304.01: Professional Practice.
This week-long module students learn about the architect in society; professional ethics; models of practice; legal aspects of practice; authorities having jurisdiction over building; finance and costing techniques; and internship.
INSTRUCTOR(S): Staff
FORMAT: Lecture/seminar
RESTRICTION: Year 4 BEDS students

ARCH 4501.03: Representation.
This class studies advanced strategies of representation. It promotes the fluent use of manual and digital media in design development, guided by architectural intentions and an understanding of architectural history, theory, and technology.
INSTRUCTOR(S): S. Parcell
FORMAT: Lecture/studio
RESTRICTION: Year 4 BEDS students

ARCH 4502.03: Representation.
This class studies advanced strategies of representation. It promotes the fluent use of manual and digital media in design development, guided by architectural intentions and an understanding of architectural history, theory, and technology.
INSTRUCTOR(S): S. Parcell
FORMAT: Lecture/studio
RESTRICTION: Year 4 BEDS students

ARCH 8892.03: Professional Practice (Co-op Work Term).
A student works in some aspect of the profession for a total of 500 hours to be accomplished in no less than 12 weeks, and completes a research report or assignment. Work placements are coordinated by the co-op coordinator for Architecture and must be approved by the School. In exceptional circumstances a student may apply to satisfy up to 500 hours of the time requirement through supervised research related to professional practice.
RESTRICTION: Year 4 BEDS students

Graduate Degree Programs

A. Master of Architecture
Master of Architecture is a two-year, full-time program consisting of four academic terms in residence and an eight-month work term. It includes required classes that complete the core requirements for the School’s professional degree program. Elective classes also enable a student to focus on a particular area of study such as housing, urban design, history and theory, building technology, environmental design, or computer applications. In the final year each student works on a design thesis, supervised by a faculty member.

The MArch program begins in May. Most transfer students enter in January to take several undergraduate classes during the winter term before applying for MArch admission.

B. Master of Architecture (Post-Professional)
Master of Architecture (Post-Prof.) is a one-year program for a student who has already obtained a professional degree in architecture. It may be taken through full-time or part-time study. Subject areas each year depend on faculty availability. For available subjects in 2012-2013, please refer to the “Graduate Programs” page on the School of Architecture Website.
Two options are available for completing the MArch (Post-Prof.) program:
1. Eight half-credits of classes plus a MArch (Post-Prof.) Major Project equivalent to two half-credits.
2. Six half-credits of classes plus a MArch (Post-Prof.) Thesis equivalent to four half-credits.
C. Master of Environmental Design Studies
Master of Environmental Design Studies is a one-year, non-professional program for a student who has completed an undergraduate degree in environmental design or a related field but does not intend to become a professional architect. It may be taken through full-time or part-time study. Subject areas each year depend on faculty availability. For available subjects in 2012-2013, please refer to the “Graduate Programs” page on the School of Architecture Website.

Two options are available for completing the MEDS program:
1. Eight half-credits of classes plus a MEDS Major Project equivalent to two half-credits.
2. Six half-credits of classes plus a MEDS Thesis equivalent to four half-credits.

VI. Graduate Admission Requirements
A. Minimum Academic Requirements
Candidates for all graduate programs must meet the minimum admission requirements of the Faculty of Graduate Studies.

Master of Architecture
Admission is based mainly on the applicant’s design portfolio and academic record. For an applicant to be considered, a minimum of 4 years (eight academic terms) of university classes is required, including architectural studies equivalent to the Dalhousie BEDS degree, with a minimum B average (3.00 GPA) during the last two years (ten credits). A minimum B average in architectural design classes is also required. In assessing an application, the Admissions Committee looks for strong evidence of readiness to pursue graduate studies in design, humanities, technology, and professional practice. For external applicants, the committee looks for strengths equivalent to standards at the end of Dalhousie’s BEDS program.

The Admissions Committee assesses transfer credits and recommends the level at which an applicant is eligible to enter the professional degree program. To meet professional accreditation standards, the committee cannot offer a level of entry that would permit a student to obtain the professional degree with less than six full years of university, including two years of general studies. An applicant who is ineligible for Master of Architecture admission may be offered entry at an advanced level in the BEDS program or may be required to take qualifying classes.

Master of Architecture (Post-Professional)
An applicant must have a professional degree in architecture with high academic standing from a recognized university. Admission is based on the applicant’s design portfolio, academic record and statement of intent, regarding one of the graduate positions announced on the School of Architecture Website. An application that does not specify an available position will not be accepted.

Master of Environmental Design Studies
An applicant must have an undergraduate degree with high academic standing from a recognized university. This degree must be either a Bachelor of Environmental Design Studies degree, a Bachelor’s degree with honours, or a Bachelor’s degree with a major in a subject related to the applicant’s proposed field of study in the MEDS program. Admission is based on the applicant’s academic record and statement of intent, regarding one of the graduate positions announced on the School of Architecture Website. An application that does not specify an available position will not be accepted.

B. Documents
An external applicant to one of the School’s graduate degree programs must submit all of the following documents before the application can be reviewed:

1. To be submitted to the Registrar’s Office:
 - graduate application form
 - the appropriate application fee (see Graduate Studies Fees in this calendar):
 To confirm receipt of the items above, please contact the Registrar’s Office:
 - MArch applicants:
 - an official academic transcript from all previous post-secondary institutions;
 - evidence of competency in English for applicants whose native language is not English (see Graduate Studies Admission Requirements in this calendar);
 - a letter describing your background, your interest in the MArch program, your proposed area(s) of specialization in the MArch program (e.g., housing, urbanization, building construction, environmental systems, history/theory, digital media), and a possible thesis topic.
 - a printed portfolio of design work that demonstrates the applicant’s architectural design ability. This portfolio will not be returned.
 - two letters of recommendation, including at least one from an academic instructor with close personal knowledge of the applicant’s academic background. Each recommendation must be submitted on a Confidential Reference Letter form.

 - MArch (Post-Prof.) and MEDS applicants:
 - graduate application form (Part A - copies 2 and 3) and supplementary application form (Part B);
 - graduate application form
 - an official academic transcript from all previous post-secondary institutions;
 - evidence of competency in English for applicants whose native language is not English (see Graduate Studies Admission Requirements in this calendar);
 - a letter that indicates the graduate position for which the applicant is applying (selected from the “Graduate Positions” page on the School of Architecture Website), summarizes the applicant’s previous academic / work in this area, and describes his/her career aspirations;
 - MArch (Post-Prof.) applicants should include a portfolio of advanced architectural design work, especially work done in the proposed subject area. For MEDS applicants, a design portfolio is optional.
 - two letters of recommendation, including at least one from an academic instructor with close personal knowledge of the applicant’s academic background. Each recommendation must be submitted on a Confidential Reference Letter form.

 To confirm receipt of the items above, please contact the Graduate Architecture Secretary, at grad.arch@dal.ca or by telephone (902) 494-3973. For additional application instructions, please refer to the School of Architecture website: archplan.dal.ca

Dalhousie Year 4 BEDS students who apply directly to the MArch program are required to submit an application form and a statement about the proposed area of focus in the graduate program to the Architecture office by February 1, followed by a design portfolio at the end of the winter term. An application fee, transcripts, introductory letter, and letters of recommendation are not required.

A. Application Deadline
For the Master of Architecture program, the deadline for applications from Canada and the United States is February 1. The deadline for applications from all other countries is December 1.

Transfer students with a pre-professional architecture degree who may not have completed classes that are equivalent to all required Dalhousie BEDS subjects should apply by October 1 and anticipate taking one or more undergraduate classes in the winter term.
VII. Graduate Regulations

School of Architecture Regulations
In addition to the Faculty of Graduate Studies regulations in this calendar, refer to the ‘Current Students’ section of the School of Architecture Website for academic regulations.

VIII. Graduate Classes Offered

A. Master of Architecture

Year 5 - Terms M1 and M2 (Summer and Fall)
• two core classes in Design (ARCH 50xx.06 series)
• two core classes in Humanities (ARCH 51xx.03 series)
• two core classes in Technology (ARCH 52xx.03 series)
• two graduate electives (ARCH 5xxx.03 or ARCH 6xxx.03)

Year 5 - Terms M3 and M4 (Winter and Summer)
• ARCH 5308.03: Professional Practice (Co-op Work Term)
• ARCH 5309.03: Professional Practice (Co-op Work Term)

Students extending their work term register for ARCH 5310.00: Co-op Work Term Continuation.

Before entering Year 6, a student must pass a Year 5 review to confirm that all Year 5 requirements have been completed.

Year 6 - Term M5 (Fall)
• ARCH 5216.06: Building Systems Integration for Design Thesis
• ARCH 9007.06: MArch Thesis Preparation
• one graduate elective (ARCH 5xxx.03 or ARCH 6xxx.03)

Year 6 - Term M6 (Winter)
• ARCH 5311.03: Professional Practice
• ARCH 9008.06: MArch Thesis
• one graduate elective (ARCH 5xxx.03 or ARCH 6xxx.03)

Graduate Classes

Core Classes - Design
• ARCH 5002.06: Urban Housing Studio
• ARCH 5003.06: Adaptive Reuse Studio
• ARCH 5004.06: Urban Systems Studio
• ARCH 5005.06: Material Detail Studio
• ARCH 5006.06: Light Frame Building Studio
• ARCH 5007.06: Landscape Studio
• ARCH 5009.06: Ephemeral Architecture Studio
• ARCH 5010.06: Public Architecture Studio
• ARCH 5011.06: Coastal Studio

Core Classes - Humanities
• ARCH 5102.03: Housing Theory
• ARCH 5103.03: Residential Real Estate Development
• ARCH 5104.03: Urban Systems
• ARCH 5105.03: History and Theory of Cities
• ARCH 5106.03: International Sustainable Development
• ARCH 5107.03: Theory and the Built Environment
• ARCH 5108.03: Architectural Theory of the Enlightenment
• ARCH 5109.03: Ephemeral Architecture
• ARCH 5110.03: Architectural Exhibitions
• ARCH 5111.03: Integrated Coastal and Ocean Planning
• ARCH 5112.03: Documentation and Conservation of the Modern Movement in Architecture
• ARCH 5198.03: Humanities Seminar

Core Classes - Technology
• ARCH 5202.03: From Timber to Lumber
• ARCH 5203.03: From Lumber to Structure
• ARCH 5204.03: Composite Materials
• ARCH 5205.03: Earth Construction
• ARCH 5206.03: Natural Finishes
• ARCH 5207.03: Light and Material
• ARCH 5208.03: Acoustics
• ARCH 5209.03: Energy Efficient Design
• ARCH 5210.03: Life Cycle Analysis
• ARCH 5211.03: The Construction Detail
• ARCH 5212.03: From Principle to Detail
• ARCH 5213.03: Facades
• ARCH 5214.03: Tensile Architecture
• ARCH 5215.03: Fabrication
• ARCH 5298.03: Technology Seminar

Electives
• ARCH 6001.03: Design Seminar
• ARCH 6002.03: Free Lab
• ARCH 6121.03: Architecture and Archaeoastronomy
• ARCH 6122.03: Humanities Seminar
• ARCH 6209.03: Material Investigation
• ARCH 6210.03: Material Investigation in Wood
• ARCH 6211.03: Technology Seminar
• ARCH 6304.03: Entrepreneurship
• ARCH 6305.03: Permission to Build
• ARCH 6306.03: Professional Practice Seminar
• ARCH 6501.03: Graphic Design in Architecture
• ARCH 6502.03: Painting in Architecture
• ARCH 6503.03: Photography in Architecture
• ARCH 6504.03: Montage in Architecture
• ARCH 6505.03: Multimedia in Architecture
• ARCH 6506.03: Spatial Constructions in Digital Video
• ARCH 6507.03: Language as Representation
• ARCH 6508.03: Alternatives to Perspective
• ARCH 6509.03: Digital Form
• ARCH 6510.03: Architectural Documentation and Analysis
• ARCH 6511.03: Documentation of Historic Buildings
• ARCH 6512.03: Developments in Architectural Representation
• ARCH 6513.03: Representation Seminar

For a graduate elective, a student may take a class offered by another department at Dalhousie University. The subject need not be directly related to architecture, but must be at a graduate level or equivalent. A maximum of two electives may be undergraduate classes that have been elevated to a graduate equivalent by the instructor and approved by the School and by Graduate Studies. With a Letter of Permission, a student may also take a class at another university, if the class is not available at Dalhousie University.

B. Master of Architecture (Post-Professional)

• ARCH 7001.04: MArch (Post-Prof.) Major Project
• ARCH 7003.00: Continuation - MArch (Post-Prof.) Major Project
• ARCH 9002.08: MArch (Post-Prof.) Thesis
• ARCH 9005.00: Continuation - MArch (Post-Prof.) Thesis

Other available classes are listed in the Master of Architecture section above and in the Planning section of this calendar.

C. Master of Environmental Design Studies

• ARCH 7002.04: MEDS Major Project
• ARCH 7004.00: Continuation - MEDS Major Project
• ARCH 9003.08: MEDS Thesis
• ARCH 9006.00: Continuation - MEDS Thesis

Other available classes are listed in the Master of Architecture section above and in the Planning section of this calendar.

IX. Graduate Class Descriptions

Class Numbers
The first digit of an ARCH class number indicates whether it is an MArch core class (5), an elective (6), a MArch (Post-Prof)/MEDS class (7), or Thesis (9). The second digit indicates the area of study: Design (0), Humanities (1), Technology (2), Professional Practice (3), or Representation (5). Classes have various credit-hour extensions (03-06) that indicate the approximate class hours each week and the appropriate balance of subjects for professional accreditation.

Not all classes are offered every year. Please consult the current timetable for this year’s offerings.
ARCH 5002.06: Urban Housing Studio.
This studio explores the aesthetic, tectonic, social/cultural and economic challenges presented by contemporary high-density, mixed-use development. The relationships of architecture to urbanism, and building to city, will be explored through exemplary precedents and the design of housing and its associated commercial, institutional, and recreational components.
INSTRUCTOR(S): J. G. Wanzel
FORMAT: Studio
RESTRICTION: Graduate Students - Architecture

ARCH 5003.06: Adaptive Reuse Studio.
This class studies architectural design through the adaptation of an existing building. It examines tensions between existing built facts (structure, enclosure, and circulation) and new ambitions (habitation, construction, and cultural representation). It also considers historical and urban contexts and the heritage value of existing buildings.
INSTRUCTOR(S): Staff
FORMAT: Studio
RESTRICTION: Graduate students - Architecture

ARCH 5004.06: Urban Systems Studio.
This studio examines the infrastructure of the metropolis and its influence on urban form and development. Topics include systems for transportation, energy use, water distribution, civic institutions, spaces of social exchange, and ecology. Students develop urban infrastructure propositions with reference to innovative urban projects worldwide.
INSTRUCTOR(S): Staff
FORMAT: Studio
RESTRICTION: Graduate students - Architecture

ARCH 5005.06: Material Detail Studio.
This studio uses bricolage as a method to represent architectural ideas, observations, and intentions in a built artifact. Students interpret, modify, and project material details in architecture. The conceptual development of the work informs strategies for the development of an architectural design.
INSTRUCTOR(S): R. Mullin
FORMAT: Studio
RESTRICTION: Graduate students - Architecture

ARCH 5006.06: Light Frame Building Studio.
This class studies the material and constructional orders of light-weight framing and cladding systems. Through drawing, model, and full-scale construction, case studies of buildings by modern and contemporary designers inform design projects for a multiple residential or small institutional building.
INSTRUCTOR(S): Staff
FORMAT: Studio
RESTRICTION: Graduate students - Architecture

ARCH 5007.06: Landscape Studio.
This studio investigates architectural responses to landscape. It regards the land as a physical and cultural context requiring appropriate methods of visualization and representation. Referring to recent projects in land art, it considers how to engage local materials and interests while promoting the sustainable occupation of a particular site.
INSTRUCTOR(S): B. Lilley, N. Savage
FORMAT: Studio
RESTRICTION: Graduate students - Architecture

ARCH 5009.06: Ephemeral Architecture Studio.
This studio examines temporal, fleeting and ephemeral architecture, in contrast to the permanent, monumental, and timeless architecture that has been stressed throughout history. Students address concepts of alterity, the carnivalesque, l’informe, and inversion by designing spaces and/or activities on the edges of the established order.
INSTRUCTOR(S): S. Bonnemaison
FORMAT: Studio
RESTRICTION: Graduate students - Architecture

ARCH 5010.06: Public Architecture Studio.
This studio examines the role of public architecture in manifesting cultural values through the design of a civic institution. It also considers public architecture as an expression of material culture that mediates between the scales of artifact and landscape.
INSTRUCTOR(S): B. MacKay-Lyons, T. Sweetapple
FORMAT: Studio
RESTRICTION: Graduate students - Architecture

ARCH 5011.06: Coastal Studio.
This studio investigates building on the coast. It explores conjunctions of ecology, culture, and traditional technical knowledge. Through participatory design, students work with a coastal community to develop innovative responses to situations with sensitive ecologies, extreme climate, and local cultural traditions.
INSTRUCTOR(S): T. Cavanagh
FORMAT: Studio
RESTRICTION: Graduate students - Architecture

ARCH 5102.03: Housing Theory.
This class introduces the history and theory of contemporary practice in housing design and production. The focus is on the quality of housing and the residential environment. A comparative analysis of significant past and current examples is used to provide insight into the way houses and neighbourhoods are designed. This understanding is placed in the context of differing economic, political and housing market situations.
INSTRUCTOR(S): J. G. Wanzel
FORMAT: Lecture/seminar
CROSS-LISTING: PLAN 6111.03
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5103.03: Residential Real Estate Development.
This class introduces the basic issues, vocabulary, and conceptual approaches of residential real estate development. It also engages the range of design, development, financing, approval, and construction processes that are involved in the production of housing.
INSTRUCTOR(S): J. G. Wanzel
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5104.03: Urban Systems.
This seminar examines the infrastructure of the metropolis and its influence on urban form and development. It considers transportation, energy use, water distribution, civic institutions, spaces of social exchange, and ecological systems. It emphasizes new concepts of what is “urban” and what is “natural,” referring to innovative urban designs worldwide.
INSTRUCTOR(S): C. Macy
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5105.03: History and Theory of Cities.
This class examines selected major cities, their originating form, important buildings, and building types in their history. The primary aim is to explore the relationship between architecture and urbanism and the relationship between individual buildings and the city.
INSTRUCTOR(S): Staff
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5106.03: International Sustainable Development.
This class examines sustainable development in developed and developing countries. Local building practices and cultural appropriateness are studied through case studies. It considers how architects have handled materials and technology to engender patterns of living in a reflective and symbiotic manner.
INSTRUCTOR(S): Staff
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture

ARCH 5107.03: Theory and the Built Environment.
This class is an overview of contemporary architectural theory, structured into three themes: architecture as a poetic act, moral act, and meaningful act. These themes allow students to develop their research and design
ARCH 5108.03: Architectural Theory of the Enlightenment.
This class focuses on the phenomenon of the Enlightenment and the search for origins. The terms "Classic" and "Romantic" are examined in depth, as are archaeology, the culture of ruins, historiography, association theory, and the Picturesque. Architectural theories are compared with selected works of architecture and architectural representation.
INSTRUCTOR(S): S. Bonnemaison
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5109.03: Ephemeral Architecture.
This seminar explores ideas of "otherness" in the city, manifested as ephemeral or temporary constructions and as critical responses to established norms. Theories of alterity, the carnivalesque, l'informe and inversion are used to interpret spaces and activities in the city that are marginal, liminal, repressed, neglected, or abandoned.
INSTRUCTOR(S): S. Bonnemaison
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5110.03: Architectural Exhibitions.
This seminar introduces students to contemporary discussions in the field of exhibit design for architecture, including the role of the viewer, the use of display techniques to frame objects, and the curatorial voice. Groups of students develop an exhibition on a subject of their choice.
INSTRUCTOR(S): S. Bonnemaison
FORMAT: Seminar/studio
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5111.03: Integrated Coastal and Ocean Planning.
This studio-based class introduces spatial planning of coasts and oceans. It integrates environmental design, planning, policy, and management. It emphasizes tools and processes for professional field work, analysis, and synthesis. Students gain practical experience of theory, practice and professional aspects of coastal planning by drafting plans or proposals for action.
INSTRUCTOR(S): T. Cavanagh
FORMAT: Seminar/studio
CROSS-LISTING: MARA 5014.03
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5112.03: Documentation and Conservation of the Modern Movement.
This class studies the documentation and conservation of buildings, sites and neighbourhoods of the Modern Movement. It examines international charters, protocols, and issues of identifications, evaluation and public awareness. Students undertake fieldwork and research on specific projects and contribute to a general register of modern works.
INSTRUCTOR(S): Staff
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5198.03: Humanities Seminar.
This class focuses on an advanced topic in architectural humanities. The topic changes from year to year. It may emphasize history, theory, criticism, urban studies, or architecture in development.
INSTRUCTOR(S): Staff
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5202.03: From Timber to Lumber.
This class examines principles of forestry and ecology pertaining to woodland management. It considers forest ecology, wood production, and the conversion of trees into building products such as dimensional lumber and engineered wood products.
INSTRUCTOR(S): A. Parsons
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture

ARCH 5203.03: From Lumber to Structure.
This class focuses on the structural analysis of wood framed buildings and structures. Structural principles in simple beam theory, column design, and lateral load design are studied in traditional and contemporary wood framed buildings.
INSTRUCTOR(S): A. Parsons
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture

ARCH 5204.03: Composite Materials.
This class surveys the history of materials, focusing on natural and synthetic polymers, resins, and composite material systems. It studies their origin, chemical content, and manufacturing processes. These materials and their related processes are used to fabricate functional objects, with attention to structure, assembly, and environmental impact.
INSTRUCTOR(S): R. Mullin
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture

ARCH 5205.03: Earth Construction.
This class studies traditional and contemporary methods of earth construction (cob, rammed earth, wattle and daub, earth bag, and adobe) as sustainable, low-impact building systems. Based on the science of soils, it considers appropriate uses of earth technology in the construction of houses.
INSTRUCTOR(S): K. Thompson
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5206.03: Natural Finishes.
This class examines the use of natural finishes (earth and lime plasters, paint, stone, and wood) for walls, floors, and ceilings in contemporary buildings. Natural, local, and reused materials are assessed in terms of installation, cost, durability, aesthetic characteristics, and environmental impact in comparison with industrialized products.
INSTRUCTOR(S): K. Thompson
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 5207.03: Light and Material.
This class examines characteristics of daylight and artificial light. It analyzes and experiments with how light is produced, is transmitted, and interacts with various materials. By considering lighting options for a particular use, it regards light as an integral element in the design of interior and/or exterior space.
INSTRUCTOR(S): Staff
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture

ARCH 5208.03: Acoustics.
This seminar studies principles of interior room acoustics and audio-visual design. To address acoustical requirements in various types of spaces, it considers sound projection and isolation, and the control of mechanical and environmental noise through building design and acoustical materials.
INSTRUCTOR(S): Staff
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture

ARCH 5209.03: Energy Efficient Design.
This class focuses on sustainable building services. It studies building energy codes and rating systems - specifically LEED - in the Atlantic region. It also examines international strategies for low-energy building;
ARCH 5210.03: Life Cycle Analysis.
This class studies the range of environmental impacts associated with building materials and assemblies, from their raw state to the end of their useful life. It considers operating energy, embodied energy, and carbon sequestration, with particular attention to the structure and building envelope of wood framed heritage buildings.
INSTRUCTOR(S): A. Parsons
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture

ARCH 5211.03: The Construction Detail.
This class examines the construction detail and its dialectical relationship to the architectural whole. Case studies of details in major twentieth-century buildings inform detail practice, in which students investigate material options and construction details for a project of their own design.
INSTRUCTOR(S): Staff
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture

ARCH 5212.03: From Principle to Detail.
This class advances the technological content of a concurrent design project or thesis. It focuses on the integration of building systems (e.g., structure, construction, environmental technology), beginning with an overview of principles, followed by self-directed material exploration, and culminating in the production of a relevant building detail.
INSTRUCTOR(S): B. Lilley, D. Goodz
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture

ARCH 5213.03: Facades.
This class examines the various functions of a building facade: protection from weather, interior comfort, urban sign, and potential energy producer. It considers how a facade designed for a particular program can achieve high performance through attention to detail: building materials, manufacturing processes, and construction techniques.
INSTRUCTOR(S): B. Lilley, D. Goodz
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture

ARCH 5214.03: Tensile Architecture.
This class studies the design and behaviour of tensile structures by building and testing models and mock-ups. It also explores the rheotrical potential of tensile structures by integrating technologies such as video, sound, light, sensors, and smart fabrics.
INSTRUCTOR(S): S. Bonnemaison
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture

ARCH 5215.03: Fabrication.
This class studies the sequence of trades involved in building construction. It examines the material processes of various construction industries and considers their implications for design, with an emphasis on relations between convention and innovation.
INSTRUCTOR(S): T. Sweetapple
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture

ARCH 5216.06: Building Systems Integration for Design Thesis.
This class parallels MArch Thesis Preparation (ARCH 9007). Each student undertakes a technological study of his/her architectural design thesis through an ecological analysis of the site; a definition of performance criteria; an investigation of relevant building systems; and the design, construction, and testing of a significant material detail.
INSTRUCTOR(S): B. Lilley
FORMAT: Lecture/seminar
PREREQUISITE: Completion of Year 5 MArch

ARCH 5298.03: Technology Seminar.
This class focuses on an advanced topic in architectural technology. The topic changes from year to year. It may emphasize materials, environmental strategies, or building details.
INSTRUCTOR(S): Staff
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture

ARCH 5308.03/5309.03: Professional Practice (Co-op Work Term).
A student works in the architectural profession for 1000 hours in no less than 24 weeks and completes a research report or assignment. Work placements must be approved by the School of Architecture. A student may apply to satisfy up to 500 hours through supervised research related to Professional Practice.
INSTRUCTOR(S): Staff
FORMAT: Work term
RESTRICTION: MArch students

ARCH 5310.00: Co-op Work Term Continuation.
A student who has already registered for ARCH 5308 and ARCH 5309 may continue the co-op work term for up to three additional terms. While registered in ARCH 5310, a student's university status changes to part-time.
INSTRUCTOR(S): Staff
FORMAT: Work term
PREREQUISITE: ARCH 5308.03, ARCH 5309.03
RESTRICTION: MArch students

ARCH 5311.03: Professional Practice.
This class studies principles of professional ethics, partnerships, corporate practices, professional responsibility, and legal aspects of architectural practice. It also considers issues in practice management: contracts, codes, reference documents, finance, costing techniques, and contract administration.
INSTRUCTOR(S): Staff
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture

ARCH 6001.03: Design Seminar.
This seminar focuses on an advanced topic in architectural design. The topic changes from year to year. It may emphasize urbanism, landscape, building, process, program, or habitation.
INSTRUCTOR(S): Staff
FORMAT: Seminar/studio
RESTRICTION: Graduate students - Architecture

ARCH 6002.03: Free Lab.
This class complements normal studio-based learning. It pursues an architectural topic through experimental hands-on work in a group format. Topics change from year to year and may include design-build work, documentaries, landscape installations, community design projects, and interdisciplinary work. Projects may be local or involve travel to a distant site.
INSTRUCTOR(S): Staff
FORMAT: Workshop/lab
RESTRICTION: Graduate students - Architecture

ARCH 6215.03: Earth Construction.
This class studies traditional and contemporary methods of earth construction (cob, rammed earth, wattle and daub, earth bag, and adobe) as sustainable, low-impact building systems. Based on the science of soils, it considers appropriate uses of earth technology in the construction of houses.
INSTRUCTOR(S): K. Thompson
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor

ARCH 6216.03: Natural Finishes.
This class examines the use of natural finishes (earth and lime plasters, paint, stone, and wood) for walls, floors, and ceilings in contemporary buildings. Natural, local, and reused materials are assessed in terms of...
installation, cost, durability, aesthetic characteristics, and environmental impact in comparison with industrialized products.
INSTRUCTOR(S): K. Thompson
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor
ARCH 6121.03: Architecture and Archaeoastronomy.
This course studies the significance of the night sky to various ancient and non-Western cultures, including the Egyptian, Celtic, Mesoamerican, Anasazi, and First Nations. It examines how celestial features and motions guided the design of buildings and influenced cultural practices, including the measurement of time.
INSTRUCTOR(S): P. Kelly
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor
ARCH 6122.03: 6123.03/6124.03/6125.03: Humanities Seminar.
This class focuses on an advanced topic in architectural humanities. The topic changes from year to year. It may emphasize history, theory, criticism, urban studies, or architecture in development.
INSTRUCTOR(S): Staff
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor
ARCH 6209.03: Material Investigation.
This class uses a controlled workshop environment to examine characteristics of a material (e.g., metal, ceramic, glass) and methods for forming and finishing. Using principles of material science, it considers the harvesting or processing of raw material, the testing of structural capacity and environmental behaviour, and applications in design.
INSTRUCTOR(S): Staff
FORMAT: Workshop/seminar
RESTRICTION: Graduate students - Architecture
ARCH 6210.03: Material Investigation in Wood.
This class uses a controlled workshop environment to examine characteristics of wood and methods for forming and finishing. Using principles of material science, it considers the harvesting or processing of raw material, the testing of structural capacity and environmental behaviour, and applications in design.
INSTRUCTOR(S): Staff
FORMAT: Workshop/seminar
RESTRICTION: Graduate students - Architecture
ARCH 6211.03: 6212.03/6213.03/6214.03: Technology Seminar.
This class focuses on an advanced topic in architectural technology. The topic changes from year to year. It may emphasize materials, environmental strategies, or building details.
INSTRUCTOR(S): Staff
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture
ARCH 6304.03: Entrepreneurship.
Successful entrepreneurship requires an ability to identify opportunities, skill to calculate risks, and the knowledge and determination to promote, develop, and implement a project. This class uses a case study approach to examine entrepreneurship in the public, private, and not-for-profit sectors and to assess potential applications to architectural practice.
INSTRUCTOR(S): J. G. Wanzel
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor
ARCH 6305.03: Permission to Build.
Obtaining a building permit is only the last hurdle to clear before a potential architectural project can be realized. This class examines the entire process, including the various authorities, agencies, and groups that are involved, along with municipal planning regulations, building codes, material specifications, and public presentations.
INSTRUCTOR(S): N. Savage
ARCH 6306.03: Professional Practice Seminar.
This class focuses on an advanced topic in architectural professional practice. The topic changes from year to year.
INSTRUCTOR(S): Staff
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor
ARCH 6501.03: Montage in Architecture.
This class examines the history, concepts, and uses of montage in architectural representation. It also considers how digital photography and computer technology can generate various forms of montage for analyzing and developing architectural designs.
INSTRUCTOR(S): K. Kam
FORMAT: Seminar/studio
RESTRICTION: Graduate students - Architecture
ARCH 6503.03: Photography in Architecture.
This class examines architectural photography from the late nineteenth century to the present. By analyzing and applying various photographic styles and techniques, students learn about photographic representation in architecture.
INSTRUCTOR(S): K. Kam
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture
ARCH 6504.03: Montage in Architecture.
This class examines the history, concepts, and uses of montage in architectural representation. It also considers how digital photography and computer technology can generate various forms of montage for analyzing and developing architectural designs.
INSTRUCTOR(S): K. Kam
FORMAT: Seminar/studio
RESTRICTION: Graduate students - Architecture
ARCH 6505.03: Multimedia in Architecture.
This class examines the use of various technologies to visualize, develop, and display multimedia presentations of architecture that may include text, graphics, photographs, sound, voice, animation, and/or video. It also considers how architectural designs can be developed using multimedia. These topics may apply also to projects in urban planning.
INSTRUCTOR(S): P. Kelly
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture and Planning or permission of instructor
ARCH 6506.03: Spatial Constructions in Digital Video.
This seminar investigates how digital audio and video can represent physical and spatial qualities of existing architectural, urban, or rural conditions. It emphasizes the use of the video camera and digital software for recording, imaging, and editing.
INSTRUCTOR(S): C. Venart
FORMAT: Studio/seminar
PREREQUISITE: ARCH 6505
RESTRICTION: Graduate students - Architecture
ARCH 6507.03: Language as Representation.
This class examines the reciprocal role of language and visual perception in architecture. It considers architectural description and criticism according to linguistic or dialectical models such as the theory of language games, classical rhetoric, or religious apology.
INSTRUCTOR(S): Staff
ARCH 6508.03: Alternatives to Perspective.
This class examines the limitations of linear perspective as a definitive method for representing objects and spaces. It analyzes Renaissance premises of perspective and considers other periods and cultures for alternatives that might be applied in contemporary architectural representation.
INSTRUCTOR(S): Staff
FORMAT: Seminar
RESTRICTION: Graduate students - Architecture

ARCH 6509.03: Digital Form.
This class considers the influence of emerging representational technologies on the making of architectural form. By analyzing how the design process is affected by working only in a digital environment, students learn about the limitations and possibilities of digital form.
INSTRUCTOR(S): N. Savage
FORMAT: Lecture/studio
PREREQUISITE: ARCH 6505.03
RESTRICTION: Graduate students - Architecture

ARCH 6510.03: Architectural Documentation and Analysis.
This class investigates techniques for documenting and analyzing existing architectural or urban conditions. Various modes of representation (drawing, model, video, and photography) are used to interpret the complex experience of physical form.
INSTRUCTOR(S): C. Venart
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture

ARCH 6511.03: Documentation and Reconstruction of Historic Buildings.
This class studies the use of drawings to document existing buildings, structures, and landscapes. It also studies drawings as a means of projection and examines their role in the reconstruction of past built works and projects.
INSTRUCTOR(S): Staff
FORMAT: Lecture/seminar
RESTRICTION: Graduate students - Architecture

ARCH 6512.03: Developments in Architectural Representation.
This class studies historical developments in the graphic language of architecture and its various modes of representation. By examining works by selected architects, students consider relationships between what is drawn and what is built.
INSTRUCTOR(S): N. Savage
FORMAT: Lecture/studio
RESTRICTION: Graduate students - Architecture

ARCH 6513.03: Representation Seminar.
This class focuses on an advanced topic in architectural representation. The topic changes from year to year. It may emphasize medium, relation to design, or history and theory.
INSTRUCTOR(S): Staff
FORMAT: Seminar/studio
RESTRICTION: Graduate students - Architecture
RESTRICTION: MEDS students

ARCH 9007.06: MArch Thesis Preparation.
Within a seminar group, each student formulates a thesis question and explores it through design, analytical, and interpretive studies. The student is expected to develop and demonstrate expertise in the subject area. ARCH 9007 and ARCH 9008 must be completed in consecutive terms.
INSTRUCTOR(S): Staff
FORMAT: Seminar/studio
PREREQUISITE: Completion of Year 5 MArch
RESTRICTION: MArch students

ARCH 9008.06: MArch Thesis.
Each student proposes, develops, and completes an architectural design project that investigates the thesis question. The thesis concludes with a graphic/model presentation, an oral examination, and a formal thesis document that is submitted to the university. The entire thesis requires a minimum of two consecutive terms of residence.
INSTRUCTOR(S): Staff
FORMAT: Studio
PREREQUISITE: ARCH 9007
RESTRICTION: MArch students

ARCH 9009.00: MArch Thesis Continuation.
This continuation of ARCH 9008: MArch Thesis is for students who have not completed the thesis in the minimum two terms. The maximum duration of a thesis is five terms (including ARCH 9007).
INSTRUCTOR(S): Staff
FORMAT: Studio
PREREQUISITE: ARCH 9008
RESTRICTION: MArch students
Atmospheric Science

Location: Physics and Atmospheric Science Department
Sir James Dunn Building
P.O. Box 15000
Halifax, NS B3H 4R2
Website: http://www.atm.dal.ca

Chairperson of Department
Rotermund, H.H., (902) 494-2342

Coordinator, Atmospheric Science
Drummond, J.R. (902) 494 2324

Professors
Drummond, J.R., MA, D. Phil (Oxford), FRSC-Canada Research Chair, Remote Sounding of Atmospheres
Geldart, D.J.W., BSc (Acadia), PhD (McMaster) FRSC- Research
Martin, R.V., BS (Cornell), MS, PhD (Harvard)

Associate Professors
Duck, T., BSc, PhD (York)
Folkins, L., BSc (Dal), MSc, PhD (Toronto)
Lesins, G.B., PhD (Toronto) (Research)

Assistant Professor
Pierce, J., BS (Northeastern), PhD (Carnegie Mellon)

I. Introduction
Atmospheric Science is part of the Department of Physics and Atmospheric Science and offers programs leading to M.Sc. and Ph.D. degrees in the following areas: cloud physics, aerosol physics and chemistry, dynamics, radiation, atmospheric chemistry, planetary remote sounding from space and the ground, Arctic atmospheres, LIDAR systems and climate modeling.

The Department of Physics and Atmospheric Science also offers programs leading to a Diploma in Meteorology. For more details see the undergraduate calendar.

II. Graduate Degrees
Graduate degrees in Atmospheric Science may be taken through the Departments of Physics and Atmospheric Science or Oceanography. Please see the calendar entry for Physics and Atmospheric Science or Oceanography for more details.

Biochemistry & Molecular Biology

Location: Sir Charles Tupper Medical Building, 9th Floor
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-2480
Fax: (902) 494-1355
Email: rmcdevit@dal.ca
Website: http://www.biochem.dal.ca

Head of Department
Byers, D.M., BSc, MSc (Dal), PhD (Alberta)

Professors Emeriti
Doolittle, W.F., AB (Harvard), PhD (Stanford)
Gray, M.W., BSc, PhD (Alberta)
Helleiner, C.W., BA, PhD (Toronto)

Professors
Bearne, S.L., BSc (Acadia), PhD (Toronto), MDCM (McGill), cross-appointment in Chemistry
Byers, D.M., BSc, MSc (Dal), PhD (Alberta), cross-appointment in Pediatrics
Dobson, M.J., BSc (Dal), DPhil (Oxon)
Doolittle, W.F., AB (Harvard), PhD (Stanford) - Post-Retirement
Duncan, R., BSc (Guelph), MSc (Queen's), PhD (Guelph), major appointment in Microbiology & Immunology
Gray, M.W., BSc, PhD (Alberta) - Post-Retirement
Liu, P.X.-Q., BSc (Wuhan), PhD (Cornell)
McLeod, R.S., BSc, PhD (UBC)
McMaster, C.R., BSc, PhD (Manitoba), Asst. Dean Graduate and Post Doctoral Studies, Faculty of Medicine, major appointment in Pediatrics
Ridgway, N.D., BSc, MSc (Dal), PhD (UBC), joint appointment with Pediatrics
Ridgway, N.D., BSc, MSc (Dal), PhD (UBC), joint appointment with Pediatrics
Ro, H.-S., BSc, PhD (McMaster)
Singer, R.A., AB (Princeton), PhD (Harvard), Assoc. Graduate Coordinator (Telephone: 494-2306), cross-appointment in Medicine
Too, C.K.L., BSc, MSc (Malaya), PhD (Hawaii), cross-appointment in Obstetrics & Gynaecology
Waisman, D.M., BSc (Brandon), PhD (Manitoba), joint-appointment in Pathology
Wallace, C.J.A., BA, MA, DPhil (Oxon)

Associate Professors
Archibald, J.M., BSc, PhD (Dal), Graduate Coordinator (Telephone: 494-2306)
Blouin, C., BSc (Laval), PhD (Dal), joint appointment with Computer Science
Karten, B., MSc (Hamburg), PhD (Graz)
Marignani, P.A., BSc (Windsor), MSc (Western Ontario), PhD (McMaster)
Rainey, J.K., BSc (Guelph), MSc, PhD (Toronto), cross-appointment in Chemistry; Director Nuclear Magnetic Resource (NMR-3)
Rosen, K.V., BSc, MSc, PhD (Moscow State), joint appointment with Pediatrics

Assistant Professors
Dellaire, G., BSc (UBC), PhD (McGill), major appointment in Pathology
Riddell, D.C., BSc, PhD (Queen's), major appointment in Pathology
Salamovits, C., PhD (Buenos Aires)
Van der Spooel, A.C., MSc (Utrecht), PhD (Rotterdam), major appointment in Pediatrics
Adjunct Professors
Ewart, K.V., BSc (Moncton), PhD (MUN), Senior Research Officer, National Research Council, Institute for Marine Biosciences
Karakach, T.K., BSc (Nairobi), MSc, PhD (Dal), Research Officer, National Research Council, Institute for Marine Biosciences
Sylvioksi, R.T., BSc, MSc (Lakehead), PhD (UBC), Research Officer, National Research Council, Institute for Marine Biosciences.

I. Admission
General requirements for admission to the Faculty of Graduate Studies are given in the Faculty Regulations section of this calendar. A TOEFL score of at least 600 (paper-based) or 100 (internet), or an IELTS score of at least 7.5 is necessary for those whose native language is not English. The TOEFL requirement may be waived if completion of the degree is at an institution where the language of instruction is English.

II. General Regulations
The Department accepts applicants with honours degrees (or the equivalent) in biochemistry & molecular biology and also those with research-based training in related fields such as biology, chemistry and biomedical sciences. Advanced knowledge within a student’s chosen area of biochemistry and molecular biology is developed by formal classes and/or guided study arranged for each student through consultation with a supervisory committee. Students also participate in the Biochemistry & Molecular Biology Seminar Course (BIOC 5910.06) and in teaching/laboratory demonstrating. Scholarship support is available, and students are eligible for the Patrick Prize and the Doug Hogue Award, awarded by the Department to recognize excellence in graduate research. Additional information can be obtained via our Website: (http://www.biochem.dal.ca).

III. Degree Programs
A. Master of Science (MSc) in Biochemistry & Molecular Biology
A thesis describing original research done by the candidate is prepared and defended orally. A Thesis Supervisory Committee consisting of the research supervisor and two others is appointed to facilitate the research. The minimum residence requirement for the MSc program is usually 1 year (see the Faculty of Graduate Studies regulations). Most students take an additional 12-18 months to complete the thesis.

B. Doctor of Philosophy (PhD) in Biochemistry & Molecular Biology
The preparation and oral defense of a thesis describing an extensive original investigation carried out by the candidate is major requirement. A Thesis Supervisory Committee consisting of the research supervisor and three others is appointed to facilitate the research. For students admitted directly into the PhD program, and for those requesting transfer from the MSc to the PhD program, a PhD Candidacy Examination related to the subject area of the thesis occurs at the start of the second year of study. The minimum residence requirements for the PhD are 2 years from the MSc and 3 years from the BSc (see the Faculty of Graduate Studies regulations). Most students take an additional 1-2 years to complete the thesis.

C. Master of Science (MSc) in Biochemistry & Molecular Biology/ Neuroscience
The department also participates in the interdisciplinary Neuroscience MSc program.

D. Doctor of Philosophy (PhD) in Biochemistry & Molecular Biology/ Neuroscience
The department also participates in the interdisciplinary Neuroscience PhD program.

E. Master of Science (MSc) in Computational Biology and Bioinformatics
The department also participates in this joint program along with the Faculty of Computer Science, the Dept. of Biology and the Dept. of Mathematics and Statistics.

IV. Areas of Specialization
A. Molecular Cell Biology and Molecular Genetics
Dellaire, G. - Nuclear structure and cancer biology: genome instability syndromes; cancer biomarkers; the role of nuclear organization in DNA repair, tumour suppression, and cell cycle control. Zebrafish as a novel animal tumour model.
Dobson, M.J. - Yeast plasmid segregation, role of sumoylation in chromosome and plasmid inheritance, regulation of gene expression, epigenetics.
McMaster, C.R. - Lipid homeostasis: genetic and molecular analysis of lipid metabolism in yeast with an eye to human disease genes; protein structure and function.
Marignani, P.A. - Molecular signalling of tumour suppressors, protein kinases and cellular migration, stem cell biology, genome stability, model organisms, translational research, system biology.
Ro, H.-S. - Signalling mechanisms of chronic inflammation/macrophage activation in atherosclerosis, mammary tumorigenesis, and type 2 diabetes mellitus.
Singer, R.A. - Molecular/genetic analysis of core eukaryotic functions; yeast chromatin regulation and intracellular membrane dynamics (with G.C. Johnston, Microbiology & Immunology).
Too, C.K.L. - Prolactin and steroid hormone action: signal transduction; gene expression; regulation of tumor cell growth and apoptosis; breast and prostate cancers.
Waisman, D.M. - Molecular mechanisms of metastasis and angiogenesis. Role of inflammation in tumor progression.

B. Comparative Genomics, Proteomics and Molecular Evolution
Archibald, J.M. - Genome evolution, gene transfer, endosymbiosis, molecular phylogeny.
Blouin, C. - Protein evolution and folding, molecular phylogeny, bioinformatics.
Doddulute, W.F. - Genome evolution: genomics, molecular phylogeny, role of lateral gene transfer in phylogeny and evolutionary innovation, origin and evolution of genomic complexity.
Gray, M.W. - Protist genomics: evolution of protist mitochondrial and nuclear genomes; ribosomal RNA, RNA processing and RNA editing.
Liu, P.X.-Q. - Intein and protein splicing; molecular evolution; protein engineering through directed evolution; protein splicing in gene therapy and in proteomics.
Rogers, A.J. - Protist phylogeny, organellar evolution and evolutionary genomic analysis: protein evolution, anaerobic organelles and bioinformatic method development.

C. Structure, Function and Metabolism of Biomolecules
Beame, S.L. - Enzyme catalysis and protein engineering: transition state analogues; enzyme inhibition; bio-organic reaction mechanisms; organic synthesis; biochemical recognition; protein modifications; active site architecture; enzyme evolution; proteomics.
Byers, D.M. - Protein structure and function: role of acyl carrier protein in bacterial growth and pathogenesis; protein mass spectrometry.
Duncan, R. - Protein-membrane interactions: cell-membrane fusion pathways and proteins; membrane protein structure and function;

Karakaş, T. - Transcriptomics, Proteomics and Metabolomics: design, measurement and analysis of high throughput -omics data; chemometrics applications to molecular level measurements resulting from DNA microarrays, LC-MS and NMR spectroscopy.

Karten, B. - Cholesterol metabolism in the brain: Cholesterol trafficking and import into mitochondria in relation to energy metabolism in neurons and glia. Role of cholesterol in synaptic function, Niemann-Pick Type C disease.

McLeod, R.S. - Lipoprotein assembly: structure and function of apolipoproteins; regulation of hepatic apoB secretion; lipid metabolism in the hepatic. Adiponectin and lipid metabolism in the adipocyte.

Rainey, J.K. - Structural biology: studying membrane and extracellular matrix proteins and peptides; peptide synthesis and expression of challenging proteins; biophysical characterization using protein NMR spectroscopy, scanning probe microscopy and complementary techniques.

Ridgway, N.D. - Sphingomyelin, phospholipids and cholesterol: metabolic and coordinate regulation; intracellular transport and vesicle trafficking; role in programmed cell death (apoptosis).

Svityč, R. - Biomolecule Structure-Function relationships: role of proteins, peptides and membranes in protein-induced membrane destabilization using magnetic resonance techniques (NMR & MRI), molecular dynamics computer simulations and electron microscopy.

van der Spoel, A.C. - Genetic diseases of lipid metabolism; intracellular traffic and turnover of glycosphingolipids; lipid-metabolizing enzymes. Organelle formation is male germ cells; male reproductive biology. Mapping of quantitative trait loci.

Wallace, C.J. - Protein engineering: chemical and genetic remodelling of cytochrome c for studies of mitochondrial electron transport and protein structure-function relationships.

V. Class Descriptions

Graduate Classes in Biochemistry & Molecular Biology
Not all classes are offered every year. Please consult the Department.

BIOC 5000.06: Special Topics in Biochemistry & Molecular Biology.
Students interested in topics not covered in formal classes may ask the department for special classes to meet their needs. The fields in which the department can offer instruction are reflected in the list of faculty research areas.

BIOC 5001.03: Special Topics in Biochemistry & Molecular Biology.
Students interested in topics not covered in formal classes may ask the department for special classes to meet their needs. The fields in which the department can offer instruction are reflected in the list of faculty research areas.

BIOC 5010.03: Bioinformatics.
This class presents the theory and practice of bioinformatics. Topics include: rates of mutations, sequence alignment, database searching, phylogenetic analysis, bioinformatic tools for analyzing gene, genomes and proteins.

INSTRUCTOR(S): A.J. Roger (coordinator) and C. Blouin
FORMAT: Lecture 3 hours with regular computer-based labs
PREREQUISITE: BIOC 3400.03

BIOC 5302.03: Lipoproteins: Structure, Biosynthesis and Metabolism.
The structure of lipoproteins, their biosynthesis and secretion are considered. The metabolism of lipoproteins and their removal from plasma is explored in relation to lipid transport and atherosclerosis. Emphasis is on the interpretation of original experimental data in the current literature. Evaluation is based on term papers and seminar presentations.

INSTRUCTOR(S): R.S. McLeod
FORMAT: Seminar/discussion and guided reading, 2 hours per week.

PREREQUISITE: BIOC 3200.03 and BIOC 3300.03, equivalent 3rd year courses or permission of the instructor.

BIOC 5305.03: Mechanisms of Signal Transduction.
The emphasis of this course is to introduce concepts and key mediators of signal transduction. Topics include protein kinases, tumour suppressors, oncogenes, G-protein coupled receptors, calcium signalling, lipids in signalling, integration of signalling cascades, cytoskeletal reorganization, cellular metastasis, apoptosis, anokis, genomic stability, and stem cell biology.

INSTRUCTOR(S): P.A. Marignani (coordinator), B. Karten, and K. Rosen
FORMAT: Lecture 3 hours, oral presentations
PREREQUISITE: BIOC 3200.03, BIOC 3300.03, and BIOC 3400.03 or instructor’s consent

BIOC 5307.03: Current Topics in Molecular and Cell Biology of Lipids.
Explores mechanisms and regulation of lipid metabolism, trafficking, and cell signaling. Includes sections on lipids in the central nervous system, methods of lipid analysis, and lipids in disease. Emphasis is given to evaluation of original data and critical reading of current literature. Evaluation is based on seminar presentations, an essay, and short home assignments.

INSTRUCTOR(S): B. Karten (coordinator), N.D. Ridgway
FORMAT: Seminar/discussion 3 hours
PREREQUISITE: BIOC 3300 or equivalent

BIOC 5308.03: Molecular Mechanisms of Complex Diseases.
The objective of this seminar course is to familiarize students with the molecular pathways that are involved in human diseases. The course has a strong emphasis on cancer, diabetes and cardiovascular diseases and clinical applications of signalling. Specific areas that are covered in detail include the role of tumor suppressor proteins in mediating cancer heart disease and diabetes. The use of animal models to study the complex interplay between environment and molecular homeostasis will also be discussed.

FORMAT: Essay, oral presentation based on essay, journal article presentation, take home assignments

BIOC 5403.03: Genes and Genomes.
This class discusses the organization of genes into genomes. It deals with (i) genetic material in nuclear and organellar genomes, (ii) components of genomes which are not genes, (iii) methodology of genomics and proteomics, and (iv) genetic organization and higher order chromosomal structure and function.

INSTRUCTOR(S): P. Liu
FORMAT: Lecture 3 hours
PREREQUISITE: BIOC 3400 or Instructor’s Consent

BIOC 5404.03: Gene Expression.
The different mechanisms for regulation of gene expression in bacterial and eukaryotic cells, and their viruses, are emphasized. Topics include genomic, transcriptional, and post-transcriptional modes of regulation. Evaluation is based on a mid-term examination, an essay and oral presentation on a topic selected by the student, and a final examination.

INSTRUCTOR(S): R.A. Singer
FORMAT: Lecture 3 hours
PREREQUISITE: BIOC 3400 or Instructor’s consent

BIOC 5501.03: Medical Biotechnology I.
This class covers fundamental principles of biotechnology from a medical perspective. Topics discussed include: recombinant DNA technology, polymerase-chain reaction-based applications, DNA microarrays, immunological techniques and applications, production of transgenic organisms, potential applications for embryonic stem cell and nuclear transfer cloning, business and legal aspects of biotechnology.

INSTRUCTOR(S): M.J. Dobson
FORMAT: Lectures/discussions/presentations
PREREQUISITE: Consent of instructor

BIOC 5503.03: Pathobiology of Cancer.
This course will examine the basic molecular and cellular biology of carcinogenesis and tumor pathobiology, as well as emerging topics in cancer genomics, diagnosis and treatment. The clinical aspects of cancer
management will also be highlighted, including surgery, radiation and chemotherapy.
INSTRUCTOR(S): G. Dellaire and L. Geldenhuys
FORMAT: Lecture 3 hours per week, student presentations and discussion.
PREREQUISITE: BSc degree obtained in any biological or medical science.
CROSS-LISTING: PATH 5040.03

BIOC 5700.03: Proteins.
Our theme is the relationship between structure and function. The kinetic and thermodynamic determination of the protein fold is explored. Specific details of how form determines function in binding other molecules both small and large, in membranes, and in energy transduction are provided. Protein evolution and turnover are examined.
INSTRUCTOR(S): C.J.A. Wallace
FORMAT: Lecture 3 hours
PREREQUISITE: BIOC 3700, plus CHEM 2301 and 2302 or CHEM 2303, or instructor’s consent

BIOC 5701.03: Enzymes.
Fundamental principles of enzyme catalysis and its regulation are examined. Topics include enzyme kinetics, enzyme inhibition and inactivation, isotope effect measurements, site-directed mutagenesis, and the active site architecture and transition state stabilization of selected enzymes. Classic and current papers in the literature are reviewed and the experimental and conceptual approach are critically appraised.
INSTRUCTOR(S): S.L. Bearne
FORMAT: Lecture 3 hours, problem sets, essay, and seminar
PREREQUISITE: BIOC 3200.03 (grade of B or higher) CHEM 2301.03 and 2302.03 or CHEM 2303.03 (Grade of B or higher) and CHEM 3601.03 or instructor’s consent

BIOC 5702.03: Biophysical Characterization of Macromolecules.
This class covers methods allowing determination of sub-molecular and atomic-level structure and dynamics of biomacromolecules in physiological settings (e.g. solution-state or lipid bilayers) including: fluorescence, electronic and vibrational circular dichroism and NMR spectroscopy; light vs. X-ray vs. neutron scattering; and, single molecule methods.
INSTRUCTOR(S): J. K. Rainey
FORMAT: Lecture 2.5 hours/seminar/tutorial 0.5 hours
PREREQUISITE: Consent of Instructor

BIOC 5811.03: Biochemistry of Clinical Disorders I.
This class is an introduction to the pathophysiology of disease. It provides the clinical and biochemical background to disease groups and system disorders and the laboratory approach to their diagnosis. Topics include cardiovascular, renal, gastrointestinal and hepatobiliary disorders, in addition to acid-base, blood and immune abnormalities. Students should contact the Department of Pathology to obtain information on this class.
INSTRUCTOR(S): Dr. R. Koupaei
FORMAT: Lecture 3 hours, case studies and assignments

BIOC 5812.03: Biochemistry of Clinical Disorders II.
This class is an introduction to the pathophysiology of disease. It uses the same approach as BIOC 5811.03 but different groups of diseases are discussed. Topics include carbohydrate, lipid and amino acid disorders; endocrine and rheumatological diseases, as well as tumor markers and toxicology. Students should contact the Department of Pathology to obtain information on this class.
INSTRUCTOR(S): Dr. R. Koupaei
FORMAT: Lecture 3 hours, case studies and assignments

BIOC 5910.06: Biochemistry and Molecular Biology Seminar.
This class provides students with experience in the written and oral presentation of scientific data. Interactive faculty and peer feedback is used to hone students’ skills with an emphasis on both clarity of presentation and on the ability of students to discuss specialist topics in general terms.
INSTRUCTOR(S): A.J. Roger (coordinator), S.L. Bearne and M.J. Dobson
FORMAT: Computer-based assignments, presentations

BIOC 6701.015: Mechanistic Enzymology.
Enzymes from a variety of classes will be examined from an organic chemistry reaction mechanism perspective. The general principles of enzyme catalysis and the experimental approaches used to elucidate enzyme reaction mechanisms will be discussed. Applications and examples from the current literature will be critically appraised.
INSTRUCTOR(S): D.L. Jakeman, S.L. Bearne
FORMAT: Lecture 3 hours and group problem-based learning
PREREQUISITE: CHEM 3401/3601 or BIOC 3700 or instructor’s consent
CROSS-LISTING: CHEM 6438.015

BIOC 6702.015: Topics in High Resolution Nuclear Magnetic Resonance.
Advanced topics in high resolution liquid state nuclear magnetic resonance will be explored, including the quantum mechanical basis of the observables, product operator treatment of pulse sequences, 2D NMR pulse sequences, coherence selection and relaxation.
INSTRUCTOR: J.K. Rainey
FORMAT: Lecture 3 hours and assignments
PREREQUISITE: CHEM 4402/5402, CHEM 4602/5602, or permission of instructor
CROSS-LISTING: CHEM 6362.015

BIOC 6703.015: Magnetic Resonance Techniques for Drug Design and Development.
Magnetic resonance techniques such as NMR spectroscopy and magnetic resonance imaging (MRI) have become essential tools for the design and molecular characterization of drugs and therapeutants. Topics of current interest are covered and include structural characterization of drugs, receptors and binding motifs, and MRI techniques for drug monitoring.
INSTRUCTOR(S): Dr. R. Syritski
FORMAT: Discussion/seminar
PREREQUISITE: CHEM 4601, or CHEM 4602, or permission of the instructor
CROSS-LISTING: CHEM 6457.015

BIOC 9000.06: MSc Thesis.

BIOC 9530.06: PhD Thesis.
Bioethics

Location: Clinical Research Centre
5849 University Avenue C315
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-3801
Fax: (902) 494-3865
Website: http://www.bioethics.dal.ca

Department Head
Simpson, C., BA&Sc (McMaster), MA (McMaster), PhD (Dalhousie).
Interests: the role of hope in health care, ethics education and capacity building, rural bioethics and organizational ethics.

Associate Professors
Fernandez, C., BSc (University of Western Ontario), MD (McMaster).
Associate Professor of pediatric hematology/oncology at the IWK Health Centre and Dalhousie University with a cross-appointment in the Department of Bioethics. Interests: Bioethics in pediatric research including return of research results to research participants, complementary and alternative cancer therapies, Wilms tumor.
Kirby, J., MA, MD (Dalhousie). Interests: clinical/organizational ethics, meso-level health care policy, mental health ethics and social/disability justice.

Assistant Professor
Reid, L., BA (Winnipeg), MA and PhD (Illinois). Interests: research ethics, interdisciplinary models of ethics education, medicine and social responsibility, ethics and neurosciences, history and conceptualization of somatic education, experience, epistemology, and social construction of chronic pain.

I. Classes offered

NOTE: The classes listed are half year classes, and may not be offered every year. Instructors are likely to vary from year to year. Consult the department for further information.

BIOT 5000.03: Advanced Topics in Bioethics.
The seminar involves critical examination of the bioethics literature. The application of various methodologies utilized in contemporary bioethical analysis will be highlighted. It will be of interest to graduate students in medicine, health professions, health law, and philosophy whose thesis topic involves a substantial bioethical component.
INSTRUCTOR(S): Faculty
FORMAT: Seminar, Reading Course
PREREQUISITE: Instructor Permission

BIOT 5001.03: Research Ethics.
This seminar involves critical examination of the research ethics literature, with particular attention to a range of topics including: informed consent; research involving specific groups/communities; risks/limits to allowable risks; emergency room research; and placebo controls. It will be of interest to graduate students in medicine, health professions, health law, and philosophy.
INSTRUCTOR(S): Faculty
FORMAT: Seminar
PREREQUISITE: Permission of the instructor

BIOT 5002.03: Health Care Ethics and the Law.
The purpose of this class is to develop an understanding of health law and health care ethics and of the relationship between law and ethics. Topics covered in the past years include: informed choice; death and dying; genetics; reproduction; HIV and AIDS; resource allocation; and health research. Each issue is examined in an effort to determine what the law is and what the law ought to be.
CROSS-LISTING: LAW 2115.03

BIOT 5101.03: Directed Readings in Bioethics I.
This is an advanced level directed reading course designed for graduate students. Instructors and topics can vary.
PREREQUISITE: Permission of the instructor

BIOT 5102.03: Directed Readings in Bioethics II.
This is an advanced level directed reading course designed for graduate students. Instructors and topics can vary.
INSTRUCTOR(S): Permission of the instructor

BIOT 5801.03: Topics in Health Care Ethics.
In this class, we will explore some of the current debates among different theoretical perspectives about the proper theoretical groundwork for bioethics and the methodologies associated with these diverse theories. We shall pay particular attention to canonical work in the field, such as the principles approach of Beauchamp and Childress, while examining feminist and other alternatives. We shall consider the ways different theories identify, frame, and reason about ethical questions that arise in the realm of health and health care.
FORMAT: Seminar
CROSS-LISTING: PHIL 5801.03
Biology

Location: Life Sciences Centre
1355 Oxford Street
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-3515
Fax: (902) 494-3736

Chair
MacRae, T.H.

Graduate Coordinator
Whitehead, H.

Graduate Admissions
Walde, S.

Professors Emeriti
Hall, B.K., PhD, DSc (UNE), FRSC, , University Research Professor Emeritus
McLaren, I.A., MSc (McGill), PhD (Yale), George S. Campbell Professor Emeritus. Copepod growth rules; population biology; copepods; birds; seals
Vining, L.C., MSc (Auck), PhD (Canant), FRSC. Antibiotics, resistance, biosynthesis, microorganisms, molecular mechanisms, biotechnology, antibiotic production, secondary metabolism von Maltzhan, K.E., MS, PhD (Yale)

Professors
Adamo, S., BSc (Toronto), PhD (McGill). Major appointment in Psychology. Insect and cephalopod behavioural physiology
Blay, J., BSc (Honours) (UK), PhD, FIBMS, CBiol, FIBiol. Major appointment in Pharmacology
Bentzen, P., MSc (UBC), PhD (McGill) DFO Professor, Fisheries Resource Conservation Genetics and Biotechnology. Population genetics, conservation genetics, evolutionary genetics, fish ecology, fisheries science
Croll, R., PhD (McGill), major appointment in Physiology/ Biophysics. Molussian neurobiology, development and reproduction
Freedman, B., MSc, PhD (Toronto). Pollution, disturbance, forest harvesting, wildlife, biodiversity, conservation, urban ecology, ecological carbon credits
Hutchings, J., MSc, PhD (Memorial). Evolutionary ecology of fishes, life history evolution, salmonid fish, population biology, commercially exploited fishes, reproductive strategies, marine conservation biology
Iverson, S.J., PhD (Maryland),WFA. Reproductive strategies in mammals, lactation and energetics lipid metabolism, fatty acids, diets in marine mammals
Johnston, M.O., PhD (Chic). Evolutionary genetics, plant evolution, plant ecology, mutations and evolution, molecular evolution, plant reproduction, evolution of self-fertilization, inbreeding depression, speciation, floral development, sex allocation in hermaphroditic animals
Lane, P.A., MSc (SUNY Binghampton), PhD (SUNY Albany). Environment-economy interaction, environmental management, sustainability in Cuba and Latin America, freshwater and marine ecosystems, food web analysis
Leonard, M.L., PhD (Ottawa). Behavioural ecology, parent-offspring interactions, conservation, avian communication and conservation
MacRae, T.H., MSc, PhD (Windsor). Cell/molecular biology, small heat shock protein, molecular chaperone, tubulin gene expression, gammatubulin, microtubule organization, cytoskeleton, ,embryo development
Meinertzhagen, L.A., PhD, DSc (St Andrews), Killam Professor in Neuroscience, major appointment in Psychology. Visual system in flies, Drosophila, synapse formation, computer 3-D construction techniques, circadian rhythms, cell lineage, neurons in ascidian tadpole larva, evolution of all of these
O’Dor, R.K., PhD (UBC). Energy costs, marine animals, cephalopods, planktonic bivalve larvae, Nautilus, squid, cuttlefish and octopus, acoustic telemetry
Pohajdak, B., MSc, PhD (Man). Molecular immunology, (NK) cells, tumors, cloning techniques, immunocontraception vaccines, transgenic fish, insulin
Scheibling, R.E., BSc, PhD (McGill). Community ecology, marine rocky intertidal, subtidal zones, disturbance, succession, community structure, larval settlement, benthic marine invertebrates, predator-prey interactions, behavioural ecology, population dynamics, sea urchins
Walde, S.J., PhD (Calgary). Stream ecology, predator-prey interactions, arthropod populations, dispersal, competition
Wassersug, R.J., PhD (Chic), major appointment in Anatomy and Neurobiology. Functional morphology; amphibian larvae; vertebrate adaptations; development; evolution
Whitehead, H., MA, PhD (Cambridge). Behaviour, ecology, population biology of whales, social structure in vertebrates
Wright, J.M., PhD (Memorial). Gene expression, eukaryotic genomes, genetics, fish cytogenetics

Associate Professors
Adl, S.M., MSc (UBC), PhD (UBC, Paris-VI). Soil ecology, sustainable soil management, microbial ecology, protistology, comparative cell biology
Bielawski, J.P., PhD (Texas A & M University). Adaptive molecular evolution, adaptation and diversification in prokaryotes, molecular phylogenetics, genomics, bioinformatics
Gunawardena, A., BSc (Srilanka), PhD (Oxford). Plant developmental biology, plant cell biology, proogrammed cell death, caspases, ethylene.
Herbinger, C.M., PhD (Dal). Population, conservation and quantitative genetics of aquatic organisms, aquaculture.
Latta, R., MSc (Toronto), PhD (Colorado). Ecology and Evolution of Plants. Spatial genetic structure of populations, migration and gene flow, adaptation to local environments, natural selection.
Lotze, H.K., BSc (Gottingen), MSc, PhD (Kiel). Marine resources, population and community ecology, human impacts, cumulative effects, ecosystem structure and functioning, biodiversity, ecological history, management and conservation.
Romanuk, T.N., PhD (McMaster). Food web structure and function, aquatic microcosms, stability, network theory, biodiversity.
Simpson, A.G.B., BSc, PhD (Sydney Australia). Early Eukaryote Evolution: biodiversity and systematics of eukaryotic microbes (protists; protozoa), sub-cellular morphology of protists, molecular phylogenetics, genome evolution, classification.
Staicer, C.A., MSc (Northern Arizona), PhD (U Mass Amherst). Ecology and behaviour of birds, forest ecosystem and biodiversity monitoring.
Stone, S.L., PhD (York University). Plant development, molecular biology, ubiquitination, regulated proteolysis, hormone signaling, stress tolerance.
Worm, B., PhD (Kiel, Germany). Marine biodiversity science, biodiversity-ecosystem linkages, marine conservation ecology, experimental community ecology of rocky shores, fisheries ecology, human impacts on marine ecosystems

Assistant Professor
Côté, P.D., BSc (Ottawa), PhD (McGill). Cellular neurobiology, molecular genetics, neural development, retina maturation, synaptogenesis, sodium channels.
Adjunct Professors
Bowen, W.D., PhD (UBC), BIO
Broders, H., BSc (Acadia), MSc (Memorial), PhD (UNB)
Campana, S.E., PhD (UBC), BIO
Franc-Odentaal, T., BSc (Hons), MSc, PhD (Cape Town)
Fredeen, A., BSA (Saskatoon), MSc (Guelph), PhD (California)
James, M., BSc (Hons) (Toronto), BED (Queen’s), MSc (Acadia), PhD (Dal)
Jonsen, I., BA (Carleton), MSc (Acadia), PhD (Alberta)
Kenchington, E., MSc, Dal, PhD (Tasmania), BIO
Kernaghan, G., MSc, PhD (UBC), PhD (Alberta)
Lalli, S., BSc (India), MSc, PhD (Guelph)
Lee, R.W., MA (Mass), PhD (SUNY Stony Brook)
Li, H., BSc (China), MSc (France), PhD (Laval)
Lundholm, J., BSc (Queens), MSc (York), PhD (Guelph)
 Lynch, D., BSc (McGill), MSc (McGill), PhD (Guelph)
 Papadopoulos, Y.A., MBA (SMU), Phd (Guelph)
 Ross, N., BSc, PhD (McGill)
 Shuler, D., BSc, MSc (McGill), PhD (Carleton)
 Wang-Pruiski, C., BSc (China), PhD (Alberta)
 Whoriskey, F.G., PhD (Laval)
 Wong, M., BSc (Mt. Allison), PhD (UNB)

Adjunct Research Associates
Dunn, K., BS (Long Island), MA (Holstra), PhD (Texas A&M)
Horn, A., BSc (Cornell), PhD (Univ. of Toronto)
Wellgert, L., BA (Luther), MSc (Memorial), PhD (Dal)

I. Admission
The Biology Department has facilities for advanced study and research leading to the MSc and PhD degrees. Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies and normally a student will not be permitted to earn all three degrees (BSc, MSc, and PhD) at Dalhousie. All inquiries for admission to the graduate program should be addressed to Julie Walker, Biology Department.

II. Degree Options
A. MSc Degree Program
Students are required to take at least two full credits at the graduate level including Biology 5700.03 and Biology 5705.03; they may include graduate classes from other departments or the Nova Scotia Agricultural College. Additional classes may be specified by supervisory committees. Students are required to demonstrate in an undergraduate biology class for at least one year and must take an admission to candidacy examination during the first nine months. A thesis reporting original research must be submitted and defended orally. Students are expected to participate in weekly departmental seminars.

B. PhD Degree Program
Students without MSc degrees have the same course requirement as MSc students. Students with MSc degrees must take at least one full credit at the graduate level including Biology 5700.03 (unless taken previously). Additional classes may be taken. Students are required to demonstrate in an undergraduate biology class for one year, and must take an admission to candidacy exam in their first nine months. A preliminary examination including a review paper and thesis progress report is required for all PhD students. Students must pass the preliminary examination at least one year before submitting a PhD thesis. A thesis reporting original research must be defended orally. Students are expected to participate in weekly departmental seminars.

Ancillary and Audit Classes
At the discretion of the Supervisory Committee, Supervisor or ATC examiners, a student may be directed to take for credit classes needed to make up deficiencies or acquire skills considered beneficial but of subsidiary importance. If these are undergraduate level classes they are designated as ancillary, to be passed with a minimum grade of D. They must be reported to the Graduate Coordinator or Stream Chair at the interview in September. They may not be used for graduate credit. Students may also elect or be required to audit classes relevant to their program. No credits are received for these. A maximum of one audit class is allowed for each year of the specified program (i.e. One for a 1-year MSc, two for a 2-year MSc, etc.). Continuing Students may not audit. However, additional classes may always be audited if paid for with extra fees.

Class Selection
Classes with the extension .03 are half-credit classes. All others (sometimes shown with the extension .06) are one-credit classes.

Some classes are given only in alternate years. Others are suspended due to sabbatical leaves but will resume when the staff return. All class offerings are included in this listing so that students may plan their entire class in their first year. Such planning is necessary because the Faculty of Graduate Studies requires that a complete program be prepared for each student by October 15th in their first year.

III. Required Classes for MSc Students

BIOL 5700.03: Communication Skills.
Through realistic, practical assignments students test and develop their communication skills. There is also information on the graduate programme in Biology and other aspects of the work of a biologist (e.g. ethics). This class is mostly in the Fall term and is graded pass/fail.
INSTRUCTOR(S): Required of all students.
FORMAT: Two hours/week 1:30 p.m. - 3:30 p.m. Fridays
NOTE: This class is open to senior undergraduate students and the

BIOL 5705.03/5706.03: Graduate Module Classes.
All MSc students must complete a module class. All students choose from the same set of modules. Three month-long modules (out of about 15-20) are required for each half credit. Students who have taken BIOL 5705.03 may take BIOL 5706.03. Both classes are graded. Modules may also be taken at the Nova Scotia Agricultural College (NSAC) in Truro. Module titles will be listed on the module web site.
COORDINATOR: J.P. Bielawski

IV. Class Descriptions

BIOL 5012.03: Advanced Laboratory in Biochemical Techniques.
This class consists of two laboratory modules (each of 4 weeks duration, one full day per week) and a scientific writing module (9 hours in total of techniques provided in a specific module. Students must obtain a class title from the Biochemistry & Molecular Biology Office prior to registration and attend the organizational meeting, the date of which will be indicated in the Registration Timetable.
COORDINATOR: J.P. Bielawski

BIOL 5012.03: Molecular Genetic Techniques in Ecology.
Students gain experience in techniques of molecular ecology that include but may extend beyond DNA isolation, electrophoresis, PCR, RFLP and microsatellite analysis. Techniques are learned in the context of an actual
research project. Evaluation is based on class participation, the student’s laboratory note-book, and a report on research carried out.

INSTRUCTOR(S): P. Bentzen

FORMAT: Lab

PREREQUISITE: Molecular Ecology or Marine Conservation Genetics

BIOL 5042.03: Marine Conservation Genetics.
We survey techniques of molecular genetic analysis and consider how they can be used to identify species, populations, sexes, individuals and family relationships, and study population attributes such as historical dispersal, contemporary connectivity, mating behaviour and effective population size. Evaluation is based on assignments, an essay and two exams.

NOTE: Graduate students will do an essay not required of undergraduate students (BIOL 4042)

INSTRUCTOR(S): P. Bentzen, D. Ruzzante

FORMAT: Lectures/student presentations, group discussions, 3 hours

PREREQUISITE: BIOL 2660, BIOL 2030 or BIOL 2030

CROSS-LISTING: BIOL 4042

BIOL 5044.03: Genetics in Ecology.
The interface between heritable variation among living things (genetics) and their interactions with their environment (ecology) is the fundamental crucible of adaptive evolutionary change. This class will present an advanced examination of genetic variation in ecologically important traits. Both single gene and continuously varying (quantitative) traits will be examined.

INSTRUCTOR(S): R.G. Latta

FORMAT: Lecture/semester

PREREQUISITE: BIOL 3041.03 and STAT 2080.03

CROSS-LISTING: BIOL 4044.03

BIOL 5060.03: Environmental Ecology.
The ecological effects of pollution, disturbance, and other stressors, both anthropogenic and natural. Major subject areas are air pollutants, toxic metals, acidification, eutrophication, oil spills, pesticides, forestry, warfare, urban ecology, risks to biodiversity, and resource degradation. The overarching context of the class is ecological sustainability of the human economy.

INSTRUCTOR(S): B. Freedman

FORMAT: Lecture/tutorial, 3 hours

PREREQUISITE: None

CROSS-LISTING: BIOL 3060.03

BIOL 5061.03: Experimental Design in Biology.
This class introduces students with previous training in univariate statistics to the practice and pitfalls of experimental design and data analysis in biology. Lectures and take-home exams are used to demonstrate the fundamentals of design and analysis, with emphasis on potential problems and how they are overcome.

INSTRUCTOR(S): R. Scheibling

FORMAT: Lecture/3 hours

CROSS-LISTING: BIOL 4061.03

BIOL 5062.03: Analysis of Biological Data.
The class introduces students to techniques available for the analysis of biological data, including regression, general linear models and multivariate methods. Emphasis is on the practical use of these techniques rather than derivations. Students analyze real and realistic data sets, and are assessed on write-ups of these analyses.

INSTRUCTOR(S): H. Whitehead

FORMAT: Lecture 3 hours

CROSS-LISTING: BIOL 4062.03

BIOL 5065.03: Sustainability and Global Change.
Sustainability Development has become a universal concept embraced by both the North and South. This class examines how it has been used in various applications and its central role in development thinking in a world undergoing rapid change.

INSTRUCTOR(S): Lane, Patricia A.

FORMAT: 3 hr lecture and discussion, Web CT

PREREQUISITE: One 3000 level Ecology or IDS class or permission of instructor

CROSS-LISTING: BIOL 4065.03

BIOL 5067.03: Ecology and Evolution of Fishes.
This class will examine selected topics on the ecology and evolution of marine and freshwater fishes. Topics shall include systematics, morphology, evolutionary ecology, behaviour, life history strategies, population biology, and fisheries management.

INSTRUCTOR(S): J. Hutchings

FORMAT: Lecture 3 hours, lab 2.5 hours

PREREQUISITE: BIOL 2001.03, BIOL 2060.03

CROSS-LISTING: BIOL 3067.03

BIOL 5070.03/5080.03 Advanced Topics in Animal Physiology.
Advanced physiology delves more deeply into physiological topics of particular interest to the participants. Students present seminars based on two research papers of their own choice. The other students participate in a critique of the paper and discussion of the data, quality, and impact of the paper

INSTRUCTOR(S): A. Pinder, R.K. O’Dor

FORMAT: Lecture/2 hours/open lab

PREREQUISITE: Classes in organic chemistry, general biochemistry, physiology and plant biology normally necessary. Permission of instructor required

CROSS-LISTING: BIOL 4070.03

BIOL 5074.03: Introduction to Animal Nutrition.
Not offered in 2011-2012

Subject matter will include an introduction to the history of nutritional sciences, nutrition research techniques, and focus on lipid, carbohydrate and protein requirements. Topics also will include livestock and companion animal nutritional needs as well as those of a few exotics.

INSTRUCTOR(S): N. McAllister-Irwin

PREREQUISITE: Permission of instructor

CROSS-LISTING: BIOL 4074.03

BIOL 5103.03: Infectious Diseases of Aquatic Organisms.
This class will examine a variety of pathogens (viral, bacterial, fungal and protozoan) with emphasis on disease prevalence, diagnosis, control and pathogen identification. Immune systems of invertebrates and vertebrates will be discussed in relation to disease.

FORMAT: Lecture 3 hours

CROSS-LISTING: BIOL 4012.03

BIOL 5105.03: Medical Biotechnology I.
See class description for BIOL 4501.03/5501.03 and PHAR 4351.03 in the Biochemistry or Pharmacology sections of this calendar.

INSTRUCTOR(S): M.J. Dobson

FORMAT: Lecture/discussions and presentations

PREREQUISITE: BIOL 3200.03, 3300.03, and 3400.03 and MICI 3115.03 or consent of instructor

CROSS-LISTING: BIOL 4501.03

BIOL 5160.03: Political Ecology.
Political ecology (PE) examines the politics of the environment but not on specific policies, political theories, or ideologies. PE considers an interacting array of political and socio-economic forces that shape human-environmental relationships. International case studies will be evaluated using several PE tools. Discussion format with Blackboard Learning/Internet assignments.

INSTRUCTOR(S): Lane, Patricia A.

FORMAT: 3 hr Discussion + Web CT

PREREQUISITE: One 3000-level class in Ecology or IDS or consent of instructor

CROSS-LISTING: BIOL 4160.03

BIOL 5214.03: Physiology and Biochemistry of Marine Algae.
Algae are examined in terms of their major processes and products with attention directed toward the influence of environmental factors, such as light, nutrition and temperature. The taxonomic classes are compared by means of pigment composition, nitrogenous compounds, reserve products and cell wall structure.

INSTRUCTOR(S): A. Cembella and J.S. Craigie

FORMAT: Lecture/2 hours
BIOL 5220.03: Plant Cell Biology.
This course covers the structure, function, and dynamic properties of plant cellular components including constituent organelles, cytoskeleton, and the cell wall. Areas of significant current research such as programmed cell death, cell signaling and cellular trafficking are considered in depth. The class consists of lectures, student seminars and report writing.
INSTRUCTOR(S): A. Gunawardena
FORMAT: Lectures/seminars and report writing
PREREQUISITE: BIOL 4220.03
CROSS-LISTING: BIOL 2020.03 and one of BIOL 2005.03 or BIOL 2004.03 or BIOL 3050.03 or BIOL 3218.03

BIOL 5261.03: Communities and Ecosystems.
This Web CT class is divided into two parts. The first deals with the history and theory of natural communities and ecosystems. The second covers human interactions with ecosystems, ecosystem health, ecosystem integrity, environmental assessment, environmental management and planning, ecological footprint, and related applied ecosystem issues.
INSTRUCTOR(S): Lane, Patricia A.
FORMAT: 3 hr lecture + Web CT
PREREQUISITE: Introductory Ecology or IDS, or permission of instructor
CROSS-LISTING: BIOL 3061.03

BIOL 5610X/Y.06: Scientific Writing and Advanced Laboratory in Biochemical Techniques.
This course will consist of a series of laboratory modules (3 modules each of 4 weeks’ duration, 1 day per week or 72 hours in total with limited flexibility to accommodate the need to attend other classes) and tutorials with computer-based assignments designed to teach scientific writing techniques (9 hours in total). The class is organized collaboratively by the Departments of Biochemistry & Molecular Biology, Biology, and Microbiology & Immunology. Several lab modules will be offered in 3 sections covering techniques used in the study of molecular biology, protein structure-function, and specific metabolic processes. Students in concentrated Honours Biochemistry must complete 1 module from each section. Students in combined Honours with Biochemistry may select their three modules from any section or sections, subject to availability of space. Students must obtain a class outline from the Biochemistry & Molecular Biology Department office prior to registration and return the module selection form at least 24 hours prior to the organizational meeting, the date of which will be indicated in the Registration Timetable.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): Faculty members of the departments of Biochemistry & Molecular Biology, Biology, and Microbiology & Immunology.
FORMAT: Twelve 6-hour labs and three 3-hour tutorials/computer assignments.
CROSS-LISTING: BIOC 4610.06, BIOC 5610.06, BIOL 4013X/Y.06, MICI 4610X/Y.06, MICI 5610X/Y.06

BIOL 5651.03: Marine Mammalogy.
The class will examine the characteristics that mammals brought with them when they returned to the ocean, the evolution of the different groups of marine mammals, some of their special adaptations, the roles of marine mammals in oceanic ecosystems and general principles of the marine mammal population biology. Students will use information on the biology of marine mammals to explore conservation/management issues.
INSTRUCTOR(S): D. Austin
FORMAT: Lecture 3 hours
CROSS-LISTING: BIOL 4060.03

BIOL 5701.03: Communication Assignment.
This class is for first year PhD’s who have already completed BIOL 5700C, and others by special permission. Permission to register in this class must be obtained by October 15th.
Assignments appropriate to the student’s background and interests will be organized to further develop communication skills.
INSTRUCTOR(S): H. Whitehead

V. Special Topics Classes
BIOL 5800-5899: Special Topics and Projects in Biology.
A suitable combination of directed reading, seminars, written assignments, individual study and discussion or laboratory projects in a prescribed area. Classes are organized and scheduled by appropriate faculty, Adjunct Professors or Honourary Research Associates when requested by interested students. Students should approach potential instructors directly with their requests. Each separate topic must be approved by the Graduate Coordinator and approval is not normally given for students taking a class from their research supervisor. A class description is required before approval can be given. Classes may be worth a half or full credit, depending upon duration and content.

BIOL 5801.03: Special Topic in Agricultural Biology.

BIOL 5802.03: Special Topic in Animal Behaviour.

BIOL 5803.03: Special Topic in Animal Physiology.

BIOL 5804.03: Special Topic in Animal Science.

BIOL 5805.03: Special Topic in Aquaculture.

BIOL 5806.03: Special Topic in Biochemistry.

BIOL 5807.03: Special Topic in Biological Education.

BIOL 5808.03: Special Topic in Biomathematics.

BIOL 5809.03: Special Topic in Biostatistics.

BIOL 5810.03: Special Topic in Cell Biology.

BIOL 5811.03: Special Topics in Development Biology.

BIOL 5812.03: Special Topic in Ecology.

BIOL 5813.03: Special Topic in Environmental Biology.

BIOL 5814.03: Special Topic in Evolutionary Biology.

BIOL 5815.03: Special Topic in Fish Biology.

BIOL 5816.03: Special Topic in Functional Morphology.

BIOL 5817.03: Special Topic in Genetics.

BIOL 5818.03: Special Topic in History of Biology.

BIOL 5819.03: Special Topic in Industrial Microbiology.

BIOL 5820.03: Special Topic in Limnology.

BIOL 5821.03: Special Topic in Marine Biology.

BIOL 5822.03: Special Topic in Marine Ecology.

BIOL 5823.03: Special Topic in Marine Microbiology.

BIOL 5824.03: Special Topic in Microbiology.

BIOL 5825.03/5925.06: Special Topic in Molecular Biology.

BIOL 5826.03: Special Topic in Philosophy of Biology.

BIOL 5827.03: Special Topic in Phycology.

BIOL 5828.03: Special Topic in Plant Biology.

BIOL 5829.03: Special Topic in Plant Ecology.

BIOL 5830.03: Special Topic in Plant Physiology.
BIOL 5831.03: Special Topic in Plant Science.
BIOL 5832.03: Special Topic in Population Biology.
BIOL 5833.03: Special Topic in Zoology.
BIOL 9000.00: MSc Thesis.
BIOL 9530.00: PhD Thesis.

Biomedical Engineering

Location: Room 5197
Dentistry Building
5981 University Avenue
P.O. Box 15000
Halifax, NS B3H 4R2

Telephone: (902) 494-3427
Fax: (902) 494-6621
Email: BME@Dal.ca
Website: http://bme.medicine.dal.ca/

Director
Maksym, G.N.

Graduate Coordinator
Wells, S.M.

Professors
Bance, M., MB, CHB (Manchester, England), MSc (Toronto), FRCS (C) (Canada). Middle ear mechanics, measuring minute vibrations of middle ear structures, hearing reconstruction mechanics, design of prosthesis for hearing reconstruction, transfer function of normal and diseased middle ears, finite element modelling of middle ear (in conjunction with Dr. Robert Funnel at McGill University). Primary appointment in Division of Otolaryngology, Faculty of Medicine

Fine, A., PhD (Univ. of Pennsylvania) VetMD (Univ. of Pennsylvania). Synaptic function and plasticity in the brain. Brain networks underlying sensation and memory. Advanced optical methods for imaging neural structure and function. Primary appointment in Physiology and Biophysics

French, A., PhD (Essex). Information encoding and processing by sensory neurons, mechanotransduction, nonlinear systems analysis and ion channel biophysics. Primary appointment in Physiology and Biophysics

Gregson, P., PEng, PhD (TUNS). Image processing; computer vision; computer-assisted pathology detection, localization and quantification in diagnostic imaging. Primary appointment in Electrical and Computer Engineering

Kirby, L., MD (Dal). The design, safety and performance of assistive technology for people with physical disabilities. In particular, wheelchairs, walking aids and artificial limbs. Primary appointment in Division of Physical Medicine and Rehabilitation, Faculty of Medicine

Kozey, C., PhD (Dalhousie). Classification of neuromuscular control patterns associated with normal movement and movement in the presence of pathology and/or pain. These studies involve the use of electromyography, and other sensors to measure muscle function and motion parameters. Primary appointment in the School of Physiotherapy

Lee, J. M., PhD (Western). Bioprosthetic heart valves and vascular grafts, intravascular stents, biopolymers, tissue mechanics, developmental changes in cardiovascular system. Primary appointment in Applied Oral Sciences

Leon, L.J., BSc, MSc, PhD (Dalhousie), PEng. Computational Electromagnetics, parallel and distributed computing, biomedical engineering, cardiac electrophysiology. Primary appointment in Electrical and Computer Engineering.

Schmidt, M., MD. (Ludwig-Maxmilians Univerity, Munich) Postoperative neurocognitive and organ dysfunction in elderly; neuro- and organ
protection in the field of anesthesia; device development (prototyping, clinical and animal studies) and commercialization. Primary appointment in Anesthesiology.

Weaver, D.F., MD (Queens'), PhD (Queens'). Computer-aided design and development of new chemical entities as potential drugs for people with neurologic diseases. In particular, epilepsy, Alzheimer’s and general anaesthesia. Primary appointment as Tier 1 Canada Research Chair in Dept of Medicine (Division of Neurology), cross-appointment to Dept of Chemistry.

Associate Professors

Filiaggi, M., PhD (Toronto) Biomaterials for orthopaedic and dental applications; synthesis of bioceramic scaffolds and coatings; bone regeneration and replacement. Primary appointment in Applied Oral Sciences.

Ghaman, A., PhD (Cornell). Cell biomaterial interactions, biodegradable biopolymers for tissue engineering and drug delivery, cell culture models for in vitro toxicity. Primary appointment in Chemical Engineering.

Gratzer, P., PhD (Toronto). Tissue engineering. Developing scaffolds for tissue regeneration (e.g. blood vessels, ligaments) using naturally derived materials (collagen and elastin). Primary appointment in School of Biomedical Engineering.

Gu, J., PhD (Alberta). Medical robotic devices and applications; artificial eye implant control; rehabilitation assistive device design and applications; sensor fusion in mobile robot. Primary appointment in Electrical & Computer Engineering.

Kreplak, L. PhD. (Paris). My research goal is to unveil the design rules underlying the unique mechanical properties of protein assemblies, cells and tissues. I am interested in both bottom-up and top-down approaches. In the former, I study the relationship between structure and mechanical properties for peptides and proteins assemblies in vitro. In the latter, I am interested in human pathologies that modify these mechanical properties of cells and tissues through changes in cytoskeletal or extracellular matrix architecture. Primary appointment in Physics and Atmospheric Science.

Kozey, J., PhD (TUNS). Occupational biomechanics and workstation design with emphasis on accessibility, reach and anthropometry. The projects require the use of a variety of human motion analysis techniques. Primary appointment in Health and Human Performance.

Maksym, C., PhD (McGill). Magnetic bead micromanipulation for stimulation and measurement of the cytoskeletal mechanics of the cell; structure-function of airway smooth muscle cells in asthma. Primary appointment in School of Biomedical Engineering.

Price, R.B., PhD (Malmo, Sweden), DDS (Dalhousie University). Photopolymerization of dental resins, hardness testing, cytotoxicity of dental resins, light emitting diode (LED) dental curing lights, optical testing of dental curing lights, mechanical testing of dental materials. Primary appointment in Dentistry.

Russell, K.A., MSc, Diploma Orthodontics (Toronto), DDS (Dalhousie University). (I) 3-D assessment of cleft lip and palate repair: facial morphometric studies and evaluation of bone grafting and orthodontic results (II) material properties of orthodontic wire/bracket systems and elatomers. Primary appointment in Dentistry.

Assistant Professors

Adamson, R., Ph.D. (Toronto). My research concerns the biomechanics of hearing and new diagnostic imaging technologies for otology. My primary focus is on developing optical probes for investigating the ear - an optical coherence tomography (OCT) probe for imaging and a fiber optic hydrophone for dynamic pressure measurement. Primary appointment in School of Biomedical Engineering.

Boyd, D., PhD (Limerick), Glass based biomaterials for minimally invasive clinical interventions; synthesis, characterization, and safety and efficacy evaluation of new clinical materials (Oncology, Spine and Dentistry). Primary appointment in Applied Oral Sciences.

Brown, J.A., PhD (Queen’s University). High-resolution ultrasound imaging, micro-transducer design and fabrication, miniaturized piezoelectric hearing prosthesis. Primary appointment in Biomedical Engineering.

Melnick, A.D., MD (Dalhousie). MSc (Dalhousie) Research ranges from basic laboratory testing to clinical outcome studies. Specific areas of interest include: Anesthesia Airway Equipment Design, Device Testing and Quality Control, Clinical Anesthesia Database/Outcome Studies, and Drug Stability. In addition to Anesthesia related work I also have interests in Orthopedics/Plastic Surgery; specifically Biomechanics/Biomaterials, 3-D kinematics and surface geometry digitization.

Graduate students are welcome to shadow me in the operating room to get a better understanding of biomedical device implementation and real world usage. Primary appointment in Dept. of Anesthesiology.

Wells, S.M. PhD (Toronto). Structural-mechanical relations in biopolymers such as elastin and collagen are examined in order to determine the underlying mechanism(s) of elasticity of these materials-and thereby to understand the functioning of the arteries, ligaments, skin etc. which they make up. As well, research examines the structural remodeling of these structures during development and maturation: from fetal to adult life. Primary appointment in School of Biomedical Engineering.

Wilson, J.L., PhD (Dalhousie). Modeling and description of joint dynamics, neuromuscular function and orthopedic biomechanics, with particular application to the study of knee osteoarthritis gait patterns and other musculoskeletal disorders. Pattern recognition and statistical modeling of complex biomechanical data. Dimensional motion capture analysis, electromyography, Radiostereometric Analysis and finite element methods. Primary appointment in Biomedical Engineering.

Adjunct Professors

The following researchers are also eligible to supervise graduate students in the School of Biomedical Engineering.

Beya, S.D., PhD (UNB) Nuclear magnetic resonance imaging physics. Technique development for high field functional neuroimaging. NMR studies of degradable biomaterials and implantable devices. Primary appointment at the Institute for Biodiagnostics (Atlantic) - National Research Council Canada.

Bowen, C.V., PhD (Western). Magnetic resonance imaging physics and engineering. Research activities in cellular and molecular imaging with development of methods for mapping cellular migration patterns and molecular processes using iron-oxide contrast agents. Applications in cellular therapy for regenerative medicine and immunology agents. Applications in cellular therapy for regenerative medicine and immunology research. Also involved in the development of functional MRI techniques for mapping brain activity. Primary appointment at the Institute for Biodiagnostics (Atlantic) - NRC.

Labow, R., PhD (University of Michigan). The main focus of her research is understanding the mechanisms of cell-material interaction. Primary appointment in Department Surgery, University of Ottawa Heart Institute.

Landry, S.C., PhD (Dalhousie), BEng (Dalhousie), BScH (Acadia). Biomechanics and neuromuscular function of the lower limb.
Investigations into understanding the higher prevalence of knee osteoarthritis (OA) and non-contact anterior cruciate ligament (ACL) in the female population. Progression and non-invasive treatments of knee OA. Primary appointment in Kinesiology Acadia University.

I. Introduction
The School of Biomedical Engineering is a collaborative effort of the Faculty of Medicine and the Faculty of Engineering.

The interdisciplinary research within the School of Biomedical Engineering at Dalhousie University is concentrated in three thrust areas: (i) Biomaterials and Tissue Engineering, (ii) Biosignals and Physiological Modelling, and (iii) Human Dynamics and Rehabilitation Engineering. Other significant research efforts in biomedical engineering at Dalhousie include work in kinesiology and gait, instrumentation, cardiac, orthopaedic and cellular mechanics, auditory and vestibular function, robotics, and rational drug design.

The program offers both a Master of Applied Science (MASc) degree and a Doctor of Philosophy (PhD) degree in Biomedical Engineering.

The program also offers BioMedic: An NSERC CREATE training program in Biomedical Technology, Innovation, and Commercialization. The training program includes courses in partnership with Dalhousie’s Business School on the Business of Medical Technology and Technological Needs in the Clinical Settings, and work placements at local and international medical device companies. Upon successful completion of the Training program trainees receive a Dalhousie University certificate in Biomedical Device Innovation and Entrepreneurship in addition to the MASc or PhD being undertaken. See department website for details.

II. Admission
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies. In addition to the Faculty of Graduate Studies requirements, the School of Biomedical Engineering has the following requirements for the MASc and PhD programs.

A. MASc Program
Students will be accepted into the MASc program from:
1. BEng or BASc from an accredited undergraduate engineering program
2. 4-year BSc in the physical sciences (e.g. Mathematics, Physics, Chemistry, etc.) with research experience**
3. 4-year BSc in the biological sciences (e.g. Physiology, Biophysics, Biochemistry, Microbiology, Immunology, etc.) with research experience**
4. MD, DVM, DDS, or equivalent

In cases (3) and (4) above, additional undergraduate coursework may be required prior to entry into the program. This will depend on the nature of the research thesis to be undertaken and the requirements will be developed in consultation with the school; however, a minimum of 2nd year undergraduate calculus (equivalent to Dalhousie University’s MATH 2001.03 and MATH 2002.03) plus linear algebra and/or statistics, and one year of physics and chemistry will normally be required. **Qualifications for research experience include: a research thesis, senior research project, or equivalent work experience determined in consultation with the School of Biomedical Engineering.

A minimum mid-B average during the student’s undergraduate coursework (with a minimum average of A- over the last two years) will be required, plus demonstrated ability to communicate and write in English (consistent with the entry requirements of the Faculty of Graduate Studies, e.g. TOEFL=600).

GRE Aptitude and Advanced scores in one of the sciences are recommended for all applicants whose undergraduate work has been completed outside Canada.

B. PhD Program
Students will be accepted into the PhD program from a Masters degree from an accredited program. Transfer from the MASc program will only be considered for exceptional students who have completed at least 5 half-credit classes and passed a PhD Transfer Examination.

Financial Support
A minimum stipend of $17,500 is available for MASc and $19,000 for PhD graduates. Normally, students who are accepted are supported financially either by external sources or Dalhousie scholarships. Additional funding is available for students with external scholarships. Applications should be made early, preferably by April 1 at the latest.

Funding for the NSERC CREATE: BioMedic program is in the form of an NSERC CREATE award of a minimum of $17,500 per year for MASc candidates and minimum of $21,000 per year for PhD candidates, with top-up and partner funding for outstanding students - stipends can exceed $35,000.

III. Degree Requirements

A. MASc Program
1. At least a total of six half-credit classes (three full credits) to be chosen in consultation with a school advisor. It is expected that a minimum of four of these classes will be taken from the suite of 5000-level classes offered by the School of Biomedical Engineering. In addition, students whose preparation in a particular area is deficient may be required to complete appropriate classes, as part of the six half credit classes, or exceeding this number.
2. Attendance and participation in the seminar program.
3. A research thesis representing original work by the student will be carried out under the supervision (or co-supervision) of a faculty member of the School of Biomedical Engineering. The student’s principal research supervisor is not appointed in the School of Biomedical Engineering. A co-supervisor from within the school will be named on the advice of the school’s Graduate Studies Coordinator in order to ensure that the thesis contains sufficient Biomedical Engineering content. The student must also undertake a satisfactory oral defense of the research thesis.

B. PhD Program
1. Normally four half credit classes.
2. Attendance and participation in the seminar program.
3. Successful completion of a PhD Candidacy Examination.
4. Successful completion and examination of a PhD research thesis.
5. Presentation of research work at one or more national or international conferences.
6. Submission or publication of at least one research paper in a refereed journal.

IV. Supervisory Committees
Each student will have a supervisory committee consisting of their thesis supervisor plus two faculty members appointed to the Faculty of Graduate Studies, of whom one must be a member of the School of Biomedical Engineering, and one will ordinarily not be a member of the School of Biomedical Engineering. The supervising committee will meet at least twice a year (including September following admission) or when called by any member of this committee or the student.

V. Class Descriptions
Not all courses are offered every year. Please consult the current timetable for this year’s offerings.

BMNG 5010.03: Introductory Physiology for Biomedical Engineering.
A survey of the physiology of human organ systems including the nervous, cardiovascular, respiratory, renal, gastrointestinal and endocrine systems. Some emphasis will be placed on engineering principles,
including biomechanics, bioelectricity, dynamic systems and control theory, where appropriate.

BMNG 5020.03: Cell Biology for Biomedical Engineering.

This course provides an introduction to eukaryotic cell structure and function for engineering and physical science students who do not have a strong biological background. Topics include: cell structure, organelles, DNA, RNA, transcription and translation, protein production and processing, secretion, cytoskeleton, molecular motors, extracellular matrix, membrane transport, cell-cell communication, and cell division. Some emphasis will be placed on excitable cells, synaptic communication and muscle contraction.

BMNG 5050X/Y.015: Introduction to Biomedical Technologies in Clinical Settings.

This class is part of the Biomedical Program – an NSERC CREATE training program in biomedical Biomedical Technology Innovation and Commercialization. It focuses specifically on clinical exposure and appreciation of the challenges of device development for clinical use. Areas of exposure are in clinical ethics, principles of human physiology and pathophysiology, biomedical device certification, technology challenges in challenging environments such as the operating room and clinic and sterilization issues. Students will be directly exposed to clinical procedures and patients during the course. Enrolment is limited.

FORMAT: Combination of lectures, seminars, clinical

BMNG 5110.03: Biocompatibility and Biomaterials Design.

This class deals with the scientific basis of biocompatibility (host and materials responses in biomaterials) and its application to intelligent design of biomaterials for implantable systems. The class will be divided into thirds: (i) cellular, tissue-level, and systemic responses to implanted devices, including thrombosis, wound-healing, cytotoxicity, and immunological responses; (ii) materials degradation including corrosion, dissolution, swelling/leaching, surface chemistry, etc.; (iii) case studies of materials and device design including: heart valves, total hip prostheses, dental restorative materials, total artificial heart, burn dressings and hemodialysis systems. The class will be evaluated by three literature criticism sessions, a research paper and coupled class presentation, one mid-term test and a final exam.

BMNG 5120.03: Biomechanics in Physiology and Surgical Implant Design.

This class deals with: (i) solid and fluid mechanical analysis of biological tissues and organs, and (ii) use of mechanical engineering techniques in the design of implantable medical devices, e.g. heart valves, vascular grafts, ligament replacements, total artificial heart, and total hip or knee replacements. Topics to be covered include cell structure and mechano-electrical function, blood flow, arterial mechanics, bone structure and mechanics, mechanics and tribology of artificial joints, muscle mechanics, pulmonary functions, fundamentals of gait and mobility aids. Guest lecturers from clinical sciences will help to develop the practical context of biomechanical engineering problems.

EXCLUSION: MECH 4650.03

BMNG 5130.03: Biomechanics of Human Gait.

An overview of the research in biomechanics of human motion with particular focus on gait analysis. Topics include measuring and analysis techniques, biomechanical modelling, and data analysis techniques. Applications include the study of normal, able-bodied gait, and the evaluation of gait pattern changes associated with osteoarthritis, and total knee replacement.

BMNG 5140.03: Principles of Biomolecular & Drug Molecule Design.

An introductory course in biomolecular design, drug design and medicinal chemistry. Students are taught how to identify and formulate the design problem and they are provided with the conceptual and factual tools necessary to tackle the design problem and to design a new chemical entity as a putative therapeutic.

INSTRUCTOR(S): D. Weaver
CROSS-LISTING: CHEM 5601.03

BMNG 5150.03: Introduction to Tissue Engineering.

Tissue engineering is a recent and fast-growing field which encompasses and unites biology, chemistry, medical sciences and engineering to design and fabricate systems to replace tissues and organs. Topics will include tissue engineering scaffolds, cell incorporation (selection and culture), in vivo versus in vitro constructs, and applications of tissue engineering.

BMNG 5160.03: Bioengineering in Orthopaedics and Dentistry.

Orthopaedics and dentistry dominate the medical device market, providing some conspicuous examples of successful biomaterials engineering. This course will explore a number of biological and engineering considerations that arise in the design and development of implants for skeletal tissue replacement or regeneration, with an emphasis on bone/implant interactions. This course is normally offered every second year.

BMNG 5210.03: Biomedical Instrumentation, Data Acquisition and Analysis.

This hands-on course is an introduction to computer-based acquisition and analysis of physiological signals as relevant to Biomedical Engineering. In an integrated series of lectures and laboratory projects, students will use A/D, D/A, and serial techniques to acquire real and simulated data from a variety of sensors (e.g. electrocardiograms, muscle activity, pressure, temperature and sound). Issues such as sampling, aliasing, filtration, convolution and image analysis will be examined. This course provides a step-by-step introduction of programming with Labview (National Instruments) and Python.

BMNG 5230.03: Biomedical Signal Analysis and modelling.

This course is directed at the student interested in the analysis of physiological signals and modeling of physiological systems using mathematical methods. It is ideally paired with Biomedical instrumentation which in the spring term covers data acquisition and transducer instrumentation through programming in Labview. In this course the focus will be on analysis of physiological signals using Engineering signal analysis approaches. This course is normally offered every second year.

BMNG 5250.03: Bioelectricity: A Quantitative Approach.

An introductory electrophysiology class, following a quantitative approach based on the general principles established in physics and engineering. The core material covers nonlinear membrane properties of excitable cells that produce action potentials, propagation of action potentials in one-, two-, and three-dimensional excitable media, the response of excitable media to artificial stimuli, and the electromagnetic field that the active bioelectric sources produce in the surrounding extracellular space. Applications to the study of neural and cardiac electrophysiology will be discussed in detail.

BMNG 5260.03: Diagnostic Imaging and Radiation Biology.

This course will discuss the basic principles behind modern medical imaging modalities including the mathematical foundations of image processand and image reconstruction from projections. The specific imaging modalities that the course covers are X-ray, CT, PET, MRI, and Ultrasound imaging. Fundamentals of ionizing radiation along with the interaction of radiation with tissue is also described. Students will all be required to perform one Magnetic resonance Imaging lab/report using a bench-top Earth field MRI system.

FORMAT: Lecture

BMNG 5310.03: Business of Medical Technology I.

Students work in interdisciplinary teams to trial-develop a biomedical concept from idea to commercial product in this course and in the following course BMNG 5311.03. Topics covered include innovation and design methodology and industry practice, industrial design and creativity in design, intellectual property fundamentals and industry practices, medical technology development processes. Teams combine students from biomedical engineering, medical residents and MBA programs. Enrolment is limited.

FORMAT: Lecture/seminar and group project
BMNG 5320.03: Entrepreneurship and the Business of Medical Technology II.
Students work in interdisciplinary teams to trial-develop a biomedical concept from idea to commercial product. Topics include opportunity identification, professional standards, communication, professional standards, medical device commercialization strategies, medical regulatory concerns (FDA/CSA/EU) and the road to translation and market insertion. Students work in teams combining engineering, clinical and management expertise. Enrolment is limited.
INSTRUCTOR(S): D. Roach, G. Maksym
FORMAT: Lecture/Seminar and Group Project
PREREQUISITE: BMNG 5310.03

BMNG 5410.20/5420.03/5430.03: Directed Readings in Biomedical Engineering.
This class is designed for students wishing to gain knowledge in a specific area in which no graduate level classes are offered. Class format is variable and may include seminars, lectures, and the study of papers and/or book chapters as part of a directed research or design project. Students are required to present the work (not less than 90 hours per semester), in a written report which will be evaluated. Normally, a student can take only one directed reading class as part of their degree program.

BMNG 5500.00: Biomedical Engineering MASc Seminar.
All MSc students must present their thesis proposal to the department in a departmental seminar.
FORMAT: Program requirement (see description)

BMNG 5510.00: Biomedical Engineering MASc Thesis Proposal.
Each MASc candidate in biomedical engineering must prepare a Thesis Proposal at about the one-year mark in the MASc program. The written proposal should include a title page, table of contents, introduction/literature review, thesis objectives/hypothesis, proposed methods and materials, timeline for the project, progress/results to date, and a list of references. The body of written text should not exceed 20 pages.
FORMAT: Program requirement (see description)

BMNG 5530.00: Biomedical Engineering MASc Research Day.
All MSc students must present their research at least once at the departmental Research Day.
FORMAT: Program requirement (see description)

BMNG 6500.00: Biomedical Engineering PhD Seminar.
All PhD students must present both their proposal and the results of their research to the department in a departmental seminar.
FORMAT: Program requirement (see description)

BMNG 6510.00: Biomedical Engineering PhD Thesis Proposal.
In preparation for the research thesis work, each PhD candidate must first prepare and defend a PhD Thesis Proposal. Presented at about the 1-year mark in the PhD program, this 20-40 page proposal will briefly review the relevant scientific/engineering literature, present the research objectives and specific hypotheses to be tested, describe the methodology to be employed, the expected outcomes and potential pitfalls, demonstrate the likelihood of an original contribution to knowledge relevant to Biomedical Engineering.
FORMAT: Program requirement (see description)

BMNG 6520.00: Biomedical Engineering PhD Candidacy Examination.
In the second year of the program the student will be provided with five questions related to the student's research area. The committee will select three of these on which the student will write 15-20 page papers in the style of a journal review article. The committee will orally examine the student both on the content of the papers and on background knowledge in the research area.
Business Administration

Location: MBA Program
Kenneth C. Rowe Building
School of Business Administration
6100 University Ave Room 5063
P.O. Box 15000
Halifax, NS B3H 4R2

Telephone: (902) 494-1814
Fax: (902) 494-7154
Toll-free in N.A. 1-888-432-5622

The School of Business Administration offers a curriculum of undergraduate and graduate studies designed to equip students to serve the community in business, government, and the professions. Graduates in good standing in any discipline can apply to enter the graduate program leading to the degree of Master of Business Administration.

Director of the School Program
Comber, Scott

Professors Emeriti
Duffy, J.F., B.S., M.S., Ph.D (Iowa)
George, R.E., B.Sc (London), M.S (Bristol), Ph.D (London)
MacLean, L.C., B.A, BEd (StFX), M.A, Ph.D (Dal)
McNiven, J.D., B.A, M.A, Ph.D (Mich)
Rosson, P.J., DipMS (Salford), M.A (Lancaster), Ph.D (Bath)

Professors
Barker, J., B.A (UCA), M.A (Purdue), Ph.D (Colorado)
Brooks, M.R. B.T. (McGill), M.B.A (Dal), Ph.D (Wales)
Chowdhury, S., B.Com, M.Com, (Dhaka), M.B.A, Ph.D (Kentucky)
Conrod, J.E.D., B.Com (Dal), B.A (Toronto), F.C.A
Fooladi, I., B.S. (Iran), M.A (Tehran), B.S, M.A, Ph.D (Oregon)
Gassmann, H.L., Vordiplom (Stuttgart), M.S (Oregon State), Ph.D (UBC)
Hebb, G., M.A (McGill), M.B.A (Queen’s), M.A (Dalhousie), Ph.D (Texas A&M)
Marche, S., B.A (Royal Military College), M.Ed (Alberta), Ph.D (London School of Economics)
McLarney, C., DipRadTech (Fanshawe), B.Com, M.B.A (Windsor), Ph.D (York)
Schellinck, D.A., B.Sc, M.B.A (Dal), Ph.D (Illinois)
Zhao, Y., B.Sc (Anhui), M.Sc (Kentucky), Ph.D (UBC)

Associate Professors
Archibald, B.C., B.A (Queen’s), M.Sc (Stanford), Ph.D (Waterloo)
Blunden, R.G., B.Com (Dal), M.M (Northwestern), Ph.D (Western)
Kelley, E., B.A, M.B.A (SMU), M.L.S (Toronto), Ph.D (SMU)
Lynch, D.P., B.S (FDU), M.P.A (Colorado), Ph.D (Arkansas)
Nason, R., B.Sc (McMurray), M.Sc (Pittsburgh), M.B.A, Ph.D (Ivey School of Business, UWO), C.F.A
Ng, E., B.Com (UBC), M.B.A (SFU), Ph.D (McMaster)
Parcarar, B.A (Maha-Bolayia, Romania), U.B.A (Nantes/IFAG), Ph.D (HEC Montreal)
Rumsey, J., B.A (Berkeley), B.Ed (Toronto), M.Sc (Victoria), M.B.A, Ph.D (York)
Sheehan, L., B.Sc (Alberta), M.Des, M.B.A, Ph.D (Calgary)
Sy, O., B.A.A, M.Sc (HEC), Ph.D (McGill)
Triff, V., B.B.A (UPEI), M.B.A (SMU), Ph.D (Alberta)

Assistant Professors
Ahmad, A.R., B.S (N.E.D.), M.S (King Fahd), M.S, Ph.D (Waterloo)
Bliemel, M., B.Sc (Queen’s), M.M.S (Carleton), Ph.D (McMaster)
Comber, S., B.Ed (Dal), M.B.A, M.A, Ph.D (Fielding)
Foster, M., B.A, Ph.D (Dalhousie)
Grise, M.L., B.Com, Ph.D (Queen’s)
Huang, L., B.Sc (Fudan), M.B.A (SFUE), Ph.D (McGill)
Leach, E., B.Com (Dal), C.M.A (NS), M.B.A (Western), Ph.D
Roach, D., B.Eng (TUNS), M.B.A, Ph.D (Dal)
Song, K., B.B.A, M.B.A (SMU), Ph.D (York), C.F.A
Sur, S., B.Sc, M.B.A, Ph.D (Concordia)

I. Introduction
In the summer of 2009 the Corporate Residency Program was launched, while the part-time program, was officially closed. The following sections of the calendar contain relevant information for continuing students who are enrolled in current full time, part time or combined MBA programs as well as those entering the Corporate Residency MBA.

II. Admission Requirements
Regulations of the Faculty of Graduate Studies govern admissions. Admission is approved by the Faculty of Graduate Studies, on the recommendation of the School of Business Administration. Applicants must hold a degree recognized by Dalhousie University as the equivalent of a four-year Bachelor’s Degree in one of its own faculties or any institution recognized by Dalhousie University. The minimum requirement is a B average (GPA 3.0) or better in the final two years, and a GMAT score of 550, or better.

While the School of Business values the benefits of bringing work experience to the class room, the Corporate Residency MBA is designed for high talent candidates coming directly from undergraduate studies. A resume, profile and personal essay should accompany every application. Letters of reference and interview are required.

All applicants are required to submit results of a Graduate Management Admission Test (GMAT). Information on test dates, locations and registration can be obtained from the Dalhousie Registrar, or by writing directly to GMAT, Pearson VUE, PO Box 581907, Minneapolis, MN 55458-1907, USA (1-800-717-GMAT (Americas)) or (http://www.mba.com). The minimum score required for admission is 550. Applicants may write the test more than once. Please check with mbacr@dal.ca for further information.

Candidates who have received a degree from a non-English language university, whose native tongue is not English, must also submit results of the Test of English as a Foreign Language (TOEFL). We seek a minimum TOEFL score of 580 (paper-based) / 237 (computer-based) / 92 (IBT). (Please note, the following tests will be accepted in place of the TOEFL with the following minimum scores; MELAB 85, IELTS 7, Can Test 4.5, and CAEL 70).

The deadline for application is:
March 15 (however applications will be considered until the program is full)

For international students, the deadline is December 31.

All applications received later in the year will be considered for the following July admission.

Internim (official) transcripts will be considered for candidates currently attending university, if all other documentation is complete. Since space in the program is limited, all documents must be submitted before April 30 for entry the following July. Applications will be considered for acceptance as long as space is available. Automatic consideration for scholarships will be given to all applicants who have received an offer of admission prior to March 15.

A complete application includes:
• $70.00 application fee
• Faculty of Graduate Studies application forms
• Two reference letters, (academic - unless working full-time 5+ years)
• GMAT results (550 or higher)
• TOEFL results, where applicable (or MELAB, IELTS, CAEL or CanTest)
• Letter of Financial Guarantee (non-Canadian applicants)
• Transcripts from each institution attended (two copies - both originals)
• Personal Essay
• Your resume (two copies)
• GPA (grade point average) of 3.0 (B) or greater, last two years
• Profile Form

All applicants for the Corporate Residency MBA Program must complete the Dalhousie Graduate Application form. Students can apply online at http://www.dalgrad.dal.ca/prospectivestudents/admissions/admissioninfo. A paper version of the Application Form can be found on the Registrar’s web site at: http://www.registrar.dal.ca/forms/GraduateApplicationForm.pdf. The application must be accompanied with the application fee. All supporting documentation should be sent directly to the School of Business Administration, Corporate Residency MBA Program.

Reference letters must be originals, sent directly by the referees, or delivered sealed and signed. Only official transcripts received directly from the issuing institution will be accepted. GMAT and TOEFL score reports must be forwarded by the testing service. Based on a successful review of submitted documentation, candidates will be invited to participate in an interview to assess suitability for the program and employability. Admissions will be based on all required documentation and other assessment elements.

All admitted applicants must confirm in writing their acceptance of the offer of a place and provide a non-refundable deposit to the Student Accounts Office. This deposit will be applied toward tuition, but will be forfeited if the student does not register in the academic year for which he or she was admitted. Please note that this deposit is separate from any application or pre-registration fees and is the means by which candidates to whom orientation materials are to be sent are identified.

III. Grading System and Good Standing
Under the regulations of the Faculty of Graduate Studies and the requirements of the School of Business, MBA students are required to achieve a grade of B- or better in all classes taken. Grades submitted for classes taken outside Dalhousie by letter of permission must conform to Dalhousie standards; that is, a grade of “C” recorded in another institution’s transcript will be treated as a “Failure” (below the minimum passing grade of B-) on the Dalhousie transcript.

Students who fail more than one course may not continue in the program unless reinstatement is recommended by the School and approved by the Faculty of Graduate Studies. Please see the Faculty of Graduate Studies regulations in the calendar for further details.

An additional failure in the program, regardless of when such failure occurs, will result in immediate dismissal from the MBA program.

In the first meeting of a class, each instructor shall make available a written description of the method of evaluation to be used in the class.

In any class for which 25 percent or more of the evaluation is based on group work, students must pass their individual work to pass the course.

Special examinations may be granted to students only in the case of illness supported by a medical certificate, or in other exceptional circumstances. Medical certificates must be submitted at the time of the illness and will not normally be accepted after a lapse of one week from the date of the examination.

IV. Degree Programs
A. Corporate Residency MBA Program
The Corporate Residency MBA focuses on preparing students to apply the theory learned in the classroom in the workplace. It is designed around the concepts of applied, experiential and integrated learning.

The experience is an intense one, individually designed and implemented in conjunction with the development needs of the students and the needs of the Employer Partners. Students reflect on their experiences in a continuing way, benefiting from online and face-to-face mentoring throughout the process. Students also share their experiences with each other, looking to their extended network and community to develop an understanding of empirical “best practices”. Throughout the entire program a personal and professional effectiveness stream will focus on the practical application of skills identified by the Employer Partners as essential to productive, contributing members of their teams.

Year One
Year one of the Corporate Residency MBA program begins in early July with three core courses. These will provide students with a new appreciation for the world of business and give them the fundamental competencies essential for success in today’s business world. These courses are followed by the first integrative session and participation in the first set of interviews for corporate residencies.

In the fall of year one are six more core courses, in addition to two integrative sessions featuring comprehensive cases and related assignments. Faculty members and Employer Partners will work together on these sessions to ensure the highest level of learning and job preparation. As well, during the summer and fall of year one, students will benefit from personal and professional effectiveness sessions designed to assist in building relevant job skills and personal competencies.

Year one continues in January with the corporate residencies - extended positions with a premier employer, putting into practice and refining the concepts and skills acquired in the classroom. These work assignments provide another essential learning opportunity - one with real challenges and important deliverables. The academic learning continues during this period with two more courses to be completed online. Similarly, personal and professional effectiveness during the corporate residencies will include innovative action learning exercises.

Year Two
Year two begins with an intensive debriefing of the corporate residencies to harvest the important learnings and celebrate student successes. In the fall and winter terms, the three remaining core courses are completed, along with seven electives. The official completion of the MBA occurs at the May convocation.

Additional information on the CR MBA program, including core class descriptions, is found in a brochure published by the School of Business and available from the School. Students seeking further information should contact the MBA Admissions Office, School of Business Administration.

Telephone: local 902.494.2707; toll free 1.888.432.5622;
Email: mbacr@dal.ca
Website: http://www.dalmba.ca/cr

The Corporate Residency MBA requires 14 core classes and seven electives. As well, there are four required non-credit courses.

<table>
<thead>
<tr>
<th>First Term (Summer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSI 5703.03 Business Economics</td>
</tr>
<tr>
<td>BUSI 5103.03 Business Accounting</td>
</tr>
<tr>
<td>BUSI 5503.03 Quantitative Decision Making</td>
</tr>
<tr>
<td>BUSI 5000.00 Introduction to Personal and Professional Effectiveness (PPE) - Non credit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Term (Fall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSI 5201.03 Financial Management</td>
</tr>
<tr>
<td>BUSI 5305.03 Managing People</td>
</tr>
<tr>
<td>BUSI 5401.03 Marketing Management</td>
</tr>
<tr>
<td>BUSI 5550.03 Management of Operations (half term / quarter course)</td>
</tr>
<tr>
<td>BUSI 5800.03 Global Business (half term / quarter course)</td>
</tr>
<tr>
<td>BUSI 6993.03: CSR, Business Ethics and Sustainability</td>
</tr>
<tr>
<td>BUSI 5003.00 Personal and Professional Effectiveness I</td>
</tr>
</tbody>
</table>
D. Combined JD and MBA Program

For students completing the four-year Juris Doctor and Master of Business Administration, the proper configuration is a total of 18 (1/2 credit) courses from the Corporate Residency MBA Program including 14 Core courses (includes 2 1/4 credit courses), 2 non-credit PPE courses, 5 electives (1/2 credits) and the corporate residency. The suggested in sequence as follows:

Year 1 First Term (Summer)
- BUSI 5703.03: Business Economics
- BUSI 5103.03: Accounting
- BUSI 5503.03: Quantitative Decision Making
- BUSI 5000.00: Introduction to Personal & Professional Effectiveness (PPE)

Year 1 Second Term (Fall)
- BUSI 5201.03: Financial Management
- BUSI 5305.03: Management of People
- BUSI 5401.03: Marketing Management
- BUSI 5550.015: Management of Operations
- BUSI 5800.015: Global Business
- BUSI 5003.03: Personal and Professional Effectiveness
- BUSI 6900.03: CSR, Business Ethics & Sustainability

Year 1 Third Term (Winter)
- BUSI 5512.03: Leveraging Technology
- BUSI 6240.03: Analyzing Financial Statements
- BUSI 7000.00: Corporate Residency

Year 2
- JD Studies

Year 3
- 25 hours of classes from the JD program, including 7/9 hours from the Business Law area
- JD requirements
- MGMT 5000.03: Management Without Borders (fall)
- BUSI 6000.03: Strategy and Competitiveness (fall)
- BUSI 6005.03 Strategy Implementation (winter)
- one elective

Year 4
- Four electives from the CR MBA program
- JD requirements between 23-25 hours of classes in law

E. MBA/MLIS (Library and Information Studies)

Admission in the MBA/MLIS program is suspended. The program will continue to be delivered to any current students until all students have graduated, or the time allowed for program completion has elapsed, or all students have left the program.

F. MBA/MEng

This is a 2 year program that enables students to select classes which will allow them to graduate with a Masters of Engineering and Master of Business Administration. This combination provides graduates with a diverse skill set in two high demand disciplines and also serves as an outstanding tool for the future. Candidates for the MBA/MEng program must satisfy the entrance requirements for both the Faculty of Engineering and the School of Business. Students may obtain further information about the combined program by contacting the Faculty of Engineering or the Admissions Officer of the MBA program.

The proper configuration is for a total of 16 courses (1/2 credit) from the Corporate Residency MBA suggested in the following sequence. (It is suggested that the student check with the MEng Program to determine the minimum course requirements of that degree).

Year 1 First Term (Summer)
- BUSI 5703.03: Business Economics
- BUSI 5103.03: Accounting
- BUSI 5503.03: Quantitative Decision Making

B. Twenty Month MBA Program Structure (Traditional Program)

The twenty month program requires 12 core classes and eight electives. Students normally carry a full class load in the fall and winter: 5.5 in the fall and 5.5 in the winter for a total of 11 classes completed in the first two terms.

First Term
- MGMT 5000.03: Management Without Borders
- BUSI 5103.03: Accounting
- BUSI 5503.03: Quantitative Decision Making
- BUSI 5511.03: Management Information Systems
- BUSI 5703.03: Business Economics
- BUSI 5901.03: International Business

Second Term
- BUSI 5007.03: Strategy and Competitiveness (1st year)
- BUSI 5201.03: Financial Management
- BUSI 5305.03: Management of People
- BUSI 5401.03: Marketing Management
- BUSI 5551.03: Operations Management

The second year normally consists of eight electives, plus BUSI 6005.03 Strategy Implementation.

Third Term
- Four electives

Fourth Term
- BUSI 6005.03: Strategy Implementation (2nd year)
- Four electives

A variety of electives will allow a student to develop a program in keeping with his/her career plan. If a student wishes to have a concentration, s/he is advised to take the relevant core class, plus three related electives of choice.

Students may elect to take, with the approval of the School, graduate classes in other faculties and departments, such as Mathematics, Statistics and Computing Science, Resource and Environmental Studies, Economics, Public Administration, Law. Throughout the program, candidates will be expected to attend lectures given by visiting professors and business executives and to take part in projects involving the analysis of the problems of local business firms.

C. Part-time MBA Program

We no longer offer part-time admission into the program. The program will continue to be delivered to any current students until all students have graduated, or the time allowed for program completion has elapsed, or all students have left the program.
- BUSI 5000.00: Introduction to Personal & Professional Effectiveness (PPE)

Year 1 Second Term (Fall)
- BUSI 5201.03: Financial Management
- BUSI 5305.03: Management of People
- BUSI 5401.03: Marketing Management
- BUSI 5550.015: Management of Operations
- BUSI 5800.015: Global Business
- BUSI 5903.03: Personal and Professional Effectiveness I
- BUSI 6900.03: CSR, Business Ethics & Sustainability

Year 1 Third Term (Winter)
- BUSI 5512.03: Leveraging Technology
- BUSI 6240.03: Analyzing Financial Statements
- BUSI 7000.00: Corporate Residency

Year II Fall Term
- BUSI 6000.032: Strategy and Competitiveness
- MGMT 5000X.03: Management Without Borders
- One elective

Year II Winter Term
- BUSI 6005.03 Strategy Implementation
- Engineering Classes
- two electives

G. Advanced Standing
Students in the Corporate Residency MBA Program will take all core courses as a cohort. Courses will be designed so that everyone will have the opportunity to enhance their learning regardless of their starting point.

I. Concentrations
- Finance
- International Business
- Marketing
- Business and Government

A concentration is accomplished by taking the core classes in an area (e.g. finance or marketing) plus the designated number of electives for the concentration in that area.

Finance
The School of Business finance program enjoys an enviable reputation in Canada’s financial community for the outstanding work of its faculty and the quality of its graduates. In addition to a solid background in both finance theory and practice, Dalhousie MBA graduates are recognized as having a leading edge view of the financial industry.

The core curriculum gives students an overview of the field with special emphasis on analytical techniques involved in short- and long-term financial decision making. Throughout the program, equal emphasis is placed on theory and application of theory to solve financial problems. Methodology includes lectures, casework, seminars, assignments, spreadsheet analysis, and multi-disciplinary field projects, as well as a number of other domestic and international learning opportunities. In addition to a challenging, yet balanced curriculum, guest lecturers include some of Canada’s top money managers.

Finance electives allow students to more fully explore such topics as short term financial management, investment and portfolio management, the management of financial institutions, theory of finance, international financial management, and international banking. Students wishing to concentrate in finance must complete the core class Financial Management (BUSI 5201.03) and are expected to complete at least 4 (four) finance electives, including:
- BUSI 6230.03: Investment and Money Management
- BUSI 6220.03: Risk and Derivatives
- BUSI 6255.03: Global Markets and Institutions
- BUSI 6207.03: Advanced Corporate Finance

International Business
In a hyper-competitive world of decreasing trade barriers, issues of international business have become critical to the success of businesses of every size and in every sector. To prepare tomorrow’s business leaders to better succeed in this challenging multi-cultural environment, the Dalhousie School of Business offers an MBA with a concentration in International Business (IB). At the School of Business, IB studies are overseen by the Centre for International Trade and Transportation (CITT), co-funded by the University and Export Development Canada. The Centre’s faculty, research, and course materials are recognized across Canada and throughout the world for their thorough approach to the issues, opportunities, and threats faced by business on the international stage.

Students choosing International Business as their area of concentration must complete Global Business or BUSI 5800 and the following four electives:
- BUSI 6802.03: Strategic Management of International Operations
- BUSI 6408.03: Transport Modes
- BUSI 6255.03: Global Markets and Institutions
- BUSI 6315.03: Intercultural and International Management

Marketing
An MBA concentration in Marketing can be the basis of a rewarding lifelong career, providing the tools to excel in leading edge areas such as informatics, relationship marketing, Internet marketing, direct marketing, new media, and marketing strategy. In today’s world with increasing global competition, consolidation of formerly diverse market entities, and growing environmental pressures such as changing technology and rapidly shifting economies, managers must have current, relevant, sharp knowledge, skills and experience. The marketing concentration offers an opportunity to develop these attributes.

The current shift from mass marketing to relationship marketing, in particular, triggers a need for leaders in the field - new marketing professionals with new skills. Students choosing the marketing concentration in the MBA Program are guided and challenged by professors who are current in their area of knowledge and expertise and who are continuously refreshing their capacity through globally recognized research. Associated with the Centre for Management Informatics in the Faculty of Management, the Marketing area group provides a core of expertise to the School of Business.

Students choosing Marketing as their Area of Concentration must complete:
- BUSI 5401.03: Marketing Management
- BUSI 6403.03: Marketing Research
- BUSI 6412.03: Consumer Behavior
- BUSI 6450.03: Marketing Strategy Seminar

Plus an additional elective from the following list:
- BUSI 6400.03: Advertising Management
- BUSI 6408.03: Transport Modes
- BUSI 6420.03: Marketing Informatics

* Please note in order to take BUSI 6450 students must take two marketing electives from the lists above in the fall of 2nd year

MBA students seeking a specialized concentration, such as in the area of Informatics, should seek advice from the professors in that particular area. Marketing professors are also helpful to students by providing career and internship advice and support. Their close connection to the marketing industry affords students many entry opportunities they would not have if they were not attending the Dalhousie MBA Program, concentrating in Marketing.

Business and Government
The interdependence between economic, political and civil society agendas often require business leaders to engage with government. The business environment is largely defined by government regulations. Public policy development often involves consultation mechanisms impacted by lobbying legislation and administrative law procedures. Businesses require managers who can understand the business
government context that underpins the economic and social infrastructure of society. Business leaders should also be sufficiently familiar with public policy, and decision making processes, regulatory frameworks and how government purchases products and services. The Business - Government area of concentration will provide MBA students with the opportunity to acquire skills and knowledge that are required to structure and manage business-government relations.

Graduates can use the concentration in business and government as a great vehicle for entry into the public sector or to carve out a niche in the business world. The range of opportunities includes consulting, lobbying, environmental regulation, cultural industries, health care administration, energy industries and international trade. Strong undergraduate backgrounds for this concentration include, but are not limited to: political science, economics, sociology, history, life sciences and health sciences.

To complete an area of concentration in Business - Government students must complete the BUSI 6900.03 (Corporate Social Responsibility, Business Ethics and Sustainability) and the following three electives:
- BUSI 5100.03: Organizational Designs for Governance and Public Management
- BUSI 5120.03: Introduction to Public Policy
- BUSI 6700: Managing Business Government Relations

V. MBA Class Descriptions

Corporate Residency Core Credit Classes

BUSI 5103.03: Business Accounting.
This course introduces fundamental accounting principles and practices used to measure financial results of an organization. A portion of the course examines the challenges of financial reporting to stakeholders. The course also explores the use of accounting information for managerial decision making.

BUSI 5201.03: Financial Management.
Financial Management provides a comprehensive framework for analyzing and understanding the financial issues faced by finance professionals in the corporate, financial and capital markets sectors. The course emphasizes a blend between the theoretical and the practical and provides students with a basis for integrating financial concepts in other disciplines as well as advanced finance related courses. The tools and techniques of finance are introduced along with the theory, but always with the end goal of implementation in the corporate, small business, institutional, or investment settings.

BUSI 5305.03: Managing People.
This course offers an exploration of the theory and practice involved in working with people in organizations, from both formal and informal leadership perspectives. The emphasis is on understanding individual (micro) and organizational (macro) factors and the processes through which they influence behaviour, with a view to improving managerial effectiveness. Students have the opportunity to develop and apply this understanding through experiential exercises, case studies and assignments situated in real organizations.

BUSI 5401.03: Marketing Management.
Marketing is the business function responsible for understanding the needs of consumers, suppliers and retailers and for creating value for these and other stakeholder groups. As such, it is more than a department within a firm - it is a function that must be undertaken on a company-wide basis. Marketing drives choices about what markets to serve and which needs to satisfy, about what partnerships and relationships to pursue, about product and service design, about prices that can be levied, and about the channels that can best be used for distribution and communication.

BUSI 5503.03: Quantitative Decision Making.
This is an introductory course in quantitative methods with emphasis on business applications. Throughout this class an emphasis is placed on helping the student to recognize situations and areas in business in which quantitative analysis might be useful.

BUSI 5512.03: Leveraging Technology.
This class is meant to provide the student with a basic knowledge of information systems and their role in business organizations. Fundamental to this basic knowledge is an understanding of the variety of information systems in business. An understanding of the use of computers in current and future information systems is stressed.

BUSI 5550.015: Management of Operations.
Management of Operations is the study of the processes used in the production of goods and services. In this abbreviated course we will examine the approaches used in the key areas of Quality and Inventory. Other topics such as Forecasting are important in OM, but have a wider applicability. We will use cases to illustrate production processes and how techniques are applied.

BUSI 5703.03: Business Economics.
Domestic and international markets, governments policy and central bank decisions present opportunities, challenges and threats to the operating and competitive decisions of business owners, managers and investors. This class provides a framework for the economic analysis of these issues.

BUSI 5800.015: Global Business.
This course provides an introduction to international business. It builds on the economic foundations of trade and investment, and introduces you to global trade, finance and regulatory frameworks, and the relationships between international companies and nation-states. By the end of the course you will develop an understanding of the nuances of the costs and benefits of foreign investments, the alternative controls and responses required for trans-national trade, as well as the effects of local environmental characteristics on the operations of multi-national enterprises.

BUSI 6000.03: Strategy and Competitiveness.
This class is about the general manager’s task of managing strategy in all types of organizations. The class develops concepts, frameworks, techniques, and skills that are foundational to the development and execution of strategies that are competitively sound, organizationally doable, and effective in guiding organizational decisions and actions.

BUSI 6005.03: Strategy Implementation.
This class is about the general manager’s task of managing strategy in all types of organizations. The class develops concepts, frameworks, techniques, and skills that are foundational to the development and execution of strategies that are competitively sound, organizationally doable, and effective in guiding organizational decisions and actions.

BUSI 6240.03: Analyzing Financial Statements.
This class is intended to provide an analytical understanding of the usefulness of conventionally reported financial data in investment and credit decision-making. It covers major financial reporting issues within the context of predicting future earnings and the role of financial institutions in capital markets.

BUSI 6900.03: Corporate Social Responsibility, Business Ethics and Sustainability.
This class introduces students to the relevance and importance of ethics and social responsibility in business. The ultimate intent of the course is to leave students better equipped to identify, think critically about, and
resolve ethical issues that are encountered in one's working life at the individual, organizational, and societal levels.

FORMAT: Lecture/class participation

PREREQUISITE: All first year classes

RESTRICTION: Restricted to Corporate Residency only

MGMT 5000.03: Management Without Borders: A Foundation Course for Masters Students in Management.

This course places management in its broadest context and helps students from diverse disciplines understand the complex social, economic, ecological, political, and technological forces shaping 21st century leadership in the public, private, and non-profit sectors. Key themes explored in the course include systems thinking, responsible leadership, sustainable economic development, stakeholder theory, risk management and knowledge management. A significant portion of the course is devoted to interdisciplinary / inter-professional group work. Students from different programs are brought together to work with a Nova Scotia organization that has identified a relevant and timely project topic for the group. The project provides students with the opportunity to hone important skills in team dynamics, interpersonal communication, project organization that has identified a relevant and timely project topic for the group. The project provides students with the opportunity to hone important skills in team dynamics, interpersonal communication, project group. The project provides students with the opportunity, within the framework of a formal class, to explore and develop business ideas they have been considering or wish to investigate. The final output of the project is a feasibility study, business plan, and financing proposal for a new venture.

FORMAT: Lecture/seminar

PREREQUISITE: All first year core classes

CROSS-LISTING: ECMM 6024.03

BUSI 6002.03: New Venture Creation.

New Venture Creation is about entrepreneurship: the process of creating new businesses. It employs cases, experiential exercises, and a major project to expose students to the issues, problems, and challenges of creating viable new businesses. The project provides students with the opportunity, within the framework of a formal class, to explore and develop business ideas they have been considering or wish to investigate. The final output of the project is a feasibility study, business plan, and financing proposal for a new venture.

FORMAT: Lecture/seminar

PREREQUISITE: All first year core classes

CROSS-LISTING: COMM 3308.03

BUSI 6007.03: Innovation Management.

Managing innovation is at the core of most successful business ventures. Successfully managing innovation depends on its alignment with the firm’s business, marketing and operational strategies. This course leads students through the process of identifying innovation opportunities; managing the innovation process and executing entrepreneurial marketing strategies to successfully manage emerging ventures.

FORMAT: Lecture/seminar

PREREQUISITE: All first year core classes

BUSI 6009.03: Business and Government.

The aim of this class is to explore the relationship between businesses and the public sector. Government impinges on business policy and activities through laws, regulations, subsidies, taxes, and its spending powers. How businesses can and do influence decisions in these areas constitutes the technical matter of the class. As a matter of necessity, the class assumes some prior general knowledge of the Canadian political system. This can be gained from either general politics classes or by some preliminary reading on the subject.

FORMAT: Lecture/seminar

CROSS-LISTING: PUAD 6500.03

BUSI 6050.03: Corporate Governance.

Corporate Governance is designed to give students an in-depth look at the corporate governance triad, as indicated above, that controls the modern corporation. Accordingly, this course will deal with the control, composition, functions, roles, and structure of boards; board responsibility and accountability, CEO tenure and compensation, shareholder and other stakeholder representation; corporate boards vis-à-vis social responsibility and ethics; and comparative corporate governance across North America, Europe, and selected Asian countries.

FORMAT: Lecture/group work and class participation

PREREQUISITE: BUSI 5007.03, BUSI 5201.03, and BUSI 6000.03
BUSI 6101.03: External Auditing.
This class covers the theory and practice of public auditing according to generally accepted auditing standards (GAAS). The first half of the class considers the forces impacting on the setting of auditing standards and the current level of standards. This part includes pronouncements of the accounting profession, reporting standards, professional ethics, statute laws, legal liability and responsibilities, standards for examination of internal control in both manual and computerized environments, standards for quality of evidence, statistical sampling and the sufficiency of evidence, documentation and working papers. The second half of the class considers typical audit programs for examination of balance sheet and income statement accounts.
FORMAT: Lecture
PREREQUISITE: All first year core classes
CROSS-LISTING: COMM 3114.03

BUSI 6102.03: Taxation.
An introduction to the taxation system in Canada, with special reference to the provisions of the Income Tax Act and their effects on business decisions. The measurement process used to determine the tax base are examined, and the basic elements in the calculation of tax payable for individuals and corporations are discussed.
FORMAT: Lecture 3 hours, with significant effort directed to the solving of short case problems.
PREREQUISITE: All first year core classes
CROSS-LISTING: COMM 4120.03

BUSI 6106.03: Cost Management.
The major objective of this class is to develop a deeper understanding of the key topics in cost/managerial accounting practices and their management control implications. The selected topics to be covered include costing systems, cost-volume-profit analysis, cost and profit variance analysis, control and performance evaluation in decentralized organizations. This class is intended primarily for students who plan to concentrate their studies in the accounting area.
FORMAT: Lecture/case discussions
PREREQUISITE: All first year core classes

BUSI 6108.03: Advanced Financial Accounting I.
This course is intended to provide an understanding of corporate financial reporting model and related conceptual issues. The class will develop expertise in accounting and reporting issues related to liabilities and shareholders' equity, including complex debt and equity instruments, corporate income taxes, leases, pensions and other post-retirement obligations, earnings per share, accounting changes and restatements.
FORMAT: Lecture 3 hours
PREREQUISITE: All first year core classes
CROSS-LISTING: COMM 3111.03

BUSI 6109.03: Advanced Financial Accounting II.
This course provides an in-depth study of the interrelated topics of intercorporate investments, business combinations, consolidated financial statements and foreign currency transactions and foreign operations. The class also covers segmented reporting and bankruptcy.
FORMAT: Lecture
PREREQUISITE: All first year core classes, BUSI 6108.03
CROSS-LISTING: COMM 4102.03

BUSI 6110.03: Advanced Financial Accounting III.
This class provides a theoretical framework for the study of accounting policy. Case analysis is an integral part of the course. Topics covered include accounting policy choice in a dynamic framework, partnerships, standard setting, not-for-profit accounting and fund accounting. As well the course may consider various practical and theoretical topics, and current topics as appropriate.
FORMAT: Lecture
PREREQUISITE: All first year core classes, BUSI 6108.03
CROSS-LISTING: COMM 4101.03

BUSI 6207.03: Advanced Corporate Finance.
This is an advanced course that offers a variety of applied topics in corporate finance. The emphasis will be on implementing the tools and techniques of the finance theory and as such will have a strong applied or case-based component.
PREREQUISITE: BUSI 5401.03

BUSI 6220.03: Risk and Derivatives.
This course is an introduction to risk, enterprise management and derivatives. As a survey course in risk and derivatives, the goal is to cover the central concepts and issues that will permit the student to start using the concepts and products as well as have a working understanding of the main advantages and disadvantages of each. The goal of the course is not solely on the quantitative models themselves, but also on the qualitative issues. Nevertheless, risk management and derivatives is a quantitative subject, and as such, students be comfortable with basic statistics and algebra. Knowledge of calculus is not required for this course. Additionally, students should be comfortable with basic Excel mathematical and financial functions.
FORMAT: Lecture/discussion/assignments
PREREQUISITES: All core MBA classes

BUSI 6230.03: Investment and Money Management.
This course is designed to introduce students to the basics of the Modern Investment and Portfolio Theory and its application to Money management. The intention is to provide students with the needed technical and operational skills to successfully face the challenging world of investments and money management. In particular, a considerable effort will be made to compare and contrast investment approaches in various theories with the activities of money managers on the street.
INSTRUCTOR: I. Fooladi
FORMAT: Lecture/discussion/assignments
PREREQUISITES: BUSI 5201

BUSI 6255.03: Global markets and Institutions.
Global markets and Institutions is an introduction to the world of global finance. It has been designed to give a theoretical background to topics such as financial institutions and current markets and to explain how these impact the world economy. Throughout the course, application to real-life examples will be used extensively.
FORMAT: Lecture/Seminar/Discussion
PREREQUISITE: BUSI 5201.03

BUSI 6312.03: Organizational Design.
The behaviour and performance of individuals are significantly influenced by organizational design. The design involves the formal systems and process, specialization, hierarchy, authority-power, communications, reward systems, and accountability. The purpose of the course is to examine the evolution of design strategies, review some of the different approaches to design now being utilized in organizations, and consider differences in behaviour and performance in organizational systems employing different design strategies. The course will not offer a particular design as the answer to organizational-managerial problems, but will propose some steps that managers should consider before designing their organizations.
FORMAT: Lecture
PREREQUISITE: All first year core classes

BUSI 6313.03: Organizational Change.
This class provides the student with an understanding of major conceptual approaches to the changing organization, including changing people, technology, and structure. Emphasis is placed on the analysis of the dynamics and process of change through case studies, and the exploration of programmes of organizational change, including grid and laboratory programmes, and the use of consultation.
FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes

BUSI 6315.03: Intercultural and International Management.
This class is designed to familiarize participants with behavioural problems and challenges facing managers interacting with people from other cultures in foreign or domestic work settings. The class also examines research findings in the field to investigate the similarities and differences found in managerial practices of selected cultures.
FORMAT: Lecture
PREREQUISITE: All first year core classes
CROSS-LISTING: COMM 4315.03
BUSI 6350.03: Authentic Leadership for the 21st Century.

There are few topics in business that receive as much attention as does the topic of 'leadership.' The opinions range from the centrality of leadership to success to the theory that leadership is a romantic conception that does not exist, nor impact outcomes, in the real world. This course will examine that range of opinions and research findings about leadership, as part of the search for understanding of what leadership is to the individual and to the organizational world at large. As future leaders, you need to understand what constitutes effective and ethical leadership. This course then will also include learning about oneself as a leader, as well as about the topic of leadership in the abstract.

FORMAT: Lecture/discussion/assignments
PREREQUISITE: All first year MBA classes

BUSI 6401.03: Marketing Research.

This class is designed to give the student an appreciation of the scope of marketing research techniques. The goal of the class is to provide students with sufficient background to make them knowledgeable users of marketing research information. Marketing research will be related to model building, information systems, and the concept of value of information.

FORMAT: Seminar
PREREQUISITE: All first year core classes

BUSI 6403.03: Integrated Advertising, Promotion, and Marketing Communications.

Designed to improve analytical skills and decision-making capabilities through the practical application of advertising concepts and principles, this class considers market positioning, the psychology of mass communication, copy strategy, media selection, budgeting, and advertising research.

FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes

BUSI 6408.03: Transport Modes.

This class will introduce the student to the business of managing a transport enterprise. It will focus on understanding the regulatory environment and customer requirements prior to exploring operational considerations across a number of transport modes and what that means for marketing the transport company and structuring it for growth. This class is suitable for students wishing to work in the transport industry, in the supply chain activities of a transport customer or, tangentially, in the strategic management of any service business.

FORMAT: Lecture/seminar
CROSS-LISTING: COMM 3408.03

BUSI 6412.03: Consumer Behavior.

Every stage of the marketing process, from determining consumers' needs to evaluating customer satisfaction, requires a clear understanding of the consumer. The goal of this course is to introduce you to the theoretical concepts related to all aspects of consumer behaviour, including theories of attitude formation and change, memory, decision-making, cultural influences, and behavioural outcomes. Throughout the course, an emphasis will be placed on applying theoretical knowledge to various marketing situations.

FORMAT: Lecture/discussion/assignments
PREREQUISITE: BUSI 5401.03

BUSI 6420.03: Marketing Informatics.

A revolution in marketing requires marketers who have a whole new set of skills and knowledge focused on the application of technology and associated practices. Large companies require marketers with the skills necessary to work with IT people to develop effective customer information files and information from other sources. They need to be able to use data mining tools and techniques to understand buyer behaviour, identify relevant segments, and develop effective strategies using all of today's new media and channels. This is a leading edge class.

FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes

BUSI 6450.03: Marketing Strategy Seminar.

This is the capstone class in marketing. As such, it is designed to draw together the individual marketing classes offered in the MBA programme. Extensive use will be made of case studies requiring students to develop complete marketing strategies for companies in “real-life” situations. Student presentations of their case analyses will form an important part of the class. Presentations will be videotaped and a critique provided by the instructor.

FORMAT: Seminar
PREREQUISITE: All first year core classes and at least two 6000-level marketing classes, which may be taken concurrently, or permission of the instructor

BUSI 6520.03: Electronic Commerce.

The goal of this course is to prepare students to become effective managers and strategists in the area of Electronic Commerce. Along these lines the course focuses on the various elements of eBusiness strategy including identifying and evaluating market opportunities, exploring the various business models that are being used in the networked economy, and gaining an understanding of the guiding principles behind the design and strategy of successful customer Web interfaces. The course will also explore issues related to branding in an eBusiness environment as well as exposing students to issues related to effectively implementing online strategies and how to use metrics to assess the health of an eBusiness.

Learning in this course is accomplished through a combination of lectures, case analysis and a term project.

FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes

BUSI 6523.03: Information Technology Project Management.

This class will cover the principles of project management generally and for Information Technology Projects in particular. There is a set of generic project management disciplines that apply everywhere, and there are considerations specific to IT development challenges. Students will learn those differences as well as generic principles of project management. Through real projects with real clients, students will gain a real-world understanding of the challenges of project management.

FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes
CROSS-LISTING: ECM 6022.06, HINF 6300.03

BUSI 6802.03: Strategic Management of International Operations.

This class critically examines the generic and functional strategies open to multinational enterprises and, through numerous industry and business case studies, seeks to test the applicability of these concepts to actual situations. Each student is expected to prepare a major research paper, and a simulated negotiation is included to help sharpen top management skills crucial for success in international operations.

FORMAT: Seminar
PREREQUISITE: BUSI 5801.03, BUSI 5800.015

BUSI 6941.03: Applied Topics in Business I.

This course is designed to permit the business school to develop and test new course material. Its content may therefore be different from year to year and between sections. Please consult the department for further information.

NOTE: SIGNATURE REQUIRED
FORMAT: Seminar
PREREQUISITE: All first year core classes

BUSI 6942.03: Applied Topics in Business II.

This course is designed to permit the business school to develop and test new course material. Its content may therefore be different from year to year and between sections. Please consult the department for further information.

FORMAT: Seminar
PREREQUISITE: All first year core classes
RESTRICTION: Restricted to Corporate Residency only

BUSI 6951.03/6952.03: Research Reading and Conference Class.

This class provides an opportunity for supervised in-depth research on a topic of special interest to the student (proposed by the student and faculty member involved, and approved by the MBA Programme Committee). Further description is available at the MBA Office at 494-1814 or mbaoffice@mgmt.dal.ca. Deadlines for electronic submission of proposals are September 2, December 1, and April 1 for the following term.
20-Month MBA Core Classes Traditional Program

BUSI 5007.03: Strategy and Competitiveness.
This class is about the general manager’s task of managing strategy in all types of organizations. The class develops concepts, frameworks, techniques, and skills that are foundation to the development and execution of strategies that are competitively sound, organizationally doable, and effective in guiding organizational decisions and actions.

BUSI 5103.03: Business Accounting.
This course introduces fundamental accounting principles and practices used to measure financial results of an organization. A portion of the course examines the challenges of financial reporting to stakeholders. The course also explores the use of accounting information for managerial decision making.

BUSI 5201.03: Financial Management.
Financial Management provides a comprehensive framework for analyzing and understanding the financial issues faced by finance professionals in the corporate, financial and capital markets sectors. The course emphasizes a blend between the theoretical and the practical and provides students with a basis for integrating financial concepts in other disciplines as well as advanced finance related courses. The tools and techniques of finance are introduced along within the theory, but always with the end goal of implementation in the corporate, small business, institutional, or investment settings.

FORMAT: Lecture/seminar and discussion
PREREQUISITE: BUSI 5103.03, BUSI 5503.03, and BUSI 5703

BUSI 5305.03: Managing People.
This course offers an exploration of the theory and practice involved in working with people in organizations, from both formal and informal leadership perspectives. The emphasis is on understanding individual (micro) and organizational (macro) factors and the processes through which they influence behaviour, with a view to improving managerial effectiveness. Students have the opportunity to develop and apply this understanding through experiential exercises, case studies and assignments situated in real organizations.

FORMAT: Lecture/seminar/discussion

BUSI 5401.03: Marketing Management.
Marketing is the business function responsible for understanding the needs of consumers, suppliers and retailers and for creating value for these and other stakeholder groups. As such, it is more than a department within a firm - it is a function that must be undertaken on a company-wide basis. Marketing drives choices about what markets to serve and which needs to satisfy, about what partnerships and relationships to pursue, about product and service design, about prices that can be levied, and about the channels that can best be used for distribution and communication.

FORMAT: Lecture/seminar/discussion

BUSI 5503.03: Quantitative Decision Making.
This is an introductory course in quantitative methods with emphasis on business applications. Throughout this class an emphasis is placed on helping the student to recognize situations and areas in business in which quantitative analysis might be useful.

FORMAT: Lecture/seminar/discussion

BUSI 5511.03: Management Information Systems.
This class is meant to provide the student with a basic knowledge of information systems and their role in business organizations. Fundamental to this basic knowledge is an understanding of the variety of information systems in business. An understanding of the use of computers in current and future information systems is stressed.

FORMAT: Lecture/seminar/discussion

BUSI 5551.03: Operations Management.
All managers should be familiar with the key concepts and techniques required to manage the production function of an organization regardless of their specialist functional interests. This is especially true for those who aspire to reach senior general management positions. The purpose of this class is to provide an introductory overview of production/operations management for such individuals, covering the key concepts and the latest developments in the field.

FORMAT: Lecture/seminar/discussion

BUSI 5703.03: Business Economics.
Domestic and international markets, governments policy and central bank decisions present opportunities, challenges and threats to the operating and competitive decisions of business owners, managers and investors. This class provides a framework for the economic analysis of these issues.

FORMAT: Lecture/seminar/discussion

BUSI 5801.03: International Business.
This class provides a survey treatment of international businesses that will benefit all MBA students and build a foundation for those proposing future study in this area. For students not going on in the field, it provides the tools needed to manage the interdependence between domestic and international markets.

FORMAT: Lecture/seminar/discussion

BUSI 6005.03: Strategy Implementation.
This class is about the general manager’s task of managing strategy in all types of organizations. The class develops concepts, frameworks, techniques, and skills that are foundation to the development and execution of strategies that are competitively sound, organizationally doable, and effective in guiding organizational decisions and actions.

FORMAT: Lecture/seminar/discussion

MGMT 5000.03: Management Without Borders: A Foundation Course for Masters Students in Management.
This course places management in its broadest context and helps students from diverse disciplines understand the complex social, economic, ecological, political and technological forces shaping 21st century leadership in the public, private and non-profit sectors. Key themes explored in the course include systems thinking, responsible leadership, sustainable economic development, stakeholder theory, risk management and knowledge management. A significant portion of the course is devoted to interdisciplinary / inter-professional group work. Students from different programs are brought together to work with a Nova Scotia organization that has identified a relevant and timely project topic for the group. The project provides students with the opportunity to hone important skills in team dynamics, interpersonal communication, project management, managing scope and ambiguity, information gathering, research and writing professional reports. The course is team taught by leading faculty from across the Faculty of Management as well as guest speakers. Learning opportunities are delivered in a mix of formats, including lectures, tutorials, readings, multidisciplinary cases and group discussions.

INSTRUCTOR(S): P. Cunningham
FORMAT: Lecture/tutorial/group work/class participation

MBA Elective Classes
Not all electives are offered each term. As well, additional electives may be added. With the approval of the School, students may select electives from other Schools in the Faculty of Management or other Faculties. Please check with the MBA office for the latest information.

BUSI 6002.03: New Venture Creation.
New Venture Creation is about entrepreneurship: the process of creating new businesses. It employs cases, experiential exercises, and a major project to expose students to the issues, problems, and challenges of creating viable new businesses. The project provides students with the opportunity, within the framework of a formal class, to explore and develop business ideas they have been considering or wish to investigate. The final output of the project is a feasibility study, business plan, and financing proposal for a new venture.

FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes
CROSS-LISTING: ECMM 6024.03
BUSI 6006.03: Managing the Family Enterprise.
Managing the Family Enterprise is about the special problems and issues that confront family businesses. It explores the family system, the business system, and their interactions - functional and dysfunctional.
FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes
CROSS-LISTING: COMM 3308.03

BUSI 6007.03: Innovation Management.
Managing innovation is at the core of most successful business ventures. Successfully managing innovation depends on its alignment with the firm’s business, marketing and operational strategies. This course leads students through the process of identifying innovation opportunities; managing the innovation process and executing entrepreneurial marketing strategies to successfully manage emerging ventures.
FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes

BUSI 6009.03: Business and Government.
The aim of this class is to explore the relationship between businesses and the public sector. Government impinges on business policy and activities through laws, regulations, subsidies, taxes, and its spending powers. How businesses can and do influence decisions in these areas constitutes the technical matter of the class. As a matter of necessity, the class assumes some prior general knowledge of the Canadian political system. This can be gained from either general politics classes or by some preliminary reading on the subject.
FORMAT: Lecture/seminar
CROSS-LISTING: PUAD 6500.03

BUSI 6050.03: Corporate Governance.
Corporate Governance is designed to give students an in-depth look at the corporate governance triad, as indicated above, that controls the modern corporation. Accordingly, this course will deal with the control, composition, functions, roles, and structure of boards; board responsibility and accountability, CIO tenure and compensation, shareholder and other stakeholder representation; corporate boards vis-à-vis social responsibility and ethics; and comparative corporate governance across North America, Europe, and selected Asian countries.
FORMAT: Lecture/group work and class participation
PREREQUISITE: BUSI 5007.03, BUSI 5201.03, and BUSI 6000.03

BUSI 6101.03: External Auditing.
This class covers the theory and practice of public auditing according to generally accepted auditing standards(GAAS). The first half of the class considers the forces impacting on the setting of auditing standards and the current level of standards. This part includes pronouncements of the accounting profession, reporting standards, professional ethics, statute laws, legal liability and responsibilities, standards for examination of internal control in both manual and computerized environments, standards for quality of evidence, statistical sampling and the sufficiency of evidence, documentation and working papers. The second half of the class considers typical audit programs for examination of balance sheet and income statement accounts.
FORMAT: Lecture
PREREQUISITE: All first year core classes
CROSS-LISTING: COMM 3114.03

BUSI 6102.03: Taxation.
An introduction to the taxation system in Canada, with special reference to the provisions of the Income Tax Act and their effects on business decisions. The measurement process used to determine the tax base are to the provisions of the Income Tax Act and their effects on business decisions. The measurement process used to determine the tax base are to the provisions of the Income Tax Act and their effects on business decisions. The measurement process used to determine the tax base are to the provisions of the Income Tax Act and their effects on business decisions. The measurement process used to determine the tax base are to the provisions of the Income Tax Act and their effects on business decisions. The measurement process used to determine the tax base are to the provisions of the Income Tax Act and their effects on business decisions. The measurement process used to determine the tax base are to the provisions of the Income Tax Act and their effects on business decisions. The measurement process used to determine the tax base are to the provisions of the Income Tax Act and their effects on business decisions. The measurement process used to determine the tax base are to the provisions of the Income Tax Act and their effects on business decisions.
FORMAT: Lecture 3 hours, with significant effort directed to the solving of short case problems.
PREREQUISITE: All first year core classes
CROSS-LISTING: COMM 4120.03

BUSI 6106.03: Cost Management.
The major objective of this class is to develop a deeper understanding of the key topics in cost/managerial accounting practices and their management control implications. The selected topics to be covered include costing systems, cost-volume-profit analysis, cost and profit variance analysis, control and performance evaluation in decentralized organizations. This class is intended primarily for students who plan to concentrate their studies in the accounting area.
FORMAT: Lecture/case discussions
PREREQUISITE: All first year core classes

BUSI 6108.03: Advanced Financial Accounting I.
This course is intended to provide an understanding of corporate financial reporting model and related conceptual issues. The class will develop expertise in accounting and reporting issues related to liabilities and shareholders’ equity, including complex debt and equity instruments, corporate income taxes, leases, pensions and other post-retirement obligations, earnings per share, accounting changes and restatements.
FORMAT: Lecture 3 hours
PREREQUISITE: All first year core classes
CROSS-LISTING: COMM 3111.03

BUSI 6109.03: Advanced Financial Accounting II.
This course provides an in-depth study of the interrelated topics of intercorporate investments, business combinations, consolidated financial statements and foreign currency transactions and foreign operations. The class also covers segmented reporting and bankruptcy.
FORMAT: Lecture
PREREQUISITE: All first year core classes, BUSI 6108.03
CROSS-LISTING: COMM 4102.03

BUSI 6110.03: Advanced Financial Accounting III.
This class provides a theoretical framework for the study of accounting policy. Case analysis is an integral part of the course. Topics covered include accounting policy choice in a dynamic framework, partnerships, standard setting, not-for-profit accounting and fund accounting. As well the course may consider various practical and theoretical topics, and current topics as appropriate.
FORMAT: Lecture
PREREQUISITE: All first year core classes, BUSI 6108.03
CROSS-LISTING: COMM 4101.03

BUSI 6207.03: Advanced Corporate Finance.
This is an advanced course that offers a variety of applied topics in corporate finance. The emphasis will be on implementing the tools and techniques of the finance theory and as such will have a strong applied or case-based component.
PREREQUISITES: BUSI 5401.03

BUSI 6220.03: Risk and Derivatives.
This course is an introduction to risk, enterprise management and derivatives. As a survey course in risk and derivatives, the goal is to cover the central concepts and issues that will permit the student to start using the concepts and products as well as have a working understanding of the main advantages and disadvantages of each. The goal of the course is not solely on the quantitative models themselves, but also on the qualitative issues. Nevertheless, risk management and derivatives is a quantitative subject, and as such, students be comfortable with basic statistics and algebra. Knowledge of calculus is not required for this course.
Additionally, students should be comfortable with basic Excel mathematical and financial functions.
FORMAT: Lecture/discussion/assignments
PREREQUISITE: All core MBA classes

BUSI 6230.03: Investment and Money Management.
This course is designed to introduce students to the basics of the Modern Investment and Portfolio Theory and its application to Money management. The intention is to provide students with the needed technical and operational skills to successfully face the challenging world of investments and money management. In particular, a considerable effort will be made to compare and contrast investment approaches in various theories with the activities of money managers on the street.
INSTRUCTOR: I. Fooladi
FORMAT: Lecture/discussion/assignments
PREREQUISITES: BUSI 5201

BUSI 6255.03: Global markets and Institutions.
Global markets and Institutions is an introduction to the world of global finance. It has been designed to give a theoretical background to topics such as financial institutions and current markets and to explain how these impact the world economy. Throughout the course, application to real-life examples will be used extensively.
BUSI 6312.03: Organizational Design.
The behaviour and performance of individuals are significantly influenced by organizational design. The design involves the formal systems and process, specialization, hierarchy, authority-power, communications, reward systems, and accountability. The purpose of the course is to examine the evolution of design strategies, review some of the different approaches to design now being utilized in organizations, and consider differences in behaviour and performance in organizational systems employing different design strategies. The course will not offer a particular design as the answer to organizational-managerial problems, but will propose some steps that managers should consider before designing their organizations.

FORMAT: Lecture
PREREQUISITE: All first year core classes

BUSI 6313.03: Organizational Change.
This class provides the student with an understanding of major conceptual approaches to the changing organization, including changing people, technology, and structure. Emphasis is placed on the analysis of the dynamics and process of change through case studies, and the exploration of programmes of organizational change, including grid and laboratory programmes, and the use of consultation.

FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes

BUSI 6315.03: Intercultural and International Management.
This class is designed to familiarize participants with behavioural problems and challenges facing managers interacting with people from other cultures in foreign or domestic work settings. The class also examines research findings in the field to investigate the similarities and differences found in managerial practices of selected cultures.

FORMAT: Lecture
PREREQUISITE: All first year core classes

BUSI 6401.03: Marketing Research.
This class is designed to give the student an appreciation of the scope of marketing research techniques. The goal of the class is to provide students with sufficient background to make them knowledgeable users of marketing research information. Marketing research will be related to model building, information systems, and the concept of value of information.

FORMAT: Seminar
PREREQUISITE: All first year core classes

BUSI 6403.03: Integrated Advertising, Promotion, and Marketing Communications.
Designed to improve analytical skills and decision-making capabilities through the practical application of advertising concepts and principles, this class considers market positioning, the psychology of mass communication, copy strategy, media selection, budgeting, and advertising research.

FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes

BUSI 6408.03: Transport Modes.
This class will introduce the student to the business of managing a transport enterprise. It will focus on understanding the regulatory environment and customer requirements prior to exploring operational considerations across a number of transport modes and what that means for marketing the transport company and structuring it for growth. The class is suitable for students wishing to work in the transport industry, in the supply chain activities of a transport customer or, tangentially, in the strategic management of any service business.

FORMAT: Lecture/seminar
CROSS-LISTING: COMM 3408.03

BUSI 6420.03: Marketing Informatics.
A revolution in marketing requires marketers who have a whole new set of skills and knowledge focused on the application of technology and associated practices. Large companies require marketers with the skills necessary to work with IT people to develop effective customer information files and information from other sources. They need to be able to use data mining tools and techniques to understand buyer behaviour, identify relevant segments, and develop effective strategies using all of today's new media and channels. This is a leading edge class.

FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes

BUSI 6450.03: Marketing Strategy Seminar.
This is the capstone class in marketing. As such, it is designed to draw together the individual marketing classes offered in the MBA programme. Extensive use will be made of case studies requiring students to develop complete marketing strategies for companies in “real-life” situations. Student presentations of their case analyses will form an important part of the class. Presentations will be videotaped and a critique provided by the instructor.

FORMAT: Seminar
PREREQUISITE: All first year core classes and at least two 6000-level marketing classes, which may be taken concurrently, or permission of the instructor

BUSI 6520.03: Electronic Commerce.
The goal of this course is to prepare students to become effective managers and strategists in the area of Electronic Commerce. Along these lines the course focuses on the various elements of eBusiness strategy including identifying and evaluating market opportunities, exploring the various business models that are being used in the networked economy, and gaining an understanding of the guiding principles behind the design and strategy of successful customer Web interfaces. The course will also explore issues related to branding in an eBusiness environment as well as exposing students to issues related to effectively implementing online strategies and how to use metrics to assess the health of an eBusiness. Learning in this course is accomplished through a combination of lectures, case analysis and a term project.

FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes

BUSI 6523.03: Information Technology Project Management.
This class will cover the principles of project management generally and for Information Technology Projects in particular. There is a set of generic project management disciplines that apply everywhere, and there are considerations specific to IT development challenges. Students will learn those differences as well as generic principles of project management. Through real projects with real clients, students will gain a real-world understanding of the challenges of project management.

FORMAT: Lecture/seminar
PREREQUISITE: All first year core classes

BUSI 6802.03: Strategic Management of International Operations.
This class critically examines the generic and functional strategies open to multinational enterprises and, through numerous industry and business case studies, seeks to test the applicability of these concepts to actual situations. Each student is expected to prepare a major research paper, and a simulated negotiation is included to help sharpen top management skills crucial for success in international operations.

FORMAT: Seminar
PREREQUISITE: BUSI 5801.03, BUSI 5800.015

BUSI 6941.03: Applied Topics in Business I.
This course is designed to permit the business school to develop and test new course material. Its content may therefore be different from year to year and between sections. Please consult the department for further information.
NOTE: SIGNATURE REQUIRED
FORMAT: Seminar
PREREQUISITE: All first year core classes

BUSI 6942.03: Applied Topics in Business II.
This course is designed to permit the business school to develop and test new course material. Its content may therefore be different from year to year and between sections. Please consult the department for further information.
NOTE: SIGNATURE REQUIRED

student may engage in the project. Increasing their scope of career opportunities. Successful applicants industry, thereby enhancing performance in their present positions and exposing them to business concepts necessary inside and outside the professor. Once approved by the MBA Programme Committee, the student may engage in the project.

NOTE: SIGNATURE REQUIRED
FORMAT: Independent Study
PREQUISITE: All first year core classes

BUSI 6950.03/6952.03: Research Reading and Conference Class.
This class provides an opportunity for supervised in-depth research on a topic of special interest to the student (proposed by the student and faculty member involved, and approved by the MBA Programme Committee). Further description is available at the MBA Office at 494-1814 or mboffice@mgmt.dal.ca Deadlines for electronic submission of proposals are September 2, December 1, and April 1 for the following term (one time only). Proposals must be accompanied by name of supervising professor. Once approved by the MBA Programme Committee, the student may engage in the project.

NOTE: SIGNATURE REQUIRED
FORMAT: Independent Study
PREQUISITE: All first year core classes

BUSI 6960.03: Internship.
This class is intended to provide students an opportunity to apply in the business environment, the knowledge, skills, and abilities gained in the programme. Students must find their own unpaid business placement (at least 130 hours per term, one term only), choose a professor willing to supervise, and submit a proposal (electronically) to the MBA Programme Committee. Further description is available at the MBA Office at 494-1814. Proposals must be accompanied by name of supervising professor. Once approved by the MBA Programme Committee, the student may engage in the internship.

FORMAT: Independent Study
PREQUISITE: All first year core classes

BUSI 6970.03: Applied Topics in Business III.
This course is designed to permit the business school to develop and test new course material. Its content may therefore be different from year to year and between sections. Please consult the department for further information.

FORMAT: Seminar
PREQUISITE: All first year core courses

MBA Financial Services
The Dalhousie MBA (Financial Services) degree helps managers in the financial services industry enhance their skills by furthering their abilities to exercise leadership and make sound business decisions, honing their analytical skills, and sharpening their judgment in managerial and client service roles. The program broadens the horizons of financial managers by exposing them to business concepts necessary inside and outside the industry, thereby enhancing performance in their present positions and increasing their scope of career opportunities. Successful applicants integrate their new knowledge into their everyday job responsibilities. This is done on a course-by-course basis both in existing positions and as their careers progress within the financial services industry.

The part-time MBA (FS) program is delivered using a blended learning model of combining distance and classroom instruction. The flexible course schedule allows students the opportunity to continue their academic studies while working on their professional career goals. The Dalhousie University, MBA (Financial Services) program offers advanced standing opportunities for successful applicants who have specific designations and/or programs with leading industry educators; please refer to section (7) for a list of educators and program details.

A. MBA (Financial Services) (CSI (former ICB) Streams)

Program Overview
To be admitted to the MBA (Financial Services) Program, you must have completed at least two CSI courses from either the Professional Banking Program (PBP) or the Personal Financial Planning and Personal Trust (PFP/PT) Programs. Students accepted to the MBA (Financial Services) Program at Dalhousie University are required to complete and will be given credit for a set number of CSI courses: either seven courses in the PBP, or eight in the PFP/PT programs as well as 9 required MBA courses from Dalhousie University. When completed, these courses are recorded on your Dalhousie transcript. The Canadian Securities Institute and Dalhousie University have made arrangements to facilitate the application. CSI courses must not be more than 10 years old. As well applicants must have a degree recognized by Dalhousie University as equivalent to an undergraduate degree with an equivalent Grade Point Average (GPA) of 3.0 (on a 4.3 scale). Applicants with a GPA less than 3.0, must have at least five years experience in the financial services industry at the appropriate management level.

MBA (Financial Services) program is specifically tailored to the financial services sector of the business world. There are several streams designed specifically for various banking, wealth management, financial planning, benefits planning and insurance institutions. The MBA (Financial Services) program has well established affiliations with leading financial educational institutions which we provide you with excellent learning potential and advanced standing opportunities. (see Advanced Standing section below for full details).

The MBA (Financial Services) program consists of 14 required courses, 10 core and 4 electives. Students must complete the program requirement in 7 years from the date first admitted.

Admission Requirements
Regulations of the Faculty of Graduate Studies govern admissions. Admission is approved by the Faculty of Graduate Studies, on the recommendation of the School of Business Administration. Applicants must hold a degree recognized by Dalhousie University as the equivalent of a four-year Bachelor's Degree in one of its own faculties or an institution recognized by Dalhousie University. The minimum requirement is a B average (GPA 3.0 on a 4.3 scale). Applicants must also have at least five years relevant professional experience.

- Applicants who do not meet the standard academic criteria are required to submit a Prior Learning Assessment Portfolio and/or a GMAT (results of 550 or higher)

A complete application includes:

- Faculty of Graduate Studies Application Form
 Online version: https://dalonline.dal.ca/PROD/bwskalog.P_DispLoginNon
 Paper version: http://www.registrar.dal.ca/forms/GraduateApplicationForm.pdf
- $70.00 Application Fee
- Resume / Job Description
- Two reference letters (One academic unless it has been more than 5 years from attending an educational institution. Reference letters must be originals and sent directly by the referees or delivered sealed and signed.)
- Confirmation of Employment
- Official Transcripts - Original and official transcripts are required from any/all post-secondary institutions attended. All transcripts (including English translations) must bear the official stamp/seal of the issuing institution and must be forwarded directly to Dalhousie University. Transcripts that state “issued to student” are not acceptable.
- TOEFL results, where applicable

It is the policy of Dalhousie University to confirm the authenticity of transcripts and letters of reference of all recommended applicants

All admitted applicant must confirm in writing their acceptance of the offer of a place and provide a non-refundable deposit to the Student Accounts Office. This deposit will be applied toward tuition, but will be forfeited if the student does not register in the academic year for which he or she was admitted. Please note that this deposit is separate from any application or pre-registration fees.

Advanced Standing
MBA (Financial Services) Program
Standard Advanced Standing Evaluation

Core Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSI 5103</td>
<td>Accounting</td>
</tr>
<tr>
<td>BUSI 5503</td>
<td>Quantitative Decision Making</td>
</tr>
<tr>
<td>BUSI 5511</td>
<td>Management Information Systems</td>
</tr>
<tr>
<td>BUSI 5703</td>
<td>Business Economics</td>
</tr>
<tr>
<td>BUSI 5801</td>
<td>International Business</td>
</tr>
<tr>
<td>BUSI 6207</td>
<td>Corporate Finance</td>
</tr>
<tr>
<td>BUSI 6326</td>
<td>Management Skills Development</td>
</tr>
<tr>
<td>BUSI 6410</td>
<td>Marketing</td>
</tr>
<tr>
<td>BUSI 6990</td>
<td>Strategic Leadership & Change</td>
</tr>
</tbody>
</table>

New Jan 2012 Corporate Social Responsibility/Business Ethics and Sustainability

Elective Courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSI 6230</td>
<td>Investment and Money Management</td>
</tr>
<tr>
<td>BUSI 6255</td>
<td>Global Institutions and Markets</td>
</tr>
<tr>
<td>BUSI 6300</td>
<td>Concepts of Risk Management</td>
</tr>
<tr>
<td>BUSI 6540</td>
<td>Measurement and Methodological Approaches in Risk Management</td>
</tr>
<tr>
<td>BUSI 6601</td>
<td>Legal Aspects of Governance and Risk Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stream</th>
<th>Core Courses</th>
<th># of Electives Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Program</td>
<td>All</td>
<td>4</td>
</tr>
<tr>
<td>CSI - PBP (Leadership) *</td>
<td>All</td>
<td>None</td>
</tr>
<tr>
<td>CSI - PFP/PT (New 2011) **</td>
<td>All</td>
<td>None</td>
</tr>
<tr>
<td>CSI (Investment/Wealth) ***</td>
<td>All</td>
<td>None</td>
</tr>
<tr>
<td>CEBS</td>
<td>All</td>
<td>+</td>
</tr>
<tr>
<td>LOMA</td>
<td>All</td>
<td>2</td>
</tr>
<tr>
<td>CFP</td>
<td>All</td>
<td>2</td>
</tr>
</tbody>
</table>

* Professional Banking Program
** Investment or Wealth management - refer to department or program website for additional details
+ see notes on IFEBP below

Dalhousie University's MBA (Financial Services) program recognizes the professional educational achievements of applicants who have completed specific designations, certificates, or programs in professional banking, financial planning, investments, insurance and group benefit management with leading industry educators and industry affiliations.

1. **Canadian Securities Institute (CSI)**
 Successful applicants to the MBA (Financial Services) program who have completed one of the approved programs may be granted up to 4 course advanced standing credits in the Dalhousie MBA (Financial Services) program which will reduce the total number of required Dalhousie courses.

2. **International Foundation of Employee Benefit Plans (IFEBP)**
 Successful applicants to the MBA (Financial Services) program who have earned the Certified Employees Benefits Specialist Designation or part of the CEBS designations issued by the International Foundation of Employee Benefit Plans have an opportunity to received up to 4 advanced standing course credits; reducing the number of Dalhousie MBA (Financial Services) course requirements from 14 to 10 (2 course credits may be granted for the completion of the GBA, RPA, and/or the CMS designations and 3 course credits may be granted for the completion of two of the listed designations).

3. **LOMA - Fellow, Life Management Institute (FLMI) Program**
 Successful applicants to the MBA (Financial Services) program who have earned the Fellow, Life Management Institute (FLMI) Program Designation issued by the LOMA institute with an average overall grade of 80 per cent, will be granted 2 advanced standing credits in the Dalhousie MBA (Financial Services) program which will require students to complete a total of 12 courses, 10 core and 2 electives.

4. **Financial Planner Standards Council (FPSC)**
 Certified Financial Planners Professional Designation issued by the Financial Planner Standards Council (proof of current license is required). Successful application to the program who have achieved and the CFP designation will be granted 2 advanced standing credits in the Dalhousie MBA (Financial Services) program which will require students to complete a total of 12 courses, 10 core and 2 electives.

5. **Program Continuance**
 Students of the Centre for Advanced Management Education (CFAME) who wish to refrain from taking courses during a fall or winter term may pay a $50.00 fee and submit a Program Continuance form to maintain their registration status. In cases where no appropriate courses are offered for that term, the fee will be waived but the Program Continuance form must be submitted. The form must be originated and signed by the student and the Program Manager, and approved by the Faculty of Graduate Studies. Students are permitted unlimited program continuances over their seven year completion period; however, the period a student is on Program Continuance is counted toward the seven year completion limit. Program Continuance applies to students in the MBA (FS), and MPA (M), and MIM programs only.

6. **Contact**
 Students seeking further information should contact the Centre for Advanced Management Education (CFAME):
 - Telephone: (902) 494-6391
 - Toll Free: 1(800) 205-7510
 - Fax: (902) 494-5164
 - Email: mbafs.management.dal.ca
 - Website: http://mbafs.management.dal.ca/

VI. MBA (Financial Services) Class Descriptions

Note: Format for all MBA (Financial Services) Classes: Distance/online and 3.5-4.5 (classroom) intensive session

BUSI 5103.03: Business Accounting.
 This course introduces fundamental accounting principles and practices used to measure financial results of an organization. A portion of the course examines the challenges of financial reporting to stakeholders. The course also explores the use of accounting information for managerial decision making.

BUSI 5503.03: Quantitative Decision Making.
 This is an introductory course in quantitative methods with emphasis on business applications. Throughout this class an emphasis is placed on helping the student to recognize situations and areas in business in which quantitative analysis might be useful.
BUSI 5511.03: Management Information Systems.
This class is meant to provide the student with a basic knowledge of information systems and their role in business organizations. Fundamental to this basic knowledge is an understanding of the variety of information systems in business. An understanding of the use of computers in current and future information systems is stressed.

BUSI 5703.03: Business Economics.
Domestic and international markets, governments policy and central bank decisions present opportunities, challenges and threats to the operating and competitive decisions of business owners, managers and investors. This class provides a framework for the economic analysis of these issues.
FORMAT: Lecture/seminar/discussion 4.5 days

BUSI 5801.03: International Business.
This class provides a survey treatment of international businesses that will benefit all MBA students and build a foundation for those proposing future study in this area. For students not going on in the field, it provides the tools needed to manage the interdependence between domestic and international markets.
FORMAT: Lecture/seminar/discussion 3.5 days

BUSI 6207.03: Advanced Corporate Finance.
This is an advanced course that offers a variety of applied topics in corporate finance. The emphasis will be on implementing the tools and techniques of the finance theory and as such will have a strong applied or case-based component.
FORMAT: Lecture/seminar/discussion 4.5 days

BUSI 6326.03: Management Skills Development.
This class exposes students to key knowledge, skills, and attitudes (KSAs) considered critical to managerial success. Such exposure is designed to provide the student with behaviours that will help ensure that, when managing human resources, staff will perform at or near peak capabilities. This is a skill-building class. Significant amounts of classroom time are devoted to behaviour modeling exercises, role-plays, case studies, and group discussions.

BUSI 6410.03: Advanced Marketing.
Students will develop the ability to understand an industry from the point of view of a marketing manager. Students also develop the capability to prepare a market analysis and a marketing strategy.

BUSI 6990.03: Strategic, Leadership and Change.
The Strategic Leadership and Change course is the capstone course in the MBA (Financial Services) program. It provides students with the ability to integrate the concepts and techniques developed in earlier courses. Strategy formulation abilities are enhanced, and strategy implementation is emphasized. Students are able to develop and apply the skills necessary in managing organizational change.
FORMAT: Distance/on-line portion (14-17 weeks), in classroom portion 4.5 days
• Corporate Social Responsibility (Course syllabus to be approved by Faculty of Graduate Studies)

Additional Classes

BUSI 6230.03: Investment and Money Management.
This course is designed to introduce students to the basics of the Modern Investment and Portfolio Theory and its application to money management. The intention is to provide students with the needed technical and operational skills to successfully face the challenging world of investments and money management. In particular, a considerable effort will be made to compare and contrast investment approaches in various theories with the activities of money managers on the street.
INSTRUCTOR(S): I. Fooladi
FORMAT: Lecture/discussion/assignments
PREREQUISITE: BUSI 5201

BUSI 6255.03: Global Markets and Institutions.
Global markets and Institutions is an introduction to the world of global finance. It has been designed to give a theoretical background to topics such as financial institutions and current markets and to explain how these impact the world economy. Throughout the course, application to real-life examples will be used extensively.
Chemistry

Location: Department of Chemistry
Dalhousie University
6274 Coburg Rd.
PO Box 15000
Halifax, NS B3H 4R2

Telephone: (902) 494-3305
Fax: (902) 494-1310
Email: chemistry@dal.ca
Website: http://www.chemistry.dal.ca

Chairperson of Department
Zwanziger, J.W.

Graduate Coordinator
Stradiotto, M.

Professors Emeriti
Aue, W.A., PhD (Vienna), FCIC. Chromatography
Coxon, J.A., BA (Cambridge), MSc, PhD (East Anglia). Electronic spectra of molecules; laser spectroscopy; chemiluminescence
Knop, O., DSc (Laval). FCIC. Structural and solid-state inorganic chemistry
Kwak, J.C.T., BSc, MSc, PhD (Amsterdam). FCIC. Colloid and polymer chemistry

Professors
Bearne, S.L., BSc (Acadia), PhD (Toronto), MDCM (McGill), cross-appointment from Biochemistry and Molecular Biology. Biological chemistry, enzymology, kinetics, enzyme inhibition, drug design, enzyme evolution, proteomics, organic synthesis
Becke, A.D., BSc (Queen's), MSc, PhD (McMaster), FRSC, FRS, FCIC, Killam Chair in Computational Science. Izaak Walton Killam Chair of Materials Science, Shireff Chair of Chemistry. New theoretical and computational methods for the electronic structure of atoms, molecules and solids
Boyd, R.J., BSc (UBC), PhD (McGill), FCIC, Alexander McLeod Professor of Chemistry. Quantum chemistry; reaction mechanisms; density functional theory and biomolecules
Burford, N., BSc (Wales, Cardiff), PhD (Calgary), FCIC, University of Victoria, BC. Synthesis and characterization of Materials. Synthesis and comprehensive characterization main group compounds
Cameron, T.S., BA, MA, DPhil (Oxon). X-ray structural studies on inorganic compounds
Chatt, A., BSc (Calcutta), MSc (Roorkee), MSc (Wat), PhD (Toronto), FCIC. Nuclear and biochemical methods; trace elements in the environment
Grindley, T.B., BSc, MSc, PhD (Queen's), FCIC, Carbohydrate chemistry; enzymology, kinetics, enzyme inhibition, drug design, enzyme evolution, proteomics, organic synthesis
Kralovec, J. (MSc (U of Chemical Technology, Prague); PhD (Czech Egypt), PhD (McMaster), Mount Saint Vincent University, Halifax, NS. Studies on reaction mechanisms involving both ground and excited states

Adjunct Professors
Burford, N., BSc (Wales, Cardiff), PhD (Calgary), FCIC, University of Victoria, BC. Synthesis and characterization of Materials. Synthesis and comprehensive characterization main group compounds
Carter, T.S., BA, MA, DPhil (Oxon). X-ray structural studies on inorganic compounds
Grundy, K.R., BSc, MSc, PhD (Auckland). Synthesis and reactivity of transition metal complexes containing unusual molecular and ionic species
Martin, R.V., BS (Cornell), MSc (Oxford), PhD (Harvard), cross-appointment from Physics and Atmospheric Science. Atmospheric chemistry and the use of satellite and sub-orbital measurements to improve the understanding of climate and air quality
Obrovac, M.N., BSc, PhD (Dal), cross-appointment with Physics and Atmospheric Science. New Materials for advanced batteries, electrochemistry, inorganic materials synthesis, nanostructured materials
Rainey, J.K., BSc (Guelph), MSc, PhD (Toronto). Biologically important reactive intermediates, nanosecond laser flash photolysis
Turcuetu, L., BSc (MIT), PhD (Berkeley). Synthetic inorganic and organometallic chemistry and reactivity; new materials synthesis
White, M.A., BSc (Western), PhD (McMaster), FCIC, University Research Professorship, Director of the Institute for Research in Materials and cross-appointment with Physics and Atmospheric Science. Material science, thermal properties of solids
I. Admission Requirements
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies. In addition, prospective students from outside North America and Western Europe should arrange for submission of the results of the General Graduate Record Examination (GRE). For those whose first language is not English a minimum TOEFL score is required (see Section 2.4 in the Faculty of Graduate Studies General Regulations).

II. Degree Options
A. MSc Degree

Full-time Program
One course credit (six credit hours) and one departmental graduate student seminar, together with the presentation and oral defence of a thesis based on original research are required. Faculty regulations permit an MSc candidate to graduate after 12 months of resident study. Experience has shown that most MSc candidates in the Department require at least 20 months to complete their work.

Part-time Program
The full-time MSc class requirements and thesis regulations apply. The thesis must be supervised by a member of the Department.

B. PhD Degree Program
Students are required to pass two course credits (twelve credit hours) of classes and present two departmental graduate seminars. A PhD qualifying examination is normally completed within 18-24 months of their start date. Original research, together with preparation and oral defence of a thesis, is required.

III. Class Descriptions

CHEM 5201.03: Advanced Topics in Separations.
This class deals mainly with chromatography and associated techniques; in particular, gas chromatography in its regular, capillary and supercritical forms, high-pressure liquid (including ion) chromatographies, capillary electrophoresis, and gas and liquid chromatography combined with other instrumental techniques such as mass spectrometry. The original ideas behind the design of separation media and detection modes are emphasized, and their consequences for the analysis of living and environmental systems.

CHEM 5205.03: Chemometrics.
Chemometrics has been defined as the application of mathematical, statistical and formal logic methods to chemical measurements. This course will introduce some topics in this area with a greater emphasis on what can be accomplished with chemometric tools and their proper use rather than on the rigorous mathematical details. CROSS-LISTING: CHEM 4205

CHEM 5206.03: Bioanalytical Mass Spectrometry.
This class offers a thorough treatment of modern mass spectrometry. The first part of the class covers the design of modern instrumentation with the emphasis on use in bioanalytical chemistry. The second major topic is an examination of some fundamental physics and chemistry of ions in the gas phase. The third part is a summary of modern applications with particular attention to the roles of mass spectrometry in drug discovery, proteomics, and environmental chemistry.

CHEM 5301.03: Theory of Chemical Bonding.
This class surveys contemporary methods for electronic structure calculations. The emphasis is on the qualitative features and physical basis of molecular orbital theory and its application to chemistry. Empirical, semi-empirical, and ab initio methods are included. Each student is expected to undertake a computational project relevant to her or his research interests.

CHEM 5303.03: Physical Properties of Materials.
The class will provide a broadly based introduction to the physical properties of materials, including optical, thermal, electronic, magnetic and mechanical properties. In addition, it will provide more in-depth coverage of matters concerning lattice dynamics and related phononic properties of solids.

CHEM 5304.03: Kinetics and Catalysis.
This class relates the properties of molecules in motion to the rates of chemical changes. Collision, transition state and diffusion theories are applied to significant industrial, biological and atmospheric processes. Photochemistry, and its converse, luminescence, are interpreted. Mechanisms of catalyst activity are discussed. In assignments, students apply theories to systems of their own choice.
CHEM 5305.03: Introductory Statistical Thermodynamics.
The principles of statistical mechanics are introduced and the relationship between the laws of thermodynamics and the underlying microscopic processes is examined. Whenever possible applications to chemical systems are emphasized, and overview is given of modern techniques, with particular attention to computer simulation.

CHEM 5310.03: Fundamental and Applied Electrochemistry.
This class will provide a broad introduction to the fundamentals of electrochemistry, including electrochemical theory, double-layer modelling and electrochemical methods. Additionally, important electrochemical applications will be discussed, including corrosion, energy production and storage (fuel cells, batteries and supercapacitors) and sensors (biosensors).
PREREQUISITE: Undergraduate students—CHEM 3202

CHEM 5311.03: Fundamental Applied Electrochemistry.
A broad introduction to the fundamental of electrochemistry, including electrochemistry, double layer modelling and electrochemical methods. Additionally, important electrochemical applications will be discussed, including corrosion, energy production and storage (fuel cells, batteries and supercapacitors)
PREREQUISITE: Third year physical and analytical chemistry
CROSS-LISTING: CHEM 4311.03

CHEM 5312.03: Advanced in Battery, Fuel Cell and Supercapacitor Materials.
This class will present the cutting-edge advances in the materials used in energy storage systems, such as batteries (particularly Li-on batteries), fuel cells and supercapacitors. Discussions will include component materials (electrodes, electrolytes, separator) and full devices.
FORMAT: Lecture
PREREQUISITE: CHEM 4311/5311 or permission of the instructor

CHEM 5401.03: Synthesis in Organic Chemistry.
A number of important organic reactions are examined in depth with particular attention to regioselectivity and the development of relative or absolute stereochemistry. Applications of these reactions in the synthesis of complex molecules are illustrated with recent examples from the literature.
CROSS-LISTING: CHEM 4401.03

CHEM 5402.03: Organic Structure Determination.
This class uses all spectral techniques in a problem-based approach to teach methods for the determination of structures of organic compounds. The class material mainly focuses on nuclear magnetic resonance spectroscopy with some attention to mass spectrometry. Topics include proton, carbon, and heteroatom chemical shifts and coupling constants, relaxation, dynamic NMR, and one-dimensional and two-dimensional experiments.
CROSS-LISTING: CHEM 4402.03

CHEM 5403.03: Organic Reaction Mechanisms.
The fundamental concepts of bonding, structure, and dynamic behaviours of organic compounds are discussed. Methods for determining the mechanisms of organic reactions are discussed. Topics include applications of kinetic data, linear free energy relationships, acid and base catalysis, concerted reactions and the importance of orbital symmetry, steric effects, solvent effects, and isotope effects.

CHEM 5502.03: Polymer Science.
This class will cover aspects of synthesis, analysis, characterization, structure and uses of synthetic and naturally occurring macromolecules. Emphasis will be on the application of standard methods of organic synthesis, analytical separations, and physico-chemical characterization. In addition, students will carry out independent literature projects.

CHEM 5504.03: Diffraction Techniques in Solid State Chemistry.
All chemical elements and compounds can exist as crystalline solids. This class studies the arrangements of atoms and molecules in such solids and examines the methods used to determine these structures. Particular emphasis is placed on the techniques of X-ray crystallography.

CHEM 5509.00: Graduate Student Seminar I.
All MSc and PhD students are required to participate in the Graduate Student Seminar program every year. MSc and PhD students will be required to prepare and present one Departmental Seminar within the first two years of study, normally in the winter term of the second year. Seminar I shall be formatted as a scientific research lecture and shall focus on a chemistry topic that is in the current chemical literature and not related to the student’s research topic. Graduate Student Seminar I has the purpose of broadening the graduate student’s outlook and understanding of Chemistry. Evaluation will be based on preparation, presentation skills, scientific content, ability to field questions and regular attendance. Graded pass/fail.

CHEM 5601.03: Principles of Biomolecular and Drug Molecule Design.
An introductory level course in biomolecular design, drug design, and medicinal chemistry. The class covers both general principles of drug design and biochemical considerations in drug design. The fundamental goal of the course is to give student the necessary tools "to take a human or veterinarian pathological problem and to sit down and initiate the process of designing new chemical structures as putative therapeutics for the disease in question." Students in chemistry are strongly recommended to take Chemistry 3601 prior to registering in this class.
PREREQUISITE: CHEM 2402 or permission of the instructor
CROSS-LISTING: CHEM 4601

CHEM 5602.03: Biophysical Characterization of Macromolecules.
Covers methods allowing determination of sub-molecular and atomic-level structure and dynamics of biomacromolecules in physiological settings (e.g. solution-state or lipid bilayers) including: fluorescence, electronic and vibrational circular dichroism and NMR spectroscopy; light vs. X-ray vs. neutron scattering; and, single molecule methods.
CROSS-LISTING: BIOL 4702.03, BIOL 5702.03, CHEM 4602.03

CHEM 6105.03: Inorganic and Organometallic Mechanisms and Syntheses.
Building on an introductory course in organometallic chemistry, this advanced class features a survey of organometallic reactivity and mechanism with applications in catalysis, including an analysis of the steric and electronic factors that influence metal-centered reactivity. Key structural characterization techniques used in such research are also presented.

CHEM 6116.03: Advanced X-Ray Crystallography and Group Theory.
This is a class for specialist crystallographers. Topics covered include: the theory of diffraction and the theory and design of diffractometers; modern Patterson methods of structure determination; modern "Direct Methods" and the relationship between Patterson and Direct methods; least-squares refinement, absorption and disorder; incommensurate structures and the methods used to examine them; constrained and restrained refinement, the theory and practice; methods of libration analysis.
PREREQUISITE: CHEM 5504

CHEM 6151.015: Organometallic Structure and Bonding.
This advanced course features a survey of important structural and bonding concepts in organometallic chemistry, with particular emphasis on transition metal complexes.
FORMAT: Lecture
PREREQUISITE: CHEM 4101, or CHEM 4102, or CHEM 4120 or permission of the instructor

CHEM 6152.015: Organometallic Reactivity.
This advanced course features a survey of important reactivity concepts in organometallic chemistry.
FORMAT: Lecture
PREREQUISITE: CHEM 4101, or CHEM 4102, or CHEM 4120 or permission of the instructor
CHEM 6153.015: Organometallic Characterization Methods.
This advanced course features a survey of important structural elucidation techniques used in modern organometallic and inorganic chemistry.
FORMAT: Lecture
PREREQUISITE: CHEM 4101, or CHEM 4102, or CHEM 4120, or permission of the instructor

CHEM 6154.015: Organometallic Catalysis.
This advanced course features a survey of catalytic transformations mediated by organometallic complexes, with applications in modern synthesis.
FORMAT: Lecture
PREREQUISITE: CHEM 4101, or CHEM 4102, or CHEM 4120 or permission of the instructor

CHEM 6155.015: Advanced Main Group Chemistry.
Fundamentals aspects of molecular structure and covalent bonding models will be used to rationalize the diverse structures observed in a section of the chemistry of the p block elements. Representative examples of compounds will be selected from current literature for case studies.
PREREQUISITE: CHEM 4101, or CHEM 4102, or CHEM 4120 or permission of the instructor

CHEM 6199.03: Special Topics in Inorganic Chemistry.

CHEM 6203.03: Environmental Chemistry.
This class is designed to illustrate the applications of basic chemistry to the characterization of environmental systems. The basic concepts of equilibria, kinetics, and mass transport are used to develop models for the distribution of organic chemicals in environmental systems as diverse as sewage treatment plants, room air quality, freshwater lakes, and bioaccumulation of pollutants by fish. The computational and graphical aspects of the models are developed using simple spreadsheets. The case studies discussed in the lectures are selected to illustrate both environmental interactions and analytical methodology. The most important topics covered are: characteristics of environmental systems, box models of the environment, fugacity description of organic interactions, QSARs, acid/base equilibria for natural waters, Eh-pH diagrams, and metal speciation.

CHEM 6205.03: Chemometrics.
This class considers the application of mathematical, statistical and computer-based methods to chemical measurements. Topics include descriptive statics, probability, propagation of error, experimental design, analysis of variance, experimental optimization, regression (linear and nonlinear), multivariate calibration, digital filtering, Fourier transforms, and principal components analysis. Topics are often tailored to class interests. Some exposure to computers is assumed, but programming experience is not essential.

CHEM 6252.015: Bioanalytical Chemistry.
This class offers a thorough treatment of modern instrumental techniques for the analysis of biomolecules. Classical techniques used in biological analysis (Western blotting, DNA sequencing, Gene expression, PCR, etc.) are first reviewed. Modern instrumental techniques, including mass spectrometry, microarrays, and spectrometric measurements, are explored in the context of the current literature.
FORMAT: Lecture, discussion
PREREQUISITE: CHEM 4206 or CHEM 5206 or permission of the instructor

CHEM 6253.015: Electrochemistry of Small Quantities.
Cutting-edge and traditional electrochemical methods of identifying and quantifying analytes at very low concentrations will be explored. Topics include Electrochemical Impedance Spectroscopy, Electrochemical Quartz Crystal Microbalance, Scanning Electrical Microscopy, Anodic Stripping voltammetry and others. Applications such as biosensors and gas sensors will be discussed.
FORMAT: Lecture
PREREQUISITE: Permission of the instructor

CHEM 6255.1.5: Computer Programming for Chemists.
This class provides an introduction to computer programming using the MatLab programming environment. Topics include data structures, programming structures, flow control, specialized functions, input and output, graphing and graphical user interfaces. Chemical applications will be emphasized.
FORMAT: Lecture
PREREQUISITE: permission of the instructor

CHEM 6258.015: Environmental Marine Chemistry.
This course will focus on the role played by chemistry in determining the quality of the marine environment. The increasing needs to analyse chemicals covering a range of polarities and structures in seawater, sediments and organisms will be discussed along with the currently used approaches to judge the analytical results.
FORMAT: Lecture/seminar plus discussion
PREREQUISITE: CHEM 4206 or CHEM 4402 or CHEM 4201 or CHEM 4203, or permission of the instructor

CHEM 6259.015: Analytical Chemistry of Toxic Organic Compounds in Food and Water.
This course will review toxic natural and anthropogenic compounds of concern for our food and drinking water supplies. Regulatory action levels, analytical methods for routine monitoring, method validation, certified reference materials, quality control issues, and approaches to the forensic investigation of poisoning incidents will be discussed.
FORMAT: Lecture
PREREQUISITE: CHEM 4206 or CHEM 4402 or CHEM 4201 or CHEM 4203, or permission of the instructor

CHEM 6299.03: Special Topics in Analytical Chemistry.

CHEM 6301.03: Advanced Electronic Structure Theory.
This class is primarily concerned with advanced electronic structure methods for the inclusion of the effects of electron correlation. Topics, chosen from the current literature, include configuration interaction, coupled-cluster methods, perturbation theory and density functional theory. This class is intended for students engaged in doctoral studies in theoretical chemistry.
PREREQUISITE: CHEM 5301

CHEM 6312.03: Colloid and Surface Science.
This is an introduction to the study of colloidal systems and interfaces. The student is expected to have a background in thermodynamics at the undergraduate level since a review of the thermodynamics of electrolytes is included in this class. Topics covered include nomenclature of colloidal systems, the thermodynamics treatment of interfaces and adsorption, the electrical double layer, colloid stability, association colloids, and polymer solutions. A number of applications in various industrial processes and resource extraction are discussed. Assessment is through regular take home assignments, literature reviews, a special project, and a written final examination.

CHEM 6316.03: Theory of Modern NMR Experiments.
The principles behind many of the common 1-D and 2-D NMR experiments are covered. An introduction to density matrix theory, the product operator formalism and their application to modern NMR spectroscopy are discussed. As well, average Hamiltonian theory and some applications in solid state NMR are covered.

CHEM 6352.015: Advanced Electronic Structure Theory.
The principles of Hartree-Fock theory are introduced and then used as a basis for understanding methods that include the effects of electron correlation. The emphasis is on configuration interaction and perturbation theory and the accurate calculation of a range of chemical properties.
FORMAT: Lecture
PREREQUISITE: CHEM 5301 or permission of instructor
CHEM 6353.015: Density-Functional Theory.
The fundamental principles of density-functional theory (DFT) will be developed, from density matrix theory through the Hohenberg-Kohn-Sham theorems, and the construction of modern exchange-correlation functionals via the exchange-correlation “hole” concept.
FORMAT: Lectures
PREREQUISITE: CHEM 4301.03 or CHEM 5301.03 or permission of instructor

This class will provide an in-depth coverage of matters concerning lattice dynamics and related phononic properties of solids. In addition, categories of materials and techniques to determine their physical properties will be investigated.
INSTRUCTOR(S): Lecture
PREREQUISITE: CHEM 3303 or CHEM 3305 or permission of the instructor

CHEM 6356.015: Advanced Materials Science.
This class will explore advanced topics in materials science, with an emphasis on thermal properties.
FORMAT: Seminar and/or discussion
PREREQUISITE: CHEM 5303 or permission of the instructor

CHEM 6357.015: Advanced Cyclic Voltammetry Analysis.
This class will take an in-depth approach to the analysis of cyclic voltammograms. Students will develop expertise on relating the shape of a cyclic voltammogram to important physical and kinetic information, including identifying: film formation, film type, diffusion, resistance, capacitance, specific adsorption, irreversible vs. reversible reactions, etc.
FORMAT: Lecture
PREREQUISITE: permission of the instructor

CHEM 6358.015: Experimental and Theoretical X-ray Spectroscopy.
This class introduces the principles of X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS) from both experimental and theoretical perspectives. Studies of the local structure and electronic properties of materials using XAS and XPS are demonstrated. Data analysis, fitting and simulation of X-ray spectra are also illustrated.
INSTRUCTOR(S): Lecture
PREREQUISITE: Permission of the instructor

CHEM 6359.015: Biomedical Applications of Nanostructured Materials.
This class introduces the applications of nanostructured chemical materials such as nanoparticle, nanofilm, nanowire and nanotube in a few exciting areas including bio-diagnosis, drug delivery and tissue engineering. The chemical synthesis and typical characterization techniques of nanostructured materials are also introduced.
FORMAT: Lecture
PREREQUISITE: Permission of the instructor

CHEM 6361.015: Sustainable Materials Issues.
This class will provide a quantitative coverage of matters concerning eco-informed choices of materials for applications, with an emphasis on energy and sustainability.
FORMAT: Lecture
PREREQUISITE: CHEM 3303 or CHEM 3305 or CHEM 5303 or PHYC 4230 or MATL 3500 or permission of the instructor

CHEM 6362.015: Topics in High Resolution Nuclear Magnetic Resonance.
Advanced topics in high resolution liquid state nuclear magnetic resonance will be explored, including the quantum mechanical basis of the observables, product operator treatment of pulse sequences, 2D NMR pulse sequences, coherence selection and relaxation.
FORMAT: Lecture
PREREQUISITE: CHEM 4402/5402, 4602/5602, or permission of instructor
CROSSLISTING: BIOC 6702.015

CHEM 6404.03: Organic Photochemistry.
This class covers the fundamentals of the properties and reactivity of the excited states of organic molecules in solution. The first part deals with transitions between states including the process of absorption, fluorescence, phosphorescence, internal conversion, intersystem crossing and chemical conversion. The approach here is qualitative and descriptive rather than quantitative and theoretical. Kinetic schemes using the steady-state approach are used to discuss quantum yields. The second part is on selected examples of organic functional group reactivity.

CHEM 6406.03: Natural Products.
This class introduces the major groups of natural products, including polyketides, alkaloids, peptide antibiotics, terpenes and shikimate metabolites. Analysis of natural product structure is emphasized, and characteristic structural fragments are related to primary biosynthetic precursors. Strategies, techniques and mechanistic reasoning used to elucidate the biosynthetic pathways of natural products are covered. Biosynthetic studies from the current scientific literature are discussed using several commercially important natural product pharmaceuticals as examples. Students are evaluated on problem assignments, a term test, one or two class presentations of topics from the research literature, and a written final exam.

CHEM 6409.03: Carbohydrate Chemistry.
This class provides an outline of the structures, functions and preparation of carbohydrates. An introduction to carbohydrate structure and nomenclature is followed by consideration of the principles and methods of conformational analysis, with emphasis on those that apply to carbohydrates. Synthetic topics discussed include glycoside synthesis, blocking groups, neighbouring group participation, nucleophilic substitution, glycos, and others that vary from year to year. The structures and functions of a few of the most interesting biologically important oligosaccharides and polysaccharides are considered.

CHEM 6451.015: Total Synthesis of Complex Organic Molecules.
This class will examine some landmark total syntheses of complex natural products. The class will compare strategies of certain classes of target molecules, and students will become familiar with recently developed synthetic reactions.
FORMAT: Lecture/discussion
PREREQUISITE: CHEM 4401 or CHEM 5401 or permission from the instructor

CHEM 6452.1.5: Heterocyclic Chemistry.
This class will survey heterocyclic chemistry. The driving force of aromaticity will be investigated. Literature examples involving nitrogen-containing heterocycles will be used to emphasize the breadth and scope of the field. Students will be required to complete a project and a presentation.
FORMAT: Lecture/seminar and discussion
PREREQUISITE: CHEM 4401, or permission of the instructor

CHEM 6453.015: Natural Products.
This class introduces the major groups of natural products, such as alkaloids, polyketides and terpenes. Strategies, techniques and structural/mechanistic reasoning used to elucidate biosynthetic pathways of natural products are presented before biosynthetic studies from current scientific literature are discussed. Examples include the biosynthesis of commercially important natural product pharmaceuticals.
FORMAT: Lecture and seminar
PREREQUISITE: Permission of the instructor

The fundamentals of advanced physical organic chemistry are covered.
FORMAT: Lecture and seminar
PREREQUISITE: Permission of the instructor

CHEM 6455.015: Advanced Organic Photochemistry.
The fundamentals of advanced organic photochemistry are covered.
FORMAT: Lecture and seminar
PREREQUISITE: Permission of the instructor
CHEM 6456.015: Organic Reactive Intermediates.
The fundamentals of reactive intermediates found in organic chemistry are covered. A wide range of reactive intermediates will be investigated including, carbonations, radicals, enols and others.
PREREQUISITE: Permission of the instructor

Magnetic resonance techniques such as NMR spectroscopy and magnetic resonance imaging (MRI) have become essential tools for the design and molecular characterization of drugs and therapeutic agents. We will cover current topics of interest including structural characterization of drugs, receptors and binding motifs, and MRI techniques for drug monitoring.
FORMAT: Discussion/seminar
PREREQUISITE: CHEM 4601 or CHEM 5601, or CHEM 4602 or CHEM 5602, or permission of the instructor
CROSS-LISTING: BIOC 6701.015

CHEM 6458.015: Mechanistic and Structural Enzymology.
Enzymes from a variety of classes will be examined from an organic chemistry reaction mechanism perspective. The general principles of enzyme catalysis and the experimental approaches used to elucidate enzyme reaction mechanisms will be discussed. Applications and examples from the current literature will be critically appraised.
FORMAT: Lecture and problem-based learning discussion
PREREQUISITE: CHEM 3401/3601 or BIOC 3200 or instructor's consent
CROSS-LISTING: BIOC 6701.015

CHEM 6499.03: Special Topics in Organic Chemistry.

CHEM 6501.03: Electronic Instrumentation for Scientists.
This class starts with basic electrical concepts and describes simple ac and dc circuits. Semiconductors are introduced, followed by a discussion of power supplies and the various types of amplifiers. The various number systems and circuits (gates and flip-flops) used in digital circuits are discussed. Finally digital data transmission, analog-to-digital and digital-to-analog conversion, and computer basics are explored. Chemical instruments are used as examples whenever possible. Practical aspects of electronics such as basic measurements, the use of various electronic instruments, reading circuit diagrams, and troubleshooting are emphasized. No knowledge of physics beyond the first year is required.

CHEM 6509.03: Graduate Student Seminar II.
All graduate students enrolled in the Doctoral program will be required to present a graduate student seminar on their research topic during the final two years of study. Seminar II will normally be presented in the fall term of the fourth year of study. Graduate Student Seminar II has the purpose of giving the senior PhD student an opportunity to present a Departmental seminar on their research work. Evaluation will be based on preparation, presentation skills, scientific content, ability to field questions and regular attendance. Graded pass/fail

CHEM 9000.00: MSC Thesis.

CHEM 9530.00: PhD Thesis.

Civil and Resource Engineering

- Civil Engineering
- Mineral Resource Engineering

Main Office
Location: “D” Building, Room D215
Telephone: (902) 494-3960
Fax: (902) 494-3108
Email: cregrad@dal.ca
Website: http://civilandresource.engineering=dal.ca

Mineral Resource Office
Location: “G” Building, Room G212
Telephone: (902) 494-3960
Fax: (902) 425-1037
Email: cregrad@dal.ca

Department Head
Lake, C., BEng (TUNS), PhD (UWO), PEng

Professor Emeritus
Jaeger, L.G., BA, MA (Cantab), PhD (London), DSc (London), DEng (Carleton, Memorial, TUNS), PEng, Professor Emeritus

Professors
Ali, N.A., BSc (Baghdad), MSc, PhD (N. Carolina State), PEng, U.G. Program Chair Civil Program. Flexible pavement, highways, pavement design and performance, transportation
Corbin, S.F., BEng, MASc (TUNS), PhD (McMaster), PEng, Mineral processing, structure and properties of eng. materials, physical metallurgy, materials characterization techniques (XRD, SEM, TEM) and materials and manufacturing.
Fenton, G.A., BEng., MEng. (Carleton, Memorial, TUNS), PEng, cross-appointment with the Engineering Mathematics Department
Gagnon, G.A., BSc (Guelph), PhD (Waterloo), PEng, Associate Director, Centre for Water Resources Studies. Cross-appointment with the School for Resource and Environmental Studies. Water and wastewater treatment, water quality, environmental engineering
Liu, L., BSc (Nankai), MSc (Tsinghua), PhD (Regina). Graduate Coordinator. Geo-Environmental engineering, environmental engineering, environmental modelling and decision-making

Newhook, J., BEng, MSC, PhD (TUNS), PEng, Director, Centre for Innovation in Infrastructure. Fibre reinforced polymers, concrete, bridge engineering, structural health monitoring, design and analysis.
Satsish, M. G., BSc, BE CivEng (My.), MEng, PhD (Concordia), PEng. Water resources engineering, numerical modeling of flows, system optimization, open channel flow
Taheri, F., BEng, MSc, PhD (TUNS), PEng, Acting Director for Ocean Research Ctr. All. Cross-appointment with the department of Materials Engineering. Advanced composite materials, finite element methods (elastic, plastic), fracture mechanics and fatigue, impact and stability of structures
Zou, D.H., BSc (CUMT, China), PhD (UBC), PEng, Rock mechanics, nondestructive rock bolt testing, mine design, numerical modelling, tailing disposal, slope stability analysis, well bore stability, geohazards prevention

Associate Professors
Garagash, D.I., BSc (Moscow), MS, PhD (Minnesota). Reservoir geomechanics and engineering, fault mechanics and earthquake source processes, analytical and numerical modeling, fracture mechanics.
Hansen, D., BSc (Guelph), MSc (UNB), PhD (Ottawa), PEng. Hydrology, river hydraulics, flow through porous media, municipal water systems.

Hill, J.D., BSc (Acadia), PhD (UWO). Mining geology, time domain reflectometry, acid rock drainage.

Jones, D.S., Dip Eng (MUN), BEng (TUNS), MBA (Western), PhD (TUNS), UG Program Chair, Mineral Program. Ground control and mine design.

Lake, C., BEng (TUNS), PhD (UWO), PEng. Geotechnical engineering, geo-environmental engineering, geosynthetics performance.

Liu, Y., BScE, MScE (Xi’an), PhD (UNB), PEng., Co-op Coordinator. Structural analysis and design, applications to masonry structures, advanced strength of materials, application of the finite element method

Walsh, M., BEng (TUNS), MEng (McGill), PhD (Dal), PEng. Water and wastewater treatment

Assistant Professors

Barnes, C.L., BSc (Dal), BEng, MASc (TUNS), PhD (Dal), PEng. Nondestructive evaluation of civil engineering infrastructure, reinforced concrete corrosion modeling and design of cover layer systems, pavement materials and systems design, evaluation, and monitoring.

Forrester, D.J., BSc (UNB), PhD (Dal), PEng. Fibre reinforced concrete and shotcrete, synthetic fiber reinforcement development and optimization, construction materials and methods.

Thorburn, J., BSc (UNB), MSc (Alberta), PhD (Dal), PEng. Assistant Dean of Students. Structural analysis and design, design of steel structures.

Adjunct Professors

El-Jabi, N., BASc (Sherbrooke), MASc, PhD (U of Montreal, Polytechnique), PEng.

Koko, T., BSc (Nigeria), MEng (Nigeria), PhD (UBC), PEng

Adjunct Associate Professors

Caisse, D., BASc (Moncton), MASc (Moncton), PhD (Dal), PEng.

Forrester, D.J., BSc, PhD (Nottingham), PEng. Geotechnical, rock mechanics, mining and mine environment management.

Kenny, S., BEng, MEng, PhD (Memorial), PEng.

Pegg, N., BSc (Guelph), MASc (UBC), PhD (TUNS), PEng

Adjunct Assistant Professors

Rand, J., CAS (Acadia), BEng, PhD (Dal)

Civil Engineering Program

I. Introduction

Civil Engineering is concerned with the engineering (planning, design and construction) of systems of constructed facilities related to the needs of society. The scope and complexity as well as the interdisciplinary involvements of Civil Engineering continues to increase rapidly with the development of modern science and technology and the population growth with its spiraling demands upon the air-land-water environment. The preparation of the Civil Engineering student is aimed toward meeting society’s needs.

The professional practice of a Civil Engineer includes the conception, design, construction, operation, and maintenance of private and public projects. Included in this are bridges, buildings, highways, airports, harbors, docks, subways, tunnels, water supply and purification systems, sewage collection and treatment facilities, water power developments, and Petroleum Engineering. See the Engineering section for details of Master’s and Doctoral programs.

II. Class Descriptions

Not all classes are offered every year. Please consult the current timetable for this year’s offerings.

CIVL 6000.03: Directed Studies in Civil Engineering I.

This class offers the Graduate Student an opportunity to undertake a study in a specific area of interest that is not covered in the regular class offerings. The student chooses to work under the supervision of a Faculty Member in the Department. This class is normally available to a Graduate Student enrolled in a Master’s Degree Programme.

CIVL 6101.03: Advanced Strength of Materials.

The class introduces tensor mathematics. The governing equations of an elastic solid are developed in various coordinate systems. Engineering problems such as plane problem, St. Venant, bending, torsion, and extension of bars are treated. Displacement, stress field and Airy function and some numerical methods for obtaining solutions are other methods that are covered. The class explores various failure criteria and their application. Theory of anisothropic elastic continuum concludes the class. PREREQUISITE: Undergraduate senior level Strength of Materials or equivalent

CIVL 6108.03: Graduate Seminar - Master’s Level.

This seminar class is designed to provide graduate students with the opportunity to search the literature for current topics related to their projects/thesis. All graduate students pursuing MEng and MASc degrees in the Civil Engineering programme are required to take this class and offer their findings, orally in one presentation to the faculty members of the department and students, four months prior to the completion of their programme. This presentation will be followed by a question and answer session. Graduate students might also be asked to submit a written version of their presentations (or a hard-copy of their presentation slides) to the Graduate Coordinator of their department. This seminar class will be offered twice each academic year in the format of an end-of-term conference in Fall and Winter semesters, respectively. Evaluation will be based on preparation, presentation skills, scientific content, ability to field questions and regular attendance. Graded pass/fail.

NOTE: This is a required class for all Master students in the Department of Civil and Resource Engineering (2). Registration of this class is required only for the term during which students present their research findings.

CIVL 6115.03: Design of Water Treatment Plants.

Evaluation of water quality characteristics and synthesis of unit operations into plants designed to modify those characteristics. Design aspects of flocculation, coagulation, precipitation, sedimentation, filtration and disinfection are included. PREREQUISITE: CIVL 4440.03 or equivalent

CIVL 6116.03: Biological Waste Treatment.

A study of fundamental principles of microbiology as applicable to domestic waste treatment. Activated sludge processes, trickling filters, aerated lagoon, stabilization ponds, disinfection and anaerobic treatment. PREREQUISITE: CIVL 4440.03 or equivalent

CIVL 6117.03: Water Quality Management.

Water quality requirements for various uses: factors affecting water quality; behaviors and fate of pollutants in treatment plants and receiving waters and considerations involved in selection from alternative methods of water quality control.

CIVL 6119.03: Highway Materials.

A study is made of the properties of subgrades and of how they influence the performance of pavements. The purpose and properties of base and sub-base will be considered. Bituminous materials and aggregates are tested and combined to give desirable mixes.

CIVL 6126.03: Foundation Engineering I.

Geotechnical aspects of shallow and deep foundation design are presented. Current subsoil investigation and field methods for foundations of structures will be reviewed. Bearing capacity and deformation of both shallow and deep foundations are examined with respect to analytical, numerical and empirical methods.
CIVL 6134.03: Advanced Highway Geometric Design.
This class deals with the principles of Geometric design controls and criteria with special reference to capacity controlled designs. Grade separated intersections and fully developed interchanges will be discussed in relation to traffic volumes. Computer-based design of freeway and ramp junctions will be considered in detail.

CIVL 6135.03: Groundwater Chemical Quality.
This class provides an in-depth study into the chemical quality of groundwater. As water passes through the various stages of the hydrologic cycle, its composition changes. This class will explore these changes with particular reference to: (1) the types of inorganic and organic constituents dissolved in water and their significance; (2) the suitability of water quality data and its presentation; (3) the various processes that control the behaviour of dissolved substances in groundwater; (4) the evolution of groundwater quality; (5) the more commonly used groundwater quality models; (6) basic chemical properties, transport mechanisms, retardation and restoration of organic contaminants in water; and (7) point of use water treatment. PREREQUISITE: CIVL 3451.03 and 4410.03. The latter may be taken concurrently.

CIVL 6137.03: Advanced Soil Mechanics.
This class deals with the stress-strain behaviour and its mathematical representation. The aspects considered include nonlinear elastic and elasto-plastic behaviour of soils with particular reference to the critical state theory. Application of several well-established soil models for solving practical problems are discussed.

CIVL 6139.03: Transport Operations.
This class is an introduction to the operation of transportation services at the urban and regional levels. Surveys and data collection, development of computerized data bases, and elements of travel forecasting; trip generation, trip distribution, modal split, trip assignment are covered. Operational characteristics of public transportation, airports and freight distribution systems, and performance evaluation are discussed. Environmental, energy and safety implications of transportation systems, and existing policies are reviewed.

CIVL 6140.03: Modeling of Groundwater Systems.
Basic concepts in analytical and numerical modeling of groundwater systems are introduced. Fundamental equations for flow in aquifers and mathematical statement of the groundwater forecasting problems are studied. The hydraulic approach to flow in aquifers and the continuum approach to flow through porous media are discussed. Modeling techniques for groundwater quality problems dealing with pollutant movement due to hydrodynamic dispersion are also studied. PREREQUISITE: CIVL 4410.03

CIVL 6142.03: Pavement Design and Management.
This class covers all aspects of flexible, (asphalt concrete) and rigid (Portland cement concrete) pavements design methods. It includes structural pavement design of new pavements and overlay, including mechanistic, (i.e., shell, Asphalt Institute, PCA), empirical, (i.e., AASHO, Ontario) and performance prediction - oriented, (i.e., VESYS, DAMA, LTPP - observation) methods. It also includes the recent research efforts in monitoring pavement performance.

CIVL 6143.03: Modelling of Groundwater Systems II.
This class builds on the fundamental concepts introduced in Modelling of Groundwater I. Emphasis will be placed on numerical techniques for studying contaminant transport in groundwater. Numerical aspects of modelling, parameter identification and optimization will be discussed along with modelling of chemistry coupled to transport, dispersion theory and transport in fractured media. PREREQUISITE: CIVL 6141.03

CIVL 6144.03: Geo-Environmental Barrier Design.
Geo-environmental aspects of waste management are examined with emphasis on the design of barrier systems to provide long term protection against groundwater contamination. A major focus is the integration of engineering design and hydrogeologic considerations relative to contaminant transport through engineered barrier systems and natural soils.

CIVL 6145.03: Probability Concepts in Civil Engineering Planning & Design.
This class introduces concepts related to the role of probability in civil engineering, uncertainty in real-world information, design and decision making under uncertainty. Examples will be derived from planning and design of airport pavements, hydrologic design, of structures and machines, geotechnical design, construction planning and management, photogrammetric and geodetic surveying measurements. The class will discuss analytical models of random phenomena, functions of random variables, estimating parameters from observation data, empirical determination of distribution models, regression and correlation analyses, elements of quality assurance and acceptance sampling.

CIVL 6147.03: Advanced Theory of Structures.
This class provides graduate students and practicing engineers with a knowledge necessary to make safe, efficient use of computer programmes designed to analyze frame type structures. The displacement method is studied in detail with applications to trusses, continuous beams, complex rigid frames, grillages and space frames. The theoretical knowledge gained is put into practice through commercially available codes. Throughout the class, practical ‘real-life’ problems constitute the assignments and projects. PREREQUISITE: CIVL 3505.03 or equivalent

CIVL 6148.03: Application of Finite Element Method I (Linear Systems).
This class introduces the theory and implementation of the analysis procedures used in the linear, static, and dynamic finite element analysis systems. Continuum mechanics formulations of one-two- and three-dimensional elements are reviewed, and plate and shell elements formulations are presented in detail. A selected number of equation and eigenvalue solvers are compared. Applications will include plates and shells, linear buckling, structural dynamics and thermal field problems. Introduction to nonlinear systems will be presented. PREREQUISITE: CIVL 3705.03 and CIVL 4541.03

CIVL 6149.03: Application of Finite Element Method II (Nonlinear Systems).
This class introduces the theory and implementation of the analysis procedures used in geometric and material nonlinear finite element analysis systems. Problems in plasticity, impact, contact and viscoelasticity are treated. Numerical solutions pertinent to nonlinear systems are explored. Various topics and algorithms such as the reduce integration, hour-glass and Arc Length Automatic Stepping method are also reviewed. The students examine the above concepts by exploring a set of industrial applications. PREREQUISITE: CIVL 6148.03 or 4541.03

CIVL 6150.03: Dynamics of Structures.
This class covers fundamental analysis methods for the behavior of structures and structural elements subjected to dynamic loading. Comprehensive study of single-degree-of-freedom systems followed by solution of multi-degree-of-freedom systems with particular reference to response of multi-story structures to earthquake loading is covered. An introduction to random response and stochastic analysis of structural dynamics problems are also given.

CIVL 6151.03: Bridge Engineering.
This class provides an introduction to bridge engineering, specifically discussing the aspects of loading, analysis and design relevant to short and medium span bridges. Reference is made to current Canadian bridge design codes. Analytical methods appropriate for bridge superstructures is presented, including computer methods. The structural design of steel, reinforced concrete and prestressed concrete bridge systems are discussed.

CIVL 6152.03: Behaviour and Design of Steel Structures.
Advanced concepts of the behaviour and design of steel members and frameworks are presented, emphasizing the rationale for current steel code design criteria. Topics include torsion, plate stability, connection design, fatigue and frame behaviour. PREREQUISITE: CIVL 4541.03 or equivalent
CIVL 6153.03: Fibre Reinforced Plastics (FRP).
This class begins with a review of test methods, properties and production methods of the fibre and polymer components of fibre-reinforced laminates and of fabricated composite laminates. This is followed by the development of the macro-mechanical and micro-mechanical analysis techniques for the design of composite laminates and a study of the strength criteria used in design procedures.
PREREQUISITE: Senior level mechanics of materials class

CIVL 6155.03: Advanced Concrete Technology.
This class provides an in-depth study of the various factors affecting the behavior and performance of concrete. Strength of concrete, permeability and durability, deformation and cracking, curing, admixtures, temperature effects and specialized testing procedures are among the topics presented. High performance concrete, polymer concrete and roller compacted concrete are also studied.

CIVL 6156.03: Fibre Reinforced Cement Composites.
The purpose of this class is to introduce the student to various portland cement-based fibre composites and to provide information on their constituent materials, fabrication, mechanical performance and applications. Interaction between fibres and matrix, behaviour under tensile, flexure, fatigue and impact loading, properties of freshly mixed and hardened fibre reinforced concrete are studied. Special fibre reinforced cementitious systems like SIFCON and different application procedures like shotcreting are also covered.

CIVL 6157.03: Advanced Reinforced Concrete Structures.
A study of principles of reinforced and prestressed concrete design and the application of prestressed concrete to buildings, bridges and precast fabricated structures. Yield line theory of concrete slabs, design of structures for earthquake loads, structural failure and methods of repair are covered.
PREREQUISITE: CIVL 3515.03, CIVL 4515.03

CIVL 6159.03: Form and Process in Alluvial Channels.
This class begins with various aspects of fluvial geomorphology from a civil engineering point-of-view. It then moves on to discussion of hydraulic resistance based on quantitative estimates of channel roughness, regime concepts for artificial and natural rivers, uses of boundary shear stress and unit stream power in bed-load estimations, the hydraulics and statistics of suspended sediment, numerical versus physical modelling, and a review of case histories of responses of rivers to human activity. The hydraulics of fish habitat assessment is also considered. The application of HEC-RAS to a local brook is part of the class.
PREREQUISITE: CIVL 3300.03, 3310.03

CIVL 6160.03: Energy Methods and Stability in Elastic Structures.
Energy methods are an important tool in elastic structural analysis and design. Many traditional methods, as well as more advanced finite element analyses for determining displacements and stresses, are based on energy principles. This class will introduce energy methods and look at several applications in structural engineering, including determination of the elastic stability limits of structures and the development of displacement matrix methods of analysis.

CIVL 6162.03: Groundwater and Wells.
This class deals with those aspects of groundwater resource assessment, development and protection pertaining to the design of water wells intended to function as reliable sources of potable water in the long-term. It includes detailed consideration of drilling methods, well design, aquifer testing, field-data interpretation, strategies for well-head protection, and the essentials of site assessment.
PREREQUISITE: CIVL 4410.03

CIVL 6163.03: Design and Analysis of Plates and Shells.
This class deals with the derivation and the solution of the differential equations of plates and shells. The solutions are used for the design and analysis of practical problems. The topics covered are: plates in Cartesian coordinate system with various boundary and load conditions, introduction of yield line theory, circular plates, plates on elastic foundation, membrane theory, cylindrical shells and the theory of shells having the form of a surface of revolution.
PREREQUISITE: CIVL 3705.03 or equivalent

CIVL 6166.03: Advanced Structural Engineering Concepts.
The class will address selected advanced topics in structural engineering related to the characteristics of loading and the behaviour and design of structural systems. Ultimate strength, stability, connections and post-buckling strength will be examined, focusing on elements employed in building and bridge structures.
FORMAT: Lecture

CIVL 6167.03: Microbes in Industrial Failures.
The deterioration of materials by microorganisms is of great economic significance. It has been estimated that the biological deterioration of all industrial materials, is in the billions of dollars annually. This course is going to cover the microbial damage to building, oil and gas, wood, transportation, steel and mining industries.
FORMAT: Lectures/labs/field trips

CIVL 6414.03: Environmental Systems Engineering.
This course discusses various operational research techniques and their applications to environmental systems planning and pollution control. Case studies are designed to deal with the planning, design, and operation issues of environmental systems. Uncertainty-based optimization will be discussed for addressing systems’ variability and for making decisions with improved cost-effectiveness and efficiency. Computer software packages will be used to enhance the course learning.
FORMAT: Lecture/computer lab
PREREQUISITE: Statistics and Engineering Mathematics or consent by the instructor.

CIVL 7000.03: Directed Studies in Civil Engineering II.
This class is designed for a Doctoral Candidate pursuing graduate studies in civil engineering. It provides students an opportunity to complete an advanced study in a specific topic of interest that is not included in the regular classes offered. The student works under the supervision of a faculty member in the Civil Engineering Department.

CIVL 7105.03: Graduate Seminar - PhD Level.
This seminar class is designed to provide graduate students with the opportunity to search the literature for information on current topics related to their project/thesis. All graduate students pursuing a PhD degree in the Civil Engineering Programme are required to take this class and offer their findings, orally, in TWO presentations to the faculty members of the department and students, in two intervals, before their thesis defense. The presentation will be followed by a question and answer session. Graduate students might also be asked to submit a written version of their presentations (or a hard-copy of their presentation slides) to the Graduate Coordinator of their department. This seminar class will be offered twice each academic year in the format of an end-of-term conference in Fall and Winter semesters, respectively. Evaluation will be based on preparation, presentation skills, scientific content, ability to field questions and regular attendance. Graded pass/fail
NOTE: (1)This is a required class for all PhD students in the Department of Civil and Resource Engineering; (2)Registration of this class is required only for the term during which students present their research findings.

CIVL 8500.00: MEng Project.
A Master of Engineering candidate will be required to submit a project satisfactory to the Faculty of Graduate Studies and Engineering and to make a successful oral presentation of the work.

CIVL 9000.00: Masters Thesis.

CIVL 9530.00: PhD Thesis.
Mineral Resource Engineering Program

I. Introduction
Canada has an abundance of natural resources and is a world leader in mineral and hydrocarbon extraction and processing. Mineral Resource Engineering concentrates on the technical, environmental and economic aspects of the extraction and processing of the earth’s mineral resources. It has a strong industrial and research interest in many aspects of this sector. Graduate Studies in Mineral Resource Engineering has specializations in mining, petroleum, and mineral processing.

A. Specialization in mining and mineral processing engineering
If a student chooses to specialize in mining engineering, opportunities exist for advanced studies in underground and surface mining of coal, oil shales, metals, gold and industrial minerals. Research topics may include rock mechanics, mine design, ground support, field monitoring, optimization, equipment maintenance and many more. A student may also choose to specialize in mineral processing with the focus on the beneficiation of ores.

B. Specialization in petroleum engineering
Research opportunities exist in reservoir engineering, offshore drilling, production of oil and gas, petroleum geomechanics, wellbore stability, and more. Graduate studies in petroleum engineering prepares students for a career in the conventional petroleum sector as well as the oil sands.

In addition to the Graduate Scholarships available in the Faculty of Engineering and Dalhousie University, the Mineral Resource Engineering Program also provides a limited number of Research Assistantships to highly qualified candidates. Candidates are suggested to contact individual faculty members for details.

II. Class Descriptions
Not all classes are offered every year. Please consult the current timetable for this year's offerings.

See the Engineering section of this calendar for Master's and Doctoral program details. Courses listed under PETR-petroleum engineering may also be accepted for credit toward graduate studies in Mineral Resource Engineering.

MINE 6001.03: Advanced Rock Mechanics.
This class deals with specific rock mechanics problems related to ground stability control in mines. Emphasis is placed on in situ stress measurement, stress change and ground movement monitoring, numerical modelling in mining applications, rockbursting and microseismic monitoring. Theory, state-of-the-art and existing problems of relevant techniques are discussed. Case studies are included to solve practical problems.
PREREQUISITE: Knowledge of differential equations and linear algebra and MINE 3611.03 or equivalent.

MINE 6002.03: Mine Excavation.

MINE 6004.03: Analysis of Mineral Industries.

MINE 6007.03: Directed Studies in Mining Engineering.
This class is available to graduate students enrolled in a Masters Programme in Mineral Resource Engineering wishing to gain knowledge in a specific area for which no graduate level class is offered. Students are assigned an advisor and are required to present a formal report at the end of the class.

MINE 6008.03: Advanced Petroleum Engineering.
The class is an advanced study of petroleum reservoir engineering, drilling and development. The emphasis is on topics such as: analysis and prediction of oil and gas reservoir performance under a variety of production methods, theory and practice of well testing and pressure analysis techniques, well planning, drilling optimization, enhanced recovery mechanisms, displacement theory and modelling. The class content will be adapted to the interest of the student as far as possible.
CROSS-LISTING: MINE 4822.03

MINE 6009.03: Offshore Drilling and Production.
This class is oriented toward the practical applications of offshore drilling, production and completion technology in the ocean environment. Emphasis is placed on the types, applications and limitations of offshore rigs, platforms and subsea production systems. The technical aspects of offshore islands, breakwaters, safety and fire protection, loading and transportation systems are also covered. The decision making process based on economics and developing technology regarding offshore field development and production is presented as a case study.
CROSS-LISTING: MINE 4833.03

MINE 6010.03: Solid-Liquid Separation.
The class outlines the fundamental principles of solid-liquid separation processes. Based on this theory, scaling-up procedures for the various separators, from laboratory test results are given. Means of improving solid-liquid separation by using coagulants, flocculants or dewatering aids are discussed. Processes considered include: gravitational and centrifugal thickening, flotation, vacuum, pressure and centrifugal filtration and dewatering by screens and electrophoretic methods. Test results obtained in laboratory work will be used in sizing of equipment.

MINE 6011.03: Advanced Mine Planning and Design.
This class deals with the application of advanced design principles to the planning, design and optimization of surface and underground mining systems. These principles include the Lerch-Grossman’s algorithm, CAD and simulation modelling techniques. Under given geological and geomechanic factors, these techniques will be used for designing and optimizing underground mining methods or open pit layouts for massive, thin, pitching and multi-seam mineral deposits.

MINE 6012.03: Advanced Economic Evaluation of Mineral Resources.
This class deals with the application of advanced statistical and probability theory in mineral resource investment risk and uncertainty analyses in random variable states. Numerical modelling of stochastic processes governing complex mineral resource projects will be carried out using derivative mine valuation concepts. Using available simulation and numerical modelling software packages, students will undertake projects on class studies in mineral resources, coal, oil and gas properties.

MINE 6015.03: Advanced Mining Engineering Analysis.
This class covers several topics in mining engineering analysis including mine drainage, shaft sinking techniques under difficult conditions and mine backfilling. Emphasis is placed on quantitative methods and software tools available to assist with analysis and design in these areas. Relevant case studies are presented to highlight the topics in the class. Students will also have to complete a computer or laboratory based project.
PREREQUISITE: Permission of instructor

MINE 6016.03: Geomechanical Measurements.
This class deals with measurements typical for geomechanical research in the fields of mining, petroleum and geotechnical engineering. Emphasis is placed on techniques and instrumentation for the measurement of load, deformation, permeability, and acoustic emissions/properties in rock and...
concrete materials. Topics cover issues related to data acquisition and analysis such as instrument drift/calibration, digital sampling theory, intrinsic safety, and scaling principles. Students will undertake a major laboratory project.

FORMAT: Lecture/lab 3 hours
PREREQUISITE: Permission of Instructor

MINE 6017.03: Mining and the Environment.
This class covers environmental practices, problems and solutions in the mining industry. Topics include regulations, reclamation, mine closure, acid rock drainage, surface subsidence, nuclear waste disposal and coal mine explosions. Case studies are used to highlight these topics. Class participation is emphasized through oral and written presentations.

FORMAT: 3 hours lecture/2 hours lab weekly
PREREQUISITE: MINE 3500.03
CROSS-LISTING: MINE 4815.03

MINE 6021.03: Pit Slope Stability.
This class deals with slope stability and the associated problems in surface mining. Fundamentals of various analysis techniques for slope stability are reviewed. Risk and uncertainty analysis is introduced. Application of these techniques to optimization of slope design is discussed. Major topics include: geological structure controlled and strength controlled slope failure, slope failure in soft ground, risk and uncertainty analysis, and optimization of slope design.

PREREQUISITE: MINE 3510.03, MINE 3611.03 or permission of instructor

MINE 6900.03: Graduate Seminar - Master's Level.
This seminar class is designed to provide graduate students with the opportunity to search the literature for information on current topics related to their projects/thesis. All graduate students pursuing MEng and MASc degrees in the Mineral Resource Engineering programme are required to take this class and offer their findings, orally in ONE presentation to the faculty members of the department and students, four months prior to the completion of their programme. This presentation will be followed by a question and answer session. Graduate students might also be asked to submit a written version of their presentations (or a hard-copy of their presentation slides) to the Graduate Coordinator of their department. This seminar class will be offered twice each academic year in the format of an end-of-term-conference in Fall and Winter semesters, respectively. Evaluation will be based on preparation, presentation skills, scientific content, ability to field questions and regular attendance. Graded pass/fail.

NOTE: (1) This is a required class for all Master students in the Department of Civil and Resource Engineering; (2) Registration of this class is required only for the term during which students present their research findings.

MINE 7007.03: Directed Studies in Mineral Resource Engineering.
This class is available to Graduate Students enrolled in a PhD Programme in Mineral Resource Engineering wishing to gain knowledge in a specific area for which no graduate level class is offered. Students are assigned an advisor and are required to present a formal report at the end of the class.

MINE 7900.03: Graduate Seminar - PhD Level.
This seminar class is designed to provide graduate students with the opportunity to search the literature for information on current topics related to their project/thesis. All graduate students pursuing a PhD degree in the Mineral Resource Engineering Programme are required to take this class and offer their findings, orally, in TWO presentations to the faculty members of the department and students, in two intervals, before their thesis defense. The presentation will be followed by a question and answer session. Graduate students might also be asked to submit a written version of their presentations (or a hard-copy of their presentation slides) to the Graduate Coordinator of their department. This seminar class will be offered twice each academic year in the format of an end-of-term-conference in Fall and Winter semesters, respectively. Evaluation will be based on preparation, presentation skills, scientific content, ability to field questions and regular attendance. Graded pass/fail.

NOTE: (1) This is a required class for all PhD students in the Department of Civil and Resource Engineering; (2) Registration of this class is required only for the term during which students present their research findings.

MINE 8500.00: MEng Project.
A Master of Engineering candidate will be required to submit a project satisfactory to the Faculties of Graduate Studies and Engineering and to make a successful oral presentation of the work.

MINE 9000.00: Master's Thesis.

MINE 9530.00: PhD Thesis.
MA students may concentrate in any of the above fields. PhD candidates must limit their work to Hellenic and Hellenistic Studies.

I. Admission Requirements

A. Masters Degree

Candidates must satisfy the admission requirements of the Faculty of Graduate Studies. For students wishing to pursue traditional Classics degrees, the requirement of both Classical languages at the Honours level may sometimes be relaxed, for example when a student has taken a Combined Honours course involving only one Classical language. In such cases, at least two classes in the second language will be taken in addition to the MA course proper. Students focussing mainly on ancient Philosophy, Greek patristics, Byzantine philosophy and theology, Latin patristics, and Latin medieval philosophy should see the statement above. In certain programs, knowledge of other ancient languages may be required.

Procedure

Students contemplating studying for a Masters degree should count on spending at least a full year to complete their classes and thesis. It typically takes two full years.

Three graduate seminars in the general area of interest are required. It may be possible to substitute a reading and research course for a seminar. Candidates are expected to attend graduate seminars related to their thesis throughout their period of full-time study. A thesis, usually between 100 and 150 pages, is required.

B. Doctor of Philosophy degree

The normal admission requirement is the MA in Classics or equivalent preparation. The minimum residence requirement for such candidates is two years, during which time they must satisfy the general requirements of the Faculty, and, in addition, must demonstrate competence in the languages (ancient and modern) necessary for research in their particular fields of study.

Procedure

All candidates are expected to have a broad understanding of all aspects of Classical culture. Within the general area of Hellenic-Hellenistic Studies, each candidate is expected to concentrate, with the guidance of a supervising committee, in one of three fields: History, Literature, and Philosophy.

In consultation with their supervising committee, PhD candidates will take such courses as are deemed necessary preparation.

Before submitting a thesis, the candidate must pass a comprehensive examination (written and oral) in his or her special field. This will normally be taken towards the end of the second or beginning of the third year of study.

PhD students should consult the Department's Graduate Studies Handbook, the Graduate Calendar, and obtain a copy of the departmental regulations governing the PhD program for further information.

II. Application

Masters and doctoral applicants should apply using the forms available at the Faculty of Graduate Studies website: http://dalgrad.dal.ca/prospectivestudents/admissions/admissioninfo/. Please note that in addition to the materials required by the Dalhousie Faculty of Graduate Studies, the Department of Classics requests an additional letter of reference (for a total of three) and a writing sample (e.g. a term paper or thesis chapter of about twenty pages).

III. Funding

All applicants for the MA program will be considered, on a competitive basis, for scholarship funding. Such funding is available in three forms: Faculty of Graduate Studies (FGS) Scholarships, Social Sciences and Humanities Research Council of Canada (SSHRC) Scholarships, and Izaak

Classics

Location: 6135 University Avenue
P.O. Box 1500
Halifax, NS B3H 4R2
Telephone: (902) 494-3468
Fax: (902) 494-2467
Website: http://classics.dal.ca

Chairperson of Department
Hankey, W.J.

Professor Emeriti
Friedrich, R., PhD (Goettingen)

Professor
Hankey, W.J., BA (Vind), MA (Toronto), PhD (Oxon)

Associate Professor
Fournier, M., BA, MA (Dal), PhD (Boston College)

Assistant Professors
Austin, C., BA, MA (Concordia), PhD (McMaster)
Diamond, E., BA (Vind), MA (Dal), PhD (Northwestern)
MacLeod, L., BA (Brock), MA, PhD (Dal)
Mitchell, J., BA (McGill), PhD (Stanford)
O'Brien, P., BA (Vind), MA (Dal), MA, PhD (BU)
Treiger, A., BA, MA (Hebrew University of Jerusalem), MPhil, PhD (Yale)
Varto, E., BA (Queens), MA (Dal), PhD (UBC)

Adjunct Professors
Curran, T.H., BA (Toronto), MA (Dal), MTh (AST), PhD (Durham)
Fraser, K.A., BA (Vind), MA (Dal), MPhil, PhD (Cambridge)
House, D.K., MA (Dal), PhD (Liverpool)
Parker, M., BA, MA (Toronto), PhD (McMaster)
Robertson, N., BA (Vind), MA (Dal), PhD (Cambridge)
Stewart, I.G., BSc (Trent), MA (Toronto), PhD (Cambridge)
Thorne, G., BA (Acadia), MA (Dal), MDiv (AST), PhD (Durham)

The Department of Classics welcomes students who wish to pursue MA and PhD degrees. Study may focus on the traditional subdisciplines of Greek and Roman Literature and History, as well as on Ancient Philosophy. Alternatively, students may opt to explore Classical culture and its legacy in several other areas of interest distinctively cultivated by members of the Classics faculty, along with colleagues in the Program in Religious Studies and Arabic. Such areas include late-antique, patristic, Byzantine and medieval philosophy, theology and religion.

Greek and Latin are taught at all levels, and competency in both languages is required for theses in the traditional areas of Classical Studies. Students focussing on the intersections of Classical and later thought in the Mediterranean world and the Middle East may, in consultation with the Graduate Coordinator and supervising faculty member, substitute Classical Arabic for either or Latin or Greek. Students focussing mainly on Ancient Philosophy, Greek patristics, Byzantine philosophy and theology, Latin patristics, and Latin medieval philosophy and planning to continue their studies or pursue an academic career in these areas may, as appropriate, in consultation with the Graduate Coordinator and supervising faculty member, limit their language study to ancient and Byzantine Greek, or ancient and medieval Latin, or either of these in combination with Arabic. In addition to ancient languages, students are required to conduct research in the most relevant modern languages as well.

II. Application

Masters and doctoral applicants should apply using the forms available at the Faculty of Graduate Studies website: http://dalgrad.dal.ca/prospectivestudents/admissions/admissioninfo/. Please note that in addition to the materials required by the Dalhousie Faculty of Graduate Studies, the Department of Classics requests an additional letter of reference (for a total of three) and a writing sample (e.g. a term paper or thesis chapter of about twenty pages).

III. Funding

All applicants for the MA program will be considered, on a competitive basis, for scholarship funding. Such funding is available in three forms: Faculty of Graduate Studies (FGS) Scholarships, Social Sciences and Humanities Research Council of Canada (SSHRC) Scholarships, and Izaak
Walton Killam Predoctoral Scholarships (more information on the Killam Scholarship here: http://killamtrusts.dal.ca/) Candidates who are Canadian citizens or permanent residents and who wish to be considered for FGS Scholarships are strongly encouraged to apply for the relevant scholarships or fellowships offered by SSHRC (further information available at [http://www sshrc.ca](http://www.sshrc.ca)). The deadlines for SSHRC applications fall in the autumn of the year preceding the year in which studies begin. Candidates who are Canadian citizens or permanent residents and who wish to be considered for the Killam Scholarship MUST apply for the relevant scholarships or fellowships offered by SSHRC.

All candidates wishing to be considered for departmentally administered scholarships should note the application deadlines set by the Department, which fall well in advance of the admission deadline of June 1: Killam Scholarships and FGS Scholarships, January 21st.

PhD students will only be accepted with external scholarship funding (e.g. SSHRC or Killam Scholarships). They are not eligible for FGS Scholarships in the Department of Classics.

All admitted students (MA and PhD) will be considered for a Graduate Teaching Assistantship.

For more information, email our Graduate Advisor at clasgrad@dal.ca.

IV. Classes Offered

Not all courses are offered every year. Content of courses may change from year to year. Please consult departmental website for offerings and full descriptions.

Greek and Latin Literature

CLAS 5010.06: Greek Epic.
A study of Greek epic in the original language.

CLAS 5011.06: Greek Drama: Tragedy.
A study of the Greek tragic poets, Aeschylus, Sophocles, Euripides in the original language.

CLAS 5012.06: Greek Comedy.
A study of the Greek comic poets (Aristophanes, Menander) in the original language.

CLAS 5013.06: Greek Lyric.
A study of lyric poets such as Sappho, Archilochus, Simondides in the original language.

CLAS 5020.06: Greek Literature.
Studies in Greek literature in the original language, works studied change from year to year.

CLAS 5021.03: Reading and Research in Greek Literature I.

CLAS 5022.03: Reading and Research in Greek Literature II.

CLAS 5030.06: Latin Literature.
Studies in Latin literature in the original language, works studied change from year to year.

CLAS 5031.06: Roman Satire.

CLAS 5032.06: Roman Historians.

CLAS 5033.06: Advanced Seminar in Latin Literature.

CLAS 5034.06: Greek Literature.

CLAS 5040.06: A Study of Vergil.
A study of the development and importance of Vergil’s basic themes and ideas embodied in the Aeneid. In the first part of the class special attention is given to his early work the Bucolics, where his themes begin to appear, and their development is then followed through the relevant parts of the Georgics. The main part of the class is devoted to the reading and discussion of the chief themes of the Aeneid, especially as they illustrate Roman political, religious and social ideas which have greatly influenced our own beliefs and institutions.

CLAS 5041.03: Reading and Research in Latin Literature I.

CLAS 5042.03: Reading and Research in Latin Literature II.

Ancient History

CLAS 5530X/Y.06: Ancient Religion: Classical Antiquity to the Rise of Christianity.
Selected topics from the transition from Classical to Christian culture are studied. Particular attention is paid to the connection between religious innovation and the effect of the new beliefs on literature, art and philosophy.

CLAS 5531.03: Roman Empire and the Rise of Christianity.

CLAS 5535X/Y.06: Rome and the East.
This class will consider relations between Rome and her eastern neighbours -- the Parthians and the Sasanians -- from 53 B.C. To A.D. 628. It will examine the development of Roman policy in the region from the establishment of imperial control in the Near East to the costly wars of the early Byzantine period. Consideration will also be given to the Parthian and Persian kingdoms and to the frontier region.

CLAS 5540.03: Ammianus Marcellinus and his World.
This class approaches the history and culture of the fourth century AD through its most important historian, Ammianus Marcellinus. The class will focus on (but not be limited to) a careful study of Books 14-25 of the Res Gestae, which span the reign of Ammianus’ hero, Julian the Apostate.

CLAS 5545.03: Roman Culture and Roman Politics in the Transition to Autocracy.
A study of the cultural and political history of Rome during the principate of Augustus; we will focus on the reformation of Roman elite culture during this period in light of the intellectual tradition of the late republic and the cultural politics of the age of Nero.

CLAS 5550.06: Reading and Research in Ancient History II.

CLAS 5552.03: Reading and Research in Ancient History I.

Classical Philosophy

CLAS 5600.06: Philosophy of Aristotle.

CLAS 5601.06: Plato and Neoplatonism.

CLAS 5602.06: Aristotle.
This seminar involves the detailed study of either Aristotle’s Metaphysics or De Anima or Physics or ethical and political treatises. The choice of texts varies from year to year.

CLAS 5603.06: Philosophy of Plato.
This seminar involves the detailed study of a group of dialogues. The choice of dialogues varies from year to year.
CLAS 5604.06: Philosophy of Aristotle.
The general scope of the Aristotelian Philosophy - the understanding of nature, the City, the aesthetic experience of humanity - is considered in relation to the argument of the Metaphysics or 'First Philosophy'.

CLAS 5605.06: Neoplatonism: Plato and Neoplatonism.
The philosophy of Plotinus and later thinkers considered as the resume of Greek Philosophy; in particular the role of Plato and other older philosophers in the formation of Neoplatonism is a principal interest.

CLAS 5606.06: Greek Philosophical Texts.

CLAS 5607.06: Latin Philosophical Texts.

CLAS 5608.06: Reading and Research.

CLAS 5609.03: Greek Philosophical Texts.

CLAS 5610.03: Latin Philosophical Texts.

CLAS 5611.03: Hellenistic Philosophy - Stoics and Epicureans.
A study of philosophy in the Hellenistic Age. We will investigate the development of Greek and Roman Philosophy after Aristotle, focusing on Stoicism and Epicureanism. The course covers the logic, physics and ethics of these philosophical schools, as well as their religious dimension. FORMAT: Seminar
PREREQUISITES: CLAS 2361/2362, or permission from instructor
CROSS-LISTINGS: CLAS 4601, RELS 4601

CLAS 5612.03: Hellenistic Philosophy From Scepticism to Neoplatonism.
A study of philosophy in the Hellenistic Age. We will investigate the development of Greek and Roman Philosophy, focusing on Pyrrhonian and Academic Scepticism, as well as Middle Platonism. The course covers the logic, physics, and ethics of these philosophical schools, as well as their religious dimension.
FORMAT: Seminar
PREREQUISITES: CLAS 2361/2362, or permission from instructor
CROSS-LISTINGS: CLAS 4602, RELS 4602

CLAS 5840.06: Latin Philosophical Texts.
The purpose is to give students experience in reading philosophical Latin. The texts are normally chosen from medieval authors like Anselm, Aquinas, and Bonaventure.

Patristics

CLAS 5060.03: Boethius and Prosimetrum: Poetry and Prose in the Consolation of Philosophy.
Boethius’ Consolation is a strange example of Menippean satire, which is itself a strange genre. This class will consider the poetry, the prose and, most significantly, how these elements are combined in order to achieve the goal of the work, which is to offer consolation to the reader.

CLAS 5070.03: A Study of the Latin text of Augustine’s ‘Confessions’.
This class approaches the thought of St. Augustine through a study of various literary, philosophical and spiritual aspects of the Latin text of his “Confessions”.
FORMAT: Seminar
PREREQUISITE: CLAS 3810.03 or the permission of the instructor.

CLAS 5370.06: The Augustinian Tradition.
The class considers the effect of Augustine on the philosophical and theological thought of late Antiquity and the Middle Ages.

CLAS 5700.06: Philosophy of the Church Fathers.
This seminar involves the detailed study of a text, or group of texts, from one or more of the Greek or Latin Church Fathers. The choice of text varies from year to year, in relation to the needs and interests of students.

CLAS 5701.06: Medieval Interpreters of Aristotle.
The class considers Latin philosophical texts of the Middle Ages.

CLAS 5705.06: St. Augustine I.
A study of the three parts of Augustine’s Confessions with a view to understanding his dissatisfaction with the various positions he adopted prior to his conversion to Christianity (Part I), the practical consequences of this conversion (Part II), and the new theoretical understanding of time, space and motion which come out of his Trinitarian exegesis of the first chapters of Genesis (Part III). This class presupposes some knowledge of the history of Ancient Philosophy, and some of Latin.

CLAS 5706.06: St. Augustine’s City of God.
A study of Augustine’s account of the failure of the Roman Empire and of the new Christian ‘city’ that replaced it. The class sometimes concentrates on a definition of the new Christian state in second part (books XI to XXII) of the City of God and sometimes begins with a study of earlier accounts of Rome (Aeneid), and of the relations of Rome and the church in, for example, the Apostolic Fathers, the Acts of the Martyrs and Tertullian, before turning to the first ten books of the City of God.

CLAS 5707.06: St. Augustine’s on the Trinity.
A study of the 15 books of Augustine’s De Trinitate. The first term will concentrate on Books 1-7 in which he establishes what is the orthodox teaching about God through Scripture and a consideration of the categories of substance, relation and act. The second term examines Books 8-15 in which he attempts to understand what has been shown in the first 7 books through the distinction of scientia and sapientia. The class presupposes some knowledge of the history of ancient philosophy (especially Aristotle & Neo-Platonism) and some of Latin.

CLAS 5708.03: Reading and Research: Christian Beginnings and the Early History of the Church.

CLAS 5800.06: Christian Beginnings.

CLAS 5801.06: Christianity and Neoplatonism.

CLAS 5900.06: Departmental Seminar.

CLAS 5901.06: Reading and Research.

CLAS 9000.00: Master’s Thesis.

CLAS 9530.00: Doctoral Thesis.
Clinical Vision Science

Location: IWK Health Centre
5850 University Avenue, 6th Floor
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 470-8959
Fax: (902) 470-7207

Director
McMain, K., BA, MA (Athabasca), OC(C), COMT

Coordinator
Chauhan, B., BSc. MBCC, PhD (Wales)

Professors
LaRoche, R., BSc, MD (McGill), FRCS, major appointment in the Department of Ophthalmology.
Tremblay, F., BSc, PhD (Montreal), major appointment in the Department of Ophthalmology and Visual Sciences
Varhegyi, G., BSc, MSc, PhD (Budapest)
Westwood, D.A., BSc, MA, PhD (Waterloo), major appointment in the School of Health and Human Performance.

Assistant Professors
Fennell, H., BSc, MSc (Dal), OC(C),COMT
Hahn, E., BPE, MSc (Dal), OC(C), COMT
McMain, K., BA, MA (Athabasca), OC(C), COMT
Parkinson, J., BA, CO, COMT
Pryde, M., BSc, MSc (Dal), OC (C)
Smith, S., MSc (Dal), OC(C), COMT
Walsh, L., BSc, MSc (Dal), OC(C), COMT

I. Introduction

Dalhousie University offers the program Master of Science Clinical Vision Science in cooperation with the IWK Health Centre and the IWK School of Orthoptics and Ophthalmic Medical Technology. This is a two-year degree program with thesis, requiring two years (six terms) full time fees, with a thesis continuation fee charged each term over the two years.

Orthoptists/ophthalmic medical technologists are professionals integral to eye care. They perform a wide range of diagnostic and highly technical procedures, and, in consultation with an ophthalmologist, plan, implement and monitor treatment of a wide variety of ocular disorders, including disorders of binocular vision and ocular motility. They are engaged in a wide range of activities including research into ocular motility, education of other eye care professionals, patient education and vision screening.

The academic objective of the Clinical Vision Science program is to provide students interested in the profession of orthoptics/ophthalmic medical technology with a strong foundation in the vision sciences and in research techniques. The program is directed at optimising professional clinical practice by encouraging an integrated approach to the field of the vision sciences and expanding knowledge of the research that underpins much clinical practice. With its research component, the proposed program will ensure that graduates, as evidence-based practitioners, are prepared for both clinical and research-based practices and that they have the ability to analyze and relate research finding to clinical experience, skills vital for ensuring superior diagnostic and therapeutic services. The program will equip students with outstanding skills in the assessment, diagnosis and treatment of ocular disorders to ensure strong clinical competence and to enable them to be full participants in the interdisciplinary model of eye-care. The student will be exposed to a variety of clinical experiences that will prepare them for the independent nature of professional practice.

Students have the option of exiting from the program after the second program year with a Concurrent Graduate Diploma in Orthoptics and Ophthalmic Medical Technology, or complete a thesis for an MSc in Clinical Vision Science.

Dalhousie University is offering its Master’s Program in Clinical Vision Science also in distance education. Distance learning students are receiving the same quality instruction as on-campus students, take the same exams and participate in direct ophthalmic care at supervised pre-approved clinical sites for the same period of time.

The distance delivery model is a flexible, Internet-based adaptation of the on-campus program, distance students can log into their course content through the Internet and learn, follow lectures and submit assignments from the comfort of their home or workplace.

The program is intended for those who are wishing to gain essential knowledge and expertise in the Orthoptist/ophthalmic medical technologist profession, and also for those who enter it at an advanced level for professional development.

There is no residential component in the CVS Distance Education Program.

II. Admission Requirements

Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies. Admission requirements for the MSc in clinical vision science will be the same as the requirement for Dalhousie University MSc: A four-year bachelor’s degree from a recognized institution of higher education with a minimum of a B average (GPA 3.0).

Students whose native language is not English, must also, as required by the Faculty of Graduate Studies, demonstrate the ability to participate in a graduate program conducted in English prior to their acceptance to the program. The standard test of English competency is the TOEFL. The minimum acceptable score, as set by the Faculty of Graduate Studies and therefore required for acceptance to the MSc in clinical vision science, is 580 for the written test and 237 for the computer test.

In addition, entrants should have a minimum of one class in human anatomy and/or physiology and one class in psychology with a laboratory component. Exceptional students without these prerequisites may be admitted on the condition that they are fulfilled either prior to or concurrent with the program.

It is also recommended that students should have the following or equivalent undergraduate classes: research methods, e.g. statistics or research design; biochemistry, e.g. BIOC 3200.03 Biological Chemistry; perception and psychophysics, e.g. PSYO/NESC 3051.03 Sensory Neuroscience I; vision; and one class in neuroanatomy or neurophysiology.

The application deadline is March 1st.

III. Class Descriptions

Year 1, Semester 1 (Fall)
VISC 5010.03
VISC 5020.03
VISC 5210.03
VISC 5230.03

Year 1, Semester 2 (Winter)
VISC 5011.03
VISC 5211.03
VISC 5220.06 (Winter and Summer)
VISC 5240.03
VISC 5330.03

Year 1, Summer Session
VISC 5200.06, Clinical Practicum I
VISC 5031.03
VISC 5220.06 (Winter and Summer)
Year 2, Semester 1 (Fall)
VISC 5040.03
VISC 5310.03
VISC 5340.03
VISC 5350.03

Year 2, Semester 2 (Winter)
VISC 5300.06, Clinical Practicum II
VISC 9000.00, Thesis

Year 2, Summer Session
VISC 9000.00

Year 3, Semester 1 (Fall)
VISC 9000.00

Year 3, Semester 2 (Winter)
VISC 9000.00

Year 3, Summer Session
VISC 9000.00
Total credits = 7.5 academic credits plus 2 practica credits plus thesis (VISC 9000.00), normally completed over three years.

Interprofessional Health Education:
Students are required to maintain enrolment in IPHE 5900 for the duration of their studies. Successful completion of this course is a requirement for graduation, and will be recognized further with the awarding of a special Certificate in Interprofessional Collaboration to be presented by the Faculty of Health Professions. Students are asked to consult with their individual school/college to determine the specific guidelines and expectations regarding the required portfolio.

Practicum/Fieldwork Placements Outside Halifax
Students enrolled in entry-to-practice graduate programs of study in the Faculty of Health Professions are advised that they may have to do some or all of their required clinical education/fieldwork at sites outside Halifax, and hence may have to incur additional personal expenses for travel and temporary accommodation.

In some situations, sites may require a payment to the site for support of clinical education/fieldwork supervision, and some sites may require separate disability insurance in lieu of eligibility for Worker Compensation coverage. Such costs are the responsibility of the student.

IV. Class Descriptions
VISC 5010.03: Fundamentals of Vision Science: Afferent System.
This class is designed to acquaint the student with the anatomy / physiology of the human central nervous system as it relates to the sensation of vision. Testing parameters used in the afferent visual system examination will be discussed. Recent developments in perimeter, clinical psychophysics, and electrophysiology will be explored.
INSTRUCTOR(S): Fennell, H.
FORMAT: Lecture and lab
PREREQUISITE: This class is a prerequisite to Extraocular Motility disorders, Ocular Manifestations of Systemic Disease, and is normally taken prior to, or concurrent with, clinical Foundations of Ophthalmic Medical Technology

VISC 5011.03: Fundamentals of Vision Science: Efferent System.
This class is designed to provide the student with knowledge of eye movements and the neurological control of ocular motility. Through lecture, discussion, and assigned readings, the student will analyze and determine how abnormalities of ocular motility can be indicators of a disease process and its area of localization.
INSTRUCTOR(S): McMain, K.
FORMAT: Lecture

VISC 5020.03: Physical and Visual Optics.
This class will analyze physical, optical and ophthalmic principles, with an emphasis on the measurement of light and on its behaviour in image formation. Visual optics in physical, animal and human modalities will be investigated critically in experiment and clinical venues.
INSTRUCTOR(S): Hahn, E.
FORMAT: Lecture and lab
PREREQUISITE: This class is a prerequisite for the Therapeutic and Psychosocial Aspects of Low Vision, Treatment of Visual Disorders, and Treatment of Ocular Motility disorders.

Students will acquire theoretical and practical skills to conduct a research undertaking in vision science. Scope of human inquiry, methodologies of interpretative and critical investigation, sampling and data analysis will be discussed in the clinical visual health sciences environment. Basic skills in the application of computer-based tools (SPSS) will be developed.
FORMAT: Online lectures and interactive student participation
CO-REQUISITE: This class is normally taken subsequent to, or concurrent with, VISC 5350.03 Topics in Vision Care

VISC 5040.03: Neuropharmacology for Vision Science: Basic Concepts and Therapeutics.
This class will consider the general principles of pharmacology before exploring the interaction pharmacology agents with the central nervous system and ocular structures. Medications used in the evaluation and treatment of ophthalmic disorders, along with medications used to treat systemic disorders that may produce ocular side effects, will be emphasized.
INSTRUCTOR(S): Hahn, E.
FORMAT: Lecture

VISC 5200.06: Practicum I.
This practicum period of 14 weeks following the first two semesters of study provides the student with the opportunity to participate in direct ophthalmic patient care. The student will consolidate the concepts, theories and skills previously learned while providing supervised vision care for clients in a clinic setting.
INSTRUCTOR(S): McMain, K.
FORMAT: Clinical Practicum
PREREQUISITE: VISC 6210.02, 5211.03 and 5230.03

VISC 5210.03: Clinical Foundations of Ophthalmic Medical Technology.
This class will introduce the student to the complexities of analysis of the visual system. This will be achieved through clinical scenarios in which the student will be required to engage in direct patient care, including sensory visual evaluation, physical ocular assessment, and biomedical application of ophthalmic instrumentation.
INSTRUCTOR(S): Smith, S.
FORMAT: Lecture and lab
PREREQUISITE: VISC 6210.02, 5211.03 and 5230.03

VISC 5211.03: Clinical Foundations of Orthoptics.
This class will introduce the student to the wonders of binocular vision in its normal presentation and also the intricacies of its abnormalities. Integral to the class material will be the analysis of responses of the binocular system to various clinical challenges.
INSTRUCTOR(S): Smith, S.
FORMAT: Lecture and lab
PREREQUISITE: This class is a prerequisite for Practicum I

VISC 5220.06: Introduction to Orthoptic / Ophthalmic Medical Technology Professional Practice.
This class considers the role of the orthoptist / ophthalmic medical technologist both within the Eye Care Team and within the health care professions as a whole. Emphasis will be placed on the ability to critique, deliver and implement consultation, education, leadership and administration in the context of ophthalmic health care.
INSTRUCTOR(S): McMain, K.
FORMAT: Lecture
VISC 5222.06: Advanced Ophthalmic Technology for Clinical Vision Science.
This course provides knowledge on advanced ophthalmic diagnostic techniques and preliminary data analysis used to detect ophthalmic disorders. It furthers a systematic approach to instrumentation selection and performance, and will equip students with the ability to recognize and solve inconsistencies in results occurring due to instrumentation, examiner or patient errors.
FORMAT: Lecture/Lab
PREREQUISITE: VISC 5210.03

VISC 5230.03: Extraocular Motility Disorders.
Extraocular motility disorders and their treatment form the foundation for the understanding of ocular misalignment. In this class, anomalies of eye movement will be analyzed and the etiology will be reviewed. Emphasis, though, will be placed on the clinical presentation, formulation of diagnosis, and patient prognosis of anomalous extraocular motility.
INSTRUCTOR(S): Walsh, L.
FORMAT: Lecture and lab
PREREQUISITE: VISC 5010.03 or permission of instructor. VISC 5010.03 should

VISC 5240.03: Therapeutic and Psychosocial Aspects of Low Vision.
This class encompasses a broad spectrum of visual impairments. The pathphysiological basis, clinical manifestations, and treatment modalities of visual loss will be addressed.
INSTRUCTOR(S): Parkinson, J.
FORMAT: Lecture and lab
PREREQUISITE: VISC 5020.03 or permission of instructor

VISC 5300.06: Practicum II.
This intensive practicum period of 22 weeks follows the completion of all class work. During this practicum students will have the opportunity to fully synthesize their academic and clinic knowledge. Upon completion students will be prepared to sit the orthoptic and ophthalmic medical technologist certification exams.
PREREQUISITE: VISC 5200.06 and 5330.03

VISC 5310.03: Ocular Manifestations of Systemic Disease.
The eye is a window through which manifestations of neurological, vascular infectious, inflammatory, and general systemic disease can be evaluated. This class will explore the signs and symptoms of ocular dysfunction as precursors, indicators and consequences of systemic disease that must be evaluated for optimal health care.
INSTRUCTOR(S): Parkinson, J.
FORMAT: Lecture
PREREQUISITE: VISC 5011.03 or permission of instructor.

VISC 5330.03: Treatment of Ocular Motility Disorders.
This class will examine and discuss the management of ocular motility anomalies. An overview of historical and current treatment modalities both surgical and non-surgical will be discussed. Emphasis will be given to the determination and application of appropriate management plans in case scenarios.
INSTRUCTOR(S): Walsh, L.
FORMAT: Lecture and lab
PREREQUISITE: This class is a prerequisite for Practicum II

VISC 5340.03: Treatment of Visual Disorders.
This class introduces a variety of therapeutic approaches to visual disorders with an in depth examination of historical and current methods of treating amblyopia and other developmental anomalies of the visual system. The treatment of acquired anomalies as well as routine spectacle and surgical treatment of refractive disorder will be covered.
INSTRUCTOR(S): Smith, S.
FORMAT: Lecture and lab
PREREQUISITE: VISC 5240.03

VISC 5350.03: Topics of Vision Care.
This class will provide students with an opportunity to explore in depth topics of current interest in the ophthalmic field. The students will then have a sound knowledge base of potential areas of research and detailed
Community Health and Epidemiology

Location: Centre for Clinical Research
2nd and 4th Floors
5790 University Avenue
Halifax, NS B3H 1V7

Telephone: (902) 494-3860
Fax: (902) 494-1597
Email: chegrad@dal.ca
Website: http://che.medicine.dal.ca

Department Head

Levy, A.

Director of Graduate Programs

MacPherson, K.M.

Professors

Anderson, D., BA (Queens), MD (Dal), major appointment in Department of Medicine
Burge, F., BA, MD (Queen’s), CCFP, MSc (McGill), major appointment in Department of Family Medicine
Cox, J., BA (High Distinction), MD (Hons) (Toronto), major appointment in Department of Medicine
Dodds, L., BS (Vermont), MS (Washington), PhD (Toronto), major appointment in Obstetrics & Gynaecology and Pediatrics
Johnston, L., MD (Dal), FRCP, major appointment in Department of Medicine
Johnston, G.M., BSc (McGill), MHSA (Alberta), PhD (Western), major appointment in Health Administration
Kirkland, S., BSc (Joint Hons), MSc (Waterloo), PhD (Toronto)
Langille, D., BSc (Acadia), MD (Dal), MHSc (UBC)
Langley, J., BA (Queen’s), MD (Dal), MSc (McMaster), major appointment in Pediatrics
Levy, A., BSc, MSc, PhD (McGill)
Skertis, I., BScPhm (Toronto), MPA (Dal), PharmD (Minnesota), major appointment in College of Pharmacy
Stewart, S., BSc (Dal), PhD (McGill), major appointment in Department of Psychology

Associate Professors

Allen, Y., MD (Dal), MSc (Toronto), major appointment in Obstetrics & Gynaecology
Asada, Y., BS, MS (Tsukuba), PhD (Wisconsin-Madison)
Asbridge, M., BA, MA, PhD (Toronto)
Bourke, M., BSc, MD (Dal), PhD (Lund), major appointment in Department of Surgery
Demerath, G., BSc, PhD (McGill, Toronto), major appointment in Department of Surgery
Garner, B., BSc (Hons) (Carleton), MSc, PhD (Iowa)
Kephart, G., BS (Hons) (California), MS, PhD (Wisconsin)
LeBlanc, J., MD, MSc (McMaster) FRCP, major appointment in Pediatrics
Tomblin-Murphy, G., BN, MN (Dal), major appointment in School of Nursing
Weerasinghe, S., BSc (Hons) (Jaffna), MSc (Colombo), PhD (Dal)

Assistant Professors

Androul, P., BSc (Toronto), MA, MSc, PhD (Western)
Baskett, R., BA, MA (Toronto), MD, MSc (Dal), major appointment in Department of Surgery
Gahagan, J.A., BA (Hons) (Carleton), MA (Windsor), PhD (Wayne State), major appointment in School of Health and Human Performance
Hayden, J., PhD (Toronto), DC (Canadian Memorial Chiropractic College), BSc (Dal)

Jojo P., MD (Dal), MSc (Toronto), major appointment in Department of Surgery
MacPherson, K.M., BSc, MD (Dal), MPH (Michigan)
Payne, J., BSc, MSc (Queen’s), PhD (Toronto)
Porter, G., BA, MD (Queen’s), MSc (Alberta), FRCSC, major appointment in Department of Surgery
Travers, A., BSc (Hons), MD (Dal), MSc (Alberta), FRCP (EM), major appointment in Department of Emergency Medicine

External Scholar

O’Brien, B., MSc (Dal), MD (Queens), BSc (Queens)

I. Introduction

A. Master of Science

The MSc Community Health and Epidemiology (CH&E) program emphasizes knowledge, analytical skills and formal evaluative methods with application to disease prevention, health promotion and assessment of community health service and system needs. The program includes 8 courses and a thesis. The typical completion time is approximately two years for full-time students, or four years for part-time students.

B. Institutional Environment

The Department of Community Health and Epidemiology is part of Dalhousie’s Faculty of Medicine, which has primary responsibility for training new physicians in the Maritime Provinces, and is closely affiliated with major teaching hospitals. The Department includes 11 core faculty members, along with over 40 cross appointed members drawn from a wide range of disciplines such as clinical medicine, health professions, engineering and basic and social sciences. The Department’s core faculty have expertise in a number of disciplines including community medicine, epidemiology, biostatistics, occupational/environmental health, population health, community psychology, and sociology. Faculty in the department provide leadership in the areas of population health research, disease prevention, health promotion, policy development and assessment of community health service and system needs. They have substantial national funding from CIHR, CPHR, CSFCC, SSHRC and NSHRF. The Department of Community Health and Epidemiology houses the CIHR funded RURAL Centre, the Canadian Longitudinal Study on Aging, the Population Health Research Unit (PHRU), the Research Methods Unit (RMU) and many research projects.

II. Admission Requirements/Deadlines

The typical MSc CH&E student has had undergraduate training in a health profession or a related scientific discipline, and often has worked in the health sector. Admission standards are those of Dalhousie University’s Faculty of Graduate Studies. An honours baccalaureate degree from a recognized university is usually required. Students are required to have knowledge in linear algebra and basic statistics. Enrolment is limited. Limited numbers of part-time students are accepted. Applicants must meet Faculty of Graduate Studies English Language Competency. Applicants will be interviewed as part of the selection process.

Application Deadline

Jan 31 is the deadline for completed applications. These applicants will be considered for departmental scholarships.

November 1 (of the year prior to anticipated admission) is the deadline for completed applications for those who wish to be considered for Dalhousie University scholarships (i.e., Killam Fellowship), or for external funding (i.e., CIHR, SSHRC or NSERC).

III. Curriculum

The program requires a minimum of five Core Classes, three Elective Classes and a Thesis. The five required classes are: Community Health Principles; Epidemiology Principles; Research Methods in Community Health & Epidemiology; Principles of Biostatistics; and Introduction to Health Services Research and Policy.
The Master’s Thesis is a major part of the MSc CH&E program. A thesis may include the design and execution of an applied research project in the field of community health and epidemiology. Full-time students will ordinarily complete their thesis during their second year in the MSc program.

IV. Class Descriptions

CH&E 5000.03: Community Health Principles.
This is an introductory class in Community Health Principles for graduate-level students in the health fields. Community health focuses on the health of populations or groups. The class will cover a broad range of community health issues, and will focus on strategies to improve the health of a population with emphasis on health promotion, prevention, and health protection. The student will apply community health principles and acquire in-depth knowledge of specific health topic areas through group and individual projects.
INSTRUCTOR(S): D. Langille/K. MacPherson/M. Asbridge

CH&E 5010.03: Epidemiology Principles.
This introductory class is intended for graduate-level students with no background or formal training in epidemiology. This class introduces students to the basic principles and methods of epidemiology, with various examples from the literature in communicable and non-communicable diseases. Topics include measures of health and risk, epidemiological study designs and considerations regarding issues of measurement and precision that include assessments of internal and external validity, standardization, confounding, bias, interaction and causality. The class includes presentations in selected special topics in epidemiology.
INSTRUCTOR(S): K. MacPherson / M. Asbridge

CH&E 5019.03: Principles of Biostatistics.
This course covers essential statistical methods for medical and public health research. The course covers concepts, methods and applications of the basic principles underlying statistical information including the comparison of means and proportions and investigation of relationships between variables using multiple regression and logistic regression methods. Students will become proficient in the use of Statistical Analysis System (SAS). This course has a lab component.
INSTRUCTOR(S): G. Flowerdew / S. Weerasinghe / P. Andreou

CH&E 5030.03: Research Methods in Community Health and Epidemiology.
This class explores the logic and principles of research design, measurement, and data collection. It focuses on the critical evaluation of research articles, research design, research proposal writing. The class covers a range of methodological issues and methods, including experimental and quasi-experimental designs, survey research and sampling, measurement, and qualitative methods.
INSTRUCTOR(S): G. Kephart

CH&E 5040.03: Introduction to Health Services Research and Policy.
This class introduces students to basic concepts and tools in health services research important for critical evaluation of health services systems and policy. The course overviews the evolution and delivery, organization, and financing of the Canadian health services system, explores theoretical frameworks to evaluate health services systems, and examines strategies for knowledge translation. The topics covered include: health-related quality of life measures, quality of health care, needs for health care, economic evaluation of health services, resource allocation, equity in health care and health outcomes, primary care reform, and public vs. private health care financing.
INSTRUCTOR(S): Y. Asada

CH&E 6001.03: Environmental and Occupational Health.
Principles and concepts underlying environments and human health comprise the major focus of this course. The nature of a variety of agents, including chemical, physical, biological, ergonomic and radiation hazards, how these agents are dispersed and transformed in the environment, the pathways of human exposure to these agents, and characterization of the health effects resulting from exposure are reviewed. The course will also discuss human environments as a determinant of health and will consider dimensions of places, spaces and health as factors in the human environment. Two field trips are planned 1) Pockwook water treatment plant 2) Montague Historic Gold Mine. There will also be a laboratory teaching class (at the NRC-IMB) covering personal exposure to volatile organic compounds in the environment.
INSTRUCTOR(S): J. Guernsey
CROSS-LISTING: ENVI 5010.03

CH&E 6010.03: Community Health Practicum.
INSTRUCTOR(S): K. MacPherson

CH&E 6019.03: Biostatistical Modeling.
The primary objective of this course is to gain mastery over the statistical modeling techniques that are most frequently used in clinical and population health data analysis. Students will learn both cross sectional and longitudinal data analyses for continuous, binary and count data. Specific methods will include poisson regression, log linear models and survival data analyses. Students will also learn most of the commonly used procedures in the Statistical Analysis System (SAS).
INSTRUCTOR(S): S. Weerasinghe / P. Andreou
PREREQUISITE: CH&E 5019 or equivalent

CH&E 6020.03: Advanced Epidemiology.
This advanced class focuses on the design, conduct, analysis, and interpretation of epidemiologic studies. Both experimental (community intervention trials) and non-experimental, or observational (cohort, case-control), studies may be covered. Topics for general discussion will include study designs, subject selection, measurement issues pertaining to ascertainment of exposure and outcome, design issues such as stratification and matching, methodological issues such as confounding, effect modification, misclassification, and sources of bias. Data analysis will emphasize the practical application of statistical concepts; measuring associations and effect size, multivariate modelling, logistic regression, survival analysis and survival analysis (time permitting), and the combining of individual study results using meta-analysis.
INSTRUCTOR(S): S. Kirkland/A. Levy
PREREQUISITE: CH&E 5010

CH&E 6021.03: Advanced Biostatistics.
This advanced Biostatistics class covers special topics like ordinal categorical data analysis, repeated measure designs, longitudinal data analysis and survival data analysis. Special topics like statistical principals in experimental design, fixed and random effects models will also be discussed. The special emphasis is on the model building strategies, evaluation and interpretation of results. The course requires the knowledge in preliminary data analysis and regression analysis. Students should also be familiar with the programming in SAS.
INSTRUCTOR(S): G. Flowerdew / S. Weerasinghe/P. Andreou

CH&E 6024.03: Methods in Clinical Trials.
This course is developed for students in the graduate program of Community Health and Epidemiology who have a particular interest in randomized controlled trials (RCT’s). Participants will be introduced to the practical issues in designing a controlled clinical trial by developing a clinical trial protocol throughout the class. Several designs for RCT’s and Cancer clinical trials will be examined. The course will review the methods of how to analyze continuous and categorical data as well as censored data and perform interim analysis. The course will cover topics on sample size determination, Meta-Analysis and Bayesian methodology. Evaluation is based on the written protocol and statistical analysis on a simulated data set based on the written protocol.
INSTRUCTOR(S): P. Andreou
PREREQUISITE: CH&E 5020

CH&E 6030.03: An Introduction to Clinical Epidemiology.
An introduction to Clinical Epidemiology this class is intended for students with an interest in carrying out research that is directly relevant to clinical practice. This course will introduce students to the field of clinical epidemiology, including common types of clinical epidemiology research questions: incidence, prevalence & etiology, screening & diagnosis, effect of interventions, and prognosis. This course will introduce four types of research study designs used in clinical and epidemiologic research: 1) experimental studies, 2) non-experimental...
CH&E 6049.03: An Introduction to Systematic Review and Meta-analysis in Health Care.
In the current era of Evidence Based Medicine Systematic Reviews or Meta-analysis are becoming increasingly important. This is especially true for the evaluation of efficacy of treatment but it is also gaining more importance in the evaluation of diagnostic tests, causation, natural history of disease and economic evaluations. In the class, the student will learn the ins and outs of systematic reviews and meta-analysis. Specific topics include guidelines on how to read and interpret published systematic reviews, framing of the research question for a systematic review, identification and selection of studies, development of inclusion and exclusion criteria, importance of validation of the extracted information, combining results in either a qualitative or quantitative fashion, statistical techniques used to conduct a formal meta-analysis and interpretation of results.
INSTRUCTOR(S): J. Hayden
PREREQUISITE: CH&E 5019

CH&E 6052.03: Epidemiology of Infectious Diseases.
Interrelated topics, crucial to understanding infectious diseases epidemiology and how epidemiology can inform our understanding of infectious diseases and its management at the individual level will be covered. These include basic microbiology, the chain of infection, disease pathogenesis, spectrum of illness associated with infectious agents, diagnostic tools, patterns of infection and disease in populations, outbreak recognition and management, infection prevention and control. The course will explore such current issues as emergence of new infections, bioterrorism, and health care associated infections.
INSTRUCTOR(S): L. Johnston
PREREQUISITE: CH&E 5000 and CH&E 510

CH&E 6060.03: Directed Readings/Studies I.
CH&E 6062.03: Directed Readings/Studies II.
CH&E 9000.00: Master's Thesis.
Prior to applying, a candidate must find a suitable supervisor or co-supervisor. A statement of research interests must be submitted with the application forms that can be obtained from the Registrar’s office. The statement may be prepared in conjunction with the supervisor(s) and should include a general statement of the biological areas of interest, possible computational methodologies relevant to the problem, and a statement on the candidate’s background. This document is used to evaluate whether suitable academic activities will allow the candidate to meet the program requirements.

All material should be submitted by the strict deadline of April 1st for overseas applicants and June 1st for North-American applicants.

Candidates from outside Canada whose native language is not English must demonstrate their capacity to pursue a master’s program in English. Results of a TOEFL or other Standard English competency test should be submitted at the time of application. The minimum TOEFL score required is 580 (computerized TOEFL score required is 237).

B. Program Requirements
Candidates for the Master’s degree in Computational Biology and Bioinformatics are expected to complete four 0.5 credit classes and two credited seminar classes. The class selection must be made to further the candidate’s existing strengths, and to provide the necessary background to successfully meet the thesis requirements.

The thesis must be reviewed by the supervisor(s) and up to two readers to meet the breadth requirement. These requirement states that: 1) at least one of the readers evaluate the biological aspect of the research project and hails from a biological background (including, but not limited to, Biology and Biochemistry). 2) at least one of the readers evaluate the contribution of the thesis in either Mathematics, Statistics or Computer Science. The candidate also must demonstrate a general grasp of current bioinformatics issues and methodologies.

C. Administration
The Executive committee is comprised of at least one representative from the following academic units:
1. Biochemistry and Molecular Biology
2. Biology and Marine Biology
3. Computer Science
4. Mathematics and Statistics
The Executive committee also acts as Admission committee while administrative support will be provided by the Faculty of Computer Science. All communication with the program should be done directly to the Graduate Coordinator for further details.

II. Classes offered
The class selection will be determined on an individual basis. Any acceptable graduate classes can be selected, as explained in section B. The following classes are specific to the program and are designed to bring students from different backgrounds to a common level. Contact the Graduate Coordinator for further details.

A. Computer Science
CSCI 6801.03: Computational Biology and Bioinformatics.
CSCI 6802.03: Algorithms in Bioinformatics.

B. Biochemistry and Molecular Biology
BIOC 5010.03: Bioinformatics.

C. Mathematics and Statistics
STAT 5620.03: Statistical Issues in Molecular Evolution.

Computer Science
Location: 6050 University Avenue
P.O. Box 1500
Halifax, NS B3H 4R2
Telephone: (902) 494-2093
Fax: (902) 492-1517
Email: grad@cs.dal.ca
Website: http://www.cs.dal.ca

Dean, Faculty of Computer Science
Shepherd, M.A., MSc, PhD (Western), Hypertext, Information Retrieval, Web Information Systems, Electronic News, Information Filtering, Health Informatics.

Associate Deans
Milios, E., Dipl Eng (NTUA), SM, EE, PhD (MIT), Networked Information Spaces, Machine Learning, Image and Shape Databases
Riordan, D., BSc, MSc (Port Elizabeth), PhD (Carleton), Intelligent Computer Systems

Administrative Assistant to the Dean
Publicover, A., BSc (Dal), BA (Dal) Telephone: (902) 494-1199

Graduate Administrator
Teferra, M., Telephone (902) 494-6438
Email: menen@cs.dal.ca

Interdisciplinary Administrator
Bolivar, A. Telephone (902) 494-2740
Email: angie@cs.dal.ca

Professor Emeritus
Slonim, J., BSc (UCB), MSc (Western), PhD (Kansas), Electronic Commerce, Software Engineering Databases, Distributed Databases, Software Testing, Transition Management, Software Architecture

Professors
Abidi, S., BEng (NED, Eng and Tech), MSc (Miami), PhD (Surrey), Knowledge management, Artificial Intelligence, Medical Informatics, Knowledge discovery and data mining, Neural Networks, Enterprise Information Systems
Bodorik, P., BSc (Calgary), MEng, PhD (Carleton), Databases & Distributed Databases, Architectural Support for Operating Systems
Cox, P.T., BSc, MSc (Auckland), PhD (Waterloo), Visual programming and Design Languages; Computational Logic; Logic and Functional Programming
Farrag, A., MSc (SFU), PhD (Alta), Fault-tolerance, Distributed Computing, Concurrency, Databases
Gao, Q., MASC, PhD (Waterloo), Machine intelligence, computer vision, image processing, data mining, data warehousing
Heywood, M., BEng (Plymouth), PhD (Essex), Genetic programming: Classification; Reinforcement Learning, Evolutionary gaming
Keselj, V., BSc (Belgrade), MSc, (Waterloo), PhD (Waterloo), Natural language processing, Text mining, Information Retrieval, Multiagent Systems, Algorithmic number theory
Milios, E., Dipl Eng (NTUA), SM, EE, PhD(MIT), Networked information spaces, Machine learning, Image and shape databases
Rau-Chaplin, A., BCompSc (York), MCompSc, PhD (Carleton), Parallel Computing, Computational Geometry, Computer aided Architectural Design, Data Mining and Algorithms
Riordan, D., BSc, MSc (Port Elizabeth), PhD (Carleton), Intelligent Computer Systems
Sampalli, S., BEng (Bangalore), PhD (Indian Institute of Science), Network Security, High-Performance routing and switching, Hybrid (wireless
and optical) networks design, Active Networks, Secure Grid Computing.

Scringer, J.N., BSc (UBC), MSc, PhD (Western), Image Processing & Graphics, Data Visualization, Animation.

Trappenberg, T., MSc, PhD (RWTH Aachen), Computational Neuroscience, Machine Learning, Hierarchical Temporal Memory; Reinforcement Learning; Self-organizing Maps; Dynamic Neural Field Theory; Classification and Modeling, Learning and memory.

Watters, C.R., BSc, MSc, MLS (Western), PhD (TUNS), Dean, Faculty of Graduate Studies (Dal), Information Retrieval, Web Information Systems, Virtual Documents, Hypertext.

Zincir-Heywood, A.N., BSc, MSc, PhD (Ege U), Network Security, Network management and Network information retrieval.

Associate Professors

Arnold, D., Diploma (Dortmund), MSc (Simon Fraser), PhD (Dortmund), Evolutionary computation, Self-organizing, physically-based modeling.

Beiko, R.G., BSc (Dalhousie), PhD (Ottawa), Computational biology, Graph algorithms, Machine learning, Evolutionary algorithms, high-performance computing.

Blouin, C., BSc (Laval), PhD (Dalhousie), Protein evolution and biophysics, algorithms, phylogenetics, high-performance computing, statistical mechanics, molecular modeling.

Blustein, J., BSc, MSc, PhD (Western), Hypertext and digital libraries, human-computer interaction.

Brooks, S., BSc (Brock), MSc (UBC), PhD (Cambridge), Computer graphics, Non-photorealistic rendering, Image editing and 3D geospatial information systems.

M'Allister, M., BMath (Waterloo), MS, PhD (UBC), Distributed systems, networks, privacy and security, computational geometry.

Zeh, N., MCS (Dipl-Inform) (Friedrich-Schiller-Universitat Jena), PhD (Carleton), Algorithms and data structures, I/O-efficient and cache-oblivious algorithms, parallel algorithms, graph algorithms, computational geometry.

Assistant Professors

Hawkey, K., BCS, PhD (Dalhousie).

He, M., BEng (Nanjing), MMath, PhD (Waterloo), Algorithms and data structures, computational geometry.

Reilly, D., BA (Wilford Laurier), BA Hons (McGill), BEd (Queens), MCSC, PhD (Dalhousie), Ubiquitous computing, collaborative technology, information visualization.

Adjunct Professors

Borwein, J., BA (Western Ontario) MSc, PhD (Oxford), Optimization, Computational mathematics, Internet and Collaborative Technology.

Dobson, P., MSc (J. Atlitia Univ.), PhD (Auckland).

Duffy, J., BS, MS, PhD (Iowa).

Fishier, M., MSc (McMaster), PhD (York).

Gates, C., BSc, MSc, PhD (Dalhousie).

Gentleman, W.M., BSc (Hons), McGill, MA (Mathematics) (Princeton), PhD (Mathematics) (Princeton), Software Engineering, Computer Architecture, Real-time Systems, Numerical analysis, Signal processing.

Gorodnichy, D., MSc (Moscow), PhD (Glushkov Cybernetics Institute), PhD (Alberta).

Grundke, E. W., BSc, MSc (Dalhousie), PhD (Waterloo), Wireless Networks, Simulation, Decision support software.

Hartz, C.S., MSc (Toronto), PhD (Colorado).

Hussain, S., BSc (KFUPM), PhD (Manitoba).

Jost, A., BSc, MSc, PhD (Dalhousie), Telecommunications, Microelectronics, VLSI, Computer-aided Design, Computer Networks.

Juta, D., PhD (TUNS), Saint Mary's University, E-commerce, business models in e-commerce, transactional middleware for e-commerce, customer care in e-commerce, transaction support, hardware caches, operating system support for databases.

Kuruvila, J., BEng (Karnataka), MCS (Queens).

Liscano, R., BScEng (UNB), MScEng (Rgde Island), PhD (Waterloo).

Lucic, V., Dipl. Ing. E. Eng. (Univ. Nis), MSc, PhD (Waterloo).

Marchand, Y., MSc (Paris), DEA (Caen), PhD (Compiegne).

Marzi, H., BSc (Pahlavi), MSc, PhD (Cardiff).

Oore, S., BSc (Dal), MSc, PhD (Toronto).

Shakshuki, E., MAS, PhD (Waterloo).

Instructors

Brodsky, A., BMath (Waterloo), MSc, PhD (British Columbia).

Jin, H., BEng (Shanghai), MSc, PhD (Windsor), Bayesian networks.

Senior Instructor

Kalyanwalla, N., BSc (Bombay), Ph.D. (Reusselaev), Stochastic network analysis, C.S. education.

Cross Appointments

NOTE: Completion of any or all software engineering classes offered by the Faculty of Computer Science does not qualify persons to hold the designation “Professional Engineer” as defined by various Provincial Acts governing the Engineering Profession.

The most up-to-date information on our graduate programs, admission requirements, academic regulations, graduate classes and research activities is available on the following website: http://www.cs.dal.ca (graduate, research, classes).
II. Graduate Degree Programs

Please consult the Faculty of Computer Science Website at http://www.cs.dal.ca/ for information concerning updates to the regulations.

A. Master of Computer Science

1. Admission Requirements

To be admitted to the Master program with a thesis option (MCSc) all students must have completed a four-year undergraduate program in Computer Science with high standing. Their Computer Science background must be at least equivalent to that covered by the core classes in the Dalhousie Bachelor of Computer Science program. Students who do not meet these requirements may be required to take additional specific undergraduate classes to make up deficiencies in addition to their graduate program requirements.

To be admitted to the Master program with a project option (MACSc) all students must have completed either:

i) A (minimum of a) three-year undergraduate program in Computer Science with high standing may be admitted to a qualifying year. Their Computer Science background must be at least equivalent to that covered by the core classes in the Dalhousie Bachelor of Computer Science program. Students who do not meet these requirements may be required to take additional specific undergraduate classes to make up deficiencies in addition to their graduate program requirements.

ii) Students who have completed, with high standing, an undergraduate program in a discipline other than computer science may be admitted to a qualifying year.

2. English Language Proficiency Requirement

Information pertaining to the English language proficiency requirement is given in the “Faculty of Graduate Studies Regulations” section of the Calendar. For admission into graduate programs in Computer Science those students who must supply a TOEFL, must obtain a score of at least 580 on the written TOEFL examination or 92 on the internet-based test.

3. Information and Application Forms

For further information consult the World Wide Website listed above or contact the Chair of the Computer Science Graduate Committee at (902) 494-6438. Application forms may be obtained from:

Office of the Registrar
Dalhousie University
Halifax, N.S., Canada
B3H 4H6

Paper application forms can be ordered by sending an email to admissions@dal.ca. Application forms are also available for downloading on the following website: http://www.cs.dal.ca (graduate).

To hold your seat in the program for which you were admitted, we require a non-refundable $250 deposit (to be paid to Student Accounts) a full 30 days in advance of the starting date for the term of admittance. The $250 deposit will be applied towards your tuition.

4. Academic Regulations

Program Requirements

Students are admitted into either MCSc (Thesis) or MACSc (Project). The thesis option is a research-oriented degree, and a research master’s degree is normally required to gain subsequent admission into a PhD program at most universities. Candidates’ program of studies must be approved by the Faculty of Computer Science and the Faculty of Graduate Studies and must satisfy the breadth requirement of the Faculty of Computer Science. Students in the project option who show excellent performance in classes and promise for research can apply to switch to the thesis option.

Consult the Faculty of Computer Science website for information on the breadth requirement.

Master of Computer Science

A MCSc consists of not less than four half-credit classes or their equivalent, and a thesis selected upon the advice of the thesis supervisor. The thesis is equivalent to three credits.

The thesis shall be written under the guidance of a thesis supervisor, and must be satisfactory to an examining committee established by the Faculty. The candidate must present an oral thesis defence.

Master of Applied Computer Science

A MACSc consists of not less than eight half-credit classes or their equivalent and a well defined project. The project is equivalent to one credit.

The project shall be carried out under the direction of a project supervisor and must be satisfactory to the supervisor and another faculty member before approval is granted. The candidate must give an oral presentation of the project.

Time Requirement

A student is required to register each session to maintain eligibility to continue in the program. Students who enter the program meeting normal admission requirements may be able to satisfy the requirements in 16 months. For information on maximum time limits for completion, leaves of absence, and extensions, see the Faculty of Graduate Studies Regulations in this calendar.

B. Master of Electronic Commerce

The Faculty of Computer Science in partnership with the Faculties of Management and Law offer the degree of Master of Electronic Commerce.

Electronic Commerce is a discipline whose underpinnings lie equally in technology, business, and social and economic policy. Distinct from any of the disciplines that comprise it, this multi-disciplinary two-year program consists of core classes, stream classes, an industrial internship, and a project. Students study core topics in each of the three areas and concentrate in depth in one of them by choosing one of three streams of study: Technology, Business and Policy.

The program may also offer the student an opportunity for study abroad at other member universities of an international consortium mandated and endorsed by the G7 to develop a Global Master of Electronic Commerce. The core of this program is intended to be common throughout the consortium with institutions offering classes outside the core, according to their individual strengths. Dalhousie University is the only Canadian participant in this international consortium.

For a complete description of this program please see the Electronic Commerce entry in this calendar. Please also visit the program’s website at http://www.ecomm.dal.ca for information concerning updates to the program’s regulations and class offerings. Email queries to can be addressed to mec@cs.dal.ca.

C. Master of Health Informatics

The Faculty of Computer Science, in partnership with the Faculty of Medicine, offers the degree of Master of Health Informatics.

Health Informatics studies the use of computing and information technology in health research, education, patient care, policy setting and health administration. This interdisciplinary program draws on resources across the University, including faculty and courses from the Faculties of Computer Science, Medicine, Management, and Health Professions.

For a complete description of this program, please see the Health Informatics entry in this calendar. Please also visit the program website at: http://www.healthinformatics.dal.ca/ for more information. Email queries can be addressed to hin@cs.dal.ca.

D. Master of Science in Computational Biology and Bioinformatics

The program is an interdisciplinary master’s degree with an emphasis on thesis work which focuses on tackling problems in biology, molecular biology and health-science related fields through significant research contributions in mathematics, statistics and computer science. This program is set within the framework of current interdisciplinary research
conducted within Dalhousie. Students in this program will join a community of researchers in the fields of computational biology and bioinformatics.

Resources from the faculties of Computer Science, Medicine and Science are coordinated to offer a flexible program, with a limited course load and an emphasis on research activities. Students from a broad selection of backgrounds are invited to consider the program. Each candidate is supervised within the research group of their supervisor from the beginning of their tenure.

E. Doctor of Philosophy Degree

1. Admission Requirements
To be admitted, students must have completed a research (thesis) Master’s degree program in Computer Science, or equivalent and must meet the admission requirements of the Faculty of Graduate Studies. In exceptional circumstances, a student may be admitted into the MCSc (Thesis) program with the possibility of transferring to the doctoral program within the first 15 months (subject to approval of the Graduate committee and the Faculty of Graduate Studies). Students with an honours Bachelor’s degree and strong promise in research may be admitted into the post-Bachelor PhD program.

2. English Language Proficiency Requirement
Information pertaining to the English language proficiency requirement is given in the “Faculty of Graduate Studies Regulations” section of the Calendar. For admission into graduate programs in the Faculty of Computer Science those students who must supply a TOEFL, must obtain a score of at least 580 on the written TOEFL examination, 92 on the internet-based test, or 237 on the computer-based exam.

3. Information and Application Forms
For further information consult the World Wide Website at http://www.cs.dal.ca/ or contact the Chair of the Computer Science Graduate Committee at (902) 494-6438. Application forms may be obtained from:
Office of the Registrar
Dalhousie University
Halifax, N.S., Canada
B3H 4H6
or on the web at http://www.dal.ca/apps.

To hold your seat in the program for which you were admitted, we require a non-refundable $250 deposit (to be paid to Student Accounts) a full 30 days in advance of the starting date for the term of admittance. The $250 deposit will be applied towards your tuition.

III. Graduate Classes
A selection of the following graduate classes is offered each year. Consult the Faculty of Computer Science's Class Information System, on the World Wide Web at http://www.cs.dal.ca/, for the selection of classes offered in each academic year.

Classes starting with “CSCI” are computer science classes.

All graduate students are required to attend and participate in regular Faculty seminars.

Graduate students can take any graduate class by permission of the instructor and the Graduate Committee.

CSCI 6101.03: Advanced Topics in Analysis of Algorithms.
This research oriented class covers advanced material in the design and analysis of algorithms. It combines mathematically rigorous coverage of traditional topics with recent research results. Problems are taken from a wide range of areas including combinatorics, numerical computation, graph algorithms, string matching, approximation algorithms, computational geometry, NP-completeness.
PREREQUISITE: CSCI 3110 or equivalent
EXCLUSION: COMP 5130.03

CSCI 6102.03: Computational Geometry.
This class presents fundamental algorithms and data structures for solving geometric problems. Basic algorithm types include divide-and-conquer, sweep, incremental construction, and randomized construction. Typical topics include geometric representations, triangulations, convex hulls, Voronoi diagrams, Delaunay triangulations, point location structures, and line arrangements.
PREREQUISITE: CSCI 3110.03

CSCI 6103.03: Network Reliability.
Networks are useful models for the transmission of essential data, and it is often crucial that the network be resilient to the loss of some lines. We investigate here the reliability of such networks, including both directed and undirected models, assuming that the lines fail independently with a given probability.
PREREQUISITE: CSCI 3110, CSCI 4115, MATH 2060

CSCI 6104.03: Algorithms and Data Structures for Massive Data Sets.
This course covers algorithms and data structures designed to alleviate the I/O-bottleneck that arises when dealing with massive data sets. The focus is on general techniques. These techniques are illustrated using applications to fundamental problems, including problems from computational geometry and graph theory.
PREREQUISITE: CSCI 3110.03

CSCI 6301.03: Computer Software: Requirement Analysis and Specification.
This class will cover the early stages of the system lifecycle. Topics will include needs analysis, software as a system component, the form of a software requirements specification and validation and verification of specifications. A mathematically based formal specification language will be introduced.
PREREQUISITE: CSCI 3130.03 or equivalent

CSCI 6302.03: Computer Software: Development and Design.
This class will concentrate on the design phase of the software lifecycle, in particular for large scale software development. Topics will include software process models, computer aided software engineering (CASE) tools and how to evaluate a design. It will also include the supporting technologies of configuration management, version control and change management. Testing will also be discussed.
PREREQUISITE: CSCI 3130.03 or equivalent

CSCI 6304.03: Visual Programming.
This class deals with topics relating to the use of visuality in programming. This will include topics such as visual programming languages, program visualization and data visualization, as well as discussion of graphical programming aids, including graphical tools for defining user interfaces.

CSCI 6306.03: Topics in Program Comprehension.
This class explores current issues in program comprehension 0 the process of acquiring sufficient knowledge about a software system in order to perform a specified maintenance task. Topics include, but are not limited to, software visualization, design extraction, cognitive theories of comprehension, configuration management, information representation and comprehension tools.

CSCI 6401.03: Distributed Databases.
The class will briefly review the concepts of integrated database systems, computer networks, and distributed processing. The problems and opportunities inherent in distributed databases on a network computer system will be presented. Detailed coverage will be given to topics such as resource allocation, directory systems, deadlock detection and prevention, synchronization, query optimization, and fault tolerance.
PREREQUISITE: CSCI 3140.03 or equivalent

CSCI 6403.03: Advanced Topics in Information Retrieval.
This class presents students with the latest research topics in the field of Information Retrieval. Information Retrieval is the study of the collection, organization, and dissemination of text-based objects, such as books, articles, and newspaper items. Topics may include advanced issues in hypertext, information filtering, information access on the World Wide Web, delivery of electronic news, and digital libraries. Most topics will be
viewed in the framework of distributed information systems on the Internet.

CSCI 6404.03: Web Information Systems.
Topics include web models, hypertext functionality, virtual documents, and software design issues for large scale web information systems. PREREQUISITE: CSCI 3120.03 or 4172.03

CSCI 6405.03: Data Mining and Data Warehousing.
This class gives a basic exposition of the goals and methods of data mining and data warehouses, including concepts, principles, architectures, algorithms, implementations, and applications. The main topics include an overview of databases, data warehouses and data mining technology, data warehousing and on line analytical process (OLAP), concept mining, association mining, classification and predication, and clustering. Software tools for data mining and data warehousing and their design will also be introduced.

CSCI 6406.03: Visualization.
This course focuses on graphical techniques for data visualization that assist in the extraction of meaning from datasets. This involves the design and development of efficient tools for the exploration of large and often complex information domains. Applications of visualization are broad, including computer science, geography, the social sciences, mathematics, science and medicine, as well as architecture and design. The course will cover all aspects of visualization including fundamental concepts, algorithms, data structures, and the role of human perception.

CSCI 6407.03 Management of Data in Distributed Systems.
The class introduces the issues and problems arising in Managing Data in Distributed Environments of various types and methods and solutions that have been investigated or used to address those issues. The course overviews the theory and concepts and also discusses management of data is specific distributed environments such as Grid and Cloud.

CSCI 6501.03: Intelligent Systems.
Topics covered include knowledge representation, inference mechanisms and search strategies, uncertain reasoning, explanation, induction and evaluation. Students are provided with a selection of readings on these topics. Small expert systems are developed using different development tools with the goal of obtaining a working knowledge of available development tools. A small expert system shell is developed using PROLOG.
EXCLUSION: COMP 5210.03

CSCI 6505.03: Machine Learning.
Machine Learning is the area of Artificial Intelligence concerned with the problem of building computer programs that automatically improve with experience. The intent of this course is to present a broad introduction to the principles and paradigms underlying machine learning, including discussions of each of the major approaches currently being investigated. Main topics covered in the course include a review of information theory, unsupervised learning or clustering (the K-means family, co-clustering, mixture models and the EM algorithm), supervised learning or classification (support vector machines, decision trees, rule learning, Bayesian learners, maximum entropy, ensemble methods), feature selection and feature transformations. The focus of applications that will be discussed will be text classification and clustering.
PREREQUISITE: CSCI 3150.03 or 4150.03 (Artificial Intelligence) or permission of the instructor.

CSCI 6506.03: Genetic Algorithms and Programming.
The concept of stochastic search algorithms is introduced by way of answers to the generic machine learning requirements: representation, goal state, and credit assignment. Schema theory is introduced as an underlying model for evolutionary problem solving. The significance of assuming different representations is investigated through various case studies. Different forms of 'goal state' are investigated, including multi-objective models and co-evolution are investigated in some detail and demonstrated to provide the basis for problem decomposition, game behavior design and computational efficiency.

CSCI 6508.03: Fundamentals of Computational Neuroscience.
This course introduces the principles of information processing in the brain, including the functionality of single neurons, networks of neurons, and large-scale neural architectures for specific cognitive functions. Specific topics include information theory, memory, object recognition, adaptive systems, vision, motor control, and an introduction to MATLAB.
PREREQUISITE: Permission of the instructor

CSCI 6509.03: Advanced Topics in Natural Language Processing.
Natural Language Processing (NLP) is an area of Artificial Intelligence concerned with the problem of automatically analyzing and generating a natural language, such as English, French, or other, in written or spoken form. It is a relatively old area of computer science, but it is still a very active research area. This class introduces fundamental concepts and principals used in NLP with emphasis on statistical approaches to NLP and unification-based grammars. In the application part of the course, we discuss the problems of question answering, machine translation, text classification, information extraction, grammar induction, and dictionary generation and other.

CSCI 6511.03: Autonomous Robotics.
Introduction to autonomous robotics with a focus on the marine environment. Discussions to probabilistic robotics, application to modern machine learning techniques, knowledge-based systems to robotic decision-making. an overview of the robotics environment, Bayesian filtering, simultaneous localization and mapping, and optimal control. Students will implement the theories on actual robots for the course project.
FORMAT: Lecture, labs
PREREQUISITE: Undergraduate probability and statistics, some programming, and calculus

CSCI 6514.03: Search and Optimization.
This class provides a broad overview of strategies for tackling difficult optimization problems that occur in computer science, in the engineering sciences, and beyond. It covers “classical” algorithms such as conjugate gradient strategies as well as more recent, nature-inspired approaches including evolutionary methods and simulated annealing. Its goal is to not only introduce the various paradigms, but to contrast them and to critically evaluate their respective merits based on a mathematically founded understanding of their properties. A research project to be worked on individually or in groups will be a major component of the class.

CSCI 6602.03: Digital Image Processing.
This class deals with important topics of digital picture processing including visual perception, digitization, compression, enhancement, restoration, reconstruction and segmentation. Special applications to medical systems will also be discussed.

CSCI 6604.03: Advanced Computer Graphics.
This class deals with advanced issues of 3D computer graphics. Topics include solid modeling, visible-surface determination, ray tracing, illumination, shading, and rendering. Animation techniques and problems will also be discussed.
PREREQUISITE: CSCI 4160.03

CSCI 6606.03: Human Factors in On-Line Information Systems.
Introduction to issues related to behavioural/human aspects of computing as applied to hypertext and other on-line information tools.

CSCI 6608.03: Advanced Computer Animation.
The course introduces students to fundamental and advanced techniques and algorithms in Computer Animation. Topics include interpolation based and kinematic techniques, physically based modelling, motion capture, and character animation.
PREREQUISITE: Undergraduate class in Computer Graphics or Animation, or instructor's consent.
CSCI 6702.03: Parallel Computing.
This class explores various aspects of parallel computing including parallel architectures, systems, programming languages and implementation issues. It focuses on solving real problems on existing parallel machines. Students will participate in an implementation of a significant parallel computing project.

CSCI 6704.03: Advanced Topics in Networks.
The primary focus of this class is to provide a comprehensive coverage of emerging and emergent network technologies that lay the foundation for the design of next generation high-performance global internetworks. Topics covered include advanced TCP/IP design, ATM protocols, Gigabit Ethernets, IPv6 networks and protocols, Secure Networks and VPNs, Wireless Networks, Optical Networks, and Internetwork Architecture Case Studies.
PREREQUISITE: CSCI 4171.03 or equivalent
EXCLUSION: COMP 5550.03

CSCI 6706.03: Network Design and Management.
The distributed enterprise information system consisting of workstations, servers, bridges, routers, hubs, Internet and interactive Web technology is critical to corporate productivity. This class explores how Information Technology (IT) can be used to manage an enterprise. It further examines how managers can strategically use IT to capture and deliver knowledge more efficiently and to create a competitive advantage.
PREREQUISITE: CSCI 4171.03

CSCI 6707.03: Knowledge Management: Concepts and Techniques.
Knowledge Management (KM) offers a computational approach to identifying, capturing, retrieving, and sharing an enterprise's tacit and explicit knowledge assets. This course will provide a conceptual understanding of KM practices and enabling intelligent techniques to develop and deploy KM solutions in an enterprise setting.
PREREQUISITE: Understanding of artificial intelligence is recommended

CSCI 6801.03: Computational Biology and Bioinformatics.
This course is an introduction to current problems and techniques in computational biology and bioinformatics. The emphasis is put in the following themes: sequence analysis, phylogenetics inference and structural biology. No biological background is assumed although the course covers many relevant biological concepts.
RESTRICTION: Graduate student in Computer Science or Instructor's approval.

CSCI 6802.03: Algorithms in Bioinformatics.
The discipline of bioinformatics applies sophisticated computational and statistical techniques to problems in the biological domain. This course will focus on a few biosequence-related challenges in depth, examining the complexity and efficiency of different approaches, the relationship between statistical optimality and biological reality, and the consistency (or lack thereof) among methods.

CSCI 6901.03: Directed Studies.
This class offers the student the opportunity to undertake further study into a specific topic of interest that is not covered in the regular class offerings. The student will be supervised by a faculty member competent in the area of interest. Regular meetings between the student and supervising faculty will be held. A substantial project and report are required.
PREREQUISITE: Permission of the Graduate Committee

CSCI 6902.03: Doctoral Directed Studies.
This class offers the doctoral student the opportunity to undertake further study into a specific topic of interest that is not covered in the regular class offerings. The student will be supervised by a faculty member competent in the area of interest. Regular meetings between the student and supervising faculty will be held. A substantial project and report are required.
PREREQUISITE: Permission of the Graduate Committee

CSCI 6903.03/6904.03/6905.03/6906.03/6907.03/6908.03: Special Graduate Topics in Computer Science.
This graduate class examines topics determined by the interests of the students and the instructor.

CSCI 7001X/Y.06: Research Project in Computer Science.
The class provides the students in the Master of Applied Computer Science programme with an opportunity to conduct a research project under the supervision of a faculty member. Regular meetings between the student and the supervising faculty will be held. A project report and open presentation are required.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

CSCI 7900X/Y.06: Directed Doctoral Research Project.
This class provides doctoral students with an opportunity to conduct a research project under the supervision of a faculty member leading to the research aptitude examination. Regular meetings between the student and the supervising faculty will be held. A project report and oral defense to a committee are required.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

CSCI 9000.00: Master's Thesis.

CSCI 9530.00: Doctoral Thesis.
Earth Sciences

Location: Life Sciences Centre, Room 3006
1355 Oxford Street
P.O. Box 15000
Halifax, NS B3H 4R2

Telephone: (902) 494-2358
Fax: (902) 494-6889
Email: earth.sciences@dal.ca
Website: http://earthsciences.dal.ca

Chair of Department
Scott, D.B., BSc (Wash), MSc (Wash State), PhD (Dal)

Graduate Co-ordinator
Culshaw, N.

Professors Emeriti
Cooke, H.B.S., MSc, BSc (Witwatersrand)
Medioli, F.S., MSc (Perugia)
Milligan, G.C., MSc (Dalhousie), PhD (Harvard)
Reynolds, P.H., BSc (Toronto), PhD (UBC)
Zentilli, M., BSc (Chile), PCD (Queen’s), PGeo

Professors
Gibling, M.R., BA (Oxon), PhD (Ottawa). Sedimentology and sequence stratigraphy of alluvial and coastal strata, Atlantic Canada; Coal and oil shale; Quaternary rivers
Jamieson, R.A., BSc (Dal), PhD (MUN). Metamorphic geology and tectonics: P-T-t paths with Appalachian and Grenville applications; metamorphism, structure, and geochronology of gneiss associations, Grenville Province
Scott, D.B., BSc (Wash), MSc (Wash State), PhD (Dalhousie). Micropaleontology and marine geology: microfossils for use in environmental geology of coastal areas; deep-sea paleo-oceanography
Wach, G.D., BA (UWO), MSc (South Carolina), PhD (Oxon). Petroleum geology, sequence stratigraphy, seismic well log, basin analysis, sedimentology, depositional environments

Associate Professors
Culshaw, N.G., BA (Keele), PhD (Ottawa). Structural geology and tectonics: Grenville Province; Meguma terrane, Nova Scotia
Gosse, J.C., BSc (MUN), PhD (Lehigh Univ.). Cosmic nucleide dating, surficial processes, landscape evolution, Quaternary palaeoecology, glacial geology, tectonic geomorphology
Grujic, J., BSc (Belgrade), PhD (ETH Zurich). Tectonics, metamorphism, magmatism, thermochronology, analogue modelling, geodynamics, convergent margins, Himalayas
Nedimovic, M., BSc (Univ. of Belgrade), MSc, PhD (Toronto). Seismic reflection; seismic imaging of the ocean crust off Eastern Canada

Assistant Professors
Coutand, J., BSc, PhD (Univ of Rennes, France). Structural geology, low-temperature thermochronometry, mountain range development, interactions. Tectonics, climate-erosion, Himalaya, Andes.
Fedortchouk, Y., MSc (Moscow State Univ.), PhD (Victoria). Petrology and geochemistry of igneous rock
Plag, L.J., BA (McGill), PhD (Alaska-Fairbanks). Surface processes, pattern formation, nonlinear dynamics, climate change

Research Associates
Brown, D., BSc (Dalhousie) Canada-NS, Offshore Petroleum Board
Clair, T., BSc (Mt. Allison), MSc (Ottawa), PhD (McMaster)
Jansa, L., BSc, MSc (Masaryk State U, Czechoslovakia), PhD (Charles Univ., Prague)
Jones, P.E., BSc, MSc, PhD (UBC), GSC Atlantic
Kosters, E., BSc (Groningen), MSc (Univ of Amsterdam & Utrecht), PhD (Louisiana State Univ)
Kronfeld, J., BA (Queens College, NY), MSc (Florida State), PhD (Rice) Tel Aviv University
Mudie, P.J., BSc (Cape Town), BSc (Leicester), PhD (Dal), GSC Atlantic
Ruffmann, A., MSc (Dal), Geomarine Associates Ltd.
Shimeld, J., B Applied Sci (Waterloo), MSc (Dalhousie), GSC Atlantic
Stockli, D., BSc, MSc (ETH Zurich), PhD (Stanford Univ), Univ of Kansas
Utting, D., BSc (Calgary), MSc (Simon Fraser), NS Dept. of Natural Resources
Waldron, J., BA (Cambridge), PhD (Edinburgh), University of Alberta
Webster, T., COGS, Lawrencetown, NS

Adjunct Professors
Adam, J., Dip.m Geology, (Univ. of Claushal), PhD (Tech. Univ. of Berlin), Dalhousie
Anderson, A., BSc (Univ. of Windsor), MSc (Manitoba), PhD (Queen’s), St. Francis Xavier University
Barr, S., BSc (UNB), PhD (UBC), Acadia University
Beltrami, H., BSc (Winnipeg), MSc (Queen’s), PhD (U du Quebec à Montreal), St. Francis Xavier University
Clarke, B., BSc (Dal), MSc (Toronto), PhD (Edinburgh)
Dehler, S., BSc (Calgary), MSc, PhD (UBC), GSC Atlantic
Deputuck, M., BSc (St. Mary’s), PhD (Dalhousie)
Dostal, J., BSc (Charles), PhD (McMaster), St. Mary’s University
Fensome, R., BSc, MSc, PhD (Sask), PhD (Nottingham) GSC Atlantic
Hanley, J., BASc, MSc, PhD (Toronto), St. Mary’s University
Kellinan, L., BA (McMaster), MSc, PhD (U du Quebec à Montreal), St. Francis Xavier University
Kettanah, Y., BSc (Baghdad Univ), PhD (Southampton Univ., UK.), Dalhousie University
Krezsek, C., BSc, MSc, PhD (Babes-Bolyai Univ., Romania)
Laroque, C., BSc (Sask), MSc, PhD (Univ of Victoria), Mt. Allison University
Melchin, M., MSc (Waterloo), PhD (Western), St. Francis Xavier University
Moshier, D., BSc (Acadia), MSc (Memorial), PhD (Dalhousie), GSC Atlantic
Murphy, J.B., BSc (Dublin), MSc (Acadia), PhD (McGill), St. Francis Xavier University
Parsons, M., BSc (Dal), PhD (Stanford), GSC Atlantic
Pe-Piper, G., BSc (Athens), PhD (Cambridge), St. Mary’s University
Piper, D.J.W., BA(Hons) (St Catharine's Col, Cantab), MA (Cantab), PhD (Darwin Col, Cantab), GSC Atlantic
Risk, D., BSc, PhD (Dalhousie), St. Francis Xavier University
Robinson, P.T., BSc (Mich), PhD (Calif)
Rochon, A., BSc, MSc, PhD (U du Quebec à Montreal), BKO
Swinden, S., BSc (Dalhousie), MSc, PhD (Memorial), NS Department of Natural Resources

I. Introduction

Students with degrees in any of the sciences or mathematics who wish to study some aspect of the Earth are welcome. Graduate work leading to the degrees of MSc and PhD is possible in a number of different fields. These include for example: marine geology and geophysics, Appalachian geology, isotope geology, economic geology, petrology, geochemistry and mineralogy, geophysics, sedimentology, micropaleontology and coastal sedimentation, structural geology, metamorphism, and tectonics.

Interdisciplinary studies are encouraged, and there is active cooperation among the science departments (including Oceanography) at Dalhousie University. Students are urged to take full advantage of the opportunities this affords. Research, on scientific problems of mutual interest to Dalhousie and government laboratories such as the Nova Scotia Department of Natural Resources, and the GSC Atlantic at the Bedford Institute of Oceanography, is often done. Members of these laboratories frequently serve on supervisory committees.

The complex of departments and laboratories in Halifax and Dartmouth concerned with various aspects of the Earth make graduate study in Earth Sciences very attractive.
II. Admission Requirements
Candidates must satisfy general requirements for admission to the Faculty of Graduate Studies. Candidates seeking financial support should ensure that their applications are complete by January 31.

III. Degree Programs
A. MSc Degree Program
The minimum time for completion of the MSc degree is 12 months of full-time study (see Faculty of Graduate Studies regulations, Section 1.3.1, page 21). Experience has shown that most students take at least 24 months to complete their work. Financial support is available for no more than 24 months.

Part-time study is also possible. Conditions for admission to this program are the same as those for full-time students. Financial support is not normally available for part-time study.

Research leading to the preparation and oral defence of a thesis is required.

The equivalent of five graduate classes is required, of which the thesis normally counts as three.

Graduate students are expected to attend the Earth Sciences seminars. ERTH 6300.03 and ERTH 6350.03 are compulsory. A grade of A or better is required in these two classes to transfer to PhD.

B. PhD Degree Program
The minimum time required to complete this program is two years from an MSc; normally three years are required (see Section 1.3.2, page 22 in the Faculty of Graduate Studies regulations).

The preliminary examination (see Faculty of Graduate Studies regulations) is an integral part of the compulsory classes, ERTH 6300.03 and 6350.03. A grade of B+ or better is required in these two classes.

Attendance at the Earth Sciences seminars is expected.

Research leading to the preparation and oral defence of a thesis is required.

IV. Class Descriptions
A. Required Graduate Classes
ERTH 6300.03: Research Design and Scientific Presentation.
This is a required class (full-year, half-credit) for all new graduate students (MSc and PhD) in the Department of Earth Sciences. It is intended to introduce students to the essential features of good research design, and to give them extensive practice in presenting their research to their peers.

Topics covered include the scientific method, critical reading, analysis of error and uncertainty, effective technical writing, effective scientific presentations (oral and written), effective research proposal design, and ethical issues in research. Other topics may be covered depending on students’ interests and/or current issues in the field. A series of written and oral assignments takes students through the process of designing, writing, and presenting a short (10-page) formal research proposal, generally (but not necessarily) closely related to the thesis topic, which is then presented and defended before the entire department. Extensive feedback is given on both written and oral work throughout the year; all oral presentations and one written assignment involve an element of peer review.

INSTRUCTOR(S): J.C. Gosse, M. Nedimovic
PREREQUISITE: Students must be registered in a graduate programme (MSc or PhD) in Earth Sciences, which normally requires a B.Sc. (Honours) in Earth Science or its equivalent; other students may be admitted with permission of the instructors.

CO-REQUISITE: Students should also be enrolled in ERTH 6350 (Graduate Module class) although in unusual situations the classes may be taken in consecutive years.

ERTH 6350.03: Research Topics in Earth Sciences.
This class consists of modules that present topics of interest to students coming into the graduate programme from a variety of backgrounds. The Geology of Nova Scotia Module is given each year and consists of lectures given by invited speakers and illustrative field excursions. The content of the other modules may change from year to year. Past and potential future topics include: Uranium Series Disequilibria, Mars Surface Processes, Radiometric Dating, Origin of Orogens, Basics of Basins, P-T-t Data From Orogenic Belts, Heat Flow, Granites - Physical and Chemical Processes, Mantle Petrology - Peridotites, Eclogites etc., Abnormal Fluid Pressures in Geology, Environmental Monitoring in Coastal Areas, Quaternary Geology of Nova Scotia, Chemical Weathering, Tectonic Geomorphology, Applications of Cosmogenic Isotopes. Consult website at www.dal.ca/~es for a list of modules offered in current sessions.

INSTRUCTOR(S): N. Culshaw
PREREQUISITE: Students must be registered in a graduate programme (M.Sc. or Ph.D) in Earth Sciences, which normally requires a B.Sc. (Honours) in Earth Science or its equivalent; other students may be admitted with the permission of the instructors.

CO-REQUISITE: Students should also be enrolled in ERTH 6300 (Research Design and Scientific Presentation) although in unusual situations the classes may be taken in consecutive years.

ERTH 9000.00: MSc Thesis.
Students in the MSc Programme must be registered in this class in every term.

ERTH 9530.00: PhD Thesis.
Students in the PhD Programme must be registered in this class in every term.

B. Other Graduate Classes
The following classes are designed specifically for graduate students. They are offered when required, and their content is designed to suit the interests of individual students.

ERTH 6100.03: Seminar in Sedimentology and Stratigraphy.

ERTH 6110.03: Research Topics in Micropaleontology.

ERTH 6120.03: /6220.03: Seminar in Mineralogy, Petrology and Geochemistry.

ERTH 6250.03: Directed Studies.

ERTH 6400.03: Geochronology and Thermochronology.
Researchers across the whole spectrum of earth science use chronometers, which provide information about the rates of geological processes in areas as diverse as the deep crust and modern surface environments. Experience will be attained on a wide range of chronometers including U-Th-Pb, Ar-Ar, Apatite Fission Track, and (U-Th)/He thermochronology, cosmogenic and nuclide exposure dating, luminescence dating, and radiocarbon dating. The structure and content of the course will vary with instructor and student interests, but will feature lectures, seminars, workshops, laboratory work, and computation.

FORMAT: Lectures/seminars, workshops and labs
PREREQUISITE: Students must be registered in a graduate programme (M.Sc. or Ph.D)in Earth Sciences, which normally requires a BSc (Honours) in Earth Sciences or its equivalent. Other participants may be admitted with permission of the instructors.

ERTH 6500.03: Graduate Seminar in Tectonics.

C. Cross-Listed Graduate/Undergraduate Classes
The following classes are designed primarily for undergraduates in their final year; they may be taken by graduate students for general interest, because the material is needed to help in their research, or because the student’s background may be inadequate. PLEASE NOTE: Not all classes are offered every year; please consult the current timetable.
ERTH 5131.03: Advanced Petroleum Geoscience.
This is a specialised, advanced course in petroleum geoscience applications and interpretation for basin/prospect evaluation. The course is designed to provide advanced competency in the latest techniques of geoscience interpretation including 2D and 3D seismic reflection seismology, well log analysis and core description.
FORMAT: Lecture/project/report and presentations
PREREQUISITE: ERTH 4153 or permission of instructor
CROSS-LISTING: ERTH 4131.03

ERTH 5141.03: Applied Geology, Mineralogy and Geochemistry.
This class is an introduction to various concepts and techniques used by geoscientists in the search for and evaluation of mineral concentrations, in mining and metallurgy, as well as in environmental aspects of these activities. The successive stages of a mineral exploration project are analyzed, from reconnaissance through exploration geochemistry, claim staking, drilling, mining, estimation of reserves, grades and tonnage, economic aspects, to mine site rehabilitation. Fundamentals of applied ore microscopy will be introduced, with emphasis on metallurgy, and acid rock drainage (ARD) prevention. The syllabus will vary somewhat from year to year to reflect the interests and backgrounds of the students, and the availability of visiting lecturers. The labs will consist of hands-on exercises, visits to analytical labs, problem solving, report writing, and seminar presentations by the students.
INSTRUCTOR(S): Staff
FORMAT: Lecture 3 hours, lab 3 hours
PREREQUISITE: ERTH 2001.03, ERTH 2002.03, ERTH 2110.03, ERTH 2000.015

ERTH 5151.03: Mineral Deposits.
This class is an introduction to the geology of metallic ore deposits (e.g., gold, copper) and some industrial mineral concentrations (e.g., diamonds, barite), and the genetic hypotheses used in their exploration. Emphasis is given to the chemical, mineralogical, physical, structural, tectonic, igneous, sedimentary and metamorphic processes that lead to economic concentrations of minerals and their subsequent modification or destruction. The class integrates many Earth Science disciplines, and requires extensive reading from the scientific literature, writing, and oral presentations.
INSTRUCTOR(S): Staff
FORMAT: Lecture 3 hours, lab 3 hours

ERTH 5270.03: Applied Geophysics.
The application of geophysical methods to petroleum and mineral exploration as introduced in 2050.03 is here treated at a more advanced level with an emphasis on seismic techniques. Assignments involve the student in interpretation of industry geophysical data and modelling on workstations.
INSTRUCTOR(S): Staff
FORMAT: Lecture 3 hours

ERTH 5280.03: Marine Geophysics.
The application of the various geophysical techniques to the study of the sea floor and the principal results obtained are examined. The processes involved in the creation, evolution and destruction of ocean basins and the implications of the experimental observations are also considered.
INSTRUCTOR(S): K. Louden
FORMAT: Lecture 3 hours, lab

ERTH 5350.03: Tectonics.
This is a required class for Earth Sciences Honours students. It is intended to synthesize the various aspects of geology covered in the third year core program. The focus of the class is on tectonic processes and the ways in which these processes create and modify the Earth’s crust. We will cover the fundamental geological, geophysical, and geochemical controls that operate today, including plate tectonics, and the ways in which these might have differed in the geological past. The tectonic evolution of specific orogenic belts will be discussed, including both modern and ancient examples in Canada and other parts of the world.
INSTRUCTOR(S): N. Culshaw
FORMAT: Lecture 3 hours

ERTH 5380.03: Advanced Geochemistry.
A basic understanding of Geochemistry is essential to a professional geoscientist who must deal with earth materials, igneous, metamorphic, and hydrothermal processes that take place under the surface of the earth and other planetary bodies, and on the minerals, rocks, fluids, and mineral deposits resulting from these processes. Equally important is a familiarity with the geochemistry of weathering, acid rock drainage (ARD) and the cycles of environmentally significant elements in ground and surface waters. This class begins with an overview of atoms, ions, and isotopes, and the principles that govern their distribution on the Earth and other planets. This will be followed by a discussion of high- and low-temperature aqueous geochemistry, and the applications of chemistry to igneous and metamorphic systems. A section on mineral deposits will examine the formation of hydrothermal ore deposits, and geochemical exploration methods. The latter half of the term will concentrate on low-temperature geochemistry, with an emphasis on processes that control the release, mobility, and fate of contaminants in the environment. Computer models and case studies will be used to illustrate the importance of geochemical data for solving real-world environmental problems. Students will also be introduced to a number of closely-related disciplines including surface science, geomicrobiology, and medical geology.
INSTRUCTOR(S): Staff
FORMAT: Lecture 3 hrs, seminars, workshops, student presentations
CROSS-LISTING: ERTH 4380.03

ERTH 5400.03: Advanced Metamorphic Petrology.
This class deals with selected topics in metamorphism and microtectonics, chosen to reflect current topics of interest in the disciplines and/or specific interests of participants. The focus is on the interaction of metamorphism and deformation, and on the constraints provided by microstructural and metamorphic data on tectonic processes in general. Examples of topics that might be covered include: porphyroblast-matrix relationships in metamorphic rocks; quantitative P-T methods in metamorphism; geochronology of metamorphic rocks; construction and interpretation of metamorphic P-T-t paths; intracrystalline deformation, recrystallisation, and deformation mechanisms in some common rockforming minerals; origin and interpretation of lattice-preferred orientation; natural microgauges. The class is offered as numbers warrant (4 students minimum). It is suitable for students who are doing honours or graduate work in the general areas of metamorphic and/or structural geology and/or tectonics.
INSTRUCTOR(S): R. Jamieson, D. Grujic
FORMAT: Lecture 3 hours
PREREQUISITE: ERTH 3020.03, ERTH 3140.03 or equivalent, or permission of instructor
CROSS-LISTING: ERTH 4400.03

ERTH 5450.03: Introduction to Landscape Simulation.
We examine different approaches to numerical modelling of earth-surface processes such as erosion and landslides, melting permafrost, and braided rivers. Using class and/or individual projects as examples, the selection of variables, sensitivity testing, and methods for testing models against nature are discussed. We use Matlab; programming experience is very useful but not essential.
FORMAT: Lectures/seminars
PREREQUISITE: ERTH 3440.03 PHYC 1100X/Y.06 or PHYC 1300X/Y.06, MATH 1000.03 and MATH 1010.03
CROSS-LISTING: ERTH 4450.03, GEOG 4450.03

ERTH 5470.03: Introduction to Seismic Imaging.
This class teaches the basic techniques of the reflection seismic method for imaging of earth structures such as those used in hydrocarbon exploration. Lectures introduce concepts and techniques that are applied in computer lab to the processing of a multi-channel seismic dataset. Concepts covered include: source and receiver geometry, digital filtering, deconvolution, velocity analysis, stacking, and migration.
INSTRUCTOR(S): M. Nedimovic, K Louden
FORMAT: Lecture/Lab
PREREQUISITE: Consent of instructor
CROSS-LISTING: ERTH 4470.03, OCEA 4470.03, OCEA 5470.03, PHYC 4470.03, PHYC 5470.03
ERTH 5480.03: Advanced Seismic Imaging.
This class teaches more advanced techniques of seismic imaging of earth structures. Lectures introduce techniques that will be applied in the computer lab to the processing of multi-channel reflection and wide-angle refraction seismic datasets. Concepts covered include: multiple removal, pre-stack migration in time and depth, amplitude analysis, velocity modeling and inversion.
NOTE: This class is not offered every year. Please consult department in the spring for further information.
INSTRUCTOR(S): M. Nedimovic and K. Louden
FORMAT: Lecture 3 hours, lab 3 hours
PREREQUISITE: ERTH 4470.03 or consent of instructor
CROSS-LISTING: ERTH 4480.03, OCEA 4480.03, PHYC 4480.03, PHYC 5480.03

ERTH 5502.03: Micropaleontology and Global Change.
This class provides a systematic study of major groups of microfossils (principally foraminifera, ostracoda and calcareous nanoplankton). Particular emphasis is placed on the distribution and ecology of recent microfossils, and on laboratory techniques for sampling and studying them. Quaternary paleo-oceanography and faunal distribution is examined based on knowledge of the tolerances of the living organisms.
INSTRUCTOR(S): D.B. Scott
FORMAT: Lecture 3 hours, lab 3 hours

ERTH 5520.03: GIS Applications to Environmental and Geological Sciences.
Geographic information systems (GIS) provide a rich set of new tools to the geologist and environmental scientist, not only to solve conventional problems, but also to explore questions not readily answered by other means. This class builds on the fundamentals of GIS taught in ERTH 3500.03 to explore analytical tools that aid in decision-making processes encountered in mineral exploration, hydrogeology, site selection, environmental assessment, and global change analysis. The class concentrates on case studies and problem solving, including those requiring multi-criteria and multi-objective decision making processes.
INSTRUCTOR(S): C. Walls
FORMAT: Lecture 3 hours, lab 3 hours
PREREQUISITE: ERTH 3500.03 OR ERTH 5600.03 OR SCIE 3600.03
CROSS-LISTING: ERTH 3500.03, GEOG 3500.03
EXCLUSION: Credit will only be given for one of the ERTH 3500.03, ERTH 5600.03, GEOG 3500.03 OR SCIE 3600.03

ERTH 5530.03: Environmental Remote Sensing.
This class introduces remote-sensing techniques that provide environmental and geoscience information. The potential and limitations of remotely sensed data are stressed. Lectures discuss the fundamentals with an emphasis on multi-spectral satellite systems. Laboratory exercises include digital image enhancement and thematic information extraction on optical, radar, and hyperspectral data. Remote-sensing information and GIS techniques are integrated throughout the course.
INSTRUCTOR(S): C. Walls
FORMAT: Lecture 3 hours, lab 3 hours
PREREQUISITE: ERTH 3500.03 OR ERTH 5600.03 OR SCIE 3600.03
CROSS-LISTING: ERTH 4530.03

ERTH 5600.03: Exploring Geographic Information Systems.
Geographic Information Systems (GIS), as a tool for the management of georeferenced data, have become indispensable for disciplines where location of objects and patterns of processes is important. GIS plays a significant role in a wide range of applications, from modeling, to analysis and predictions, to decision making. The class is aimed at a broad base of potential users and draws on examples of the role of GIS in global climate change, mineral exploration, preservation of biodiversity, coastal zone management, resource depletion, and many other present and future environmental issues. The course material will be of interest to those studying geoscience, environmental science, ecology, marine biology, oceanography, epidemiology, urban and rural planning, civil engineering, and any other field involving spatial data. Students are expected to complete and present a GIS project related to their field of research.
Laboratory exercises emphasize the principles of raster and vector GIS, and the integration of databases and GPS (global positioning systems) data into GIS. Exercises draw on the diversity of GIS applications in a number of application areas.
INSTRUCTOR(S): C. Walls
FORMAT: Lecture 3 hours, lab 3 hours
CROSS-LISTING: ERTH 3500.03, GEOG 3500.03
EXCLUSION: Credit will only be given for one of the ERTH 3500.03, ERTH 5600.03, GEOG 3500.03 OR SCIE 3600.03
Economics

Location: 6214 University Avenue
 P.O. Box 15000
 Halifax, NS B3H 4R2
Telephone: (902) 494-2026
Fax: (902) 494-6917
Website: http://www.economics.dal.ca

Chairperson of Department
Osberg, L.

Faculty Advisor
Cross, M., Graduate Coordinator (494-2026)

Professor Emeritus
Sinclair, A.M., BA (Dal), MA, BPhil (Oxon), PhD (Harvard)

Professors
Burton, P., BSc (Sask), MA, PhD (UBC)
Dasgupta, S., BA (Calcutta), MA (Delhi), PhD (Rochester)
Iscan, T.B., BA (METU), MA, PhD (Cornell)
Lesser, B., BComm (Hons)(Dal), MA, PhD (Cornell)
Osberg, L., BA (Hons) (Queen’s), MPhil, PhD (Yale), McCulloch Professor of Economics
Phipps, S., BA (Hon) (Victoria), MA, PhD (UBC), Maxwell Professor of Economics
Xu, K., MBA, PhD (Concordia)
Zhao, Y., BSc (Anhui, China), MSc (Western Kentucky), PhD (British Columbia) (cross-appointment)

Associate Professors
Cross, M.L., AA (Dawson College), BA (Hons) (Montana), MA (SFU), PhD (Texas A&M)
Cyrus, T., BA (UCLA), PhD (Berkeley)
Kotlyarov, Y., Dip. Software Eng (Lviv Poly. Inst.), MSc (U of Illinois-Urbana), PhD (McGill)

Assistant Professors
Akbulut-Yuksel, M., BSc (METU), PhD (Houston)
Giusto, A., Laurea in Economics (Bologna), PhD (Oregon)
Rosenblum, D., BA (Williams), MA, MPhil., PhD (Yale)
Ward, C., BA (Hons) (Sask), MA (Queen’s), PhD (Toronto)
Yuksel, M., PhD (Houston)

Adjunct Professors
Amirkhalkhali, S., BA(Hons) (Shiraz), MA, PhD (Dal), Saint Mary’s University
Bradfield, F.M., BComm (McMaster), PhD (Brown), Dalhousie (retired)
Clark, S., BA (Guelph), MSc (Saskatchewan), PhD (North Carolina), Nova Scotia Agricultural College
de Lamirande, P., BA, MA (Laval), PhD (Montreal)
Dufour, M., BA (Laval), MA (British Columbia), PhD Candidate (Massachusetts), Dalhousie
Forsythe, R., BSc (H) Biochemistry, B.Ed, MA (Queen’s), PhD (Simon Fraser)
Hodgkiss, J., MA (York), MA, DPhil (Oxon)
Huber, P.B., BA, MA, PhD (Yale) Dalhousie (retired)
MacDonald, M., BA (Dal), PhD (Boston College), Saint Mary’s University
Marfels, C., Diplom-Volkswirt, Dr Rer Pol (Berlin), Dalhousie (retired)
McAllister, R.I., MA (Dal), PhD (Dal), Dalhousie (retired)
Rattray, W., BA, MSc (Sri Lanka), MA, PhD (Dal), Dalhousie (Professor Emeritus)

Senior Instructor
Boultonoff, C., PhD (Utah State)

I. Degree Options

A. Master of Arts

1. Admission Requirements
Candiates must submit a minimum satisfy the general requirements for admission as spelled out in the Faculty of Graduate Studies regulations in this calendar. Entrance to a one-year MA Program requires an Honours BA in Economics (or equivalent) with an average of at least B+ (upper-second class) at Dalhousie standards. Normally this means completion of at least eight classes in Economics beyond the introductory level including classes in Microeconomic and Macroeconomic Theory beyond the intermediate level, Statistics, Econometrics and classes in applied areas of economics. Mathematics classes which are equivalent to Dalhousie MATH 1000.03 and 2000.03 are also required.

Students who meet the grade requirements but who need to enhance their backgrounds in economics before taking advanced courses in econometrics, economic theory, or applied economics may be considered for a Qualifying Year or a two-year MA.

Applicants must satisfy the English Language proficiency requirements of Dalhousie. For more information, see “English Language Proficiency” under “Admissions Requirements” for the Faculty of Graduate Studies.

Areas of specialization for the MA are open, subject to the fields of economics represented in the graduate course offerings in any given year and/or the ability of students to arrange a research supervisor.

Department approval is required for the program of each student.

2. Completion of MA Program

Students must successfully complete the required and optional classes of their program. Normally a course of study includes:

- ECON 5200.03: Research Seminar
- ECON 5500.03: Macroeconomic Theory
- ECON 5509.03: Microeconomic Theory
- ECON 5575.03/5576.03: Econometrics I/Econometrics II
- 1 half credit elective plus a thesis or
- 3 half credit electives plus a research essay
- Students who choose the thesis option are expected to undertake research of innovative, original and publishable quality. Students who choose the essay option may build the essay on a course term paper but must demonstrate substantial differences and improvement over the original paper. Essays will be evaluated by two Faculty readers drawn from the department.

Normally ECON 5500, 5509 and 5575 are taken in the fall term, ECON 5576 and the electives are taken in the winter term, and the thesis or essay is written in the summer.

B. Master of Development Economics (MDE)

1. Admission Requirements

The normal duration of the program is two years. All candidates for admission must satisfy the general requirements for admission to the Faculty of Graduate Studies. The Department will only consider applications for the two-year program from candidates possessing an undergraduate degree with an academic average of at least B+ (upper-second class) at Dalhousie standards. Because of the interdisciplinary nature of the MDE, applicants may possess a BA, BSc or BComm degree, but all candidates must have at least two classes in Economics beyond the introductory level, including, preferably, intermediate economic theory, plus a basic class in statistics and university level mathematics. Applicants with an honours degree in economics, or equivalent, can be considered for admission to a one year program. In some cases, applicants with a professional degree such as MPA, MBA or MES also may be eligible for a one year program.
Applicants must satisfy the English Language Proficiency requirements of Dalhousie. For more information, see "English Language Proficiency" under "Admissions Requirements" for the Faculty of Graduate Studies.

2. MDE Program Requirements
The Department of Economics hosts this innovative program of graduate studies in social and economic development. The program is primarily designed for students and young professionals pursuing, or intending to embark on, careers in government, educational and professional institutions, private corporations or non-governmental organizations. The aim is for an “individualized program,” not “mass production.” Effective development policy and project design and management requires insights from many vantage points and, while development economics is at the core of this program, inputs from other disciplines make important contributions.

The normal duration of the program is two years. A two year program normally comprises six full credits of graduate course work, of which four are in graduate level economics and two from other disciplines (e.g. biology, environmental studies, political science, public administration, sociology and social anthropology, law, health studies, computer science, business administration).

NOTE: Students in the two-year program who do not have a 2000-level statistics course (by Dalhousie standards) and an introductory economics course at the undergraduate level will be required to complete these as part of their program in addition to the six full credits above.

3. Completion of MDE Program
Students must successfully complete the required and optional classes of their program. Normally a course of study for a two year program includes:

- ECON 5000: MDE Microeconomic Theory
- ECON 5001: MDE Macroeconomic Theory
- ECON 5200.03: Research Seminar
- ECON 5253: Development Economics I
- ECON 5254: Development Economics II
- 3 half credit graduate electives in economics
- 4 half credit graduate level noneconomics electives
- Thesis

Students also have the option of taking an additional 2 half credit graduate electives in Economics and writing a research essay in lieu of the thesis. The essay may be built on a term paper originally written in one of the graduate field courses in economics but must demonstrate substantial differences and improvements over the original paper. Essays will be evaluated by two faculty readers drawn from the Department.

A program of study for a one year MDE program normally is composed of 3.5 to 4 credits of graduate course work plus a thesis. The courses normally include ECON 5500, 5001, 5200, 5253, and 5254.

Students in a one year program have the option of taking an additional 2 half credits of graduate courses in economics and submitting a research essay in lieu of a thesis.

C. Doctor of Philosophy (PhD)

1. Admission Requirements
Entrance to the PhD program normally requires completion of course requirements for an MA in Economics with an average of at least A- at Dalhousie standards. Students normally prepare for their PhD Comprehensive Exams in two years.

Applicants must satisfy the English Language proficiency requirements of Dalhousie. For more information, see “English Language Proficiency” under “Admissions Requirements” for the Faculty of Graduate Studies.

2. PhD Program Requirements
The PhD program is designed to provide students with a strong foundation in economic theory and quantitative methods and intensive work in applied fields of economics. A course of study recommended for the three-year PhD program would include:

Year 1
- ECON 5500 (Macroeconomic theory)
- ECON 5509 (Microeconomic theory)
- ECON 5575/5576 (Econometrics I and Econometrics II)
- Two elective classes in economics

Year 2
- ECON 6600 (Advanced Macroeconomic theory)
- ECON 6609 (Advanced Microeconomic theory)
- ECON 6634 (Advanced Econometrics)
- Up to two additional classes in economics depending on student’s background
- ECON 6683 (Special Topics in Advanced Economics)

Year 3
- Thesis work

Students can request from the graduate coordinator a waiver for a class. A waiver shall only be granted if the student can demonstrate that the courses taken elsewhere were at an appropriate level. Departmental approval is required for the program of each student.

At the completion of their class work, candidates for the PhD program will be examined in:
- Macroeconomic and microeconomic theory (at the level of Dalhousie Economics classes 5500, 5509, 6600 and 6609)
- One field of specialization

Fields of specialization for the PhD are open, subject to the following requirements:
- Applicants to the PhD must clearly indicate on their application the primary field in which they wish to specialize.
- A faculty member in the Department must agree to be the research supervisor for the student before the student is accepted to the program.
- Changes to the student’s intended field of specialization after starting the program will also be subject to the agreement of a faculty member in the Department to supervise the student’s research in the proposed area of specialization.

3. Completion of PhD Program
Comprehensive examinations consisting of written papers in micro and macro economic theory and one field will be written within a designated one-month period following the completion of all PhD course requirements. An oral examination may be required if the examination committee feels it is warranted. Starting from the second year of class work, and on an annual basis, students are required to present their research results at a department workshop.

A suitable thesis must be submitted and defended. Students are required to make a public presentation of a thesis proposal no later than six months after completion of the comprehensives and preferably at some point prior to the comprehensives.

II. Class Descriptions
Classes other than those listed may be offered. Not all classes listed are necessarily offered in any given year. Students should consult the graduate timetable for information on classes offered in a given year.

ECON 5000.03: MDE Microeconomic Theory.
This class provides an intensive overview of microeconomic analysis as background for the analysis of economic and regional development. The Course reviews the core components of microeconomic models (constrained optimization, comparative statics, general equilibrium, and welfare analysis). The course explores the theory of market failures and the consequences when markets are not perfect, particularly looking at risk, uncertainty and strategic interaction between actors (game theory). The course will apply microeconomic theory to development problems, using selected readings to highlight theory and applications. ECON 5000 and 5509 normally cannot both be offered for credit.
FORMAT: Lecture 3 hours
PREREQUISITE: ECON 2200.03 or ECON 2210.03, and ECON 2201.03
ECON 5001.03: MDE Macroeconomic Theory.
The purpose of this class is to discuss a range of macroeconomic theories as a way to understand contemporary issues in international economics. The class provides a formal exposition of theoretical models in open economy macroeconomics. The topics covered include intertemporal consumption-saving decisions, economic growth, fiscal and monetary policies, and exchange rate models. Building on these theories, we will compare the growth performances of Asia, Africa, and Latin America, discuss foreign debt and banking crises, and examine the causes and consequences of currency crises. ECON 5001 and 5500 normally cannot both be offered for credit.
FORMAT: Lecture 3 hours
PREREQUISITE: ECON 2200.03 or ECON 2210.03 and ECON 2201.03

ECON 5200X/Y.3: Research Seminar for Masters' Students.
This class is required for MA and MDE students. The course is intended to advance the work of students on either their thesis or their extended essay (if enrolled in the non-thesis option of their program) and consolidate students’ understanding of the research methodology of economics. NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
FORMAT: Seminar

ECON 5231.03: Health Economics.
This class provides an in-depth survey of Health Economics drawing from international experiences in both developing and developed countries. The class will use economic theory and methods to understand the functioning of public and private health systems, and evaluating programs (e.g., cost-effectiveness). Students will be assessed by essay and exam.
FORMAT: Lecture

ECON 5252.03: From Disaster Relief to Development.
This class introduces students to the growing literature built around comparative experiences of disaster prevention, mitigation, relief and sustainable development. Analytical frameworks for better understanding the reasons behind a cross-section of complex disasters are explored. Ways to improve development planning at both project and broader policy levels are examined. Main themes include food and clean water, (security, distribution, drought reduction); refugees, asylum seekers and settlements (e.g., cost-effectiveness). Students will be assessed by essay and exam.
FORMAT: Lecture 3 hours

ECON 5253.03: Development Economics I.
Economics 5253 is one of the core courses of the Master of Development Economics (MDE) degree. It provides an introduction to key conceptual and measurement issues in development and gives an overview of some selected macroeconomic issues, in particular the macroeconomic policy environment for development. The focus of this course is on “macro” topics and hence it complements Economics 5254, which deals with “micro” topics. The course will be taught using a combination of lectures and small-group work.
FORMAT: Lectures/seminars

ECON 5254.03: Development Economics II.
This course is one of the core courses of the Master of Development Economics (MDE) degree. It focuses on the theory and evidence of economic development, and from these draws out implications for policy and practice. Econ 5254 complements Econ 5253 with an examination of microeconomics issues including, the role of institutions, household behaviour and gender, the functioning of markets, health, education, evaluation, and the use of common property resources and policies for sustainable development. The course will be taught using a combination of lectures and small-group work.
FORMAT: Lectures/seminars

ECON 5300.03: International Trade.
This class examines the theory and empirics of international trade. It covers the standard trade theory of Ricardo, Heckscher, and Ohlin, as well as the more recent theory of scale economics, and discusses empirical testing of these theories. The class goes on to investigate the welfare effects of trade policies in industrial and developing countries and the institutions that have developed to regulate those policies. Finally, the class considers the relationship between trade and growth.
FORMAT: Lecture 2 1/2 hours

ECON 5333.03: Theories of Economic Development.
This class focuses on the application of economic theory to issues in economic development at the micro and macro level. After reviewing concepts of development, topics to be covered will include: intrahousehold allocation; the functioning of labour and credit markets (with applications to child labour and microcredit); use of common property resources; growth and distribution; development and globalization.
FORMAT: Lecture

ECON 5500.03: Macroeconomic Theory.
This class is an introduction to the contemporary issues in dynamic macroeconomics. The class will survey some of the classical and recent topics excluding monetary issues which are addressed in ECON 5502.03. The topics covered include intertemporal consumption and saving, money and credit, monetary policy can be analyzed. ECON 5001 and 5500 normally cannot both be offered for credit.
FORMAT: Seminar 3 hours

ECON 5502.03: Monetary Theory: Microeconomic Aspects.
This class focuses on the financial behaviour of four agents: (a) the central bank, i.e. The Bank of Canada, (b) commercial banks, (c) nonbank financial intermediaries, (d) the household and firm. Four important issues will be discussed: (1) the kinds of financial assets created in a modern economy; (2) the way in which money and credit are supplied in the modern economy, particularly the operations of the central bank and of financial intermediaries which enable these institutions to expand or contract the quantity of money and credit; (3) the behaviour of the economic agents who demand and supply financial assets; and (4) the framework in which monetary policy can be analyzed.
PREREQUISITÉ: ECON 3338.03, 3326.03 and 4426.03 and either ECON 5001.03 or ECON 5500.03

ECON 5509.03: Microeconomic Theory.
This class in microeconomic theory is required in the MA program. Subjects covered include: 1) theory of the firm (technology, cost, profit, maximization, introduction to linear programming, duality, supply); 2) theory of the consumer (utility, expected utility, revealed preferences, demand, integrability); 3) general equilibrium (existence, uniqueness, stability) and welfare economics (classical theorems); 4) theory of the market (pure monopoly, oligopoly, monopolistic competition, game theory). ECON 5001 and 5509 normally cannot both be offered for credit.
FORMAT: Lecture 3 hours

ECON 5516.03: Resource and Environmental Economics I (Resources).
This class is designed as an introduction to the theory and application of resource economics. Topics include: 1) interpersonal and intertemporal decision-making criteria; 2) the basic theory of nonrenewable resource exploitation (including Hotelling’s theory of the mine); 3) a basic forestry model (i.e., the Faustmann model) including extensions which allow for benefits that arise from standing forests; and 4) the Gordon-Schaefer model of the fishery and optimal dynamic harvesting. Empirical applications of these models (from the current economic literature) will also be presented.
FORMAT: Lecture 3 hours
PREREQUISITE: Students must be very comfortable with calculus
ECON 5517.03: Resource and Environmental Economics II (The Environment).
This class is designed as an introduction to the theory and application of environmental economics. It includes the theoretical analysis of 1) interpersonal and intertemporal decision-making criteria; 2) public goods and externalities (such as pollution) and the advantages/disadvantages of regulatory mechanisms; 3) valuation of environmental benefits or damages (e.g., compensating and equivalent variations); 4) preference revelation (e.g., surveys, hedonic pricing, and travel-cost methods); and 5) anthropocentric valuation of the environment (e.g., existence value, access value, option value and quasi-option value) and the possibility of nonanthropocentric decision making. Empirical analyses will be discussed where the above approaches have been implemented.
FORMAT: Lecture 3 hours
PREREQUISITE: Students must be very comfortable with calculus

ECON 5520.03: Economic Applications of Game Theory.
Game theory and information theory are now used in most aspects of economic analysis and a proper understanding of these approaches has become a necessary condition for accessing much of the current literature. The class includes the study of Static and dynamic games of complete information, Static and dynamic games of incomplete information, moral hazard, adverse selection and mechanism design.
FORMAT: Lecture 3 hours
PREREQUISITE: ECON 5509.03, or permission of instructor

ECON 5522.03: Labour Economics I.
This class provides an survey of modern Labour Economics, focusing on labour supply, human capital theory, structural change in labour markets, trends in poverty and earnings inequality and the policy responses of the 'Welfare State'. Discussion is based on recent journal articles. Students are graded on the basis of essays and a final exam.
FORMAT: Lecture 3 hours

ECON 5575.03: Econometrics I.
This class is designed to introduce the student to the practical problems encountered in estimating econometric models. Violations of the assumptions of the classical linear model are frequently found in economic data. Procedures for estimation and forecasting under these conditions (heteroscedasticity, autocorrelation, multicollinearity) are discussed. An important aim of this class is to give the student a working knowledge of estimation techniques commonly used by economists.
FORMAT: Lecture 3 hours
PREREQUISITE: ECON 2280.03 (or STAT 2080.03) and intermediate economic theory classes

ECON 5576.03: Econometrics II.
This class builds on the material learned in ECON 5575.03. Its primary objective is to extend the student's capabilities to conduct quantitative research in Economics, and to examine critically the results of such work. The topics include instrumental variables, maximum likelihood estimation, time series models, panel data, and nonparametric methods.
FORMAT: Lecture 3 hours
PREREQUISITE: ECON 5575.03

ECON 6534.03: Advanced Econometrics.
This is an econometrics course for PhD students. It reviews introductory mathematical statistics including parameter estimation (ML, GMM), hypothesis testing, and asymptotic theory. The parametric and nonparametric models including linear, nonlinear, limited dependent variable, and simultaneous equation models are explored in the context of cross-sectional and time series data.
FORMAT: Lecture
PREREQUISITE: ECON 5575, ECON 5576

ECON 6600.03: Advanced Macroeconomic Theory.
The purpose of this class is to understand the structure of the major theoretical frameworks in contemporary macroeconomics. The class addresses issues that mainly relate to the real side of the macroeconomy. Major emphasis is placed on neoclassical and endogenous economic growth, and incomplete markets and heterogeneity.
FORMAT: Seminar 3 hours

ECON 6609.03: Advanced Microeconomic Theory.
This class in microeconomic theory is required in the general PhD program. Its list of subjects includes: 1) General Equilibrium (existence, determinateness, stability) and Welfare Economics (classical theorems); 2) special topics in General Equilibrium Theory (intertemporal economies, equilibrium over time, uncertainty, temporary equilibrium, theory of the core and other solution concepts); 3) special topics in Welfare Economics (public goods, externalities, consumer surplus, fair allocations); 4) economics of information (signals and prices, moral hazard, equilibrium configurations).
FORMAT: Seminar 3 hours

ECON 6683.03: Special Topics in Advanced Economics.
This course serves as a vehicle for PhD students in their final year of coursework to work at the frontier of their major field of specialization. Content will vary by student and by field of specialization. Course supervision and instruction may be shared by up to 3 members of the Department.
FORMAT: Seminar
PREREQUISITE: A first level graduate course in the chosen field

ECON 9000.00: MA Thesis.

ECON 9001.00: Graduate Essay in Economics.
Students who pursue the “course plus essay” option for the MA or MDE program must register in this course, and complete a research paper (essay) of between 7,500 and 12,500 words. This essay may build on a term paper originally written in one of the graduate field courses in economics taken by the student but, in this case, must demonstrate substantial differences and improvements over the original paper.

ECON 9530.00: PhD Thesis.
Special Topics classes, not separately listed, will be arranged to provide for advanced work in the areas of specialization chosen by PhD students. MA students with the appropriate backgrounds will also be admissible to such classes. Classes other than those listed may also be offered and certain of the classes listed are not necessarily offered on an annual basis.
Electrical and Computer Engineering

Location: “C” Building, Room C367
1360 Barrington St.
P.O. Box 15000
Halifax, NS B3H 4R2

Graduate Coordinator

Department Head

Professors
Cada, M., Dipl. Ing., MSc, PhD (Prague), PEng, Graduate Coordinator. Photonics, optical switching, quantum well devices, nonlinear photonics, multilayer and periodic structures, optical computing, optical image processing, photonic crystals, nanotechnology, optical plasmons
El-Hawary, M.E., BEng (Alexandria), PhD (Alta), PEng, FIEEE, FCAE. Power systems, environmental and underwater signal applications. Modelling and optimization of dynamic systems, environmental impacts and underwater activities. System and computer applications in power system planning and operations, renewable energy systems

Associate Professor
El-Sankary, K., BEng (Lebanon), MSc (U of Quebec), PhD (U of Montreal), PEng. Integrated analog and mixed-signal circuits and systems in CMOS technologies for telecommunication and biomedical application

Assistant Professors
Gonzalez-Cueto, J., BEng, MScE (LasVillas Cuba), PhD (UNB). Design and implementation of signal processing techniques and application to biological signals

Adjunct Professors
Baird, R., BEng (TUNS), MASc (UBC), PhD (UNB)

Adjunct Associate Professors
Beslin, O., BSc (CAEN, France), MSc (LAUM, France), PhD (INSa, France)
Linney, N., BSc (Mount Allison), Beng, MASc (TUNS), PhD (Dal)
Sivakumar, S., BSc (U of Madras), BEng (Ind. Inst. of Science), MASc (UNB), PhD (UNB), PEng
Vallee, R., MEng (Carleton), PhD (TUNS)

I. Introduction
Of all the various disciplines, perhaps no other branch of engineering can claim to have such an impact on modern society as Electrical and Computer Engineering. The ease, speed and precision by which electrical energy and electrical signals can be transmitted, transformed and controlled has enhanced the quality of people’s life. Over the short span of only a few decades, Electrical and Computer Engineering has grown from a study of abstract phenomena to a multi-branch discipline with significant applications in the areas of power systems, communication systems, control systems, computers and electronics. This rapid growth, coupled with major advances in technology and material science, has made the field a very dynamic one, and poses a challenge to the student, to the educator and to the practicing Electrical and Computer Engineer. See the Engineering section for details of Masters and Doctoral programs.

II. Class Descriptions
ECED 6070.03: Modern Integrated Filters. This class deals with the design and implementation of modern analog integrated filters. It covers the following topics: fundamentals of continuous-time and sampled-data active filters, behavioural modeling and design of operational and transconductance (Cm) amplifiers, advanced design techniques for switched-capacitor filters (including multiple-loop feedback structures), current-mode filters (switched-current filters and log-domain filters).

ECED 6150.03: Power System Operation and Control. Power system load forecasting, contingency evaluation, static state estimation, security assessment, automatic generation control, optimal operation of power systems.
ECED 6190.03: Energy Systems Analysis. This course applies systems analysis techniques to assess the major global issues and their relationships with energy, the resources and technologies available to meet future energy needs, potential sustainable energy futures, and the transformation changes needed to achieve these futures. INSTRUCTOR(S): L. Hughes. FORMAT: Seminar. PREREQUISITE: Permission of the instructor.

ECED 6221.03: Analog MOS Design. The objective of this course it to provide the basic design concepts and tradeoffs involved in MOS analog integrated circuit design. Design issues associated with MOS devices will be explored while emphasizing quantitative measures of performance and circuit limitations. Topics will be selected from the following: modeling of MOS transistor, operational amplifier, comparator designs, bandgap, Sample and hold, and A/D and D/A converters. PREREQUISITE: IC Design or by permission of instructor.

ECED 6240.03: Complementary Metal-Oxide-Semiconductor (CMOS) MicroElectroMechanical Systems (MEMS). This course is intended for graduate students in the field of microelectronics and MEMS. In CMOS-MEMS, the combination of the globally established, standard CMOS technology with the commercially promising MEMS and its advantages over a hybrid solution are introduced. Other topics include the fabrication technology, design techniques, material and device characterization and CMOS based MEMS applications. PREREQUISITE: IC design or approval of instructor.

ECED 6260.03: Computer Vision. The class will discuss early vision processing including image formation, early processing, edge detection, range determination, determination of surface orientation, optical flow, resolution pyramids for grey-level segmentation, and context dependent edge detection. Scene segmentation, edgel aggregation, the Hough transform, edge following, contour following, region growing and split-and-merge algorithms will be discussed. Motion determination will be covered, including optical flow, motion-based surface orientation and motion-based edge detection, and motion-based segmentation.

ECED 6265.03: Advanced Computer Vision and Image Processing. The class will cover modern techniques in computer vision and image processing, including but not limited to statistical pattern recognition, determination of depth from multiple views, velocity-based scene segmentation, determination of depth from monocular views and both space- and time-diversity stereo, uni-modal and multi-modal image registration, feature detection using feature-space clustering, and segmentation and recognition by invariants. Students will be required to prepare papers for presentation in a weekly seminar. This class will meet once weekly for 3 hours. Enrollment is restricted to 7 students.

ECED 6324.03: RF/Microwave System Design for Telecommunications. The class provides essential design techniques for radio/microwave links in telecommunication systems. Major topics include: review of general radio propagation in free space, over obstacles and in the Earth’s atmosphere; the design principles of broadband radio/microwave communication links; design and sizing of satellite earth stations; development of hardware configurations for line-of-sight radio links. PREREQUISITE: Permission of the instructor.

ECED 6330.03: Computational Electromagnetics. This class introduces the theory and applications of numerical techniques employed to solve various electromagnetic structure problems in both time and frequency-domains. Major topics include: review of electromagnetic theory, variational approach, finite-difference time-domain (FDTD) method, transmission line matrix (TLM) method, finite element method (FEM), method of moment (MoM), method of line (MoL) and boundary element method (BEM). Projects include applications of different computational techniques to solve electromagnetic problems.

ECED 6360.03: Fiber and Integrated Optics. This class introduces the principles and devices of photonics. Major topics include: optical waveguides and fibers, light sources, modulation and detection techniques, optical wavelength functionalities, fiber-optic communications, integrated optics and sensors, various applications.

ECED 6400.03: Fundamentals on Nonlinear Optics. Introduction covering the following topics: nonlinear refractive index, nonlinear wave equations, some indifference frequency generation, second harmonic generation, optical solitons and their propagation in nonlinear fibres, resonant matter interaction, self-induced transparency, electromagnetically induced transparency, quantum theory of nonlinear optical susceptibility. PREREQUISITE: ECED 3300 and ECED 4502 or equivalent; ENGM 2062 recommended; or instructor approval.

ECED 6550.03: Digital Signal Processing. The class provides an introductory treatment of the theory and principles of digital signal processing, with suitable supporting work in linear system concepts and digital filter design. More specifically, the class deals with the following topics: General concepts of digital signal processing, continuous-time system analysis, Fourier analysis and sampled-data signals, discrete-time system analysis, realization and frequency response of, discrete-time systems, infinite impulse response digital filter design, discrete and fast Fourier transforms, and general properties of the discrete Fourier transform.

ECED 6560.03: Data Communications. This class provides a structured introduction to data communications through an examination of existing and proposed data link and network layer protocols. Topics include a brief history of data communications, protocol design for reliable communications, addressing (unicast, multicast, broadcast, and anycast), routing algorithm design, Internet protocols, and IPv6.

ECED 6585.03: Telecommunications Systems. This class provides an overview of the current telecommunication systems and their future evolution. Topics will include: the history of the telephone network, the current infrastructure, switching techniques, high speed transport systems Asynchronous Transfer Mode, satellite communications, high bandwidth access technologies, mobile cellular systems, personal communication systems.

ECED 6590.03: Mobile Communication Systems. This class provides an overview of mobile communications systems. The class introduces channel characterization for propagation losses, fading, delay spread, and interference. Coding, modulation, and receiver design issues are examined. Cellular mobile system issues such as frequency planning, channel access methods and handoff are discussed. Mobile communication system applications are reviewed.

ECED 6595.03: Coding Techniques for Digital Communications. Source and channel coding techniques to improve the performance of digital communication systems are examined. The source coding methods to be studied include prediction, block coding, redundancy reduction, and synthesis/analysis coding. Emphasis is placed on channel coding techniques. Waveform coding and error control concepts are covered. Parity check codes, block codes, cyclic codes, convolutional coding and decoding algorithms, concatenated codes and interleaving are studied. Coded modulation techniques are discussed. Applications of coding techniques are presented. PREREQUISITE: ECED 4503.03, ECED 4504.03 or equivalent.
ECED 6620.03: Optimal Control Systems.
This class introduces three facets of optimal control—dynamic programming, Pontryagin's Minimum Principle, and numerical techniques for trajectory optimization. In all cases, the objective is to determine the optimal controller or algorithm with respect to a specified design index. Digital simulation techniques are widely utilized.

ECED 6630.03: Introduction to Estimation, Identification and Stochastic Control.

ECED 6640.03: Mobile Robotics.
This class is an in-depth study of algorithms in mobile robotics. Topics include motion planning, localization, mapping, navigation and sensor fusion. Wheeled and legged mobile robots will be covered and kinematics' models are developed for many of the more common locomotive strategies.

ECED 6650.03: Advanced Topics on Optimization Methods in Engineering and Physics.
Nature and systems considered in engineering and physics have an abundance of examples where an optimum system status is sought. The class aims to provide the students with advanced theory of optimization and topics that arise in applications of the optimization techniques. The challenge of this course is to increase the utilization of the optimization methods by development and use of appropriate algorithms derived for specific problems in engineering and physics. They include those arising in VLSI design, computer engineering, chemical reactor control, in spin glasses as well as in networking, particularly in networks with frequently changing topology. State-of-the-art of the advanced optimization techniques is presented. Geometric interpretations, time-space decompositions and large- and small-scale considerations are stressed wherever possible.
PREREQUISITE: Permission from instructor

ECED 6660.03: Fuzzy Systems.
Fuzzy sets and their membership functions, support and alpha level sets are introduced. Basic set-theoretical operations of intersection and union and the concept of compensation are discussed in the context of the algebraic operations including t-norms and s-norms. Fuzzy measures and the extension principle are discussed as the basis for operations on fuzzy numbers. Fuzzy relations, graphs, extrema, integration, and differentiation are treated. Decision theory, linear regression, linear programming applications are discussed.

ECED 6680.03: Neural Networks.
The class deals with preliminaries of artificial neural systems including fundamental concepts and models. Single layer perception classifiers and multi-layer feed forward networks, single-layer feedback networks, and associative memories are covered.

ECED 6900.03: Graduate Seminar.
Regular seminars as per the Faculty of Graduate Studies requirement and departmental regulations. See section 5.5 of the Graduate Studies handbook for the Faculty of Engineering as well as Departmental Regulations as provided by the department. Graded pass/fail.

ECED 6910.03: Directed Studies in Electrical and Computer Engineering.
This class is available to graduate students enrolled in a Master's Degree programme in Electrical and Computer Engineering, who wish to gain knowledge in a specific area for which no graduate-level classes are offered. Students are assigned an advisor and are required to present a formal report, or take a formal examination, at the end of the class.

ECED 7610.03: Semiconductor Integrated Optoelectronics.
Structures for optical radiation generation and detection, nonlinear and bistable devices, etc., are studied. Integration of these components onto a common substrate for implementing optoelectronic functions such as modulation, switching, multiplexing, etc., is described. Applications in fast optical signal processing devices, high-performance optical communications systems, and optical computing are addressed.

ECED 7910.03: Directed Studies in Electrical and Computer Engineering II.
This class is available to graduate students enrolled in a PhD programme in Electrical and Computer Engineering who wish to gain knowledge in a specific area for which no graduate-level classes are offered. Students are assigned an advisor and are required to present a formal report, or take a formal examination, at the end of the class.

ECED 8500.00: MEng Project.
A Master of Engineering candidate will be required to submit a project satisfactory to the Faculties of Graduate Studies and Engineering and to make a successful oral presentation of the work.

ECED 9000.00: Master’s Thesis.

ECED 9530.00: PhD Thesis.

PHDP 8000.00: Doctoral Comprehensive Requirement.
Following completion of class work, students will register in the Doctoral Comprehensive Requirement while they prepare for, and until they have passed, the Comprehensive Examination.
Electronic Commerce

Location: Goldberg Computer Science Building 6050 University Avenue P.O. Box 15000 Halifax, NS B3H 4R2 Telephone: (902) 494-2740 (902) 492-1517 Email: mec@cs.dal.ca Website: http://www.ecomm.dal.ca

Program Director
Keselj, V., BSc (Belgrade), MMath, PhD (Waterloo)

Program Administrator
Bolivar, A. Telephone: (902) 494-2740

Faculty
Bliemel, M., BSc (Queen’s), MMS (Carleton), PhD (McMaster)
Bodorik, P., BSc (Calgary), MEng, PhD (Carleton)
Deturbide, M., BSc (Dalhousie), BJ (King’s), LLB, LLM (Dalhousie)
Gao, Q., MASC, PhD (Waterloo)
Keselj, V., BSc (Belgrade), MMath, PhD (Waterloo)
Leach, E., BComm (Dalhousie), MBA (Dalhousie), PhD (Illinois)
Marche, S., BA (Royal Military College), MED (Alberta), PhD (LSE)
McAllister, M., BMath (Waterloo), MSc, PhD (UBC)
Milios, E.E., Dipl Eng (National Technical University), Sm & EE, PhD (MIT)
Rau-Chaplin, A., BA (York), MCS, PhD (Carleton)
Rosson, P.J., Dip. MS (Salford), MA (Lancaster), PhD (Bath)
Srinivas, S., BEng (Bangalore), PhD (Inst. Of Science, Bangalore)
Trappenberg, T., MSc, PhD (Aachen)
Watters, C.R., BSc, MSc, MLS (Western), PhD (TUNS)
Zincir-Heywood, N., BSc, MSc, PhD (Ege)

Adjunct Professors
Duffy, J., BS, MS, PhD (Iowa State)
Lucic, V., E.E. Dipl Eng (Nis), MEng, PhD (Waterloo)
Marchand, Y., MCS, D.E.A. (Caen), PhD (Campiègne)

I. Introduction
The Faculty of Computer Science, in partnership with the Faculties of Management and Law, offers the degree of Master of Electronic Commerce.

Electronic Commerce is a discipline whose underpinnings lie equally in technology, business, and social and economic policy. Distinct from any of the disciplines that comprise it, this multi-disciplinary two-year program consists of core classes, elective classes, a research project, a research paper/thesis or a research thesis, and an industrial internship. Students study core topics in each of the three areas and can then concentrate on some topics by choosing electives from the Technology, Business, Law and Policy study areas. Visit the Electronic Commerce website at http://www.ecomm.dal.ca for a complete program description and for information concerning updates to the program’s regulations and class offerings. Email queries can be addressed to mec@cs.dal.ca.

II. Admission Requirements
Students entering this program will usually have completed a four-year bachelor’s program or graduate degree in Computer Science, Computer Engineering, Industrial Engineering, Business, Social Science (e.g. Political Science or Economics), Law, or other related disciplines. All applications are individually evaluated and students from other disciplines may be admitted.

Students must meet normal admission standards for the Faculty of Graduate Studies (for more information visit http://www.dalgrad.ca/admissions).

III. Program Outline
The program for full time students requires a minimum of two years to complete and consists of two terms of lectures and two terms of individually supervised research.

Term 1
The program starts regularly each fall, and we offer several specific introductory courses for electronic commerce each fall term. A full time student is expected to take four courses, including an eCommerce overview course (ECMM 6000), usually two of three introductory courses to specific disciplines (ECMM 6010/20/30 corresponding to technology/business/law) which are not in the specialty area of the students, and one elective from computer science, business, or law.

Term 2
The second term is dedicated to more specific studies leading to the specialization of each student. A full course load consists of four courses, the mandatory research methods course (ECMM 6040) and three electives. Elective courses are graduate courses from Business, Computer Science and Law which are relevant for electronic commerce and some special offerings for electronic commerce (ECMM 60XX). These are typically courses from the list of pre-approved elective courses (see below), but it is also possible to take other relevant courses with the permission of the executive committee.

Breadth requirement
It is necessary that the electives chosen by each student cover at least two of the three areas in the program. For example, a student who takes mainly business courses must take at least one elective from computer science or law.

Elective Classes
Candidates may study electives from graduate level classes in the Faculty of Computer Science, School of Business Administration, School of Public Administration, and the Faculty of Law if appropriate for the program and prerequisites are met.

It is not guaranteed that all courses listed will be offered each academic year.

Approved stream classes include the following:

Technology Oriented Classes
- ECMM 6014.03 Databases and Data Mining for Electronic Commerce
- ECMM 6018.03 Enterprise Networking for Electronic Commerce
- CSCI 6xxx.03 Graduate computer science elective - prerequisite: Permission of instructor or program coordinator

Business Oriented Classes
- ECMM 6022.03 IT Project Management (recommended)
- ECMM 6024.03 New Venture Creation - prerequisites: permission of instructor
- BUSI 6517.03 Managing the Information Resource - prerequisite: permission of instructor
- BUSI 6522.03 Knowledge Discovery and Data Mining - prerequisite: permission of instructor
ECMM 6010.03: Technology Issues for Electronic Commerce.
The goal of this class is to examine the technologies and infrastructure required to support electronic commerce. The class examines the major components of the infrastructure such as networks, databases and data warehousing, electronic payment, security, and human-computer interfaces.

ECMM 6014.03: Databases, Data Warehouses and Data Mining for Electronic Commerce.
Data warehousing and data mining are two emerging technologies which will have a profound effect on the role information plays in organizations. A data warehouse is a repository of data taken from multiple sources that supports querying and analysis tools. Data mining, the process of knowledge discovery from data in a data warehouse, is typically used for strategic planning and has great economic potential for organizations. This class covers key issues in data warehouse architecture, design of data warehouse schemas, design of metadata repositories, the creation, development and maintenance of warehouses, as well as tools and techniques for querying, analyzing and mining the warehouse data. Data mining techniques such as statistical and non-statistical supervised and unsupervised learning methods will be applied to problems drawn from the medical and business world.

ECMM 6018.03: Enterprise Networking for Electronic Commerce.
The objective of this class is to introduce practical issues for e-commerce applications through the combination of lectures, classroom demonstrations, self-learning, and project work. This course focuses on providing the tools and skills, and an understanding of the current practices and opportunities in electronic publishing, shopping, distribution, and collaboration through the use of client-side and server-side technologies, and network management. Problem areas in electronic commerce such as security (authentication and privacy) along with encryption will also be explored.

ECMM 6020.03: Business Issues for Electronic Commerce.
For years businesses have been using the computer and information technology to achieve internal efficiencies. With the convergence of Information Technology and telecommunications over the last decade, Electronic Commerce has emerged to redefine the way that these organizations do business with their suppliers, customers and support infrastructure such as distribution providers and financial institutions. In particular, the class will examine the recent and rapid growth of Electronic Commerce from four approaches: an introduction to Electronic Commerce; EDI and re-engineering; Electronic Commerce and the Internet; and organizational issues in implementing Electronic Commerce.

ECMM 6022.06: IT Project Management.
The class will cover the principles of management for Information Technology Projects. The history of project management is rooted in Civil Engineering and manufacturing. Information technology projects have several notable differences. Students will learn those differences as well as generic principles of project management. Through case studies and field investigations of actual IT projects, students will gain a real-world understanding.

CROSS-LISTING: BUSI 6523.03

ECMM 6024.03: New Venture Creation.
New Venture Creation is about entrepreneurship: the process of creating new businesses. It employs cases, experiential exercises, and a major project to expose students to the issues, problems, and challenges of creating viable new business. The project provides students with the opportunity, within the framework of a formal class, to explore and develop business ideas they have been considering or wish to investigate. The final output of the project is a feasibility study, business plan, and financing proposal for a new venture.

CROSS-LISTING: BUSI 6002.03
Public administration rhetoric often indicates that governments are reinventing themselves by using information technology. What is happening around the world with E-government? Using Canada as reference, this class reviews the development of management of information as it affects performance management, democracy, the nation state, accountability, network growth, productivity and access. Each student will be required to analyze an international country, state or province and its progression to e-government and relate that progress to activities in governments around the world.

Some of the topics covered are:

- Introduction to E-Government
- Service to Citizens
- Administration of E-Government
- Social Exclusion in the Digital Age
- Learning and Information Technology
- Knowledge Networks
- Personal Information and Information Technology
- Collaborative Networks
- The Dark Side of IT

EVALUATION: Each student will be required to analyze a non-Canadian country, state or province and its progression to e-government and relate that progress to activities in governments around the world. Recommendations for improvement should also be made. Each student negotiates with the professor for an appropriate country. Two papers, class participation and a final presentation based on the two papers, will determine the student's grade.

CROSS-LISTING: PUAD 6566.03

ECMM 6030.03: Issues in Law and Policy for Electronic Commerce.

This class will provide students in the proposed Master of Electronic Commerce degree programme with an overview of law and policy issues in relation to electronic commerce. The class will introduce students to Canadian, U.S. and international policy making institutions and processes, and will illustrate these processes using examples from the emerging domestic and international law relating to electronic commerce. The class will be taught in a lecture format.

ECMM 6040.03: Research Methods.

A transition to research-based learning for e-commerce students. The course addresses the challenges of the research paper, project, or thesis. Through lectures, seminars, discussion, and presentations, students identify leading e-commerce research topics, evaluate literature critically and produce a research proposal—the foundation to the program's final phase.

ECMM 6068.03: Internet and Media Law.

This class deals with the law that governs the dissemination of information and the regulation of information providers. In this class, "media" is defined broadly to include the internet. Topics that will be addressed include: defamation; liability of service providers; privacy issues; publication bans; media regulation; copyright issues; conducting business via the internet ("e-commerce") and media ownership. The impact of the internet on the legal regulation relating to each of these topics will be explored throughout the class.

ECMM 6903.03: Special Graduate Topics in Electronic Commerce.

ECMM 7010.12: Industrial Internship.

ECMM 7030.06: Research Paper in Electronic Commerce.
I. Introduction

Dalhousie University offers programs leading to Master's and Doctoral degrees in various branches of Engineering, Engineering Mathematics, Food Science and Technology. These graduate programs are offered through the Faculty of Engineering in accordance with the regulations of the Faculty of Graduate Studies and the Faculty of Engineering.

A. Areas of Study

Graduate programs are offered in Biological Engineering, Biomedical Engineering, Chemical Engineering, Civil Engineering, Electrical and Computer Engineering, Engineering Mathematics, Environmental Engineering, Food Science, Industrial Engineering, Mechanical Engineering, Materials Engineering and Minerals Resource Engineering, Petroleum Engineering, and Internetworking.

Biological Engineering

Programs offered are MEng, MASc, and PhD. Specific areas of Biological Engineering in which the Department has concentrated include biological waste management (disposal and reuse), biorobotics, agricultural engineering (drainage, soil erosion, farm machinery), aquacultural engineering, food processing engineering, renewable energy (solar and biomass), energy conservation in greenhouses, and pollution control (non-point source, wetlands). Please refer to the departmental entry, page 266, for additional information.

Biomedical Engineering

The School of Biomedical Engineering is a partnership between the Faculties of Engineering, Medicine and Dentistry. The programs offered are the MASC and PhD. Research interests include: biomaterials, bioelectricity and biomagnetism, medical imaging, physiological modelling, and rehabilitation. Please refer to the departmental entry, page 65 for additional information.

Chemical Engineering

The graduate program focuses on chemical process principles applied to environmental and energy resources. Topics include environmental considerations of combustion technology, fuel preparation, control of explosion hazards, development of innovative process control algorithms and treatment of industrial waste. Fundamental studies are done in mass transfer and rheology, Membrane Separation, Flotation, Coagulation, Gas-liquid System, Emulsification. Programs offered are MEng, MASc, and PhD. Please refer to the departmental entry, page 268, for additional information.

Civil Engineering

Programs offered are MEng, MASc, and PhD: Geotechnical Foundation Engineering, Structural Plastics, Wind Power Engineering, Timber Structures, Wood Engineering, Concrete Research, Geometric Design of Highways, Traffic Systems, Steel Structures, Structural Analysis, Wastewater Treatment, Water Pollution Control, Highway Materials, Environmental Engineering Hydraulics, Water Resources Engineering. Please refer to the departmental entry, page 90 for additional information.

Electrical and Computer Engineering

Programs offered are MEng, MASc, and PhD: Control Systems, Robotics, Instrumentation; Electric Power Systems; Electrical Machines, High-Voltage Engineering, Photovoltaic Solar Power Systems, Active and Switched-Capacitor Networks; Digital Communication Systems; Cardiovascular Dynamics, Medical Instrumentation, Medical Applications of Computers, Bioelectromagnetics; Ultrasonic Telemetry, Design of Integrated Circuits, Microprocessor-Based Systems. Please refer to the departmental entry, page 118 for additional information.

Engineering Mathematics

This is an interdisciplinary program between Engineering and Applied Mathematics, enabling mathematics and physics majors to carry out theoretical and numerical analysis of applied problems and engineering students to prepare mathematical models of engineering problems. Programs offered are MSc and PhD. Please refer to the departmental entry, page 131 for additional information.

Environmental Engineering

Interdisciplinary graduate studies and research are offered on a wide range of topics in Environmental Engineering: energy and environment, engineered wetlands and bioremediation, indoor air quality, soil erosion, water quality, waste management and remediation, pollution control and environmental assessment. This is an interdisciplinary program of the Faculty of Engineering leading the MEng and MASc degrees in Environmental Engineering and the PhD degree in Engineering. Contact the Faculty of Graduate Studies Office for more information.

Food Science

Research studies are offered on a wide range of topics in food processing, food microbiology, food chemistry, food rheology, microstructure, food engineering and fats and oils. Special emphasis is placed on seafood preservation, storage and handling. Programs offered are MSc and PhD. Please refer to the departmental entry, page 265 for additional information.

Industrial Engineering

Key areas of research interest in the Department are operations research modelling, mathematical optimization, production planning and control, modelling of economic systems, queuing theory, vehicle and crew scheduling, industrial ergonomics and work place design. Applications are primarily selected in the resource base industries of forestry, fishing and mining as well as the smaller sized local business. Programs offered are MEng, MASc, and PhD. Please refer to the departmental entry, page 174 for additional information.

Internetworking

The full fee Internetworking program has been designed in consultation with industry leaders to ensure that the graduates will have the core knowledge base for a rewarding career in the internetworking industry.
II. General Information

A. Fees
Information pertaining to fees and expenses is given in the “Fees” section of this Calendar.

B. Financial Assistance
Information pertaining to financial assistance and scholarships is given in the “Awards” section of this Calendar.

C. Health Insurance Requirement
Information pertaining to health insurance requirements is given in the “Fees” section of this Calendar.

D. Application Forms
Application forms may be obtained from the Office of the Registrar, Dalhousie University, Halifax, Nova Scotia, B3H 4H6, or through the university’s website on the Internet.

E. English Language Proficiency Requirement
Information pertaining to the English language proficiency requirements is given in the Faculty of Graduate Studies Regulations section of this Calendar.

F. Master’s Degrees
A student’s program of study for the Master’s degree may be either a research intensive program (MSc) or a coursework intensive program (MEng). A Master’s degree taken according to either program represents an equivalent standard of academic achievement. Note that a research Master’s degree is normally required to gain admission into the PhD program.

G. Class Requirement
At least three-quarters (75%) of the total class requirement must be taken at the University. The graduate student’s program submitted by the appropriate department and must be approved by the Engineering Graduate Studies Coordinator. Class requirements are given under the program requirements of the specific degrees.

H. Thesis/Project Requirement
A master’s candidate will be required to submit a thesis/project satisfactory to the Faculties of Graduate Studies and Engineering and to make an oral presentation of the work. Doctoral candidates must complete a thesis and oral defence in accordance with Faculty of Graduate Studies procedures, but are also required to meet Faculty of Engineering requirements.

I. Leave of Absence
Students may formally apply for a leave of absence in accordance with Faculty of Graduate Studies regulations (see Faculty Regulations in this Calendar).

J. Admissions Criteria
All candidates must meet the admissions requirements of the Faculty of Graduate Studies, and any specific admissions requirements as listed under each program.

K. Procedures and Guidelines for Master’s Theses and Projects

1. The Department is to ensure that supervisors are assigned to students as a prerequisite to admission. The Department must submit the name of the supervisor to the Engineering Graduate Studies Coordinator and the name will be officially recorded in the student’s permanent file. If the supervisor is not a full-time member of the Department a co-supervisor will be appointed from the Department.

2. Granting of credits to a student’s program of studies for classes taken prior to commencement of the program requires the recommendation of the Department and approval of the Faculty of Engineering normally in advance of registration. Note that some classes from local universities have been given “blanket” approval. Students should contact their departmental Graduate Coordinator for details.

3. The Department is to appoint a Supervisory Committee, within four months of the first registration, to be responsible for the Candidate’s program and thesis/project preparation. The membership of the Supervisory Committee is to be conveyed to Engineering Graduate Studies Coordinator for approval and recorded in the student’s permanent file. The Supervisory Committee will normally consist of the thesis/project supervisor, at least one other member of the department, and at least one other member from outside the department with special interests in the proposed area of study. The supervisor will be the chair of the Supervisory Committee.

4. The Supervisory Committee is required to submit a title for the student’s thesis/project report, on the prescribed form, to Engineering Graduate Studies Coordinator at least four months prior to the formal submission of the thesis/project. On approval by the Engineering
Graduate Studies Coordinator, the title will be recorded in the student’s permanent file.
5. A clean copy of the thesis/project report accompanied by the form “Appointment in an Oral Examination” must be submitted to the departmental Office at least 12 working days prior to the date of the oral defence. The department will co-ordinate the scheduling of the presentation and examination. The oral presentation and examination will not be scheduled until the following requirements for the student’s program of studies have been met:
 - Class work completed;
 - Seminar requirement and the graduate seminar completed;
 - Supervisory committee approved;
 - Thesis/project title approved; and
 - Moderator appointed.
6. The thesis/project report is to be prepared to conform with the standards of the Faculty of Graduate Studies or on the Faculty’s Website on the Internet.
7. The Department Head or his/her appointee (someone not involved as a member of the Supervisory Committee) shall be a moderator of the oral examination.
8. The student shall be advised by the Engineering Graduate Studies Coordinator of the approval of programs and the approval of thesis titles.
9. The student is required to deliver seminars according to the regulations of the Faculty of Engineering. The seminar requirement involves attending, and participating in, all Graduate Seminars held at the student’s department/program throughout the duration of the student’s residency period, as well as making at least one seminar presentation. The department/program graduate coordinator is responsible for organizing the Graduate Seminars, and for deciding whether a student has met the requirement.

III. Master of Applied Science (MASc)

A. Admissions Requirements
A candidate to be considered to the Master of Applied Science research program must have obtained, with a high scholastic standing, an undergraduate degree in engineering or a degree in science with honours, or the equivalent, from a recognized university.
Candidates for the above degree may be required to take additional undergraduate subjects as a preparation for advanced classes or to give the candidate a suitable engineering background, but such subjects are seldom considered as part of the graduate program.
B. Academic Regulations
Program Requirements
An MASc graduate program consists of not less than four half-credit classes or their equivalent, the graduate seminar and thesis selected upon the advice of the thesis supervisor. Not more than one senior level undergraduate class may be taken as part of the four class requirement.
Examination Requirement
All classes required to meet the degree requirements are considered essential classes and will be so designated by the Supervisory Committee. Essential classes can include any required undergraduate or prerequisite classes. Any classes taken in excess of the requirements are subject to approval by the supervisor. These classes will appear on the student’s transcript as regular classes.
All Master’s degree candidates must pass all graduate level classes with a grade of at least B-. Any approved undergraduate class taken by a Master’s candidate must be passed with a grade of at least B-. Graduate students are allowed to repeat only one class during their program in the Faculty of Engineering. Graduate students are not eligible to write supplementary examinations. Transfer credits from other universities will be considered on a case by case basis.
As well, all Master’s degree candidates must pass an oral examination of their thesis or project after it has been submitted in satisfactory form.

In addition to meeting the grade requirements, failure to maintain an acceptable academic standing will result in a student being asked to withdraw from the program. Failure to achieve the minimum mark as noted above shall be considered grounds for dismissal.

Time Requirement
A candidate for a Master’s degree will be required to spend at least twelve months’ full time work on class work and the thesis. All students are required to register each session to maintain eligibility to continue a program of studies. See Faculty of Graduate Studies Regulations for policies regarding the maximum length of time for degree completion and extensions.

IV. Master of Engineering (MEng)
A. Admission Requirements
A candidate to be considered for the Master of Engineering class work program must have obtained an undergraduate degree in engineering or its equivalent with high scholastic standing from a recognized university.
B. Academic Requirements
Program Requirements
The requirements for the class work Master of Engineering degree is not less than seven half-credit classes, the graduate seminar and the full-credit project. For the program requirements for the Master of Engineering (Internetworking), see section VI. Undergraduate classes, in the area of a student’s interest, not taken by the student for previous credit, may be included in the program, subject to prior approval. Not more than two classes may be undergraduate credits.
A project is required as a part of the program (one or two half-credits out of the required nine half-credits). Projects require the appointment of a supervisor and one supervisory committee member.
Individual departments will assess applicants and select students for the program in their respective departments. Students’ programs will be determined by the department in which the student is registered. All programs must have the approval of the department.
Examination Requirement
All classes required to meet the degree requirements are considered essential classes. Essential classes can include any required undergraduate or prerequisite classes. Any classes taken in excess of the requirements are subject to approval by the supervisor. These classes will appear on the student’s transcript as regular classes.
All Master’s degree candidates must pass all graduate level classes with a grade of at least B-. Any approved undergraduate class taken by a Master’s candidate must be passed with a grade of at least B-. Graduate students are allowed to repeat only one class during their program in the Faculty of Engineering. Graduate students are not eligible to write supplementary examinations. Transfer credits from other universities will be considered on a case by case basis.
As well, all MEng degree candidates must pass an oral examination of their project after it has been submitted in satisfactory form.

In addition to meeting the grade requirements, failure to maintain an acceptable academic standing will result in a student being asked to withdraw from the program. Failure to achieve the minimum mark as noted above shall be considered grounds for dismissal.

Time Requirement
The minimum time requirement for completing the program is twelve months. A student is required to register each session to maintain eligibility to continue his/her program of studies. See Faculty of Graduate Studies Regulations for policies regarding the maximum length of time for degree completion and extensions.
V. Master of Engineering/Master of Planning (MEng/MPlan); Master of Applied Science/Master of Planning (MASc/MPlan)

Admission to the MEng/MPlan and MASc/MPlan programs are suspended. The program will continue to be delivered to any current students until all students have graduated, or the time allowed for program completion has elapsed, or all students have left the program.

VI. Master of Engineering (Internetworking)

A. Admission Requirements
A candidate to be considered for the Master of Engineering in Internetworking program must have obtained an undergraduate degree in engineering or its equivalent with high scholastic standing. Applicants with industrial experience are encouraged to apply.

B. Academic Requirements

Program Requirements
The class requirement for the Master of Engineering in Internetworking is ten half-credit classes. An applicant may upon acceptance, request a challenge examination in up to two classes. Contact Internetworking office for details.

The program director or designates will assess applicants and select students for the limited number of seats available in the program. The program of study of each student will consist of the ten program classes in the approved sequence.

Examination Requirements
The ten program classes are considered required classes. All degree candidates must pass all classes with a grade of at least B-.

A project is optional. Students should seek advice from the Internetworking office.

Candidates will be required to pass an oral examination of their project after the report has been submitted in a satisfactory form.

Class Scheduling
The classes are scheduled one per month.

This delivery method has been chosen to accommodate the sequential nature of the program content.

VII. Master of Science (Engineering Mathematics)

A. Admission Requirements
For admission into the Master of Science program in Engineering Mathematics, a student must have completed with high standing, a Bachelor’s degree in Engineering or an honours (i.e. 4 year with research project or dissertation) Bachelor’s degree with at least two full year mathematics classes at the third year level, one of them in differential equations.

Applicants who do not meet the above requirements may be admitted to a Qualifying Program in which they would take additional classes which will raise their total preparation to the level of an honours degree. These additional classes and completion of the Qualifying Program will be considered a prerequisite to admission to the Master of Science program.

B. Academic Regulations

Program Requirements
The program will consist of at least 4 half-credit classes and a thesis selected upon the advice of the thesis supervisor. Not more than one class shall be at the final year undergraduate level and may be chosen from the offerings of the other Departments of the Faculty of Engineering and the Faculty of Computer Science.

Examination Requirement
All classes required to meet the degree requirements are considered essential classes and will be so designated by the Supervisory Committee. Essential classes can include any required undergraduate or prerequisite classes. Any classes taken in excess of the requirements are subject to approval by the supervisor. These classes will appear on the student’s transcript as regular classes.

All Master’s degree candidates must pass all graduate level classes with a grade of at least B-. Any approved undergraduate class taken by a Master’s candidate must be passed with a grade of at least B-. Graduate students are allowed to repeat only one class during their program at Dalhousie. Graduate students are not eligible to write supplementary examinations. Transfer credits from other universities will be considered on a case by case basis.

As well, all Master’s degree candidates must pass an oral examination of their thesis or project after it has been submitted in satisfactory form.

In addition to meeting the grade requirements, failure to maintain an acceptable academic standing will result in a student being asked to withdraw from the program. Failure to achieve the minimum mark as noted above shall be considered grounds for dismissal.

Time Requirement
A candidate for the degree of Master of Science in Engineering Mathematics will require at least twelve months to complete the degree. A student is required to register each session to maintain eligibility to continue his/her program of studies. See Faculty of Graduate Studies Regulations for policies regarding the maximum length of time for degree completion and extensions.

VIII. Master of Science (Food Science)

A. Admission Requirements
For admission into the Master of Science Program in Food Science, students must have a BSc degree from any recognized university in any of the following disciplines:
- Food Science;
- Dairy Science;
- Chemistry/Biochemistry;
- Microbiology;
- Nutrition or Home Economics with suitable background;
- or a Bachelor of Engineering.

Students will be considered for the program on the basis of undergraduate academic standing and background. Candidates without Food Science training at the undergraduate level will likely be required to attend appropriate undergraduate classes offered in the program. All candidates must meet the minimum admission requirements for the Faculty of Graduate Studies.

B. Academic Regulations

Program Requirements
The graduate program consists of not less than 4 half-credit classes (or their equivalent) and the graduate seminar and a thesis is selected upon the advice of the thesis supervisor. The graduate student’s program is submitted by the Food Science Program for review by Engineering Graduate Studies and Research Office.

Examination Requirement
All classes required to meet the degree requirements are considered essential classes and will be so designated by the Supervisory Committee. Essential classes can include any required undergraduate or prerequisite classes. Any classes taken in excess of the requirements are subject to approval by the supervisor. These classes will appear on the student’s transcript as regular classes.
All Master’s degree candidates must pass all graduate level classes with a grade of at least B-. Any approved undergraduate class taken by a Master’s candidate must be passed with a grade of at least B-. Graduate students are allowed to repeat only one class during their program. Graduate students are not eligible to write supplementary examinations. Transfer credits from other universities will be considered on a case by case basis.

As well, all Master’s degree candidates must pass an oral examination of their thesis or project after it has been submitted in satisfactory form.

In addition to meeting the grade requirements, failure to maintain an acceptable academic standing will result in a student being asked to withdraw from the program. Failure to achieve the minimum mark as noted above shall be considered grounds for dismissal.

Time Requirement
A candidate for a Master of Science in Food Science degree will be required to spend at least twelve months’ full-time work on class work and the thesis. A student is required to register each session to maintain eligibility to continue his/her program of studies. See Faculty of Graduate Studies Regulations for policies regarding the maximum length of time for degree completion and extensions.

Dates:
Deadlines for applications for MEng:
September: International Students: April 1st
Canadian Students: June 30th
January: International Students: August 31st
Canadian Students: October 31st

IX. Co-op Master’s Degrees
The Faculty of Engineering offers MASc (Co-op), MSc (Co-op) and MEng (Co-op) degrees. Participation in the co-op program requires a co-op research project suitable for a master’s thesis (for co-op MASc and MSc degrees) or a master’s project (for co-op MEng degree), and the student’s acceptance by a faculty member in the Faculty of Engineering as well as a suitable sponsoring organization. The faculty member who will supervise the graduate student will determine the suitability of a project for master’s level research.

The academic requirements for co-op master’s degrees in Engineering are identical to those for regular (i.e. non-co-op) degrees with the addition of a minimum of eight months, or up to twelve months, of co-op work term(s). During the work terms, the graduate student will work on a research project that will form the basis of his/her master’s thesis/project. The graduate student will conduct all or part of the research work as part of his/her co-op work at the employer’s site. Also, all co-op graduate students should complete the “Co-op Workshop” offered by the Technical Co-operative Education Office before going on a work term.

Academic/Work term schedules shall be designed by the Supervising Committee of the graduate student taking into consideration the requirements of the research project as well as the needs of the student and the employer. In developing the schedules, the Supervising Committees shall adhere to the following guidelines:

1. The last term before completion of the degree requirements shall be an academic term.
2. The first co-op work term in the MASc and MSc programs will normally be taken after completing at least three half-credit courses.
3. The first co-op work term in the MEng program will normally be taken after completing at least four half-credit courses.
4. Provided that conditions 1-3 above are satisfied, co-op work terms may be:
 - Alternate semesters
 - Summers only
 - One, two or three consecutive semesters
 - Parallel (part-time) with study
 - Other combinations

The normal upper time limits for the completion of co-op master’s degrees will be the same as those for non-co-op degrees, i.e. four years for full-time and five years for part-time studies. The Supervisory Committee of co-op master’s students will normally include the student’s industrial supervisor as a member, or if appropriate (based on Faculty of Graduate Studies and Faculty of Engineering regulations), as a thesis/project co-supervisor. This arrangement will be agreed upon by the academic supervisor and the company before the student begins the program.

X. Doctor of Philosophy
A. Admission Requirements and Procedures
A candidate to be considered for entrance into the PhD program must meet the admission requirements of the Faculty of Graduate Studies and must have:

- A research Master’s Degree in engineering from Dalhousie University or any other recognized university, or a Master of Science Degree or its equivalent from a recognized university, acceptable to the Faculty of Engineering (in which case, a candidate may be required to take extra subjects to provide a suitable engineering background); or,
- Acceptance for registration as a candidate for a research Master’s degree at this University.

A candidate registered for a Master’s Degree may be transferred to a Doctoral Degree on the recommendation of his/her department, according to the Regulations of the Faculty of Engineering. The recommendation will be reviewed by the Faculty of Engineering Departmental Graduate Coordinator.

An application for admission to the graduate program leading to the degree of Doctor of Philosophy should have a superior academic record and previous training or experience which indicates that the candidate should be able to do independent research.

Doctoral candidates are not admitted without appropriate funding to support the student and the program of research.

B. Health Insurance Requirement
Information pertaining to health insurance requirements is given in the “Fees” section of this calendar.

C. Academic Regulations
All doctoral programs are developed under the regulations and procedures of the Faculty of Graduate Studies (see Faculty of Graduate Studies Regulations in this Calendar) and each program must be approved by the Faculty of Engineering and the Faculty of Graduate Studies.

Class Requirements
Doctoral programs in Engineering normally require a minimum of four classes (i.e. four half-credits), the graduate seminar, plus a thesis. No undergraduate classes are allowed for credit in a Doctoral Degree program.

Thesis Subject Matter and Supervision
The thesis shall consist of an original investigation or design carried out under the immediate supervision of a member of the Faculty of Engineering who is also a member of the Faculty of Graduate Studies.

Admission from Master’s Degree
Based on starting from a Master of Applied Science Degree, a candidate must complete not less than four classes (i.e. four half-credits) and the graduate seminar. These classes will normally be selected in consultation with the research supervisor and supervisory committee, and must be approved by the Faculty of Engineering and the Faculty of Graduate Studies.

Thesis Requirement
A candidate will be required, as a major part of the program, to submit a satisfactory thesis embodying the results of original scholarship and independent research. See Faculty of Graduate Studies Regulations for information pertaining to doctoral theses.
Examination Requirements
All classes required to meet the degree requirements are considered essential classes and will be so designated by the Supervisory Committee. Essential classes can include any required undergraduate or prerequisite classes. Any classes taken in excess of the requirements are subject to approval by the supervisor. These classes will appear on the student’s transcript as regular classes.

A PhD degree candidate must pass all graduate level classes with a grade of at least B. Graduate students are allowed to repeat only one class during their program. Graduate students are not eligible to write supplementary examinations. Transfer credits from other universities will be considered on a case by case basis.

PhD candidates are also required to pass comprehensive examinations which normally take place within the fourth study term. Students who receive a “fail” on the comprehensive examination will be asked to withdraw. Students who receive a marginal fail may be permitted to rewrite once. See Procedures and Guidelines, Section 5, below.

As well, all PhD degree candidates must pass an oral examination of his/her thesis project after it has been submitted in satisfactory form, and in accordance with the Faculty of Graduate Studies regulations.

In addition to meeting the grade requirements, failure to maintain an acceptable academic standing will result in a student being asked to withdraw from the program. Failure to achieve the minimum mark as noted above shall be considered grounds for dismissal.

Time and Residence Requirements
A candidate for the PhD degree must spend the equivalent of three calendar years of full time work on lectures and the thesis. However, credit for one calendar year may be granted for a Master’s degree or its equivalent. A student is required to register each session to maintain eligibility to continue his/her program of studies. A PhD candidate shall spend at least two years in full time attendance of his/her research work at the University. See Faculty of Graduate Studies Regulations for policies regarding the maximum length of time for degree completion and extensions.

Procedures and Guidelines
1. The Department must ensure that supervisors are normally assigned to students prior to their registration. If the supervisor is not a full time member of the Department, a co-supervisor will be appointed from the Department. The Department is to submit the name of the supervisor to the Faculty of Graduate Studies and the name will be officially recorded in the student’s file.
2. Granting of credits to a student’s program of studies for classes taken prior to commencement of the program requires the recommendation of the Department and approval of the Faculty of Engineering Graduate Studies Committee. A request for this transfer of credits must be made to the Department before the student’s first registration or in the first term.
3. The supervisor is to appoint a Supervisory committee, within four months of the first registration, to be responsible for the Candidate’s program and thesis preparation. The membership of the Supervisory Committee is to be conveyed for approval to the Engineering Graduate Studies Coordinator and recorded in the student’s file. The Supervisory Committee will normally consist of the thesis supervisor, at least one other member from the department and at least one other member from outside the department with special interests in the proposed area of study. The supervisor will be the chair of the Supervisory Committee. The Supervisory Committee is encouraged to submit progress reports once every six months to the Department’s Graduate Co-ordinator.
4. The Supervisory Committee is required to submit a title for the student’s thesis report, on the prescribed form, to the Engineering Graduate Studies Coordinator at least seven months prior to the formal submission of the thesis. On approval by Graduate Studies, the title will be recorded in the student’s file and forwarded to the Faculty of Graduate Studies.
5. The Supervisory Committee shall be responsible for conducting the comprehensive examinations. The purpose of these examinations are to ensure that the student has a thorough understanding of the fundamentals in the student’s area of study and that the student has attained knowledge to an adequate level in the discipline. The comprehensive examination consists of at least two written examination papers and an oral examination conducted to meet the above objective. The written papers are to be set and assessed by examiners recommended by the Supervisory committee. The comprehensive examination shall normally be completed within the fourth session of study from first registration. A student shall be given at least three months notice of the examination. The topics and results of the examination will be conveyed to the Engineering Graduate Studies Coordinator on the prescribed form and will indicate “pass”, “fail”, or “re-examination”. Recommendation of the examining committee to re-examine shall only be permitted if the failure was marginal. Students receiving a recommendation of “fail” shall be required to withdraw from the program by the Registrar’s office. Re-examination of marginal students must be carried out within six months of the initial examination. Students requiring re-examination shall not necessarily be required to rewrite both written examinations. Students given the opportunity to rewrite shall only be permitted to rewrite once.

6. An Examining Committee is appointed in accordance with Faculty of Graduate Studies procedures prior to the formal submission of the thesis report. The Examining Committee normally consists of the Supervisory Committee and an external examiner. At least two members of the Examining Committee must be from the candidate’s Department. The composition of the committee is to be recorded in the student’s file. The names of three external examiners will be recommended to the Faculty of Graduate Studies. The External Examiner will be approached and appointed by the Faculty of Graduate Studies according to Faculty procedures.

7. A copy of the thesis must be submitted to the Faculty of Graduate Studies at least five weeks prior to the date of the oral defence. The copy will be sent to the External Examiner. The copy must be accompanied by the appropriate form. The oral presentation and examination will not be scheduled until the following requirements for the student’s program of studies have been met:
 i) Class work completed;
 ii) Thesis title approved;
 iii) The graduate seminar requirement completed;
 iv) Examining Committee established;
 v) Comprehensive examination passed;
 vi) A written report has been received by the Faculty of Graduate Studies from the external examiner.

8. The student shall be advised by the departmental office of the approval of programs, the results of comprehensive examinations, and the approval of the thesis title and committee.

9. The thesis is to be prepared to conform with the standards of the manual for the Preparation of Graduate Theses, available online at the Faculty of Graduate Studies.

10. The Associate Dean of Graduate Studies shall be the Chair of the Examination or shall appoint someone from the Faculty’s Panel of PhD Chairs. The oral defence and examination shall be carried out according to Faculty of Graduate Studies procedures.

Award of Degree
A candidate will not be awarded the PhD degree unless they have satisfied all the foregoing requirements.

XI. Class Descriptions
Please consult current timetable for up to date course offerings.

IDIS Series: Interdisciplinary Classes

IDIS 6003.03: Materials Science.
Advanced topics on the physical and thermal properties of representative materials (metals, ceramics, composites and plastics) are discussed in relation to thermodynamics and kinetics of phase transformations. The electrical properties of metals, semiconductors and insulators are reviewed in terms of the modification of these properties by chemical substitution. The relation of mechanical properties of the materials to the proper selection process for materials for a specific application is
discussed. Case studies are used to illustrate integration of the above topics.

IDIS 6004.03: Solid State Engineering.
An interdisciplinary class covering; selected topics in crystallography, including space groups and space lattices, bonding forces and the mechanism of crystal growth; imperfections in solids—vacancies, interstitial, dislocations and the properties of defects; the preparation of materials—metals, semiconductors, ceramics, ferrites, polymers, vapour deposition technique, growth of single crystals from solution, metal and vapour, the mechanical, electrical and magnetic properties of materials; the design of electronic devices, e.g., microwave devices such as ferrite isolators and parametric amplifiers and semiconductor devices, which utilize the special properties of materials prepared by the student. The experimental work will involve the synthesis of ferrites, semiconductors, etc., their examination by X-ray powder photographs and measurements of their properties such as Hall effect, etc.

IDIS 6006.03: Optimization in Engineering.
Nature and systems considered in engineering and physics have an abundance of examples where an optimum system status is sought. The course aims to provide the students with advanced theory of optimization and topics that arise in applications of the optimization techniques. The challenge of this course is to increase the utilization of the optimization methods by development and use of appropriate algorithms derived for specific problems in engineering and physics. They include those arising in VLSI design, computer engineering, chemical reactor control, in spin glasses as well as in networking, particularly in networks with frequently changing topology. State-of-the-art of the advanced optimization techniques is presented. Geometric interpretations, time-space decompositions and large- and small-scale considerations are stressed wherever possible.

INSTRUCTOR(S): A. Bogobowicz
FORMAT: Lecture 3 hours
PREREQUISITE: Permission from instructor
CROSS-LISTING: ECED 6650.03

IDIS 6110.03: Open Channel Hydraulics.
This advanced class will begin with a review of basic concepts of fluid flow. The class will deal with the energy principle and the momentum principle in respect to open channel flow; flow resistance in uniform and nonuniform flow computations; channel controls; channel transitions; and sediment transport.
Engineering Mathematics

Location: 1340 Barrington St.
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-6085
Fax: (902) 423-1801
Email: engineering.mathematics@dal.ca

Department Head
Phillips, W.J., BSc(Eng), MSc (Qu), PhD (UBC). Algorithms and implementation for communication networks

Professor Emeritus
Jaeger, L.G., BA (Cantab), PhD, DSc (London), DEng (Carleton, Memorial, TUNS), PEng, FRSE, FEIC, FCSCE

Professors
Fenton, G.A., BEng, MEng (Carleton), MA, PhD (Princeton), PEng.

Adjunct Professor
Dubay, R., BSc, MPhil (University of West Indies), PhD (DalTech), PEng.

Adjunct Associate Professors
Aslam, N., BSc, Mech (University of Engineering and Technology, Lahore), MEng, PhD (Dal)

I. Introduction
The Department of Engineering Mathematics offers programs leading to MSc and PhD degrees in Engineering Mathematics.

The program gives a specialization in Applied Mathematics together with the engineering background required for work with engineers and scientists on problems that require a combination of engineering insight and rigorous mathematical analysis. It also prepares the student for work on engineering problems in research centres and industry. The program is designed for students who have already completed an undergraduate program in Mathematics, Physics, Computer Science, or Engineering. See section on Engineering for general program regulations.

II. Class Descriptions
ENGM 6000.03: Directed Studies in Applied Mathematics.
This class is offered to graduate students enrolled in Applied Mathematics who wish to gain knowledge in a specific area for which no appropriate graduate level classes are offered. Each student taking this class will be assigned a suitable class advisor familiar with the specific area of interest. The student will be required to present the work of one term (not less than 90 hours in the form of directed research, and individual study) in an organized publication format.

ENGM 6610.03: Wavelets and Filter Banks.
This class explains wavelets and filter banks using both the language of filters and the language of linear algebra. The class concentrates on the underpinnings of this relatively young (1980's) subject which has now stabilized. Applications to the areas of image and video compression, speech, audio and ECG compression and denoising are presented.

ENGM 6611.03: Functions of Complex Variables.
This class is concerned with the theory of functions of complex variables and its applications in various branches of science and engineering. Topics included are: analytic functions, Cauchy's integral formulas, the calculus of residues, Taylor's and Laurent's expansions; the calculus of residues and its applications in computing integrals; the use of Bromwich contour and Nyquist stability criterion; the application of conformal mappings i.e. Schwartz-Christoffel transformation to the solution of fluid-flow, heat transfer and electrical potential problems; and the integral form of Poisson's equation.

ENGM 6612.03: Methods of Applied Mathematics I.
Laplace transformations and initial value problems, two point boundary value problems, Green's functions, eigenvalues and eigenfunctions, eigenfunction transforms. General integral transforms, finite Fourier transforms. Hankel transforms, Bessel's functions. PREREQUISITE: ENGM 3311.03, ENGM 3322.03

ENGM 6613.03: Methods of Applied Mathematics II.

ENGM 6621.03: Vibrations and Waves.

ENGM 6657.03: Numerical Linear Algebra.
The topics covered in this class include: matrix and vector norms, condition number, singular value decomposition, LU decomposition, QR decomposition, Cholesky decomposition, error analysis and complexity of matrix algorithms, Toepplitz matrix algorithms, orthogonalization and least squares methods, the symmetric and unsymmetric eigenvalue problems, and iterative methods. The student is expected to code most of the algorithms on the computer. PREREQUISITE: Ability to programme in C or Fortran.

ENGM 6658.03: Numerical Solution of Differential Equations.
This class begin with a study of solution techniques or ordinary differential equations. Then a review of the basic partial differential equations of engineering mathematics is undertaken. The finite difference method is used to discretize these equations and concepts of stability,
expected to code and validate an element appropriate to their specific integration techniques, completeness, and element tests. Students are expected to code and validate an element appropriate to their specific research interests.

PREREQUISITE: Familiarity with partial differential equations and numerical linear algebra.

ENGM 6660.03: Finite Element Solution of Non-Linear Partial Differential Equations.

This class covers aspects of the solution of non-linear partial differential equations. The class addresses such topics as common plasticity relationships, numerical implementation of various yield models, finite deformations, consistent linearization schemes, and theorems dealing with existence, uniqueness and stability. Students are expected to implement a non-linear finite element algorithm on the computer.

PREREQUISITE: ENGM 6659.03 is recommended

ENGM 6671.03: Applied Regression Analysis.

This class will emphasize practical rather than theoretical considerations and will make extensive use of computer packages. The topics to be covered include: simple linear regression, analysis of residuals and remedial measures, transformation of data, multiple, polynomial and weighted regression, model selection techniques, joint confidence regions, use of indicator variables, analysis of covariance and an introduction to non-linear regression.

ENGM 6675.03: Risk Assessment and Management.

This class introduces risk assessment and system reliability methodologies, from classical event trees to simulation. Examples of risk-based decision making analyses will be covered, ranging from oil exploration to environmental site remediation. The student will carry out a risk assessment involving design decisions on a project of their own choosing.

ENGM 6680.03: Ecosystems Modeling of Marine and Freshwater Environments.

Students develop and apply mathematical models of marine and freshwater ecosystems to study biological production, biogeochemical cycling etc. Lectures provide theoretical background for coupling nutrient and plankton dynamics, including parameterizing biological processes and physical effects. Computer sessions provide hands-on modelling experience. Students also critique literature and conduct an independent research project.

FORMAT: Lecture/Computer Programming and Discussion

CROSS-LISTING: OCEA 5680.03, ENGM 4680.03

ENGM 9000.00: Master’s Thesis.

ENGM 9530.00: PhD Thesis.
Applications must be submitted by January 15. Please consult the departmental Website for full, updated information, including deadline dates and details.

Those who wish to be considered as candidates for Killam awards must submit complete applications by January 31. At least one full-year seminar and a half-year seminar are required. Students who wish to be competitive should submit them by January 31. Those who wish to be competitive as candidates for Killam awards must submit complete applications by January 15. Please consult the departmental Website for full, updated information, including deadline dates and details.

II. Degree Programs

A. Master of Arts (MA)

For minimum time required to complete this program, see Section 1.3.1, page 21, in the Faculty of Graduate Studies regulations.

Class work must include a graduate seminar (half or full-year) in the thesis area; at least one graduate seminar in a field unrelated to the thesis; and additional seminars in English to make up the equivalent of two and a half full-year seminars. Master’s students must also complete ENGL 8500, a full-year non-credit Professional Development seminar, and ENGL 8000, the MA thesis prospectus, usually in the winter semester. With the approval of the Graduate Committee, a graduate class in another department relevant to the candidate’s thesis may take the place of one of the additional seminars, and under certain conditions a reading class may take the place of the seminar in the thesis area.

Before graduation all students are required to demonstrate some proficiency in at least one language other than English that is relevant to their studies.

A thesis, equivalent to two classes, is required.

Malcolm Ross Graduate Scholarship in English

Established by his colleagues and friends in memory of Malcolm Ross, distinguished literary scholar and editor and long-time member of the English Department. A graduate scholarship in the approximate amount of $1,200 to be awarded by the department’s Graduate Committee to an outstanding student entering the M.A. program in English.

B. Doctor of Philosophy (PhD)

For the minimum time required to complete this program, see Section 1.3.2, page 22, in the Faculty of Graduate Studies regulations.

In the first year, doctoral candidates must take the equivalent of 3 full-year graduate seminars and the full-year non-credit seminar ENGL 8500, Professional Development.

Candidates must take a qualifying examination, with written and oral portions, in the field (period and national literature) most germane to their intended thesis. The examination is to be taken no later than May of the second year in the program.

All graduate students in the Department are required to demonstrate some proficiency in at least one language other than English that is relevant to their studies.

Preparation and defence of a thesis are required.

Malcolm Ross Award in Canadian Literature

To be awarded at the discretion of the Department of English for an outstanding MA or PhD thesis in the field of Canadian Literature. McClelland and Stewart, publishers of the New Canadian Library series, have funded the award to honour Malcolm Ross, founding editor of the series and Professor Emeritus in the Department of English.

III. Class Descriptions

Graduate Seminars

Approximately six full-year seminars or the equivalent are offered each year. Students should consult the departmental Website about which of the following seminars will be offered.

ENGL 5000.03: Directed Readings I.
FORMAT: Individual instruction
RESTRICTION: Students may only register for this class with the written permission of a Faculty member and the Graduate Coordinator.

ENGL 5001.03: Directed Readings II.
FORMAT: Individual instruction
RESTRICTION: Students may only register for this class with the written permission of a Faculty member and the Graduate Coordinator.

ENGL 5002X.Y.06: Selected Readings in English.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
FORMAT: Individual instruction
RESTRICTION: Students may only register for this class with the written permission of a Faculty member and the Graduate Coordinator.

ENGL 5110X/Y.06: Middle English Literature.
A study of major and minor works in Middle English, including poetry by Chaucer, Langland, and the Pearl Poet. We will pay particular attention to language, manuscript transmission and cultural context.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): M. Furrow
FORMAT: Seminar
ENGL 5116.03: Gift and Exchange in Middle English Literature.

This class will consider the symbolic economies of gift and exchange as figured in key Middle English literary texts, particularly in relation to modern theories of the gift. Issues considered will include late feudal exchange, genre-inflected economics, literary production, and the aristocratic gift.

INSTRUCTOR(S): E. Edwards

FORMAT: Seminar

ENGL 5117.03: Medieval Romances.

A study of romances in Middle English, their origins, their context, their genre, their reception, and the ethical issues they were felt to or failed to embody.

INSTRUCTOR(S): M. Furrow

FORMAT: Seminar

ENGL 5118.03: Reading the Canterbury Tales (All of Them).

This class will provide an opportunity to read Chaucer's *Canterbury Tales* closely in its entirety, with a view to establishing over-arching connections, themes and concerns.

INSTRUCTOR(S): E. Edwards

FORMAT: Seminar

ENGL 5119.03: Chaucer - Dream Visions and Tales other than *Canterbury*.

This course will cover Chaucer's non-*Canterbury Tales* writings, including *Troilus and Criseyde, The House of Fame, The Parliament of Fowls, The Legend of Good Women,* and *The Book of the Duchess.* We will consider Chaucer's sources and predecessors as well as imitations and expansions such as Henryson's *Testament of Cresseid.*

INSTRUCTOR(S): K. Cawsey

FORMAT: Seminar

ENGL 5135.03: England's Late-Medieval Alliterative Poetry.

This seminar will survey such masterworks of the late-medieval period as Pearl, Sir Gawain and the Green Knight, as well as diverse lyrics and short poems, major romance-narratives and cycle-plays. Analysis of the poems' verbal resources, stylistic techniques and topical preoccupations will be conjoined to some questions of codicology and pertinent history. The class will build upon a basic undergraduate acquaintance with the Middle English language and canon, and will offer an introduction to manuscript studies.

INSTRUCTOR(S): M. Furrow

FORMAT: Seminar

ENGL 5227.03: Re-Imagining the Plot in Selected Shakespearean Tragedies.

Starting with Ben Jonson's Aristotelian account of plot -- "it behoves the action in a tragedy to be let grow, till the necessity ask a conclusion" -- this class explores the ways in which some of Shakespeare's tragedies adhere to or depart from the principles of Aristotle's Poetics.

INSTRUCTOR(S): J. Baxter

FORMAT: Seminar

ENGL 5231.03: Spenser, Shakespeare, Donne: Eros and Chastity.

How do Renaissance poets organize erotic experience? What forms (genres, styles, methods) do their orderings take, and what are their motives (personal, cultural, religious)? We will explore these and related questions by concentrating on selected works by Donne, Shakespeare, and Spenser.

INSTRUCTOR(S): J. Baxter

FORMAT: Seminar

ENGL 5234.03: Professing Poetry in the English Renaissance.

This class examines the emergence of the professional poet in England at the beginning of the 17th Century. What are the demands, the criteria, and the rewards of the profession? How different are the opportunities available to men and to women? The focus will include writers such as Ben Jonson, Aemilia Lanyer, John Donne and Lady Mary Wroth.

INSTRUCTOR(S): J. Baxter

FORMAT: Seminar

ENGL 5235.03: Milton's *Paradise Lost*.

This seminar is intended both for students who are familiar with the poem and for those who will be coming to it for the first time. We will read the poem closely, book by book, and examine the poem in its historical, intellectual, and literary contexts. At the same time, we will consider some exemplars of the major twentieth-century critical approaches to the poem.

INSTRUCTOR(S): L. Bennett, T. Ross

FORMAT: Seminar

ENGL 5236.03: Poetry and Rhetoric in Early Modern Culture.

The central aim of this class will be to evaluate the achievement of English Poetry during the sixteenth and early seventeenth centuries. We will question primarily through a study of short poems, their relation to the influential rhetorical works, and their relation to each other.

INSTRUCTOR(S): J. Baxter

FORMAT: Seminar

ENGL 5237.06: Gender in English Renaissance Drama.

This class will examine plays by Shakespeare and his contemporary dramatists in relation to the shifting and multiple discourses about gender in the sixteenth and early seventeenth centuries. As well as reading dramatic works by Shakespeare, Elizabeth Cary, Thomas Middleton, and John Webster, we will attend to cultural and theatrical sources, and current critical approaches.

INSTRUCTOR(S): C. Luckyj

FORMAT: Seminar

ENGL 5238.03: Othello and Its Afterlife.

This class focuses on a single play by Shakespeare as a key site where early modern notions of race, gender and class converge. It begins by interrogating the apparent stability of Shakespeare's text, which exists in alternative authoritative versions (Quarto and Folio) and is always mediated by the conditions of a playhouse in which white males play both women and blacks. We'll aim to unpack the complex, cultural constructions of gender and race with which this play is so deeply concerned by studying a range of contemporary discourses (primary source material on microfilm) as well as Shakespeare's own *Titus Andronicus,* which anticipates some of *Othello's* preoccupations.

INSTRUCTOR(S): C. Luckyj

FORMAT: Seminar

ENGL 5246.03: The Drama from Marlowe to Ford.

An exploration of the diversity of textual and theatrical practice within the canon (and at the margins) of Renaissance drama. Critical strategies will be pluralistic: both detailed analysis of particular scenes and wide-ranging discussion of cultural issues are encouraged. Playwrights to be studied include Marlowe, Heywood, Beaumont, Jonson, Webster, Middleton, and Ford.

INSTRUCTOR(S): R. Huebert

FORMAT: Seminar

ENGL 5250X/Y.06: Renaissance Dissident Writers.

A study of writers who don't share one or more of the normative Renaissance positions, or who have strong reasons for believing that the established order is set up in such a way as to exclude them. Some authors (Southwell, Winstanley, Eliza, Osborne) will be obscure; others (Marlowe, Donne) canonical.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

INSTRUCTOR(S): R. Huebert

FORMAT: Seminar

ENGL 5258.06: Early Modern Privacy.

An exploration of the development of privacy in early modern culture with reference to texts ranging from canonical poetry (by Donne and Marvell) to discursive life-writing (by Montaigne and Browne) to personal letters and diaries (by Dorothy Osborne and Anne Clifford). Is privacy necessarily the preserve of the privileged? Did puritanism promote or
ENGL 5265.03: Writing Women/Women Writing in Early Modern England 1540-1640.
This half-credit class explores the context and range of women’s writing in Tudor and Stuart England. Adopting a multidisciplinary approach, we will examine a range of works by and about women, from witchcraft trials and medical treatises, to poems, plays, translations and polemical pamphlets in an attempt to determine the relation of early women writers to their culture. Writers to be studied in depth include Mary Wroth, Elizabeth Cary, and Aemilia Lanyer.
INSTRUCTOR(S): C. Luckyj
FORMAT: Seminar

ENGL 5266.03: Mothers and Maternity in Early Modern England 1580-1670.
This class explores motherhood in the culture and literature of early modern England.
INSTRUCTOR(S): C. Luckyj
FORMAT: Seminar

ENGL 5267.03: Shakespeare’s Sister: Lady Mary Wroth.
Mary Wroth, the gifted and prodigious author of a prose romance, sonnet cycle, and pastoral drama, offers us a unique opportunity to study the literary achievements of one who was both (as a member of the Sidney family) heir to cultural privilege and (as an unchaste woman) a marginal and subversive figure. Her work will be studied in the context of early modern notions of gender, class, and authorship.
INSTRUCTOR(S): C. Luckyj
FORMAT: Seminar

ENGL 5268.03: Gender and Politics in Jacobean London 1610-1624.
The seminar will seek to understand the intersection between politics and gender during the turbulent Jacobean years. Beginning with the writings of King James himself, we will read widely in the prose, poetry and drama of the period 1610-1624, from Shakespeare and Webster to Lady Mary Wroth.
INSTRUCTOR(S): C. Luckyj
FORMAT: Seminar
PREREQUISITE: Admission to English Graduate program

ENGL 5271.03: Renaissance Friendships.
This seminar is concerned with a variety of the ways in which friendship was conceptualised in the classical and Renaissance theories of friendship, and with how it is imagined in literature of the English Renaissance.
INSTRUCTOR(S): G. Stanivucovic
FORMAT: Seminar

ENGL 5275.03: Voyeurism in Early Modern Culture.
The work of the seminar will fall into three major categories: (1) theories of voyeurism; (2) voyeurism in early modern art; and (3) voyeurism in early modern literature. Topics for discussion will include the ethics of voyeurism, the male gaze, surveillance, interiority, the eye of providence, and erotic fantasy.
INSTRUCTOR(S): R. Huebert
FORMAT: Seminar
PREREQUISITE: Admission to graduate study in English

ENGL 5276.03: Spectatorship in Early Modern England.
This seminar will focus on the subject of spectatorship in England in the early modern periods. We will use a number of works from the visual arts to begin an examination of how spectatorship was depicted in various texts from the early modern period.
FORMAT: Seminar

ENGL 5280.03: The Theory and Practice of Literary Pleasure.
An enquiry into some of the established ways of talking about literary pleasure, with a view to devising new and more persuasive ways of doing so.
INSTRUCTOR(S): R. Huebert
FORMAT: Seminar

ENGL 5290.03: Writing Illness in Early Modern Literature.
This Seminar examines the contexts and texts of early modern illness, considering the work of writers medical, literary, and popular. As well as examining the role of language in shaping the realities of mind and body, the class considers how those realities were shaped by a rapidly changing medical epistemology.
INSTRUCTOR(S): Bennett, L.
FORMAT: Seminar
PREREQUISITE: Admission to graduate program.

ENGL 5306.03: The Restoration Theatre.
This half-credit class traces various aspects of the English stage from 1660 to 1700. In addition to approximately a dozen plays, the class will consider the theatrical milieu of the period, including the audience, casts, and spectacular production techniques. Related political events and theoretical controversies will also be surveyed.
INSTRUCTOR(S): D. McNeil
FORMAT: Seminar

ENGL 5310X/Y.06: Restoration and Augustan Satire.
“ . . . a sort of Glass, wherein Beholders do generally discover every body’s Face but their Own.” Along with such definitions of “Satyr”, this seminar examines the major satirical texts and events from 1660 to roughly 1750. Among the topics for discussion will be coffeehouse culture, the popular press, and the battle of the sexes.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): D. McNeil
FORMAT: Seminar

ENGL 5315X/Y.06: The Eighteenth-Century English Novel.
This class is designed to provide a broad survey of the English novel from Behn to Austen. All the major forms will be considered: amatory fiction, the fictional memoir, the adventure narrative, epistolary fiction and the Scarron-like comedy of Henry Fielding. Other subjects that will be considered include the origins of the novel, the novel versus the romance and readership.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): D. McNeil
FORMAT: Seminar

ENGL 5316.03/5317.03: Studies in the Eighteenth-Century English Novel.
This half-credit class is devoted to the study of a special subject in the early English novel (e.g. Desire, the image of America, the comic novel, the rise of the female novelist).
INSTRUCTOR(S): D. McNeil
FORMAT: Seminar

ENGL 5331.03: Eighteenth-Century Constructions of Authorship.
This seminar considers the changing status of literary authorship in eighteenth-century England. Topics for discussion include patronage, plagiarism, literary biography, the advent of copyright, visual and satiric representations of authors, and the professionalization of letters.
INSTRUCTOR(S): T. Ross
FORMAT: Seminar
ENGL 5355.03: Reading Pope and Swift: Satire, Entrapment, Theory.
This class has two aims: to consider the virtues and limitations of reader-response criticism, and to assess the value of this approach in interpreting satiric works by Jonathan Swift and Alexander Pope. Of principal concern is the degree to which satire exerts a rhetorical and affective force upon readers that encourages them to work, to make meanings in negotiating twists and turns in the text, and to revise continually their own assumptions about what they are reading.
INSTRUCTOR(S): T. Ross
FORMAT: Seminar

ENGL 5355.03: Eighteenth-Century Popular Literature and History: An Interdisciplinary Approach.
This half-credit class engages in the interdisciplinary study of popular literature. Various theories of popular culture are considered. Students encounter relevant scholarship outside of literary criticism (e.g., art, legal, and economic history, social psychology, folklore and music) by way of an examination of selected episodes in eighteenth-century English life.
INSTRUCTOR(S): D. McNeil
FORMAT: Seminar

ENGL 5402.03: Literary Theories In/Of Romanticism.
This course will survey a number of the debates and key texts essential to the study of Romanticism, including material from the Romantic period (c. 1780-1837) on authorship, representation, aesthetics, genre, and mode, with some attention in the final weeks to major approaches to Romantic literature in the twentieth century.
FORMAT: Seminar

ENGL 5403.03: The Gothic Century: Romanticism and Gothic Literature from 1764-1864.
Romanticism have recently proposed the Romantic Century (1750-1850) to address changing idea of the field, and this class will explore the heuristic value of an overlapping Gothic Century, from Walpole's Castle of Otranto (1764) to LeFanu's Uncle Silas (1864).
INSTRUCTOR(S): J. M. Wright
FORMAT: Seminar

ENGL 5404.03: Ireland and the Geopolitical Imaginary in British and Irish Literature, c. 1750-1850.
This course will examine literary depictions of Ireland from the Romantic century (1750-1850) in light of what William Drennan called in 1799 the "policy of geography." Our focus will be literary texts by British and Irish authors that engage three overlapping geopolitical arenas: the transatlantic, Europe and the British Empire.
INSTRUCTOR(S): J. Wright
FORMAT: Seminar
PREREQUISITE: Admission to Graduate English Programme

A sustained exercise in "intertextual genetics", this class will uncover the dynamics of collaboration, debate and 'joint labour' at work in the production of texts by Coleridge and the two Wordsworth (William and Dorothy), and will consider the implications of this exercise for our ideas of literature: nature of poetry, identity, society and gender which these writers have bequeathed to us.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): J. Thompson
FORMAT: Seminar

ENGL 5407.03: Landscape and Loss: Nineteenth-Century Irish Literature.
This class will examine the representation of land – as property, landscape, and foundation of national identity – in nineteenth-century Irish literature with particular attention to the genres of topographical poetry, the "big house" novel, and the gothic, as well as the colonial context which complicated both the material relationship to the land and its cultural representation.
INSTRUCTOR(S): J. Wright
FORMAT: Seminar

ENGL 5411.03: Women and Men in the Romantic Era.
Beginning with a study of the changing roles of women in the Age of Revolution, this seminar will examine how men represented women and how women represented themselves at this time. Connections between gender and genre as well as feminist critiques of Romanticism will guide discussion.
NOTE: Students taking ENGL 5412 must register in both X and Y in consecutive terms; credit will be given only if both are completed consecutively.
INSTRUCTOR(S): R. Tetreault
FORMAT: Seminar

ENGL 5413.03: Dramatic Monologues and the Construction of Poetic Traditions.
This class takes as its starting point some influential "stories" that set out to explain how dramatic first-person poems became "in one form or another the norm" in the post-Romantic poetic tradition. These "stories" range from Robert Langbaum's classic 1957 study, The Poetry of Experience: The Dramatic Monologue in the Modern Literary Tradition, to Alan Sinfield's The Dramatic Monologue (1977), to Isabel Armstrong's reconstruction of the development of the dramatic monologue in Victorian Poetry: Poetry, Poetics and Politics (1993).
INSTRUCTOR(S): M. Stone
FORMAT: Seminar

ENGL 5414.03: Romantic Women Writers.
Contributes to ongoing feminist reassessments of "English Romanticism" by surveying key genres and forms to which women made notable contributions (the sonnet, the Jacobin & gothic novel, the heroic epistle) and examining the nature of the influence that writers like Wollstonecraft, Smith, Barbauld, Hemans and Baillie had on their contemporaries and are having on current scholarship.
INSTRUCTOR(S): J. Thompson
FORMAT: Seminar

ENGL 5415X/Y.06: Wordsworth and Coleridge.
The close literary relations between these Romantic authors often followed the class of a dialogue in which they responded to one another in alternating poems. Their disagreements over the locus of ultimate value and the solace of nature will be explored.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): R. Tetreault
FORMAT: Seminar

ENGL 5416.03: Brontë Disseminations.
This class focuses on a close study of works by the Brontës, with particular attention to the ways in which their texts have been disseminated in both high and low culture.
INSTRUCTOR(S): M. Stone
FORMAT: Seminar

ENGL 5417.03: The 1790s: The Revolutionary Decade.
This class focuses on the discourse of the 1790s, a turbulent transitional period in which vigorous debates about the rights of man and the wrongs of woman, the politics of class and race, reshaped literature even as they rocked the foundations of English society. Reading a range of canonical and non-canonical Romantic writers in their contemporary contexts, students will gain new insight into the origins of romanticism, as well as gaining a new perspective on current debates about the politics of literature.
INSTRUCTOR(S): J. Thompson
FORMAT: Seminar

ENGL 5418.03: The Poetics and the Politics of Literary Couplings: The Brownings In Their Cultural Contexts.
Drawing on theories of authorship, literary collaboration, gender and genre, this class studies the poetical interactions and innovations of the Brownings in the contexts of the cultural, social and political movements of the nineteenth century, and the reception practices that have shaped responses to literary couples.
INSTRUCTOR(S): M. Stone
FORMAT: Seminar
ENGL 5419.03: Digital Romanticism & Print Culture: The Case of John Thelwall.
This seminar will explore forms and functions of Romantic-era print culture, and its intersections with other cultural media from a perspective at once historical and practical, by offering students the opportunity to edit the works of the Romantic-era poet, orator, educator, political theorist and speech therapist John Thelwall.
INSTRUCTOR(S): J. Thompson
FORMAT: Seminar
PREREQUISITE: Admission to Graduate English (MA or PhD) program

ENGL 5420.03: Keats and Shelley.
Experiments in longer poetic forms by the younger Romantics will be the focus of this seminar. The literary rivalry between the two poets will help to guide discussion. Their disparate views on political action and on the adequacy of language will be explored.
INSTRUCTOR(S): R. Tetreault
FORMAT: Seminar

ENGL 5423.03: Race, Religion, Gender and Nation in Nineteenth-Century Literature.
This study of selected generically mixed British and American nineteenth-century texts investigates the intersections of race, religion, gender and nation. The class gives particular attention to historical connections linking the anti-slavery movement in the United States with British working class activism, the Italian liberation movement, and nineteenth-century Zionism.
INSTRUCTOR(S): M. Stone
FORMAT: Seminar

ENGL 5426.03: The Ethics of Victorian Fiction.
This course examines the Victorian debates about the morality of fiction, about the ethical and philosophical implications of particular narrative choices, and about the social and moral role (real and ideal) of the novel. Readings include selected Victorian novels along with 19th and 20th-century theoretical writings on ethics and fiction.
INSTRUCTOR(S): R. Maitzen
FORMAT: Seminar

ENGL 5445X/Y.06: Subject Formations: Interdisciplinary Theory and the Bildungsroman.
This class brings an interdisciplinary body of theory to bear in studying representative examples of the Bildungsroman or "novel of formation" produced from the nineteenth century to the post-modern period, ranging from Jane Eyre to Bharati Mukherjee’s Jasmine. It draws on generic theories of the novel of development; theories of gender, race and class; theories of psychological and ethical development; gay and lesbian theory; and postcolonial theory. Theorists include E.S. Dallas, G.H. Lewes, George Eliot, Mathew Arnold, Henry James, F.R. Leavis, Wayne Booth, Martha Nussbaum, Cora Diamond, J. Hillis Miller, David Parker and Tobin Siebers; novelists include Jane Austen, Charles Dickens, George Eliot, Henry James, Joseph Conrad and Mark Twain.
INSTRUCTOR(S): R. Maitzen
FORMAT: Seminar

ENGL 5465.03: Victorian Women Writers.
This class explores examples of ethical criticism of fiction from the 19th and 20th centuries along with 19th and 20th century theoretical or philosophical paradigms. Theorists include E.S. Dallas, G.H. Lewes, George Eliot, Mathew Arnold, Henry James, F.R. Leavis, Wayne Booth, Martha Nussbaum, Cora Diamond, J. Hillis Miller, David Parker and Tobin Siebers; novelists include Jane Austen, Charles Dickens, George Eliot, Henry James, Joseph Conrad and Mark Twain.
INSTRUCTOR(S): R. Maitzen
FORMAT: Seminar

ENGL 5424.03: Postcolonial Intertextualities and Victorian Ghosts: Dialogues in Decolonization.
This course explores some of the intertextual and historical dialogues connecting postcolonial to nineteenth-century literature by examining contemporary texts that engage with Victorian texts.
INSTRUCTOR(S): M. Stone
FORMAT: Seminar

ENGL 5460.03: The Moral of the Story: Reading in Fiction and Ethics.
This class studies examples of ethical criticism of fiction from the 19th and 20th centuries along with novels which test or exemplify various theoretical or philosophical paradigms. Theorists include E.S. Dallas, G.H. Lewes, George Eliot, Mathew Arnold, Henry James, F.R. Leavis, Wayne Booth, Martha Nussbaum, Cora Diamond, J. Hillis Miller, David Parker

ENGL 5446.03: Victorian Women Writers.
This class explores examples of ethical criticism of fiction from the 19th and 20th centuries along with 19th and 20th century theoretical or philosophical paradigms. Theorists include E.S. Dallas, G.H. Lewes, George Eliot, Mathew Arnold, Henry James, F.R. Leavis, Wayne Booth, Martha Nussbaum, Cora Diamond, J. Hillis Miller, David Parker and Tobin Siebers; novelists include Jane Austen, Charles Dickens, George Eliot, Henry James, Joseph Conrad and Mark Twain.
INSTRUCTOR(S): R. Maitzen
FORMAT: Seminar

ENGL 5465.03: Victorian Women Writers.
This class explores examples of ethical criticism of fiction from the 19th and 20th centuries along with 19th and 20th century theoretical or philosophical paradigms. Theorists include E.S. Dallas, G.H. Lewes, George Eliot, Mathew Arnold, Henry James, F.R. Leavis, Wayne Booth, Martha Nussbaum, Cora Diamond, J. Hillis Miller, David Parker and Tobin Siebers; novelists include Jane Austen, Charles Dickens, George Eliot, Henry James, Joseph Conrad and Mark Twain.
INSTRUCTOR(S): R. Maitzen
FORMAT: Seminar

ENGL 5424.03: Postcolonial Intertextualities and Victorian Ghosts: Dialogues in Decolonization.
This course explores some of the intertextual and historical dialogues connecting postcolonial to nineteenth-century literature by examining contemporary texts that engage with Victorian texts.
INSTRUCTOR(S): M. Stone
FORMAT: Seminar

ENGL 5460.03: The Moral of the Story: Reading in Fiction and Ethics.
This class studies examples of ethical criticism of fiction from the 19th and 20th centuries along with novels which test or exemplify various theoretical or philosophical paradigms. Theorists include E.S. Dallas, G.H. Lewes, George Eliot, Mathew Arnold, Henry James, F.R. Leavis, Wayne Booth, Martha Nussbaum, Cora Diamond, J. Hillis Miller, David Parker

ENGL 5424.03: Postcolonial Intertextualities and Victorian Ghosts: Dialogues in Decolonization.
This course explores some of the intertextual and historical dialogues connecting postcolonial to nineteenth-century literature by examining contemporary texts that engage with Victorian texts.
INSTRUCTOR(S): M. Stone
FORMAT: Seminar

ENGL 5460.03: The Moral of the Story: Reading in Fiction and Ethics.
This class studies examples of ethical criticism of fiction from the 19th and 20th centuries along with novels which test or exemplify various theoretical or philosophical paradigms. Theorists include E.S. Dallas, G.H. Lewes, George Eliot, Mathew Arnold, Henry James, F.R. Leavis, Wayne Booth, Martha Nussbaum, Cora Diamond, J. Hillis Miller, David Parker

ENGL 5424.03: Postcolonial Intertextualities and Victorian Ghosts: Dialogues in Decolonization.
This course explores some of the intertextual and historical dialogues connecting postcolonial to nineteenth-century literature by examining contemporary texts that engage with Victorian texts.
INSTRUCTOR(S): M. Stone
FORMAT: Seminar

ENGL 5460.03: The Moral of the Story: Reading in Fiction and Ethics.
This class studies examples of ethical criticism of fiction from the 19th and 20th centuries along with novels which test or exemplify various theoretical or philosophical paradigms. Theorists include E.S. Dallas, G.H.

ENGL 5523.03: Postmodern Fiction.
This course is designed to introduce students to the theory and practice of postmodern fiction, covering representative texts from the 1960s to the present.
INSTRUCTOR(S): A. Enns
FORMAT: Seminar
PREREQUISITE: Admission to Graduate English Program

ENGL 5530.03: Irish Literature and Bilingualism.
This will be a broad examination of some key texts of 20th century Irish culture. We will pay special attention to Irish culture ad bi-or multilingual, and will also pay some attention to the play between media forms such as film, television and radio. The complex politics of language in Ireland will be a recurring topic.
FORMAT: Seminar

David Kynaston begins his social history of postwar Britain, Tales of a New Jerusalem, with the end of WWII and the election of a Labour government in 1945. He plans to conclude the series with the election of Margaret Thatcher in 1979. This seminar will examine selected British novels from 1945-1979, and trace the shifts in social and political attitudes that took place between these two elections.
FORMAT: Seminar

ENGL 5545.03: George Orwell and the Politics of the Plain Style.
This class examines a wide selection from Orwell’s documentaries and other non-fiction, as well as his six novels in addition to the significant predecessors to Nineteen Eighty-Four - Yevgeny Zamyatin’s We and Aldous Huxley’s Brave New World. We will also evaluate claims recommending and criticizing plainness of literary style.
INSTRUCTOR(S): A. Stewart
FORMAT: Seminar

ENGL 5562.03: Telling the Truth in America: Franklin to Faulkner.
This course will examine the importance of the concept of truth in American literature and culture, and how it is reflected in the writings of a number of writers and thinkers from the Puritans to the twentieth century. Special attention will be given to the works of William Faulkner.
INSTRUCTOR(S): D. Evans
FORMAT: Seminar
ENGL 5605.03: The Travel Book in Canada: Authorship and Audience, 1670-1870.
This class considers English-language travel reportage from what is now Canada, 1670-1870, in the form of journals, letters, and narratives. It focuses on the material and institutional circumstances in which texts were produced, as well as their contemporary reception.
INSTRUCTOR(S): B. Greenfield
FORMAT: Seminar

ENGL 5625.03: Studies in Modern Canadian Poetry.
This class studies a selection, which varies from time to time, of major figures in Canadian poetry, from the beginning of the twentieth century to the present day. A mixture of theoretical approaches is encouraged.
INSTRUCTOR(S): Staff
FORMAT: Seminar

ENGL 5635.03: Representation of the Urban in Canadian Literature.
This course will challenge our learned associations of Canada as an inherently uninhabited space, and consider the role of the Canadian urban landscape in producing cultural images and myth.
FORMAT: Seminar
PREREQUISITE: Admission to the Graduate English Program

ENGL 5650.03: Nations Within: The Politics and Poetics of Native American Literature.
Literature by First Nations writers poses a challenge to the ideas of nation and national literature. The study of Native Literature asks us to consider seriously the politics of literary representation and the way this politics is conditioned by literary reception.
INSTRUCTOR(S): R. Hulan
FORMAT: Seminar

ENGL 5670.03: Canadian Editions.
This course will examine ways in which editors of literary texts by English and Native Canadian authors contribute to the construction and interpretation of these texts, mediate translations from oral performance to print, facilitate reconstructions of “corrupted” texts and recoveries of "lost" texts, and chronicle material histories of textual production.
INSTRUCTOR(S): D. Irvine
FORMAT: Seminar

ENGL 5675.03: Editing Canadian Modernism.
Beginning with the McGill Movement in the 1920s, this course will follow the activities of poets and editors of modernist little magazines in Canada through the mid-1950s.
INSTRUCTOR(S): D. Irvine
FORMAT: Seminar
PREREQUISITE: Admission to Graduate English (MA or PhD) program

ENGL 5680.03: Writing in Canadian: Globalization and Contemporary Canadian Literature.
Beginning with an introduction to debates about globalization and literary studies, this class explores the tension between the local and the global in contemporary Canadian literature. In an attempt to understand the relationship between cultural identity, nationalism, and literature in Canada, we also consider the popular scholarly reception of books on our reading list.
INSTRUCTOR(S): C. Dawson
FORMAT: Seminar

ENGL 5700.03: South African Literature in a Century of Struggle.
At the center of all South African anti-apartheid writing, from the manifesto to the poem, is the following question: what is the relationship between writing and fighting? This class will explore the ways in which ethical and political relations have been imagined, revised, and represented in twentieth-century South Africa.
INSTRUCTOR(S): A. Brittan
FORMAT: Seminar

ENGL 5805.03: Walt Whitman and Emily Dickinson.
A close study of the works and lives of two great American poets of the nineteenth century.

INSTRUCTOR(S): B. Greenfield
FORMAT: Seminar

ENGL 5811.03: American Lives.
Drawing on a wide range of experiences and texts from the eighteenth and nineteenth centuries, this class is an exploration of possible lives, of the give and take between literary imagination and the other determining forces of life.
INSTRUCTOR(S): B. Greenfield
FORMAT: Seminar

ENGL 5812.03: Ideas of the Western.
This course will deal with representations of the American West in fiction and film, exploring the various cultural, social, and political functions that those representations have served.
INSTRUCTOR(S): D. Evans
FORMAT: Seminar
PREREQUISITE: Admission to Graduate (MA or PhD) program

ENGL 5813.03: Literature of the American Prison.
This course will examine literary depictions of the prison in the US, paying particular attention to writings by prisoners. The course will also survey the modern prison's larger relations to literature, from the eighteenth century and sensationalist literature through to the current period of mass imprisonment and contemporary political autobiography.
INSTRUCTOR(S): J. Haslam
FORMAT: Seminar
PREREQUISITE: Admission to Graduate English (MA or PhD) program

ENGL 5814.03: The Afterlife of Henry James.
This course approaches the fiction of Henry James by way of its reception – history. A representative of James’s fiction will be studied, along with criticism of that fiction, biographies of James, film adaptations, and novels about James or responding to works by him.
INSTRUCTOR(S): R. Perkin
FORMAT: Seminar

ENGL 5815X/Y.06/5817.03: American Travel/American Literature.
This class explores the connections between the rich archive of travel reportage from the eighteenth and nineteenth centuries and American works of fiction and poetry during the same period. An hypothesis of the class is that travel genres exerted a profound influence on the American literary imagination of the nineteenth century.
NOTE: Students taking ENGL 5815 must register in both X and Y in consecutive terms; credit will be given only if both are completed consecutively.
INSTRUCTOR(S): B. Greenfield
FORMAT: Seminar

ENGL 5821.03: American Utopias.
In this course, we will focus on utopian and dystopian literature of the nineteenth century, while framing that focus with reading from earlier periods and from the twentieth century. We will study a variety of topics, examining both literary Utopias and actual utopian societies in the US, but the course will be designed to allow student entry points into other areas not explicitly covered.
FORMAT: Seminar

ENGL 5828.03: Ralph Ellison’s America.
This half-year class will consider the vision of America that emerges from the work of Ralph Ellison. Perhaps more specifically, the class juxtaposes Ellison’s vision with the national image which has taken on the status of an originary myth. We will read Invisible Man and a selection of Ellison’s essays, as well as texts which will help contextualize Ellison’s ongoing discussion of the place of African Americans in the larger social and political landscape of the United States.
INSTRUCTOR(S): A. Stewart
FORMAT: Seminar

ENGL 5829.03: Turning a Lens Into a Mirror: The Stereotype in Ellison and Everett.
The stereotype can be a damaging trope, used to belittle, patronize, or praise. Stereotypes tend to be used against others in order to exert power.
ENGL 5830.03: Reading American Modernism.
This class looks at the initial reception of some central works of High Modernism as well as works that have been considered to be at its fringes. In doing so, it considers questions of how the canon was formed.
INSTRUCTOR(S): L. Diepeveen
FORMAT: Seminar

ENGL 5835.03: Finding a Centre: Making Literary History in Contemporary American Poetry.
Selecting from a wide range of poetic practices, this class considers the work of five or six contemporary poets. It does so in order to explore the contesting aesthetic principles critics and poets are currently using to construct versions of contemporary poetic history.
INSTRUCTOR(S): L. Diepeveen
FORMAT: Seminar

ENGL 5841.03: Literary Talk: Modernism.
This class discusses the variety of forms and strategies that were used to invent Anglo-American Modernism as a recognizable moment in literary history; that is, as a literary period, with its own techniques, central and marginal authors, paradigmatic stories, and boundaries.
FORMAT: Seminar

ENGL 5845.03: Forms of Modern Literary Production.
This class examines the context in which the texts of modernism were produced. It considers the roles of little magazines, anthologies, manifestos, and the rise of literary criticism as a profession.
INSTRUCTOR(S): L. Diepeveen
FORMAT: Seminar

ENGL 5850.03: Aesthetic Scandals of the Twentieth Century.
This course is based on some major aesthetic scandals of the twentieth century- literary, visual, and acoustic. The seminar will explore such things as recurrent patterns of behavior in scandals, formalism as a technique for dissipating scandal, and the relation of scandal to canon formation and cultural capital.
INSTRUCTOR(S): L. Diepeveen
FORMAT: Seminar

ENGL 5875.03: Twentieth-Century African-American Intellectual Debate.
This class offers a selection of the diversity of voices emanating from that American ethnico-cultural field still called "the black community." What is at stake in such a term at a time when the diversity of opinion among African-Americans is public and vast? Why is the label of "conservatism" seen as an accusation among many African-American thinkers? Do concerns with group solidarity overmatch, interfere with, or aid advancement of the group as a whole? The writings considered will provoke students to pose their own speculations on the issues raised.
INSTRUCTOR(S): A. Stewart
FORMAT: Seminar

ENGL 5911.03: Between Literature and Philosophy.
In this class we will consider the relations between philosophy and literature through the lens of several texts that seem to cross their respective discursive boundaries. In the words of philosopher Philippe Lacoue-Labarthe, philosophy has been defining itself against literature, insisting that it conveys truths that are absolute in nature and thus independent of its written medium. The theoretical texts we will read in the course, by authors such as Plato, Kierkegaard, Nietzsche, Blanchot, de Man, Derrida, Cixous and Irigaray, however, explore the texture of language and reveal philosophy’s dependence on literary devices. On the other hand, we will examine the texts that belong to the domain of literature yet engage in a philosophical reflection, such as Kafka’s parables, poetry by Waldrop and Celan, and novels by Michel Tournier and Jeanette Winterson.
INSTRUCTOR(S): D. Glowacka
FORMAT: Seminar
PREREQUISITE: Admission to graduate English (MA or PhD) program

ENGL 5916.03: The Rhetoric of Literary Criticism.
This seminar consists of the rhetorical and epistemological history of the literary-critical profession, examining arguments made by recent proponents of an increasingly inclusive discipline as well as those of their professional forebears. Readings include rhetorical as well as theoretical texts, and participants engage in close textual analysis as they interrogate the profession’s practices, assumptions, and beliefs.
FORMAT: Seminar
PREREQUISITE: Registration in the graduate program

ENGL 5917.03: Critical Theory: The Ethical Turn.
Under fire for a lack of commitment in the 1980s, critical theory (postmodernism, post structuralism, and deconstruction) takes an 'ethical turn' in 1990s to explore issues of social and political justice and to interrogate notions of identity, politics, and the social construction of gender. This class attempts to study some of these innovative critical interventions and to re-enact them in the classroom.
INSTRUCTOR(S): D. Glowacka, A. Brittan
FORMAT: Seminar

ENGL 5926.03: Travelling East.
This course will focus on travel writing about the Orient. We will consider such things as the historical nuances of orientalism, the “Eastern” question, the gender of the writer, the representation of the harem, the politics of the (un)veiling of women, and the genre of travel writing.
INSTRUCTOR(S): T. Heffernan
FORMAT: Seminar

ENGL 5928X/Y.06: Literary Couples and Collaborators.
This team-taught class questions paradigms of the “solitary genius” by approaching the works of literary couples and collaborators in conjunction with one another. It considers the dynamics of interpersonal and intertextual relationships; the differing trajectories of the “family romance”; mutual differences and difficulties with the muse; mentoring versus “mothering” a partner’s creativity; anxieties of authorship and of mutual influence; sexual/textual tensions; playing the role of an implied, ideal or actual reader/listener; and revising or editing a partner’s works as a form of co-authorship and/or co-option.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): J. Thompson, M. Stone
FORMAT: Seminar

ENGL 5935.03: Canonicity.
This class is intended as an experiment in “teaching the conflicts” that are currently vexing the profession of English literature about the nature of literary value and the “canon”. Readings for the class will include “classic” statements on value by Hume, Johnson, and Arnold, and more recent position papers on the theory of canonicity by such critics as Harold Bloom, Frank Kermode, Pierre Bourdieu, and others. Among the questions that may be addressed are the following: is aesthetic value enduring or relative to specific social formations? What do we mean when we say a work is good or a classic? Is there a test of time and should we abide by it? Is value something that inheres in a text or something assigned to it? How are literary canons formed and for what purpose? What is the relation between the canon and the curriculum?
INSTRUCTOR(S): T. Ross
FORMAT: Seminar

ENGL 5945.03: Representations of Slavery: Race, Writing and Gender.
This class focuses on narratives of and about slavery written over three centuries in a range of genres on both sides of the Atlantic. The selection of texts is designed to foreground the syncretic hybridity of cultural traditions and to problematize binary oppositions between black and white, and female and male authors, between history and literature, and between traditional and postmodern works.
INSTRUCTOR(S): M. Stone
FORMAT: Seminar

ENGL 5950.03: Literary Labours.
This seminar will address English-language working-class literature and culture in early twentieth-century North America. Readings will include the stories and histories of literary labour- not only of those who define
Environmental Engineering

Location: Faculty of Engineering
Dalhousie University, Sexton Campus
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-1288
Email: gsr@dal.ca
Website: http://www.registrar.dal.ca/calendar/gr/ENVE.htm

Director
Hill, J., BSc, MSc, PhD, environmental geology, acid rock management

Faculty
Ben Abdallah, N., BSc, MASc, PhD, PEng, PAg., solar energy, thermal energy storage, environmental control & air quality
Duinker, P., BScAg, MES, PhD, environmental impact assessment, climate change and forests
Gagnon, G.A., BScE, PhD, PEng, Water and wastewater treatment, water quality
Ghaly, A. E., BSc, MSc, PhD, PEng., waste management and utilization, bioremediation, biomass energy, environmental biotechnology
Gordon, R.J., BSc, MSc, PhD, bio-waste management, constructed wetlands systems, climate change
Hansen, D., BSc, MSc, PhD, PEng, hydrology, river hydraulics, flow through porous media, municipal water systems
Hughes, F.L., BSc, MSc, PhD, Energy security, modelling energy systems energy transition pathways
Jamieson, R., BEng, MASc, PhD, watersheds, contaminant transport, ecological engineering
Lake, C., BEng, PhD, geotechnical and geoenvironmental engineering, geosynthetics performance
Little, T., BScEng, MEng, PhD, wind energy, electric energy storage systems
Liu, L., BSc, MSc, PhD, Geo-Environmental engineering, environmental modelling and decision making
Madani, S.A., BSc, MSc, PhD, soil and water conservation, water quality
Pelot, R., BSc, MSc, PhD, risk analysis, operations research
Satish, M.G., BSc, BEcEng, MEng, PhD, PEng, water resources engineering, numerical modelling of flows, system optimization, open channel flow
Stratton, G.W., BSc, MSc, PhD, environmental microbiology, biodegradation of environmental toxicants, industrial wastes and pesticides
VanderZwaag, D., BA, MDiv, JD, LLM, PhD, environmental law
Walsh, M., BEng, MEng, PhD, water and wastewater treatment
Watts, K.C., BSc, MSc, PhD, biodiesel, alternative energy

I. Introduction
This program is comprised of faculty from different departments in the Faculty of Engineering who have research interests in the multidisciplinary field of environmental engineering. Graduate education in environmental engineering builds upon a strong foundation in science and engineering principles which are applied to the solution of important problems related to sustainable utilization of natural resources and protection of the environment.

Master of Engineering (MEng.) and Master of Applied Science (M.A.Sc.) degree programs are available for students interested in obtaining a graduate degree in Environmental Engineering. Students have a wide choice of classes and research topics to meet their particular interests and needs. Graduate level courses in the areas of energy and environment, soil and water quality management, waste management and remediation, pollution control and environmental assessment are available in the
Faculties and other faculties offering graduate studies at Dalhousie University.

Graduate students can also conduct field research studies on soil erosion, bio-chemical transport phenomena, engineered wetlands, bio-waste composting and bioremediation at the Bio-Environmental Engineering Centre jointly administered by the Faculty of Engineering and the Nova Scotia Agricultural College and located in Truro, Nova Scotia.

Facilities

Several modern, well-instrumented specialized laboratories in environmental engineering are housed in participating departments in the Faculty of Engineering. These specialized research laboratories include: biochemical analysis, water quality, waste treatment, soil erosion, environmental measurements and hydraulics.

Graduate students also have access to excellent research facilities in the Bio-Environmental Engineering Centre (BEEC), the Centre for Water Resource Studies (CWRS) and the Canadian Residential Energy End-use Data and Analysis Centre (CREEDAC).

Graduate students have the technical support of highly-qualified and experienced research support technicians and technologists in bio-chemical analysis, measurement and control systems, and design and manufacture of specialized research equipment.

II. Degrees

Master of Applied Science (MASc)

Refer to the Engineering section in this calendar for admissions requirements, academic regulations, program duration and other relevant information.

Master of Engineering (MEng)

Refer to the Engineering section in this calendar for admissions requirements, academic regulations, program duration and other relevant information.

III. Application Forms and Procedure

Application forms may be obtained from (a) the Office of the Registrar, (b) Faculty of Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2 or (c) through the University’s website on the internet.

Application forms, transcripts, two letters of reference and a statement on area of research interest should be sent to the Faculty of Engineering.

IV. Courses Offered

ENVE 6000.03: Directed Studies in Environmental Engineering.

This class is available to graduate students enrolled in a Masters programme in Environmental Engineering wishing to gain knowledge in a specific area for which no graduate class is offered. Students are assigned an advisor and are required to produce a formal report at the end of the class.

FORMAT: Self-study and directed research

ENVE 6800.03: Graduate Seminar in Environmental Engineering I.

All graduate students in Environmental Engineering are required to present their research findings in a 30 minute oral presentation and written report.

ENVE 9000.00: Master of Engineering Project.

ENVE 9001.00: Master of Applied Science Thesis.
Environmental Studies

Location: Kenneth C. Rowe Management Bldg 6100 University Ave, Suite 5010 P.O. Box 15000 Halifax, NS B3H 4R2
Telephone: (902) 494-3632 Fax: (902) 494-3728 Website: http://res MANAGEMENT.dal.ca

Resource and Environmental Studies

Director of School
Duinker, P.

Academic Program Coordinator (changes annually)
Beazley, K. F.

Professor Emeritus
Côté, R.P., BSc (Loyola), MSc (Memorial). Industrial ecology; marine environmental protection strategies; management of chemical hazards & wastes; environmental policy

Professors
Beazley, K.F., BLA (Guelph), MA (Waterloo), PhD (Dal), Biodiversity conservation; protected area system design; ecosystem and protected area management; focal species; landscape ecology and conservation biology; environmental ethics
Duinker, P., BScAgr (Guelph), MES (Dal), PhD (UNB). Forest management and policy, environmental impact assessment, sustainable development, sustainability indicators, public participation and conflict resolution, forest biodiversity assessment, wildlife habitat analysis, climate change and forests, public opinions on environment and natural resources

Associate Professor
Tyedmers, P. H., BSc (Hons) (Waterloo), LLB, PhD (UBC), Academic Program Coordinator. Ecological economics, biophysical accounting, sustainable development, fisheries and aquaculture

Assistant Professors
Adams, M., BEng, MSc (Royal Military College), PhD (Dalhousie). Industrial ecology, community energy systems (renewable), multi-criteria evaluation, sustainable industrial development, business sustainability, eco-industrial networks, rural economic development, community/industry inter-relationships
Castleden, H., BA (Manitoba), MEd, PhD (Alberta). Inequality and social/ environmental justice; and culture, location, and relations of power
Sherron, K., BES (Hons) (Waterloo), PhD (ANU). Landscape values; sustainable small communities; natural resources; environmental education; photo elicitation; spatial analysis; social network analysis; stakeholder engagement.

Cross-Appointed Professors
Adl, S., BSc, MSc, PhD (UBC), major appointment in Biology. Biology of microorganisms; ecology of decomposition; soil and sediment nutrient cycling; comparative cell biology
Binkley, M., BA, MA, PhD (Toronto). Major Appointment in Sociology and Social Anthropology. Maritime Anthropology; Coastal communities; Anthropology of Tourism; Women and Work; Qualitative and Quantitative Research Methods
Boxall, J., BA, BED (SMU), MA (Dal), major appointment in Dalhousie University Killam Library

Doyle-Bedwell, P., BA, LLB (Dal). Aboriginal women and justice, environmental issues and aboriginal interests in land, mi’kmaq people and health
Freedman, B., BSc, MSc, PhD (Toronto). Pollution, disturbance, forest harvesting, wildlife, biodiversity, conservation, urban ecology, ecological carbon credits
Gagnon, G., BScE (Guelph), PhD (Waterloo), PEng, major appointment in Civil Engineering. Water and wastewater treatment, water quality, environmental engineering
Grant, J., BA (UWO), MA (McMaster), MA, PhD (Waterloo), MCIP. Major appointment in Planning
Hughes, L.K., BSc (Carleton), MSc, PhD (Newcastle upon Tyne), major appointment in Electrical and Computer Engineering. Greenhouse gas studies; Halifax transportation; and sustainable energy systems. (http://www.dal.ca/~l Hughes2)
Rainham, D. [Elizabeth May Chair in Sustainability and Environmental Health] Broad research interests are directed at understanding the associations between human health and ecological integrity. Geographic information science, spatial analysis and eco-epidemiology provide some of the tools and theories to guide his research. Current research uses wearable global positioning system technology to investigate the influence of neighbourhood characteristics on human health and measures of environmental sustainability.
Sheehan, L, BSc (Alberta), MEDES, MBA, PhD (Calgary). Current research includes a stakeholder approach to strategic management and tourism destination management. Coauthor on research related to entrepreneurship and tourism, socially inclusive tourism, and risk and tourism.
VanderZwaag, D., BA (Calvin), MDiv (Princeton), JD (Arkansas), LLM (Dal), major appointment in Law. Environmental law reform, Canadian ocean law and policy, Arctic marine transportation
Wright, T.S., Bach. Environmental Studies (Waterloo), MES (Dal), PhD (Alberta), major appointment in Faculty of Science Undergraduate Environmental Programs. Environmental sustainability in higher education; indicators of environmental sustainability; institutional environmental change; environmental education (particularly applying experiential and transformative learning theories).

Adjunct Professors
Bard, S., BSc (Stanford), DU (Nantes, France), PhD (MIT). Consultant
Biro, A., BA (Toronto), MA, PhD (York). Acadia University
Brazner, J., BSc (Wisconsin), MS (Syracuse), PhD (Wisconsin)
Cameron, G.A., BA (SFU), MA (York), PhD (London), Nova Scotia Agricultural College.
Cameron, R. BSc (UNB), MSc (Acadia). Protected Areas Branch, Nova Scotia Environment and labor
Chappells, H., BSc (Hull), MSc (Stirling), PhD (Lancaster), Independent Consultant
Charles, A.T., BSc (Carleton), PhD (UBC), Saint Mary’s University
Clark, S., BA(Guelph), MSc (Saskatchewan), PhD (North Carolina State), Nova Scotia Agricultural College.
Cohen, F., BA, MEd (Harvard), PhD (Minn). Dalhouse-retired
Conrad, C., BA (SMU), MES, PhD (Wilfred Laurier). Department of Geography, Saint Mary’s University
Flemming, S., BSc, MSc (Acadia), PhD (Queens). Parks Canada
Furgal, C., BSc (Western), MSc, PhD (Waterloo). Trent University
Hanson, A., BSc (Mount Allison University), MSc, PhD (Western Ontario), Canadian Wildlife Services - Atlantic Region
Harper, K., BA (Middlebury College), MSc, PhD (Alberta), Environmental Programs, Faculty of Science, Dalhousie Univ.
Hatcher, A., BSc, MSc (Dalhousie), PhD (Univ. Western Australia, Perth).
Hatcher Research Associates.
Hermanutz, L., PhD (Western Ontario), Memorial University
Kernaghan, G., BSc, MSc (UBC), PhD (Alberta). Mount Saint Vincent University
Labor, P., BSc (Lakehead), MA (Trent), Nova Scotia Department of Environment and labor
Laroque, C., BSc (Saskatchewan), MSc, PhD (Victoria), Mount Allison University

142 Environmental Studies
I. Admission Requirements

As established by the Faculty of Graduate Studies, the entrance requirement for both degrees is an Honours Bachelor Degree or the equivalent ofhonours with at least a B average (3.0 GPA) from a university recognized by the Senate of Dalhousie University. A four-year Baccalaureate degree may be considered as the equivalent ofhonours if there is significant evidence of independent research capacity.

Deadline for completed applications is January 31.

A. The Master of Environmental Studies (MES)

For most students, the minimum program will occupy two calendar years (24 months). The minimum requirement is seven (7) half-credits and a thesis. The program is designed to broaden a student's perspective on natural resource and environmental issues while strengthening their research capabilities. Class work beyond the minimum load may be suggested in consultation with faculty advisor/supervisor.

The seven half credits are made up as follows:

Class Requirements:
- MGMT 5000.03: Management without Borders - a seminar class taken during the first year of study
- ENVI 5035.03: Research Methods taken in the first year of study
- ENVI 5009.06: The Graduate Seminar - all MES students are expected to attend and participate, although only students in the second year of their MES program are required to enroll.
- Thesis

Students can select a minimum of three electives in consultation with faculty advisor/ supervisor.

B. Master of Resource and Environmental Management (MREM)

The Master of Resource and Environmental Management (MREM) involves intensive coursework and an applied internship during a 16-month period. It graduates highly skilled professionals with the problem-solving tools and scientific (social and biophysical) understanding to create innovative solutions to resource and environmental issues.

The program’s goal is to produce graduates who can confidently and independently address both the biophysical and sociopolitical dimensions of resource and environmental problems. The MREM degree is an advanced “professional” degree aimed at management and practical problem-solving.

The program design can take much inspiration from the characterization of sustainable development of natural resources and environment provided by Kai Lee in his 1993 book entitled “Compass and Gyroscope: Integrating Science and Politics for the Environment.” He argued that the “compass” for sustainable development is appropriately provided by the science of adaptive management, and the “gyroscope” by the politics of principled and bounded negotiations.

The MREM involves three class-work and one internship terms. The internship will be undertaken during the summer months. The minimum class requirement is 13 half credits. This includes the internship and 5 electives. The elements of the MREM Program are:

Term One
- Required classes:
 - ENVI 5504.03: Management of Resources and the Environment
 - ENVI 5507.03: Environmental Informatics
- Plus two electives from a cognate discipline.

Term Two
- Required classes:
 - ENVI 5505.03: Biophysical Dimensions of Resource and Environmental Management
 - ENVI 5500.03: Sociopolitical Dimensions of Resource and Environmental Management
 - ENVI 5205.03: Law and Policy for Resource and Environmental Management
- Plus one elective from a cognate discipline.

Term Three
- ENVI 5501.03: MREM Internship

Term Four
- Required classes:
 - MGMT 5000.03: Management Without Borders
 - ENVI 5508.03: MREM Project Report
- Plus two electives from cognate disciplines.

C. Master of Library and Information Studies/Master of Resource and Environmental Management (MLIS/MREM)

A twenty-eight month course of study leading to the combined degrees Master of Library and Information Studies and Master of Resource and Environmental Management (MLIS/MREM). A total of 22 courses (8...
II. Classes Offered

All classes except MGMT 5000.03, ENVI 5009.03, ENVI 5035.03, ENVI 5501.03, ENVI 5508.03 and ENVI 9000.00 are open to students in other programs by permission of the instructor. Please note that not all classes are offered each year; class content may also vary from year to year. Please consult the department.

MGMT 5000.03: Management Without Borders: A Foundation Course for Masters Students in Management.
This course places management in its broadest context and helps students from diverse disciplines understand the complex social, economic, ecological, political and technological forces shaping 21st century leadership in the public, private and non-profit sectors. Key themes explored in the course include systems thinking, responsible leadership, sustainable economic development, stakeholder theory, risk management and knowledge management. A significant portion of the course is devoted to interdisciplinary / inter-professional group work. Students from different programs are brought together to work with a Nova Scotia organization that has identified a relevant and timely project topic for the group. The project provide students with the opportunity to hone important skills in team dynamics, inter personal communication, project management, managing scope and ambiguity, information gathering, research and writing professional reports. The course is team taught by leading faculty from across the Faculty of Management as well as guest speakers. Learning opportunities are delivered in a mix of formats, including lectures, tutorials, readings, multidisciplinary cases and group discussions.

FORMAT: Lecture/tutorial/group work/class participation

ENVI 5001.03: Environmental Assessment.

Students explore all aspects of environmental assessment (EA), with a focus on EA processes in Canada. The class examines professional practice in scientific, procedural and political dimensions. Current cases are studied opportunistically. Students learn the materials through case studies, seminars, group projects and research papers.

CROSS-LISTING: MGMT 4705.03

ENVI 5009X/Y.06: Graduate Seminar.

Through student delivered seminars, this course will assist graduate students work through difficult theoretical or methodological challenges related to their research and help them hone skills as presenters and discussants. Along the way, students will be exposed to emerging issues and findings across a range of contemporary areas of enquiry.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

ENVI 5010.03: Introduction to Environmental and Occupational Health.

This class will introduce students to many of the principles and concepts underlying environmental and occupational health, focusing on human health. It will review the nature of a variety of agents, including chemical, physical, biological, ergonomic and radiation hazards, how these agents are dispersed and transformed in the environment, the pathways of human exposure to these agents, and characterization of the health effects resulting from exposure. It will present methods for evaluating and controlling hazards, including occupational hygiene evaluation techniques and assessment models used in environmental settings. A number of case studies will be covered in detail, including indoor air quality, heavy metals exposure, and organic dust in workplace environments. Special topics will include risk communication and health promotion in the workplace. The class will conclude with a summary of legislative initiatives and standards which have been implemented to protect human health and an evaluation of their effectiveness.

CROSS-LISTING: CH&E 6001.03

ENVI 5021.03: Fisheries Management.

This interdisciplinary course focuses on the theory and practice of fishery management, with emphasis on Sustainable Fishery Systems. It will address the structure and dynamics of fisheries, and key themes in managing fisheries for sustainability and resilience, through class seminars and discussion, as well as attendance at related fisheries and coastal events.

CROSS-LISTING: MARA 5021.03

ENVI 5031.03: Economics for Resource and Environmental Management.

Economics for Resource and Environmental Management. This class is designed as a one term introduction to economics for graduate students who do not have any or limited undergraduate economics training. However, it is also suitable for students with prior economics training who are interested in exploring the environment-economy relationship further. The class begins with a brief but intense guided tour of economics. We then focus on key topics in environmental economics, including among others:

- the sustainable economy
- theory of market failure, public goods and externalities
- environmentalist critiques of economic thinking
- environmental and natural resource accounting
- economic valuation of the environment
- time in economic/environmental analysis

The final part of the class explores the theory and practice of a new discipline which better integrates environmental and economic analysis; namely the field of “ecological economics”. The class is open to students in other parts of the University who are interested in economy and environment.

CROSS-LISTING: MGMT 4031.03

ENVI 5035.03: Research and Design Methods.

This course focuses on research frameworks, formulation, and design in resource and environmental studies. It offers an overview appropriate for students from diverse disciplines and for students currently developing interdisciplinary approaches. Texts and readings provide guidance and serve as resources for development of MES thesis topics. Class discussion, guest speakers, videos, and practical exercises will also be used.

COURSE OBJECTIVES

- to assist students in developing a firm grasp of the underlying concepts and principles of research enterprise in science (both social and biophysical);
- to provide a broad overview of key methodological frameworks and approaches useful in resource and environmental studies;
- to encourage critical thinking to discern quality in research reports and proposals;

* to develop skills in preparing high-quality research proposals.

Please note that this course will not be discussing in depth specific methodological tools used by researchers in the field of resource and environmental studies; these will be the focus of Research Methods II in the Winter Term.

ENVI 5039.03: Indigenous Perspectives on Resource and Environmental Management.

This course explores issues concerning Indigenous peoples’ relationships with natural resources and settler populations within a broad socio-politico-environmental context. In developing an understanding of Indigenous peoples and natural resource issues, Indigenous perspectives must be central to the process. The best approach for learning about these perspectives is to extend the educational experience beyond the classroom. As such, this course has a substantial community-based component with the remainder being in-class. Throughout, we will review key Canadian legal cases affecting land use, resource access and management and environmental protection, as well as recent developments in other regions and in an international context. Diverse topics will be presented through community-based activities, readings, discussions, films, and guest speakers.

FORMAT: Field Course

PREREQUISITE: Permission of the instructor.

CROSS-LISTING: MGMT 4039.03
ENVI 5041.03: Environmental Education.
This class provides a broad examination of the conceptual bases of learning and understanding the environment. It will consider current educational efforts to promote values, attitudes, and behaviors protective of environmental integrity. Topics covered will include environmental education in formal school programs, experiential environmental education, environmental literacy initiatives, continuing professional education, and the role of the media in environmental education. CROSS-LISTING: MGMT 4041.03

ENVI 5044.03: Patterns for Sustainable Industrial Development.
It is becoming increasingly obvious that human economies depend on the products and services provided by healthy, functioning ecological systems. By studying the flow of materials and energy through industrial systems, industrial ecology identifies economic ways to lessen negative environmental impacts - through pollution prevention, innovative waste management strategies, improved energy efficiency, design for the environment, and promoting sustainability - within the carrying capacity of the surrounding ecosystems. The course will also include the social dimensions related to industrial ecology by focusing on the organization and management dimensions that are related to the reduction of industrial emissions, waste flows, energy use and usage of materials within in-company procedures and beyond the level of single organizations. The format will include lectures, seminars, discussion and guest speakers.

ENVI 5047.03: Biodiversity Conservation System Design and Management (Protected Areas Management).
Biodiversity conservation systems are increasingly necessary as human activities dominate the landscape. Precise prescriptions for their design are evolving. The theory and practice of conservation system design are explored through lectures, student presentations, discussions and exercises, as an active learning module involving the students, the instructor and the broader community. Topics include ecological integrity, ecological classification, focal species, population viability, habitat suitability and minimum critical area. CROSS-LISTING: MGMT 4047.03

ENVI 5048.03/5049.03: Directed Study.
Students may undertake an independent study if no similar class is available. A faculty member must agree to oversee the study, and approval by Program Coordinator is required. Only 2 Directed Study or Special Topics classes are permitted per program.

ENVI 5050.03: Special Topics in Environmental Studies.
A suitable combination of directed readings, seminars, written assignments, individual study and discussion or laboratory projects in a prescribed area. Each separate topic must be approved by the Graduate Coordinator, at the request, in writing, of the instructor. A course outline must be submitted before approval can be given.

ENVI 5051.03: Special Topics in Resource and Environment Management.
A suitable combination of directed readings, seminars, written assignments, individual study and discussion or laboratory projects in a prescribed area. Each separate topic must be approved by the Graduate Coordinator, at the request, in writing, of the instructor. A course outline must be submitted before approval can be given.

ENVI 5204.03: Coastal Zone Management.
This seminar is designed to introduce students to the concepts, principles, approaches and issues associated with integrated management of coastal zones worldwide. Coastal zones are critical areas of transition between land and sea, involving complex overlaps between resource uses and government jurisdictions. This class will address the legal, policy and administrative frameworks prevailing in Canada, but will do so within the global context of coastal zone management. Case studies and examples from developed and developing countries will be used to present practical approaches to the management of multiple uses in coastal zone, including community-based management models. The seminar will be conducted by lecture, formal student presentations, questioning and discussions of class material. CROSS-LISTING: LAWS 2041.03, MARA 5009.03

ENVI 5205.03: Law and Policy for Resource and Environmental Management.
This class provides students with an overview of substantive and procedural aspects of Canadian law and policy related to natural resources and the environment. The class will involve lectures, guest speakers, seminar discussions and class participation. Strong emphasis is placed on the Canadian legislative and regulatory framework and the unique character of the regulated subject areas such as toxic substances, air and water quality, fisheries, forests, agriculture, minerals, parks and biodiversity. The role of the common law in preventing or redressing environmental degradation will also be addressed. CROSS-LISTING: MGMT 4205.03

ENVI 5480.03: Environmental Ethics.
Ethics is the science of morals in human conduct. This class examines how moral standards apply to human conduct when related to the environment and the implications for resource and environmental management. It combines lectures, discussion, films and student presentations to critically analyze assumptions and alternatives, and to address issues of: social, environmental and intergenerational justice; animal rights; ecoligionist, deep ecological and social ecology perspectives; biocentrism and ecocentrism; intrinsic and instrumental values; and Aristotlean, utilitarian and Kantian approaches.

ENVI 5500.03: Socio-political Dimensions of Resource and Environmental Management.
A case-based approach is taken to the study of models, techniques and tools for governance, conflict resolution, social impact assessment, and public participation. Student groups undertake in-depth investigation of the socio-political elements of resource and environmental management experiences and projects in Atlantic Canada. CROSS-LISTING: MGMT 4500.03

ENVI 5501.03: The MREM Internship.
The internship consists of a 12-16 week placement with an organization involved in resource and environmental management. Students gain practical experience by working under professional supervision on key issues faced by the host organizations.

ENVI 5504.03: Management of Resources and the Environment.
Students explore key management concepts applied in managing natural resources and the environment. Topics include management paradigms, systems, principles, approaches, tools and institutions associated with a wide range of sectors such as fisheries, forests, agriculture, the coastal zone, oceans, parks and protected areas, energy, waste, water, and others. Case studies complement lectures, seminars and field trips. CROSS-LISTING: MGMT 4504.03

ENVI 5505.03: Biophysical Dimensions of Resource and Environmental Management.
This class will introduce students to techniques and tools employed in natural resource and environmental management programs and projects and engage students in case-based problem solving learning intended to understand how bio-physical information is utilized in assessing resource and environmental issues and contributing to effective decision-making. Some of the tools that will be reviewed are environmental impact assessment, environmental site assessment, life cycle analysis, environmental monitoring and adaptive environmental assessment and management. CROSS-LISTING: MGMT 4505.03

ENVI 5507.03: Environmental Informatics.
Environmental informatics refers to digital systems for environmental monitoring, analysis, communication and decision making. The course will cover: digital data and where to find it; how to access such data ethically and manage it intelligently; tools and techniques necessary for making best use of those data; and, a working knowledge of a subset of
those datasets, tools and techniques, including census, spreadsheets, database management systems and geographic information systems.

FORMAT: Lecture/discussion and lab
CROSS-LISTING: MGMT 4507.03

ENVI 5508.03: MREM Project Report.
The MREM Project Report and the associated oral presentation represent the culmination of the MREM program. Working with a faculty advisor, each student prepares a scholarly report and presents the findings orally on a topic related to the work undertaken in the MREM Internship.
PREREQUISITE: ENVI 5501.03: The MREM Internship

ENVI 9000.00: Master’s Thesis.

French

Location: 6135 University Avenue
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-6816
Fax: (902) 494-1626
email: french@dal.ca

Chairperson of Department
Frigerio, V.

Graduate Coordinator
Milicevic, J.

Professors Emeriti
Bednarski, H.E., BA (London), MA (Dal), PhD (Laval). Quebec literature and culture, literary translation
Bishop, M., BA, BEd (Manchester), MA (Man), PhD (Kent, Canterbury). Poetry and poetics, modern and contemporary literature, contemporary culture, French art, symbolism, nineteenth-century literature
Gordon, W.T., BA, MA, PhD (Toronto). Semantics, history of linguistics, translation theory, general linguistics, French second-language studies, contrastive studies
Kocourek, R., State Examination, PhD, CSC (Charles, Prague), McCulloch Professor, Chevalier dans l’ordre des Palmes Académiques

Professors
Frigerio, V., Beaux Arts (Geneva), BA (York), MA, PhD (Toronto), nineteenth-century literature, Romanticism, popular writing, Swiss-French literature, sociocriticism
Oore, I.Z., BA (Tel-Aviv), MA (Waterloo), PhD (Western). Quebec literature and culture

Associate Professors
Aissaoui, D., DEA (Metz), PhD (Ottawa)
Elson, C., BA, MA (Dalhousie), Dr de 3e cycle (Sorbonne). Modern and contemporary literature and culture, theory, philosophy, art, music, cinema
Milicevic, J. BA (Belgrade), MA, PhD (Montreal). Linguistics (morphology, lexicology, semantics, pragmatics). Translation
Mopoho, R., BA (Yaounde, Cameroon), MA, PhD (Montreal). Linguistics, lexicology, the science of translation

Assistant Professor
Masse, V., BA, MA (McGill), PhD (Toronto). Sixteenth-century literature, contact literature, exoticism

Adjunct Professors
Arpin, M.P., BA, MA (Manitoba), PhD (Laval), Saint Francis-Xavier University
Best, J., BA (UWO), MA, PhD (Strasbourg), Acadia University
Cauville, J., BA (Sorbonne), MA, PhD (UBC), Saint Mary’s University
Eggun, F.X., BA (St. Boniface), MA (Calgary), PhD (Manitoba), Mount Saint Vincent University
Gamble, D.R., BA, MA (Toronto), PhD (St. John’s, Oxford), Memorial University of Newfoundland
Macdonald, A., MA, MLitt (Aberdeen), PhD (Harvard), Memorial University of Newfoundland
Rowe, B., BA, BEd, MEd (St. John’s), PhD (Ottawa)
Steele, L., BA (UBC), MA (Man), PhD (Man), Mount Saint Vincent University
Tarpent, M-L., Licence-ès-Lettres (Paris), MA (Jhaca), PhD (Victoria)
Tulloch, S., BA (Sackville), BA (Peterborough), MA, PhD (Québec)
I. Degree Programs

A. Master of Arts (MA)

For general admission rules, see the Faculty of Graduate Studies regulations.

1. Classes and research leading to the MA degree in French are offered in the areas of French and francophone literature, linguistics, second language studies and culture. Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies and must show evidence of proficiency in spoken and written French. A minimum B+ average (3.30) from a university of recognized standing is required.

2. Students may be accepted on a full-time or a part-time basis. A full-time student must spend a minimum of one year in full-time graduate study. The minimum requirement to complete the full-time program is one year for holders of a French Honours degree or equivalent, and at least two years for holders of a general degree.

3. In a one-year full-time program, the equivalent of at least five university credits is required. This will consist of a thesis (usually equivalent to two credits) plus three 5000-level credits. In a two-year full-time program, students have to attain the equivalent of Honours status (see Undergraduate Calendar) and obtain the additional five credits as required in a one-year full-time program.

4. In addition to the five credits, all MA students are normally expected to take a half-credit class in Research Methods. When appropriate, up to one additional undergraduate or graduate credit may be required in order to improve the student’s proficiency in French. Part-time students carry no more than two and one-half full-credit classes during one year. A one-year full-time program corresponds to three years part-time. A two-year full-time program corresponds to six years part-time.

5. The thesis, written in French, is to be submitted and approved within the time limits set out in the Faculty of Graduate Studies regulations of this calendar.

B. PhD Program

For general rules, see the Faculty of Graduate Studies regulations.

The admission requirements are as follows: An MA thesis degree in French, an excellent French oral and written proficiency, a scholarly interest in one of the PhD thesis areas: all periods of French, Québec and Acadian literature and culture, with certain emphases, and the field of Linguistics, equally with particular emphases. Please consult the Department’s PhD document for full details.

The requirements after admission are the following: Two years of Dalhousie residency, four full graduate credits (from the departmental offerings in the years of residency), a second language examination (within two years after admission), preliminary and comprehensive written and oral examinations (not less than one year prior to submission of thesis), and the PhD thesis (normally written in French) and its oral defence.

II. Selection of Classes and Registration

It is the responsibility of students admitted to one of the graduate programs to report to the graduate coordinator in the week preceding the beginning of classes, or earlier. The purpose is a briefing interview, the final selection of classes, completion of class selection forms and the drawing up of the program of graduate studies. All graduate students must be registered before classes begin.

III. Class Descriptions

What follows is a list of PhD and MA classes. Classes required in particular cases will be specified in each student’s Program of Graduate Studies. Only a limited number of classes is offered in any given year. Descriptions of the graduate classes offered in a particular year will be made available to students.

FREN 5002.03: Méthodes de recherche/ Research Methods.
Introduction to bibliographical research and styles of presentation geared to individual thesis projects. Includes library workshops on electronic search tools and the establishment of a properly formatted working bibliography in the thesis field.
INSTRUCTOR(S): O. MacLennan, R. Mopoho, D. Aïssaoui

Linguistic study of literary texts from the 16th to 20th century.
INSTRUCTOR(S): Staff

FREN 5016.03: Aspects de la traduction/Topics in the Science of Translating.
This class aims to acquaint students with aspects of the theory and practice of translation. It assumes no prior knowledge of the field and focuses on: the presentation of key principles and concepts in the science of translating, a discussion of major theoretical issues, a description of the methodology and the cognitive process involved in translation, an examination of pertinent approaches and techniques. Class work for evaluation purposes consists of oral presentations, a mid-term and a final exam, a term paper and the translation of a variety of texts from French into English and vice versa.
INSTRUCTOR(S): R. Mopoho

FREN 5110.03: Lexicology Seminar/Seminaire de lexicologie.
The course is an advanced survey of the field of lexicology within the Explanatory-Combinatorial Lexicology paradigm. It focuses on fundamental concepts and formalisms needed to describe the structure of the lexicon and that of individual lexical units, combining theory with hands-on lexicographic experience, involving mainly (but not exclusively) French lexicon.
FORMAT: Seminar
PREREQUISITE: FREN 3022.03 or FREN 4011.03 or instructor’s permission

FREN 5122.03: Créativité lexicale/Lexical Creativity.
Detailed study of the main forms of lexical unit creation in the French language, namely derivation, compounding, lexicalization, abbreviation, and borrowing. Application to general language, as well as to literary and scientific texts. Class work: article and book reviews; oral presentations relating to word formation in any given special language or area of activity.
INSTRUCTOR(S): R. Mopoho

FREN 5124.03: Vocabulaire et culture/Vocabulary and Culture.
Examination of the influence of societal structures, traditions, values, beliefs, ideologies, etc. on language in general, and vocabulary in particular. Texts from specific groups, areas, and eras will be analyzed for illustration. Oral presentations by students.
INSTRUCTOR(S): R. Mopoho

FREN 5125.03: Sémantique/Semantics.
This class situates contributions to semantics from French scholars during the past 100 years in the broader context of international scholarship on semantics - the study of meaning which is the crossroads of linguistics, philosophy, psychology and anthropology. The class will focus on approaches to the study of meaning as they contrast with each other and as they evolve in the work of various scholars from Arsène Darmesteter (1846-1888) and Michel Bréal (1832-1915) to current practitioners of semantics.
INSTRUCTOR(S): J. Milicevic

FREN 5126.03: Aménagement linguistique/Language Planning.
Study of the relationship between languages and society, with a special emphasis on the theoretical issues involved in the concept of language planning, the typology of multilingual settings, the promotion of languages, the design and implementation of language policies, the notion of language rights, and the preservation of endangered languages.
Students will be required to make oral and written presentations based on relevant cases in Canada and around the world.

INSTRUCTOR(S): R. Mopoho

FREN 5127.03: Paraphrase en langue et en traitement automatique des langues/Paraphrase in language and Natural Language Processing.

The course focuses on linguistic models of production of paraphrases and their use in Natural Language Processing (automatic text generation, reformulation, abstracting, machine translation) as a way to enhance the quality of automatically produced texts.

INSTRUCTOR(S): J. Milicevic
FORMAT: Seminar
PREREQUISITE: FREN 3020.03 or FREN 2020.03 (Introduction to Linguistics) or equivalent or instructor's permission

FREN 5140.03: B: Dialectologie acadienne et sociolinguistique/Acadian Dialectology and Sociolinguistics.

Students in this class will critically examine major studies in modern Acadian dialectology with a particular focus on regional variation. They will discuss contributions to this field by Massignon, Ryan, Peronnet, King, Richard and Stares. "Hands on" work with various linguistic atlases will be included. Evaluation will be based on in-class presentations and two major essays.

INSTRUCTOR(S): Staff

FREN 5180.03: Linguistique de texte/Linguistics of Texts.

This class is of interest to students specializing in linguistics or in literature. The first component of the syllabus examines linguistic problems that exceed sentence boundaries and belong to the emerging field of text linguistics. These may include junctive expressions, pro-forms, ellipsis, paraphrase, synonymity, dialogue structure, free indirect speech, and graphical aspects of texts. The second component concentrates on selected concepts and chapters from major contemporary publications on text linguistics. The third component will be devoted to discussions of text linguistic aspects of literary passages selected by students themselves.

INSTRUCTOR(S): Staff

FREN 5291.03: Computer Assisted Language Learning (CALL).

The aim of this class is to provide students with an overview of the role computer technology has played in the language learning and teaching over the last decades. Current trends and advances in CALL will be presented with an emphasis on the contribution of disciplines such as second language acquisition and language engineering.

INSTRUCTOR(S): Staff
PREREQUISITE: BA or BSc in French or equivalent (with instructor permission)

FREN 5295.03/5296.03: Séminaire: Didactique des langues secondes/Seminar: Second-Language Teaching.

This class will provide an introduction to the key issues in French second-language (FSL) teaching. It is primarily intended for French graduate students who are also teaching a first-year class in the French Department. In addition to a discussion of current trends in FSL education, there will be opportunity to practice skills in specific aspects of FSL teaching. As such, there is a strong practical component to this class, which will include peer and faculty classroom visits and critiques as well as micro-teaching during class time.

INSTRUCTOR(S): Staff

FREN 5300.03: Séminaire de littérature médiévale/Mediaeval Literature Seminar.

Topics will vary from year to year and could involve specific authors (e.g. Chrétien de Troyes, François Villon), specific genres (e.g. poésie courtoise, encyclopedic literature), or specific discursive phenomena (e.g.: mouvance of the texts, representations of Islam).

INSTRUCTOR(S): V. Masse

FREN 5400.03: Rabelais et son temps/Rabelais and His Time.

A study of Rabelais' work (in particular Gargantua, Pantagruel, Le Tiers Livre, Le Quart Livre) in the context of the quest(s) and spirit of the Renaissance. Particular emphasis is given to the hidden and symbolic messages present in these texts and the nature of comedy and parody.

INSTRUCTOR(S): V. Masse

FREN 5401.03: Montaigne et son temps/Montaigne and His Time.

Through a thorough analysis of the Essais, The Renaissance as a turning point in the history of ideas will be studied. Emphasis will be placed on the quest for knowledge, the new modalities for attaining knowledge, the genre of the essay, the problematic of the “autoportrait” and the modernity of Montaigne. Contemporary critics of Montaigne will be read or discussed (Lejeune, Foucault, Tournon) leading to an appreciation of how Montaigne has been seen through the centuries.

INSTRUCTOR(S): V. Masse

FREN 5500.03: L'Aventure intellectuelle du Grand Siècle/The Intellectual Adventure of French Classicism.

This class examines 17th-century French literature by focusing on a major writer, movement, genre or theme. Please contact the professor for details.

INSTRUCTOR(S): Staff

FREN 5600.03: Le roman épistolaire du 18e siècle/ 18th Century Epistolary Novel.

The class will focus on the rise of the epistolary novel as a literary genre and its influence on the development of fiction. The research conducted in the seminar will be an attempt to determine and to assess some elements for a theory of the epistolary novel in 18th century France. This will be done through the study of letter manuals and novels such as those of Madame Riccoboni or Les Liaisons dangereuses by Laclos. Novels will be studied in the intellectual context of the time.

INSTRUCTOR(S): D. Aissaoui

FREN 5610.03: Ethique et esthétique de la nature dans l'art et la littérature du 18e siècle/Ethics and Aesthetics in 18th century art and literature.

In this seminar students will examine, on the one hand, theoretical writings dealing with the aesthetics of nature, and, on the other hand, the ethics of virtue and the vogue of “sensibilité” as reflected in selected 18th century literary texts (poetry, novel, short stories, “traits”) and in art (painting, landscape architecture).

INSTRUCTOR(S): D. Aissaoui

FREN 5700.03: La révolution romantique/The Romantic Revolution.

Romanticism will be viewed as a rebellious and creative force which greatly contributed to the reshaping of traditional society. The class will attempt to evaluate the French Romantics in their intellectual and cultural significance, by defining the Romantic characteristics, and studying the Romantic aesthetics through their theoretical writings and their literary works. These will include works by Benjamin Constant, Mme de Staël, Chateaubriand, Lamartine, Vigny, Musset, Hugo, G. Sand and others.

INSTRUCTOR(S): V. Frigerio

FREN 5701.03: Le roman du 19e siècle/ 19th-Century Novel.

The class involves the intensive study of an aspect of the 19th century novel. It may be the study of a major novelist of the 19th century (e.g. Dumas, Sand, Hugo, Stendhal, Flaubert, Balzac, Zola). Alternatively, the class may be organized around themes common to several novelists.

INSTRUCTOR(S): V. Frigerio

FREN 5705.03: Le poème en prose au 19e siècle/The Prose Poem in the 19th Century.

The prose poem is a literary genre that attained pre-eminence in the 19th century due in large measure to a reaction among writers against traditional poetics. The rise of the prose poem coincides with an attempt to find a "new language" that would express the spirit of modernism. Works
FREN 5706.03: Impressionnisme et symbolisme/Impressionism and Symbolism.
A critical assessment of the evolution, the specificities and the interweavings of Impressionist and Symbolist practice and theory from Manet and Mallarmé to Redon and Laforgue, Rodin and Lautréamont.
INSTRUCTOR(S): Staff

FREN 5801.03: Anti-romans du 2e siècle/Anti-Novels of the 20th Century.
Textual practice and aesthetic conception in the work of new novelists such as Butor, Robbe-Grillet, Sarrut and Duras, as well as “new new” novelists such as Sallenave, Ndiaye, Toussaint and Echenoz.
INSTRUCTOR(S): Staff

FREN 5802.03: La poésie moderne de Char à Bonnefoy/Modern Poetry from Char to Bonnefoy.
The evolution of modern poetic theory and textuality from poets such as Char and Frénaud, through Chedid and Bonnefoy, to Du Bouchet, Albiach, Bancquart and Réda.
INSTRUCTOR(S): C. Elson

FREN 5803.03: La littérature contemporaine I/Contemporary Literature I.
Analysis, both in-depth and more cursory, of a wide range of contemporary literary oeuvres: from Simon, Roche, Chawaf and Cixous to Deguy, Jaccottet, Zins and Tellermann. Individual aesthetic conception and practice will be related to contemporary theoretical and critico-methodological considerations.
INSTRUCTOR(S): Staff

FREN 5804.03: Art et littérature/Art and Literature.
Why write, why paint, Yves Bonnefoy asks. Multiple yet criss-crossing, chiasmic answers to this question will emerge from discussion of the writing and art of nineteenth and twentieth-century creators such as Desbordes-Valmore, Ingres, Flaubert, Corot, Zola, Cézanne, Aragon, Braque, Ponge, Ulac, Bonnefoy, Da Silva.
INSTRUCTOR(S): Staff

FREN 5806.03: Poétique et théorie de la littérature/Poetics and Theory of Literature.
Various 20th century literary theoreticians and critics in the “Geneva” and “French” schools will comprise the subject matter of this class: Starobinski, Richard, Barthès, Todorov, Greimas et al. Topics might include: thematic and/or phenomenological criticism, Marxist and ideological criticism, structuralism, post-structuralism and semiotics.
INSTRUCTOR(S): C. Elson

FREN 5807.03: Culture contemporaine/Contemporary Culture.
Discussion of contemporary cultural theory and practice in the work of writers, philosophers, artists, etc. such as Barthes, Baudrillard, Blanchot, Bonnefoy, Derrida, Hyvrand, Irigaray, Jaccottet, Lyotard, Tal Coat, Tapiés, Wittig.
INSTRUCTOR(S): C. Elson

FREN 5808.03: La littérature contemporaine II/Contemporary Literature II.
Further analysis, independent of that of FREN 5803.03, of contemporary literature’s many modes and meanings: from Dupin, Noé, Le Dantec and Redonnet to Stétié, Djebar, Glissant and Ernaux. Generic, textual and conceptual specificities will be related to theoretical and critico-methodological considerations.
INSTRUCTOR(S): Staff

This class will assess the practice and theory of contemporary creation in French painting and other plastic forms, film and literature of the last twenty years. Discussion and analysis will lead both to work on a range of individually selected oeuvres and to one in-depth research project. It is hoped, equally, to establish the parameters of a broad contemporary aesthetics within which individual oeuvres may be understood to deploy themselves.
INSTRUCTOR(S): Staff

FREN 5876.03: Aspects de la littérature du Canada français/Studies in French Canadian Literature.
Selected literary texts from the Nineteenth and/or Twentieth Centuries will be closely analyzed (the selection may vary from year to year). Recurring images and myths, central themes, main structures will be discussed and various critical approaches explored.
INSTRUCTOR(S): I. Oore

FREN 5877.03: Analyse de textes littéraires québécois/Analysis of Quebec Literary Texts.
Study of key texts of the last three decades, from La Sagouine to the poets of the 1990s, with special emphasis on the role of literature in the evolution of modern Acadian.
INSTRUCTOR(S): Staff

FREN 5878.03: Postcolonial Theory in African and West Indian Literature.
This class builds upon the elements of Francophone literature taught in the FREN 4811 literature class. It focuses on the African and West Indian Literature evolution in the postcolonial context. It aims at giving students a broader understanding of contemporary literary and linguistic theories.
INSTRUCTOR(S): Staff
PREREQUISITE: FREN 4811 or equivalent or instructor’s permission

FREN 5910.03: Lecture de textes acadiens contemporains/Supervised Readings in Acadian Literature since 1968.
Study of the key texts of the last three decades, from La Sagouine to the poets of the 1990s, with special emphasis on the role of literature in the evolution of modern Acadia.
INSTRUCTOR(S): Staff

FREN 5920.03: Femmes écrivaines et images de femmes dans la littérature française à travers les siècles/French Women Writers and Images of Women through the Centuries.
Emphasis will be placed each time on a different century. When 20th century French women writers are studied, emphasis will be given to the works of Colette, Simone de Beauvoir, Marguerite Duras, Nathalie Sarraute, Marie Cardinal, Andrée Chedid, Raphaëlle Billetdoux. The class will center around the literary and poetic “écritures”, and when appropriate it will consider contemporary theoretical gender constructs.
INSTRUCTOR(S): Staff

FREN 5995.03: Recherches independantes/Independent Research.
FORMAT: Directed Reading

FREN 5996.03: Etudes Independantes/Independent Studies.
FORMAT: Directed Reading

FREN 5998.03/5999.03: Recherches indépendantes/Independent Research.
Subject to approval by graduate coordinator and department chairperson.
IV. Thesis Areas

Literature
Modern and contemporary literatures of France, Quebec and Francophonie: poetry and poetics; novel; theatre; the conte fantastique; studies in romanticism, realism and symbolism; theory; art, cinema and other cultural studies.

Linguistics
Theoretical and applied linguistics through the following fields in particular: contrastive studies; sociolinguistics; lexicology; terminology; translation; semantics; morphology; pragmatics; text linguistics; computer assisted language learning; second language acquisition.

German

Location: 6135 University Ave.
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-2161
Fax: (902) 494-2719
Website: http://www.dalgrad.dal.ca/homepage.htm

Chairperson of Department
Sidler, J.

Graduate Studies Coordinator
Sidler, J.

Professor Emeritus
Gaede, F.W., PhD (Freiburg), FRSC

Professor
Schwarz, H.-G., MA (Munich), PhD (McGill), McCulloch Chair, Lehrauftrag (Univ. of Heidelberg)

Associate Professor
Sidler, J., MA (Freiburg), MA (Dal), PhD (Queen’s)

Assistant Professor
House, M.K., MA, PhD (Princeton)

Adjunct Professors
Aurnhammer, A., Dr. phil. habil. (Univ. of Freiburg)
Curran, T.H., MA, (Dal), PhD (Durham, England)
Grüning, H.-G., Dott. (Univ. of Macerata)
Heuer, F., Dr. phil. (Univ. of Heidelberg)
Kanzog, K., Dr. phil. habil. (Univ. of Munich)
Roesch, G.M., Dr. (Univ. of Heidelberg)
Strack, F., Dr. phil. habil. (Univ. of Heidelberg)

I. Introduction
Graduate classes leading to the degree of MA are offered in the history of German literature and thought. Research in the Department is concerned principally with the literary and philosophical tradition of German Idealism, modernity, and the culture of the twentieth century. Special expertise in the following fields: Reception of Islamic Orient, Reception of Greek and Roman Antiquity, General and Comparative Aesthetics.

Language of instruction is German; the texts are also in German. Graduate students may concentrate on any of the periods or any particular aspect of the history of German literature and thought. Interested and gifted students may continue with doctoral studies under the supervision of Dalhousie Faculty at the University of Heidelberg. The Department also actively participates in The Interdisciplinary Ph.D. Program offered by the Faculty of Graduate Studies.

II. Admission Requirements
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies.

III. MA Degree Program
Depending on their level of preparation, students spend either one or two years towards completion of their classes and thesis.

Candidates are expected to have a reading knowledge of a third modern or ancient language. A thesis is required.
IV. Class Descriptions

GERM 5520X/Y.06: Goethe and the Enlightenment.
A study of German literature and thought of the time which preceded and witnessed the great revolutions of the 18th century.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5530X/Y.06: Hegel's Aesthetics and the Ancients.
Study of Hegel’s Aesthetics and Walter Pater’s “Winckelmann” from the Renaissance as well as selected poetry of Goethe, Schiller, Hölderlin, Stefan George and Hugo v. Hofmannsthal.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5540X/Y.06: Kant and the History of German Idealism.
A study of Kant’s relation to modern Rationalism and Empiricism, and an inquiry into the principles of Idealism.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5550X/Y.06: Hegel: Phenomenology of Spirit.
The Phenomenology of Spirit, published in 1807, was Hegel’s first major work. He intended to write an introduction to philosophy by demonstrating the necessity of the advance from the most immediate form of knowledge to absolute knowledge. To achieve this he had to write the Phenomenology as an introduction to his own philosophy.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5570X/Y.06: Goethe and Romanticism.
A study of Goethe, Hölderlin, Kleist, and Novalis.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5580X/Y.06: Goethe’s Faust.
A close reading of Goethe’s Faust, Part I and II, will give rise to questions about the unity of the work, the theory of drama and the reshaping of a legend. While Goethe’s masterpiece stands at the centre, other German versions of the Faust legend will also be discussed in detail. Assignments will involve research into later echoes of the Faust legend as well.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5590X/Y.06: Studies in German Idealism.
The specific content of the seminar varies from year to year, but is always related to some aspect of Idealism.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5600X/Y.06: Heidegger and German Idealism.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5610X/Y.06: Literature of the 19th Century.
A discussion of essential literary texts which throw a critical light on the growing forces of materialism and positivism.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): H.-G. Schwarz

GERM 5620X/Y.06: Modern German Literature.
Modern authors as witnesses of the philosophical and social changes of our century: a study of selected prose texts of Hugo v. Hofmannsthal, Robert Musil, Franz Kafka, Arthur Schnitzler, Hermann Broch, Thomas Mann and Günter Grass.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5630X/Y.06: Aesthetic Theory.
An historical study of the development of aesthetic theory and its foundation in the history of thought. Hegel’s “Aesthetik”, Heidegger’s “Ursprung des Kunstwerkes” and Gadamer’s “Aktualität des Schönen” will be studied.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): H.-G. Schwarz

GERM 5640X/Y.06: Ancient and Modern Dialectics.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5660X/Y.06: History and Theory of the German Novel.
Representative works from the Baroque Age to the 20th Century are studied and the principles of the genre are discussed.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5670X/Y.06: Hegel’s Philosophy of Nature.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 5700.03: Special Topics I.
This is an intensive research seminar dealing with selected topics to be announced.

GERM 5701.03: Special Topics II.
This is an intensive research seminar dealing with selected topics to be announced.

GERM 5800X/Y.06: Research Seminar.
Special Research Topics Class. This is an intensive research seminar dealing with selected topics to be announced.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

GERM 9000.00: Thesis.
Health Administration

Location: 5161 George Street, Suite 700
PO Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-7097
Fax: (902) 494-6849
Email: healthadmin@Dal.Ca
Website: http://www.dal.ca/sha

Director of School
Byrne, J., BA (St. FX), MA, PhD (Kansas), MHSA (Dal). Executive decision-making, managing change, health policy.

Professors Emeriti
Cohen, M., BA, DMD, MSD, PhD, MPH, major appointment in Faculty of Dentistry
Nestman, L., BComm (Sask), CA, MHSA (Alta).

Professors
Byrne, J., BA (St. FX), MA, PhD (Kansas), MHSA (Dal). Executive decision-making, managing change, health policy.
Johnston, G., BSc (Hons) (McGill), MHSA (Alta), PhD (Western). Cervical cancer screening, palliative care, breast cancer issues, cancer registries
Rockwood, K., BA (MUN), MPA (Queen’s), MD, FRCPC, major appointment in Faculty of Medicine
Simms, C., BA (Mount A), BA (Juris) (Oxford), LLM (Toronto), major appointment in Schilch School of Law

Assistant Professors
Horsley, H., BSc (Pei), MSc (Dal), MHSA, PhD (Western). Cervical cancer screening, palliative care, breast cancer issues, cancer registries

Adjoint Professors
Boone, G., BN, MPA (Dal)
Conrad, P., BSc (SFU), MSc , MHSA (Dal), PhD (Toronto)
Horsburgh, A., BComm (SMU), CA
Maddalena, V., BSc (Dal), MSc (DHS), MSA (Dal)
Moulard, D., BSc, MSc (Dal), MHA (Dal)
Rathwell, T., BA (York), MA, PhD (Dunelm).
Schmitz, K., BSc (Ottawa), MPA (HSA) (Dal), MBA (SMU)

Students seeking further information or help in planning classes of study in the School of Health Administration should contact the:
Graduate Coordinator
School of Health Administration
5161 George Street, Suite 700
PO Box 15000
Halifax, NS B3H 4R2
(902) 494-7097

The MHA program is accredited by the Commission on Accreditation of Health Care Management Education (CA+HME), and the School is a full member of the Association of University Programs in Health Administration.

I. Objectives - MHA
The School of Health Administration offers a Master of Health Administration (MHA) degree which meets the needs of those pursuing administrative careers in the Canadian health care delivery system. The program is designed to prepare individuals for careers in hospital administration, nursing administration, continuing care administration, public and community health administration and administration in municipal, provincial and federal governments in health and health-related areas. There are employment opportunities for individuals with an MHA in policy, planning, evaluation, administration and research.

The program seeks to provide a conceptual background for the increasingly complex managerial tasks that need to be performed in health institutions and health related governmental departments. Every effort is made to balance political, social, economic, cultural, medical and ethical approaches to understanding the health care delivery system with those of the management sciences.

The emphasis in the program is on an academic, multidisciplinary and professional education. It is academic in that it emphasizes knowledge of current research findings and treats the practice of health administration as phenomena subject to social scientific analysis. It is multidisciplinary in that faculty are drawn from traditional social and administrative sciences. It is a professional program in the sense that it will attempt to broaden the social perspectives of the student emphasizing that a professional has a social responsibility to society and must have an appreciation of the ethical standards appropriate to a career in health administration.

II. Application Procedure
Application forms are available from the Registrar’s Office of Dalhousie University. Applications should be submitted as early as possible. Application forms, letters of reference forms etc., can be downloaded from the Registrar Office Website at: www.registrar.dal.ca

Registrar’s copy of the application form, and the application fee should be submitted to the Registrar’s Office.

The following supporting documents are to be sent directly to the School:

a. Original transcripts of all previous academic work (2 copies) (B+ average)
b. At least two academic letters of reference
c. Résumé/Curriculum Vitae
d. A statement of career interests and reasons for seeking admission to the School
e. GMAT (minimum score of 550)
f. TOEFL for International Students (see below)
g. Faculty of Graduate Studies and Department copy of the application form.

Deadlines for September admission:
April 1 International - other, and Canadian automatic scholarship consideration
June 1 Canadian - final deadline (no automatic scholarship consideration)

The GMAT may be taken at conveniently-located computer-based testing centres throughout North America and in many other parts of the world. Candidates in US and Canada may schedule a GMAT CAT (computer-adaptive test) appointment by calling either 1-800-GMAT-NOW or a local testing centre. Candidates can schedule their test within a few days of actually taking it. However, they should consider admission deadlines and call early to maximize their chances of securing their preferred test date at the centre most convenient to them. School of Health Administration GMAT Number is 0690.

All students are required to demonstrate at an early stage in their studies that they are proficient in writing reports and essays in English. Candidates from countries outside Canada whose mother tongue is not English will be required to take the Test of English as a Foreign Language (TOEFL) as a requirement for admission and a minimum score of 580 must be achieved (237 on computerized testing 92 for internet based test). Further information may be obtained by writing:
The MHA Online program offered through the School is available onsite, on either a full-time or part-time basis. Full-time students normally complete the program in two years. A part-time student may enrol in up to two and one-half credits in any one academic year. In order to ensure that graduate students benefit from a reasonable concentration of their studies, part-time studies must normally be completed within six years.

B. MHA - Online
The Master of Health Administration program is also offered online. MHA Online students receive the same quality instruction as on-campus graduate students, and are evaluated using the same methods.

The MHA Online is a flexible, internet-based adaption of the onsite MHA degree program. Students enrolled in the MHA Online degree program can secure their course content, engage in lectures, submit assignments, and complete exams through the Internet, while continuing their current administrative duties.

The MHA Online is explicitly designed to meet the graduate training needs of individuals with a minimum 5 years professional work experience. For further information pertaining to professional work experience, please see our website. These students must also meet the established Admission Requirements for the onsite MHA degree program. The MHA Online is offered over a three-term academic cycle, designed to be completed in three calendar years. The MHA Online students are required to attend three onsite plenary sessions and six video conference sessions over the 3 year course of study. These onsite sessions are one week in duration, with the video conference sessions two days in duration.

Note: Courses offered through the online format are assessed a per course Distance Education Fee (DEF) in addition to the course-based tuition.

C. JD/MHA
The four-year JD/MHA program is a collaborative effort between the Schulich School of Law and the School of Health Administration. The combined JD/MHA enables students to select classes leading to degrees of Master of Health Administration and Bachelor of Law.

Candidates for the JD/MHA program must satisfy the entrance requirements of both programs, and may obtain further information about the combined program by contacting either the School of Health Administration or the School of Nursing. For admission, students must apply to both the School of Health Administration and the School of Nursing individually. Please consult departments for program of study details.

Note: For all combined degrees, requirements for both programs must be met before a student can convocate.

E. MHA Thesis Option
The School offers an MHA thesis option that typically is open to three new students per year. Thesis option students are expected to complete their MHA within a similar time frame as course-work MHA students, this is a normally 20 months for full time students although the time period may be longer for thesis students. Student research topics should be consistent with the School’s research strategy and the availability of research advisors. Research topics should be interdisciplinary where appropriate and grounded in the field experience. Course work and Thesis Option MHA students would complete the same first 10 required MHA courses. Admittance into the Thesis Option would occur only after completion of the 10 required courses.

IV. General Admission Requirements
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies. Enrollment in the School is limited. In general successful applicants should have attained at least a “B+” standing in their previous university work - undergraduate degree, honours or equivalent, required.

Admission is based on an assessment of:
- All previous academic work
- Original, complete transcripts
- Letters of academic reference
- GMAT minimum score 550
- TOEFL (when required)
- Resume/CV
- Statement of career interests

A. Exemption
Applicants wishing to receive exemption from a required class should include class outlines for those classes previously taken which they consider to be equivalent to Dalhousie HESA classes. Where it is determined at time of admission that a student has the equivalent of a required class but is not granted advanced placement, an exemption may be permitted, so that another class is substituted for the required class.

V. Practicum/Fieldwork Placements Outside Halifax
Students enrolled in entry-to-practice graduate programs of study in the Faculty of Health Professions are advised that they may have to do some or all of their required clinical education/fieldwork at sites outside Halifax, and hence may have to incur additional personal expenses for travel and temporary accommodation.

In some situations, sites may require a payment to the site for support of clinical education/fieldwork supervision, and some sites may require separate disability insurance in lieu of eligibility for Worker Compensation coverage. Such costs are the responsibility of the student.

VI. Class Descriptions
The Master of Health Administration degree features both an academic and results-oriented curriculum. It requires the successful completion of 9-11 credits which must include:

Interprofessional Health Education:
Students are required to maintain enrolment in IPHE 5900 for the duration of their studies. Successful completion of this course is a requirement for graduation, and will be recognized further with the awarding of a special Certificate in Interprofessional Collaboration to be presented by the Faculty of Health Professions. Students are asked to consult with their individual school/college to determine the specific guidelines and expectations regarding the required portfolio.
Required Classes

HESA 5300.03: Introduction to the Canadian Health System.
This class provides a brief introduction to the history, legislation, financing and payment systems, health professionals, health promotion, ethics and values, and trends (e.g. regionalization, consumerism, primary healthcare) in the Canadian healthcare system. The class is designed as an introduction to the health administration program. The discussion and tasks in the class are directed toward the development of a life-long and self-directed learning focus, the importance of networking and interpersonal skills, written and oral communication, and values.

HESA 5315.03: Managing Change in Health Systems: Sustainability and Adaptation.
This class provides a theoretical and practical understanding of the design, implementation, and assessment of transformational and adaptive change processes within healthcare systems. Health system transformation is initiated and sustained by the broader social, political, technological, and economic context within which health systems function. Therefore, assessments of these and other factors related to health system change are examined. Specifically, topics that are covered include examining the environments of health care organizations, organizational culture, organizational effectiveness, knowledge management, organizational learning and innovation, business process reengineering, marketing in health systems, and creating and managing the future. Case analysis utilizing health systems examples, individual and group exercises, as well as the completion and presentation of a field project are used to facilitate participation and learning.

HESA 5320.03: Managerial Epidemiology.
This class is designed for health administrators, not researchers. The class has three components: assessing the health status of a population using existing data; using Epi-Info for statistical analysis of associations (relative risk, odds ratio, chi-square test, confidence intervals, Mantel-Haenszel analysis, multiple logistic regression); and clinical guideline monitoring. Throughout the class, recurring themes are: understanding the meaning of numbers, assessing validity, and ascertaining causation, including the concepts of confounding and effect modification. A lecture format with guest speakers and some discussion is used. There two required assignments (community health profile interpretation of statistical analysis) and one optional assignment (clinical guidelines) as well as mid-term and final exams.

HESA 5330.03: Management and Design of Healthcare Organizations.
Healthcare organizations are inherently complex and function in an increasingly dynamic environment. This course provides an introduction to the knowledge and skills necessary for the effective management of health care organizations. This is accomplished by examining the foundations of management thought, managerial roles, motivation, leadership, and job design as they relate to health care organizations. Additionally, topics such as organizational structure and design, teamwork, co-ordination and communication, and conflict management and negotiation will be examined. The major course objectives will be to provide opportunities for learning key concepts and theory in a setting which encourages discussion and feedback.

HESA 5335.03: Information Systems in Health Administration.
The main objective of this class is to prepare health administrators to manage information systems and to use information technology effectively. The strength of the class is the use of real problems, situations, cases, and experiences as supplements to the textbook and references. Students are expected to learn about processes and issues related to planning, analysis, design, procurement, implementation and management of information and information technologies in the health systems.

HESA 5339.03: Introduction to Healthcare Economics for Health Administration.
This required class provides the student with a basic understanding of economic theory and the applicability of this theory to the health policy and administration. It is a pre-requisite to HESA 5340, which emphasizes economic evaluation of healthcare programs and appraisal of economic policies as they related to a broader definition of health. No prior knowledge of economics is assumed; however, students are expected to possess basic quantitative skills for economics analysis.

HESA 5340.03: Economic Evaluation and Policy Issues for Health Administration.
This required class builds upon knowledge of economic theory and economic analysis to enable the student to become proficient in the assessment and evaluation of health policies and programs.

HESA 5345.03: Financial Accounting, Governance and Management Control in Healthcare.
The purpose of this class is to provide a basic understanding of management control techniques and management accounting decision making techniques and processes that exist for health administrators. The class will cover the following topics: an introduction to management control; financial statement and analysis; breakeven analysis; responsibility accounting; socio-economic aspects of budgeting; financial decisions and relevant costs.

HESA 5350.03: Management Control and Funding Systems in Healthcare.
The purpose of this class is to provide a basic understanding of management control and decision making techniques and funding systems that exist for health administrators. The class will cover the following topics: management control; performance budgeting; patient classification; work measurement; responsibility accounting; socio-economic aspects of budgeting; cost allocation; multi-year cost; financial decisions; relevant costs; and funding systems.

HESA 6100.03: Ethics in Health Administration.
This class has three objectives: first, to raise the student's awareness of the ethical implications of decision-making in healthcare administration. Second, it will assist students in the development of approach for exploring and resolving ethical dilemmas in the workplace. Third, the class will assist students in examining and developing a greater understanding of their own value system as it relates to decision-making and management practice. The class is a combination of case study analysis, group projects, guest speakers and self-directed study. FORMAT: Seminar

HESA 6305.03: Analyzing the Outcomes of Healthcare.
Determining the outcomes of healthcare provision and measuring the performance of healthcare organizations are redefining how healthcare is stratized and delivered. This is a reflection of the urgent need to improve healthcare quality and the imperative of assessing healthcare interventions. The objective of this class is to expose students to the origins of the medical outcomes movement, the importance of understanding the forces driving outcomes management, and the necessity of developing the requisite skills for managing healthcare organizations. Topics examined in the class include developing strategies for implementing an outcomes measurement system, assessing customer satisfaction and feedback, quality of life measurement, the utilization of health services, small area variations, clinical practice guidelines, disease management, measuring outcomes in long term care, the dynamics of waiting lists, and system performance measurement. Didactic lectures, case analysis, assigned readings, assignments which combine theoretical and practical application, and a final presentation providing detailed analysis of an outcomes management project will be used to expose students to this area of healthcare management.

HESA 6310.03: Healthcare Policy.
This class introduces the student to the evolution of Canadian healthcare policy. Students are exposed to three streams of study which, when taken together, help to illuminate how our healthcare system has emerged over time. The first stream will provide a conceptual and practical examination of public policy making which delimits the art and science of crafting...
healthcare policy. Public policy analysis will be introduced in a way that provides an overview of techniques and issues that are applicable to an understanding of healthcare policy at the provincial and federal levels. With this approach providing the backdrop, a second stream concentrates on current developments in the Canadian healthcare system as both a direct and indirect consequence of explicit and implicit public policy decisions. Finally, to facilitate interactive learning, problem solving, and critical thinking, students are required to examine and analyze a number of contemporary healthcare policy issues.

HESA 6330.03: Strategic Planning in Healthcare.

The focus of the class is on the processes, methods, models and techniques of strategic planning and project management in a changing healthcare system. Relationships between strategic and operational planning will be explored, as will the factors that both inhibit or facilitate the planning process. The overarching objective of the class is to provide students with a firm grounding in the analytical, political and interpersonal skills necessary to enable them to assess health needs, plan services accordingly, and to evaluate the planning process.

HESA 6340.03: Human Resources in Healthcare.

The Canadian healthcare system, like many others, is facing unique challenges to the management of human resources. The healthcare environment poses particular challenges as governments and employers struggle with reform and restructuring, cost containment, and labor shortages. Human resource management is integral to the overall strategic planning process and key to organizational performance. Key industry leaders are calling for change and shifting focus to the healthy workplace to ensure success and sustainability in Canada’s healthcare system. This course will provide the student with an opportunity to explore the challenges and best practices of administrative and operational management of human resources within the healthcare industry. Students will be challenged to understand human resource management strategies and the roles of leaders and managers to enable organizational, effectiveness and efficiency and performance excellence.

HESA 6360.03: Healthcare Law.

This course provides instruction in the principles and practice of health law that are of relevance to health administrators in the public, private or public-private health sectors. By the end of the course, students will be familiar with many of the key laws and the public policy rationale that underlie them, will understand how the law applies to particular healthcare delivery situations, and will be able to identify potential and actual legal problems when they arise. The course beings by providing a foundation in the mechanics of the Canadian legal system (e.g., the difference between common law, statutes, and constitutional documents; the life cycle of a legal action from the initiation of a lawsuit to appealing a court decision) and by outlining the basic legal framework of Canada’s healthcare system, including the implementation and enforcement of the Canada Health Act and important legal constitutional challenges to the single-payer system. With this as a backdrop, the course takes a detailed look at fundamental health law topics, including: negligence as it relates to healthcare providers’ misdiagnosis and improper treatment of patients and institutional liability; the regulation of healthcare professionals; malpractice issues relating to consent to medical treatment; legal issues that attend the delivery of healthcare to minors; confidentiality of and access to health information, including mandatory reporting obligations of healthcare practitioners and institutions; decision-making about end of life care; mental health law; regulation of human biomedical research; and public health law.

HESA 6365.03: Quality Management in Healthcare.

Quality Management (QM) provides participants with an understanding of QM concepts and practices in healthcare. The goal is to prepare students to actively contribute in a QM context. The scope ranges from broad topics associated with QM as an organization development strategy to teams, tools and techniques for effective process improvement projects.

PREREQUISITE: HESA 5315
CROSS-LISTING: NURS 5565.03

HESA 6380.03: Senior Seminar.

Each class member prepares and presents a major analytical paper on a significant, unresolved healthcare problem related to his/her career aspirations. Practitioners and other interested persons are invited to the paper presentations scheduled during the last weeks of class. Classes focus on debates, interpro-fessional learning modules, values exercises, and current issues in healthcare management raised by class members and the instructor. The class provides opportunities to analyze, synthesize and integrate knowledge and values while refining communication and appraisal skills. Senior Seminar is normally completed in the last term of the MHA programme.

HESA 6390X/Y.06: Health Administration Residency.

A 16 week full time administrative residency is required for all students in the Master of Health Administration program. The objective of the residency is to provide first-hand familiarity with administrative problems and operations of a healthcare organization. Students are mentored by qualified, practicing senior health administrators. They apply and test administrative theories and concepts in a practical setting, and acquire administrative skills, knowledge, and perspectives through observation and contact with a diversity of programs and managers. Residency guidelines and information will be available to students in September of their first year.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms. Residencies are required for all students. However, due to enrollment levels, not all placements may be available in the Halifax area.

Elective Classes

Students choose 1 credit elective from the following, or other Faculties, pending approval of Graduate Coordinator. Please consult school as electives may not be offered every year.

HESA 6000.03: Nursing Administration and Leadership.

This class will provide a general overview of organizational theories, and their relationship to nursing administration. The role of the Nurse Administrator and current issues and challenges facing nurse administrators in the nineties will also be examined. Students will compare and contrast selected theories of management and be able to discuss their relationship to administrative theory and nursing practice; examine the changing roles of the nurse administrator; critique existing nursing administrative practices from a multi-cultural, feminist perspective; analyze an existing nursing management organization; discuss current issues and challenges facing Canadian nurse administrators and, formulate a personal philosophy of administration.

CROSS-LISTING: NURS 6000.03

HESA 6200.03: International Health Care Management.

This online (BLS) class provides opportunity for comparative learning, the debate of common issues and concerns and discussion of work-related problems in the context of health care management. Practicing health care managers, doctors, nurses, and paramedics, best understand how health care is really provided in their respective environments. The class focuses on four countries [Canada, Finland, Germany and Ireland] which provide an interesting array of approaches to health care.

HESA 6325.03: Continuing Care Administration.

This class is designed to enable students to understand and appraise government policies that have shaped the direction of Long Term Care/Continuing Care in Canada with particular emphasis on Nova Scotia; organize and contrast a number of current structures that have been put in place to provide care to seniors; explain the concepts of aging, disabilities, dementia, and the social and medical model of care; and explain, compare, contrast, and critique a variety of issues in Long Term Care/Continuing Care including facility and community based care, leadership styles, aging in place, home care models, living wills/advanced directives and palliative care.

HESA 6341.03: Management Union Relations in Healthcare.

This is a seminar style class which provides a comprehensive overview of labor relations in the health care system. Real life situations, cases and arbitration decisions will be analyzed and discussed. Issues studied include the certification process, the collective bargaining process, the outcomes of collective bargaining, grievance handling and the disciplinary process in a unionized environment. As well, trends in healthcare labour
HESA 6370.03: Comparative Healthcare Funding and Insurance Systems.

On a comparative basis, funding and insurance systems will be analyzed so that critical insights that pertain to present and future issues facing the Canadian and international health care systems will be portrayed. Some issues covered: private, social insurance and state funded systems, private insurance, models for assessing risk, management of employer-based health care systems, financial incentives, funding systems, financial policy analysis, etc.

HESA 6394.03: Directed Project.

In order to obtain credit, students are required to complete a written report based upon research in, or exposure to, a defined problem in health administration. For some students, this will involve research within a health agency or government department. It may be based upon the consideration of a problem which they have encountered during their actual employment or residency. In both cases, the design of the project and the preparation of the report will be done under the supervision of a member of the faculty.

HESA 6395.03: Directed Reading.

A special programme of directed reading, with appropriate written assignments, may be arranged with a member of the faculty where the interest in a subject is not sufficiently widespread to warrant offering a regular class.

VII. MAHSR

Admission to the Master of Applied Health Services Research (MAHSR) program is suspended. The program will continue to be delivered to any current students until all students have graduated, or the time allowed for program completion has elapsed, or all students have left the program.
students, adults, ethnic disparities) populations; quality of life outcomes associated with health behaviours in diseased and non-diseased populations; statistics, research methods, and measurement.

Hutchinson, S.L., BA (Victoria), MA (Dal), PhD (Georgia). Leisure education; leisure and health promotion/risk prevention; leisure-based responses to stress; theory-driven program design and evaluation.

Kokey, J.W., BSc, MSc (Waterloo), PhD (TUNS). Clinical and Occupational Biomechanics and Physical Ergonomics. Research activities include biomechanical analysis of manual materials handling tasks, 3-D reach measurement and modeling, workstation design, personal protective equipment design and factors related to emergency helicopter egress.

McGinn, F., BBSc (Dal), MA (Western Michigan), PhD (Southern Illinois University at Carbondale). HIV/AIDS and employment; chronic illness and the family; disability management and occupational analysis; distance education.

Robinson, L.M., BSc (Hons. 1st Class UVic), MA, PhD (Simon Fraser). Interactional/interpersonal processes in stress, coping and social support; use of information technology as a source of support and information on health concerns; pediatric and adolescent mental health; relationships and health.

Tirpak, S.C., BA (Dal), PhD (Waterloo). Leisure and ethnic minorities and migrants; families living in poverty; youth in rural communities; community development; leisure and mental health; and people with disabilities; qualitative research methods.

Assistant Professors

Bagwell, A., BSc (McGill), MA (Oxford), MD (Dal). Major appointment in the Department of Psychiatry. Early intervention and treatment for anxiety disorders in children and adolescents; mental health literacy (e.g. Web-based school interventions (access to health information, promoting help seeking); school programs for early identification and navigation of mental health issues in youth.

Barnes, L.J., BPE, MSc (Dalhousie). Prevention of HIV/AIDS; HIV/AIDS grief and bereavement; school health promotion; health education/health promotion program planning and evaluation; rubella screening among university women; young adults living with cancer.

Decman, G., BSc PT (Hants, Queens), PhD (Dalhousie). Research focuses on using exercise to improve function in people with chronic diseases. This includes assessing the role that aerobic and resistance exercise play in enhancing functional activity in people with chronic pulmonary disease, cancer and obesity. Dr. Decman is also involved in developing functional outcome measures to objectively assess changes in activities of daily living for community-dwelling individuals with disabilities.

Eslinger, D., BKin, MSc, PhD (UNB). Research focuses on the development of more sophisticated physical activity measurement methodologies/technologies with the goal of advancing our understanding of the interplay between physical activity, sedentary behaviour, and health. The longer term goal of my research program is to apply these new methodologies to gain insight into the amount, intensity, and types of physical activity and for the prevention and treatment of chronic lifestyles diseases such as obesity, Type 2 Diabetes, cardiovascular disease, and osteoporosis.

Grandy, S., BSc, MSc, PhD (Dal). The effects of age-related alterations in inflammation and oxidative stress on cardiac function (e.g. cardiac contraction and repolarization); and Protective effects of physical activity during the aging process.

Harman, K., BSc (Toronto), MSc (Ottawa), PhD (Carleton). Major appointment in the School of Physiotherapy.

Keats, M., BA (Calgary), MA (Alberta), PhD (Calgary). Health and exercise psychology. Research goals are to advance the scientific understanding of the interrelationships amongst the biopsychosocial aspects of physical activity and cancer. Research activities include: the examination of the impact of physical activity on cancer control outcomes such as prevention, rehabilitation, health promotion, palliation, and survival; investigating the behavioural determinants of physical activity; and exploring the effectiveness of interventions designed to promote physical activity across the cancer continuum.

Kimmerly, D., BSc (Waterloo), MSc, PhD (Western Ontario). Human Cardiovascular Neuroscience and Exercise Physiology. Our research is focused on the interaction between the autonomic nervous system and cardiovascular function. We are currently using functional brain imaging and microneuroraphy techniques to identify the brain regions involved with autonomic cardiovascular control. Studies are also conducted that characterize the effect that acute (i.e. single bout) and chronic (i.e. training) exercise has on these systems.

Kirk, S., BSc Honours (Leeds Metropolitan Univ.), PhD (Univ. of Leeds). Major appointment in the School of Health Services Administration.

Ladouceur, M., BSc, MSc (Sherbrooke), PhD (McGill). Normal and pathological gait from the perspective of neuromuscular control and biomechanics.

Martin, D., BRec (MUN), MA (Dal), PhD (Dal). Aboriginal peoples’ health and well-being; Indigenous and qualitative methodologies; community-based participatory research methods; Interconnections between food, culture and health; health and environmental policies as they relate to Aboriginal communities.

Welch, J., BA BSc Honours (Carleton), MSc (Univ. of Alberta) PhD (Purdue Univ.). Research interests include the effects of exercise and nutrition on bone adaption across the lifespan; nutrition and health; effects of Vitamin D on health in a variety of populations; and the role of Vitamin D in disease mitigation.

Adjunct Professors

Belcastro, A., BA, BPE (McMaster), MSc (Dalhousie), PhD (Alberta)

Bellissimo, N., BSc, BEd (York), MSc, PhD (Toronto)

Brennan, C., BA, MA, PhD (UNB)

Campagna, P.D., BPHE (Windsor), BEd (Queen’s), MED (SUNY-Buffalo), PhD (Alta).

Dogra, S., BSc, MSc, PhD (York)

Holt, L., BSc, MSc (Springfield College), PhD (Southern Illinois)

Ipson, N., PhD CPRP (Utah)

Landry, S., BEng (Dal), BSc (Acadia), PhD (Dal)

Livingston, L., BA-BPHE, MSc (Queen’s), PhD (Calgary)

Loppie Reading, C., BA, MA, PhD (Dalhousie)

MacKenzie, S., BSc (DAL), PhD (Univ. of Saskatchewan)

MacLeod, D., BSc, MSc (Dalhousie)

Putnam, C.A., BPE (Man), MPh (Man)

Rhodes, R., BA, MA (British Columbia), PhD (Alberta)

Savoy, C.A., BPE (UNB), EdM (Boston), PhD (Tenn.). Performance enhancement and sport psychology counseling. Assessment intervention and evaluation of tracking programs for enhanced performance in sport and life. Expertise in team-building and the use of psychological skills counseling in team sport.

Thompson, A. M., BSc, MSc, PhD (U of Saskatchewan)

Wien, F.C., BA Honours (Queens), MA (Cornell), PhD (Cornell)

The School’s mission is to develop professionals and scholars who can generate, disseminate and apply knowledge to advance health and human performance.

We do this by offering undergraduate and graduate programs as well as by conducting research in health promotion, kinesiology and recreation/leisure studies.

The School of Health and Human Performance offers master’s degree programs in three areas: Master of Arts in Health Promotion, Master of Science in Kinesiology and Master of Arts in Leisure Studies. There are ongoing research programs in each of the areas of health promotion (basic health-related research and evaluation of health education/health promotion policies, programs, practices and content), kinesiology (exercise physiology, neuromuscular physiology, ergonomics, motor performance, bone and nutrition, physical fitness across the lifespan, health and exercise psychology, biomechanics and sport psychology) and leisure studies (leisure and social groups such as older adults, youth or...
persons with health problems/disabilities; historical analysis of leisure and sport; analysis of sport and recreation administration and cultural services).

For more detailed information on the regulations regarding these programs, students are invited to visit our Website at http://www.hahp.healthprofessions.dal.ca

I. Admission Requirements
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies.

Students seeking admission to any of the master's programs should have earned an excellent record during four years of undergraduate study. Candidates for the Master of Science in Kinesiology must have an honours or honours equivalent degree which includes the completion of an independent research project. Candidates for the Master of Arts in Health Promotion must have a sufficient background in health promotion with at least 24 credit hours in health promotion or health-related courses. Candidates for the Master of Arts in Leisure Studies must have a sufficient background in recreation, leisure studies, or a related field. An honours or honours equivalent degree is recommended for candidates for the Master of Arts in Health Promotion or Leisure Studies. Although Dalhousie’s minimum GPA requirement is a 3.0 GPA (B), the School of Health and Human Performance requires a 3.5.

Qualifying work may be required of applicants whose background for advanced studies in Health Promotion, Kinesiology, or Leisure Studies is judged deficient.

The application deadline is January 15, however applications received as late as June 1 will be considered pending space availability.

General Program Requirements
Please refer to each program area section for specific requirements.

Students may take a maximum of 6 credit hours of ancillary classes above and beyond the required program of study.

Elective classes can be taken from within or outside the School. All classes must be approved by the student’s advisor/Graduate Coordinator.

The thesis topic will be determined by the student in consultation with the thesis supervisor. A thesis proposal must be approved by the candidate's thesis supervisory committee, which consists of at least three members (at least two of whom are members of the School’s graduate faculty), before the thesis research may be undertaken.

Once the proposal has been approved by the thesis supervisory committee, it shall be submitted to either the Health Sciences Human Research Ethics Board or the Social Sciences and Humanities Research Ethics Board for consideration. Only after approval has been received from both the thesis supervisory committee and the ethics committee, may the student proceed with data collection.

The thesis examination committee is responsible for approving the completed thesis after a final oral presentation by the student covering the nature and findings of the research. This committee is made up of the supervisory committee plus an external examiner approved by the Graduate Coordinator.

The School holds research-oriented seminars during the academic year. Students are expected to attend and participate in these seminars as discussants and presenters.

II. Degree Programs

A. Master of Arts (MA) in Health Promotion

Program Requirements
One full academic year (12 months) of resident study at Dalhousie University is a minimum requirement for the one-year master's degree. Although the MA degree program officially has a one-year residency requirement, students should expect to take from 18-24 months of full-time work to complete the degree. For full-time students, the degree must be completed within four years of first registration.

Completion of the degree is also possible through part-time study. However, financial assistance is not available for students undertaking the degree on a part-time basis.

The MA Health Promotion program consists of 18 credit hours of classes and 12 credit hours of thesis work (30 credit hours). Required and elective classes are listed below. Each class is normally worth 3 credit hours. Electives may be chosen from the lists of classes listed in the Class Descriptions section, or from graduate classes offered by other departments at Dalhousie University, or, to a limited extent, at other universities.

Required Classes
- HPRO 5503.03: Intermediate Statistics for Health Sciences Prerequisite: Before entering HPRO 5503.03, students must have completed an introductory class in statistics with at least a “B” grade.
- HPRO 5514.03: Trends in Health Education OR HPRO 5516.03: Theoretical & Scientific Bases of Health Education
- HPRO 5595.03: Measurement & Evaluation in Health Education and Health Promotion
- LEIS 5501.03: Advanced Research Methods in the Social and Natural Sciences OR comparable class approved by the thesis advisor.
- HPRO 9000.00: Thesis. 12 credit hours

Elective Classes
- HPRO 5514.03 and HPRO 5516.03 as listed above.
- HPRO 5518.03: Women’s Health and the Environment
- HPRO 5600.06/5601.03/5602.03: Independent Studies. Open to independent completion of study. Interested students should consult the Graduate Coordinator prior to registering in the course.
- HPRO 5620.03: Topics in Health Psychology. Cross-listed with PSYO 6809.03.
- NURS 5100.03: Qualitative Research Methods.

PLEASE NOTE: Not all classes listed below are offered every year. Please consult the timetable for a current list of classes offered.

H PRO 5503.03: Intermediate Statistics for Health Sciences.
This class provides graduate students with a working knowledge of statistical issues and methods commonly used by researchers in the Health Professions. The statistical software package SAS is introduced and used by students throughout the course. Topics covered include a review of probability and one and two sample inferences for means and proportions. This is followed by some common experimental designs, contingency tables and odds ratios. Final topics are correlation and linear regression (simple and multiple), analysis of variance, analysis of covariance, and logistic regression. A term data analysis project is required in which students make use of both statistical methods learned in class and the SAS software package.

PREREQUISITE: An introductory statistics class
CROSS-LISTING: STAT 5990.03

H PRO 5514.03: Trends in Health Education.
To be an effective leader in health promotion/health education, we must be aware of the current trends and issues affecting the field. Students will examine and discuss trends and issues both as identified by the instructor and by themselves. These trends will cover a range of topics related to conceptual, social, and professional issues. HPRO 5514.03 is an opportunity to take stock of the field, to discuss, debate, and critique trends and issues, and to generate ideas helpful in accomplishing our goals more effectively.

H PRO 5516.03: Theoretical and Scientific Bases of Health Education.
This class provides an opportunity for students to develop and further their expertise in selected areas of health education content. These areas will be examined by an analysis of relevant health-related theories and scientific inquiry. Students will prepare a paper that might serve as background information in the development of a health education
program or program evaluation, and that is in a form suitable for appearance in a scholarly or popular publication.

HPRO 5518.03: Women's Health and the Environment.

This is a multi- and interdisciplinary seminar for graduate students in any faculty. The goal of the class is to explore the interconnections between women's health and the environment, with an emphasis on environmental contaminants, health, and public policy. The class will examine the evidence linking exposure to toxic chemicals and radiation to cancer, birth defects, and other manifestations of ill-health, as well as links between air and water pollution to human health. It will examine the current policy framework for addressing environmental health issues, with special attention to the tension between industry lobbying and public interest advocacy in the face of scientific uncertainty.

HPRO 5595.03: Measurement and Evaluation in Health Education and Health Promotion.

The impetus for this class is the conviction that health education and health promotion programmes can be improved through evaluation. Students will be introduced to both quantitative and qualitative approaches to evaluation, in ways that have meaning to health professionals whose primary business is practice. By applying what is learnt to selected health education and health promotion programmes, students are encouraged to become practitioners who evaluate.

HPRO 5600X/Y.06: (5601.03/5602.03) Independent Study in Health Promotion.

This class allows the School to provide more specialized instruction on specific topics to graduate students with particular interests. Class format is variable and may include seminars, lectures, literature searching, evaluation of papers, participation on research projects, etc. There is usually a high degree of one-on-one interaction. The independent studies are organized on a year-to-year basis in accordance with student interest and faculty expertise.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

HPRO 5620.03: Topics in Health Psychology.

This seminar class is an analysis of contemporary theory and research in the field of health psychology. Two primary themes will be examined: psychological processes and health behaviour (e.g. smoking, exercise, AIDS, and addictions); and coping with chronic health stressors (e.g. pain, illness and disability). The class will include a critical analysis of selected interventions for addressing specific health behaviours and stressors such as compliance strategies.

CROSS-LISTING: PSYO 6420.03

B. Master of Science (MSc) in Kinesiology

Program Requirements

One full academic year (12 months) of resident study at Dalhousie University is a minimum requirement for the one-year master's degree. Although the MSc degree program officially has a one-year residency requirement, students should expect to take from 18-24 months of full-time work to complete the degree. For full-time students, the degree must be completed within four years of first registration. Completion of the degree is also possible through part-time study. However, financial assistance is not available for students undertaking the degree on a part-time basis.

Students in the MSc Kinesiology program must complete a minimum of 12 credit hours of coursework, a mandatory graduate seminar series worth 3 credit hours, and 12 credit hours of thesis work, for a total of 27 credit hours.

Required classes

- Two of:
 - KINE 5501.03 (or equivalent): Advanced Research Methods in Social or Natural Sciences
 - KINE 5503.03 (or equivalent): Intermediate Statistics for Health Sciences
 - KINE 5590.03 (or equivalent): Measurement and Instrumentation
 - KINE 6000.03: Graduate Seminar in Kinesiology (3 credit hours)
 - KINE 9000.00: Thesis (12 credit hours)

Elective classes

- One, three credit-hour graduate course must be selected from the Kinesiology offerings.
- The remaining elective course or courses can be chosen from the graduate offerings within or outside of the School of Health and Human Performance. Elective courses must be relevant to the student's degree program and are to be determined in consultation with the Supervisor.

PLEASE NOTE: Not all classes listed below are offered every year. Please consult the timetable for a current list of classes offered.

KINE 5501.03: Advanced Research Methods in the Social and Natural Sciences.

This class addresses research methods, and is designed to accommodate the variety of graduate student research interests in the School of Health and Human Performance. Principles and techniques of natural and social sciences will be examined using relevant examples from published literature. The instructor assumes that students have undergraduate level knowledge of research methods, however, initial classes will be spent reviewing basic principles. In addition, topics will include the philosophy of science, the logic of the research process, causality, measurement, and ethical procedures. Students will be introduced to the philosophical debate about the application of classical scientific methods to social phenomena, the qualitative and quantitative dichotomy, and the role of theory in research. This class provides students the opportunity to develop the research methods section in a research proposal either for their thesis or other research endeavour.

CROSS-LISTING: LEIS 5501.03

KINE 5503.03: Intermediate Statistics for Health Sciences.

See listing for HPRO 5503.03

KINE 5510.03: Cardiorespiratory Dynamics in Exercise.

This class will involve an examination of published research concerning the health related aspects of physical fitness. For the most part, the class will follow a seminar format with practical and laboratory demonstrations.

KINE 5516.03: Neuromuscular Physiology.

The objectives of this class are to develop an understanding of how the neuromuscular system controls human movements. Both central and peripheral nervous systems are studied, but the emphasis is on how peripheral mechanisms regulate and control muscle recruitment. Weekly tutorials involve discussions of relevant research and the underlying mechanisms controlling recruitment. A weekly three hour lab allows students to measure many of the mechanisms and properties of muscles under discussion.

KINE 5523.03: Biomechanics of Human Motion.

This class is designed to provide an advanced understanding of mechanical principles as they apply to the analysis of human movement. Several major directions being taken in the field of biomechanic research will be covered. This class should provide a solid foundation for students intending to conduct research in Biomechanics. Topics include: kinematics and kinetics of linked systems in two and three dimensions, linear impulse momentum analysis, work-energy analysis, analysis of interactions between linked segments, functional roles of muscles, body segment parameters, data smoothing, modelling and simulation.

KINE 5530.03: Cognitive Ergonomics.

This class is designed to provide an in-depth treatment of human information processing capabilities and how this knowledge can be applied in ergonomic settings. The format of the class is a combination of brief lectures, group seminars and individual presentations. Each member of the class will complete a project and present the results to the seminar group.
KINE 5572.03: Topics in Human Performance: Motor Control.
This class is intended to be a graduate level seminar which attempts to provide careful examination of published research and other written work in the area of motor control. The first portion of the class will consist of a brief review of the mechanical and physiological foundations of motor control and an illustration of some of the most useful and popular paradigms in the field. The second portion of the class will turn to classic problems and current theoretical and empirical attempts to solve them. The last portion of the class will involve presentations by members of the seminar group. The format of the presentations can vary according to individual and the topic under consideration. Some suggestions would include: 1) a literature review of a specific topic, 2) a grant proposal for a research project and 3) the results of a study conducted during the class.
CROSS-LISTING: PHYT 5572.03

KINE 5590.03: Measurement and Instrumentation in Human Movement Analysis.
The objectives of this class are to provide the student with both a theoretical and practical understanding of the many issues related to instrumentation in Kinesiology. Students will be required to apply the fundamentals of measurement theory to specific instruments. Small experiments will be conducted and students will be required to submit a written report demonstrating their understanding of how particular instruments are used, and how results are interpreted.

KINE 5600X/Y.06: (5601.03/5602.03) Independent Study in Kinesiology.
This class allows the School to provide more specialized instruction on specific topics to graduate students with particular interests. Class format is variable and may include seminars, lectures, literature searching, evaluation of papers, participation on research projects, etc. There is usually a high degree of one-on-one interaction. The independent studies are organized on a year-to-year basis in accordance with student interest and faculty expertise.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

KINE 5990.03: Interdisciplinary Human Nutrition.
Students will acquire current information about the basic principles of human nutrition and nutritional requirements throughout the life cycle. They will also analyze a variety of psychological, social, economic, physical, educational, and cultural factors which influence eating habits. Appropriate nutrition-related community resources will be identified. The students will gain an insight into the similarities of classmates’ educational backgrounds and a further understanding of their professional roles, thus enhancing possibilities for interdisciplinary cooperation in future clinical areas and the community.
FORMAT: Lecture and Discussion
CROSS-LISTING: NURS 5990.03

KINE 6000.03: Graduate Seminar in Kinesiology.
This is a mandatory component of the MSc Kinesiology program. Students will be required to attend a minimum of 12 academic Graduate Seminars, of which at least 6 will be from the School of Health and Human Performance seminar series (see below*). Each student is required to present one seminar in the School of Health and Human Performance Graduate seminar series sometime during their completion of their academic program. Students will receive written feedback on their presentation from faculty and peers. Each student is also required to make at least one oral presentation at the Annual Cross Roads Interdisciplinary Student Health Research Conference during the course of their degree. With the approval of the course co-ordinator, oral or poster presentations at other academic conferences may be considered as equivalent. Students are required to complete this course before graduating. This course will be graded pass/fail.
*The School of Health and Human Performance Graduate Seminar series is a series of weekly presentations by visiting scholars, faculty researchers from Dalhousie (i.e., School of the Health and Human Performance, and other academic units across campus), and graduate students from within the School of Health and Human Performance.
FORMAT: Seminar

C. Master of Arts (MA) in Leisure Studies
Program Requirements
One full academic year (12 months) of resident study at Dalhousie University is a minimum requirement for the one-year master’s degree. Although the MA degree program officially has a one-year residency requirement, students should expect to take from 18-24 months of full-time work to complete the degree. For full-time students, the degree must be completed within four years of first registration.

Completion of the degree is also possible through part-time study. However, financial assistance is not available for students undertaking the degree on a part-time basis.

The MA Leisure Studies program consists of - 18 credit hours of classes and 12 credit hours of thesis work (30 credit hours). Required and elective classes are listed below. Each class is normally worth 3 credit hours. Electives may be chosen from the lists of classes listed in the Class Descriptions section, or from graduate classes offered by other departments at Dalhousie University, or, to a limited extent, at other universities.

Required Classes
- LEIS 5501.03: Advanced Research Methods in the Social and Natural Sciences.
- LEIS 5503.03: Intermediate Statistics for Health Sciences OR another intermediate statistics class approved by the student’s advisor.
Prerequisite: Students must have completed an introductory class in statistics with at least a “B” grade.
- LEIS 5592.03: Interdisciplinary Basis of Leisure Science.
- LEIS 9000.00: Thesis. 12 credit hours

Elective Classes
- LEIS 5512.03: Lifestyles of Ill and Disabled Persons.
- LEIS 5561.03: Gender, Leisure and the Family.
- LEIS 5562.03: Perspectives on Youth.
- LEIS 5563.03: Leisure Behaviour and the Older Adult.
- LEIS 5600.06/5601.03/5602.03: Independent Studies. Open to independent completion of study. Interested students should consult with the Graduate Coordinator prior to registering in the course.
- NURS 5100.03: Qualitative Research Methods.

PLEASE NOTE: Not all classes listed below are offered every year. Please consult the timetable for a current list of classes offered.

LEIS 5501.03: Advanced Research Methods in the Social and Natural Sciences.
Please see class description for KINE 5501.03.
CROSS-LISTING: KINE 5501.03

LEIS 5503.03: Intermediate Statistics for Health Sciences.
See listing for HPRO 5503.03.

LEIS 5512.03: Lifestyles of Ill and Disabled Persons.
This class involves the identification and critical analysis of issues in the leisure and lifestyle of persons with chronic health problems and disabilities. Students gain a knowledge and understanding of selected issues and research through readings, field experiences, and classroom discussion. Alternative solutions to current problems faced by practitioners and advocates are assessed. Issues include: psycho-social theory of illness/disability, professional preparation, legislation, service development, support services, implementation of the integration process, and research implications.

LEIS 5561.03: Gender, Leisure and the Family.
The basis of this class is a critical examination of the theories and concepts which have been used to study gender roles and the family in contemporary society. The application of these theories and concepts to leisure is then explored. Particular attention is paid to the relationship between paid employment, household management and leisure for males and females. In addition, the impact of changing patterns of family composition is examined.
LEIS 5562.03: Perspectives on Youth.
This class reviews some of the current issues facing youth today. Most programmes which provide leisure services to youth are targeted at the majority. There are many young people who would be considered “minority” because of ethnic origin, socio-economic status or employment status. These people are seldom served by recreation services. Unemployment and underemployment pose one of the biggest fears for young people in school. The answer may not rest with job creation programmes alone. It is the purpose of this class to pursue alternatives and through an experiential component be able to interact with young people directly and identify their needs. This will result in a research project.

LEIS 5563.03: Leisure Behaviour and the Older Adult.
The purpose of this class will be to enhance the individual’s awareness of the role that leisure plays in an older person’s lifestyle. The class emphasizes the effect that crime, housing, health status, fitness level, education and income have on individual’s leisure behaviour. The role of organized recreation and leisure delivery systems in institutions and community settings is also elaborated on in this class.

LEIS 5592.03: Interdisciplinary Basis of Leisure Science.
Leisure behaviour is determined by a complex multiplicity of factors including socialization, social-economic status, demographics, politics, economics, motives, perceptions, attitudes, personality and situational determinants. This class provides an opportunity to analyze leisure behaviour including play, sport, cultural activities, by means of an interdisciplinary perspective. The class is based on social science theory applied to the study of leisure, along with historical analyses, and social and cross-cultural comparisons. A critical evaluation of leisure research is presented throughout the class.

LEIS 5600X/Y.06: (5601.03/5602.03) Independent Study in Leisure Studies.
This class allows the School to provide more specialized instruction on specific topics to graduate students with particular interests. Class format is variable and may include seminars, lectures, literature searching, evaluation of papers, participation on research projects, etc. There is usually a high degree of one-on-one interaction. The independent studies are organized on a year-to-year basis in accordance with student interest and faculty expertise.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

Health Informatics

Location: Faculty of Computer Science
6050 University Ave
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-2740
Fax: (902) 492-1517
Email: hinf@cs.dal.ca
Website: http://www.healthinformatics.dal.ca

Director
Abidi, S.S.R., MS (Miami), PhD (Surrey)

Faculty
Abidi, S.S.R. (Computer Science)
Blouin, C. (Computer Science)
Graven, M. (Medicine)
Hurley, K. (Medicine)
Paterson, G. (Medicine)
Riordan, D. (Computer Science)
Shepherd, M. (Computer Science)
Sketris, I. (Pharmacy)
Watters, C. (Computer Science)
Zitner, D. (Medicine)

I. Introduction
What is Health Informatics? Health Informatics studies the use of computing and information technology in health research, education, patient care, policy setting, and health administration. The fields of information technology, health information management and health care have undergone separate development over the past 30 years. Health Informatics provides a way of studying and disseminating knowledge and skills about the interaction of information technology, health care and people.

The principal purpose of this program is to prepare individuals with knowledge and skills to use information and information technology to support clinical care, health service administration, research, and teaching so that health care and services can be provided effectively, efficiently and to those in need. There is an urgent need for professionals and scholars who understand health and health services systems, and should also understand information technology, to provide the most useful information to meet the challenges of supporting health.

This interdisciplinary program draws on resources across the University, including faculty and courses from the Faculty of Computer Science, the Faculty of Medicine, the Faculty of Management, and the Faculty of Science.

This two-year program fee degree will require full-time students to register consistently for all six terms of residency requirement. The program can also be completed on a part-time basis by students who wish to continue working while studying. Part-time students will also be required to maintain consistent registration until completion of the program. The program consists of course work in health, information technology and management/leadership, plus a work-term or thesis.

II. Academic Objectives of the Program
• To prepare individuals with knowledge and skills in health and information technology to:
 • Support research & development and education in health
 • Support patient care and health promotion
• Support policy development at local, provincial, national and international levels
• Support health administration
• Address the fundamental questions of the purposes of health services and the role of information and information technology in health.
• Address the structuring, collection and use of information for performance indicators and quality improvement
• Address the development of clinical decision support tools and methodologies

III. Admission Requirements
In order to begin studies in this field at Dalhousie University, you will need each of the following:
• An undergraduate degree in a health profession or in an information technology area
• A university course in statistics is recommended but not required
• A university course in computer programming is recommended but not required
• Preference will be given to students with two years experience in the field (information technology or health professions). Experience will be evaluated on a case by case basis, but should include some work with applying information technology to health issues.

IV. Course Requirements
A student wishing to achieve this degree will have accumulated seven full credits consisting of five full credits of required courses and either a thesis or a work term and elective courses.

V. Courses

First Term (Fall Term)
• Introduction to Health Informatics (one-day orientation- non-credit)
• Health Information: Flow and Use
• Networks and the Web or Fundamentals of Clinical Care for Non-Clinicians
• Health Information Systems & Issues
• Statistics for Health Informatics

Second Term (Winter Term)
• Health Information: Flow and Standards
• Knowledge Management for HI
• Research Methods
• IT Project Management

Third Term (Summer Term)
Registration required.
For work-term students this term will be a work term. Such students will be placed with an industry, health system partner, or health research organization. This will give them an opportunity to apply the program to specific practicum/work situations. A project report is required at the end of the work term. For thesis students, this will be a start of their research and writing work.

Fourth Term (Fall Term)
• Management Skills Development
• Database and Data Mining for HI
• Three elective courses for work term students OR
• Research work for thesis students
• One elective for thesis students

Fifth Term (Winter Term)
Registration required.
For work-term students this term will be a work term (if not completed in the third term). Such students will be placed with an industry, health system partner, or health research organization. This will give them an opportunity to apply the program to specific practicum/work situations. A project report is required at the end of the work term. For thesis students, this will be a continuation of their research and writing work.

Research
For students conducting research for a thesis, supervisors are available from a wide variety of specialties fields surrounding medicine, health care and computer science. Research interests of the faculty include electronic health records, Web information systems, data mining, and warehousing, health outcomes, the effect of technology on health policy, tele-medicine, machine learning and decision support systems, knowledge management, patient information systems and the application of standards for the exchange of health information electronically.

VI. Class Descriptions

HINF 6000.00: Introduction to Health Informatics.
A compulsory non-credit orientation to develop an understanding and framework for the study of health informatics, and to provide an introduction to the core elements of the program.
FORMAT: Seminar
PREREQUISITE: Admission to Master of Health Informatics Program

HINF 6020.03: Research Methods.
This class explores the logic and principles of research design, measurement, and data collection. The class offers a range of methodological issues and methods, including experimental and quasi-experimental designs, survey research and sampling, measurement, and qualitative methods.
FORMAT: Lecture, seminar and discussion
PREREQUISITE: Admission to Master of Health Informatics Program

HINF 6030.03: Statistics for Health Informatics.
This course will teach students in the necessary skills to carry out a wide range of statistical analyses. Students will learn the basic principles that underlie health research design, data analysis and interpretation of results.
FORMAT: Lecture and seminar
PREREQUISITE: Admission to Master of Health Informatics Program

HINF 6101.03: Health Information: Flow and Use.
This course tracks the flow and use of health information in relation to population and individual health needs, including its generation, collection, movement, storage and use in various settings. The course includes a discussion of health and health information, and of the measurement of health and health services processes.
FORMAT: Lecture, seminar and discussion
PREREQUISITE: Admission to Master of Health Informatics Program

HINF 6102.03: Health Information Flow and Standards.
This seminar course discusses technical and philosophical issues related to the capture and use of information. Issues include nomenclature; the reliability and accuracy of coding schema; interoperability; and, ISO/CEN, HL7 and Infoway standards development. Student projects will track the flow and use of information for hospital, community and public health purposes.
FORMAT: Lecture, seminar and discussion
PREREQUISITE: Admission to Master of Health Informatics Program

HINF 6110.03: Health Information Systems & Issues.
A course about health infrastructures and their strengths and weaknesses. Students will learn about how such structures operate, the issues they generate, their impact on the health of populations and their impact on the flow and use of information. Particular attention will be paid to ethical and practical health informatics issues.
FORMAT: Seminar/lecture
PREREQUISITE: Admission to Master of Health Informatics Program
HINF 6120.03: Fundamentals of Clinical Care for Non-Clinicians.
This course consists of lectures and student-led seminars. The purpose is to enable non-clinicians to communicate with clinical experts by a) outlining the purposes of health care, b) providing information about measures of health status (comfort and function), c) outlining diagnostic strategies, d) outlining how clinicians make diagnoses, including information about diagnostic strategies, with particular reference to common ailments, e) outlining treatment choices and how clinicians distinguish between appropriate treatments for a particular condition again with reference to common afflictions. We are not aware of any other such course offered at Dalhousie University. Students are admitted to the Master of Health Informatics program from either an IT background or from a Health sector background. We have found that the entering students must be streamed so that students from the IT background will receive more of an introduction to the health care system and those from the Health background will take the introduction to IT course that already exists. This course will serve as the additional course required for students from the IT background.
FORMAT: Seminar/lecture
PREREQUISITE: Admission to a health related graduate program

HINF 6210.03: Databases and Data Mining for Health Informatics.
Health organizations collect massive amount of data to support clinical decision-making, outcome measurement, policy setting, administration and research. This course provides a conceptual understanding of various data mining algorithms and introduces healthcare-related data mining strategies to facilitate the mining of real-life healthcare data to provide data-driven healthcare decision-support services.
FORMAT: Lecture
PREREQUISITE: Admission to Master of Health Informatics Program

HINF 6220.03: Networks and the Web for Health Informatics.
The purpose of this course is to provide an introduction to the principle architectures and techniques used to turn individual computers into an information system. An introduction to database design and internetworking will be followed by various protocols for communication among clients and servers across the Web.
FORMAT: Lecture
PREREQUISITE: Admission to Master of Health Informatics Program

HINF 6230.03: Knowledge Management for Health Informatics.
This class includes a technology-oriented coverage of knowledge management processes, technologies and applications to support the capture, organization, sharing and re-use of healthcare knowledge to support three main activities: Clinical decision support, practitioner and patient education, and health administration.
FORMAT: Seminar/lecture
PREREQUISITE: Admission to the Master of Health Informatics Program

HINF 6300.03: IT Project Management.
The class will cover the principles of management for information technology project. Project management for information technology has to take into account not only the most effective processes for people to work out the elements of a project, but also how to ensure the best use of information technology available for a project. The way in which groups work most effectively with technology and with each other will impact on the success of a project. Students will learn generic principles of project management as well as of information management within projects. Through case studies and field investigations of actual health information projects, students will gain a real-world understanding.
CROSS-LISTED: BUSI 6523 and ECMM 6022
FORMAT: Lecture and seminar
PREREQUISITE: Admission to Master of Health Informatics Program

HINF 6310.03: Management Skills Development.
This class exposes students to key knowledge, skills, and attitudes (KSAs) considered critical to managerial success. Such exposure is designed to provide the student with behaviours that will help ensure that, when managing human resources, staff will perform at or near peak capabilities.
History

Location: 6135 University Ave.
PO Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-2011
Fax: (902) 494-3349
Email: history@dal.ca
Website: http://history.dal.ca/Graduate%20Programs/

Chair of Department
Bleasdale, R.

Graduate Coordinator
Mitchell, C.

Professors Emeriti
Crowley, J.E.
Flint, J.E.
Pereira, N.G.O.
Waite, P.

Professors
Girard, P., BA (Brock), LLB (McGill), LLM (Cal, Berkeley), PhD (Dalhousie) Major appointment in Law
Hanlon, G., MA (Toronto), Dr.de 3e Cycle (Bordeaux), University Research Professor
Kirk, J., MA (Queen's), PhD (UBC), Major appointment in Spanish
Neville, C.J., BA, MA (Carleton), PhD (Aberdeen), FRHistS, George Munro Professor of History and Political Economy
Summerby-Murray, R., ATCL Dip (Trinity College, London), BA, MA (Canterbury), PhD (Toronto).
Tillotson, S., BIS (Waterloo), MA, PhD (Queen's)
Traves, T., BA (Manitoba), MA, PhD (York), President and Vice-Chancellor, Dalhousie University
Treger, A., BA, MA, (Hebrew University of Jerusalem), M.Phil, PhD, Yale Warwick, J., BMus (Toronto), MA (York), PhD (UCLA)

Associate Professors
Bannister, J., BA (Memorial), MA, PhD (Toronto)
Bell, C.M., BA (Calgary), MA (King’s College London), PhD (Calgary)
Campbell, C.E., BA (King’s) MA, PhD (Western)
Ghazal, A., BA (AUB, Beirut), MA, PhD (Alberta)
Kesselring, K., BA, MA (Dalhousie), PhD (Queen’s)
Kynoch, G., BA, BED (Queen’s), MA, PhD (Dalhousie)
Mitchell, C., BA (Regina), MA (McGill), PhD (Toronto)
Pekacz, J.T., MA (Cracow, Poland) PhD (Polish Academy of Sciences, Warsaw), PhD (Alberta)
Zachernuk, P., BA, MA (Dalhousie), PhD (Toronto)

Assistant Professors
Bingham, J., BA (UNB), MA (Toronto), PhD (York)
Corke, S.J, BA, MA (Guelph), PhD (UNB)
Cowan, B., AB (Harvard College), MA, PhD (UC Los Angeles)
Kozlov, D., MA (U of Mass), PhD (Toronto)
McCallum, T., BA (Queen’s), MA (Simon Fraser), PhD (Queen’s)
Riley, P., MA, BA, PhD (Berkeley)
Roberts, J., BA (Hons) (Simon Fraser), MA (Queen’s), PhD (John Hopkins)

Adjunct Professors
Benzacquin, A., BA, MA, PhD (York), Mount St. Vincent University
Cross, M.S., BA, MA, PhD (Toronto)
Crowley, J.E., AB (Princeton), MA (Mich), PhD (John Hopkins)
Fingard, J., BA (Hons) (Dalhousie), MPhil, PhD (London), FRSC

Forestall, N., BA (Western), MA (Memorial), PhD (Toronto), St. Francis Xavier University
Gechtman, R., BA (Hebrew University), MA, PhD (NYU, MSVU)
GUILDford, J., BA, MA, PhD (Dalhousie)
Gwyn, E., BA (Loyola College), MA (McGill), MLIH, DPhil (Oxford, Balliol College)
Haigh, E., BSc, MSc, (U of Alberta), PhD (U of Wisconsin), St Mary’s University
Heitman, J., BA (Alberta), MA, PhD (Wisconsin-Madison)
McInnis, P., BA, MLS (Western Ontario), MA (Memorial), PhD (Queen’s), St Francis Xavier
McQuaig, G., BA, MA, PhD (Toronto), King’s College
McNally, J., BA, BED (Acadia), PhD (U of Bradford), St Mary’s University
Neatby, N., BA (Hons) (U of Ottawa), MA (Queen’s), PhD (U of Montreal), St Mary’s University
Parpart, J., BA (Brown), MA, PhD (Boston U.)
Pereira, N.G.O., BA (Williams), MA, PhD (California, Berkeley)
Ramsay, M.A., BA (Toronto), MA, PhD (Queen’s)
Reid, J., BA (Hons) (Oxford), MA (Memorial), PhD (UNB), St Mary’s University
Sewell, B., BSc (Wisconsin), MA(California), PhD (UBC), St. Mary’s Univ.
Sobol, S., BA (Hons), MA (U of Victoria), MPhil, PhD (Cambridge), King’s College
Stiles, D., AB (Marshall U), MA, PhD (U of Maine), NS Agricultural College
Stretton, T., BA, LLB (Adelaide), PhD (Cambridge), St Mary’s University
Sutherland, D.A., BA (Mt A), MA (Dalhousie), PhD (Toronto)
Taylor, B., BA, MA, PhD (Toronto)
Twogood, P., BA, MA (St Mary’s University), PhD (Dalhousie), St Mary’s University
Whidden, J., BA (Dalhousie), MA, PhD (U of London), Acadia U.

I. Admission Requirements
Candidates for the one-year MA degree must hold a BA 4-year degree in history or a general history BA degree or degrees in fields other than history may be placed in a qualifying year program. Candidates for doctoral study must hold an MA degree in history or in a cognate field.

II. Degree Programs
A. Master of Arts (MA)
The MA is a research degree and can be done full-time or part-time. Students in the program normally spend the first term satisfying class requirements and begin their thesis research early in the winter term, under the supervision of a faculty member, or members, in the student’s area of interest.

A candidate for the degree Master of Arts in History will require at least twelve months of full-time study to complete all degree requirements. The class requirement is normally satisfied by taking two designated advanced classes. If there are not two suitable advanced classes offered, a student may, at the discretion of the Graduate committee and on the recommendation of the student’s principal supervisor, elect to fulfill one of the class requirements through a Directed Reading Course. Classes and reading courses may be selected from other departmental and extra-departmental offerings, subject to approval of the Graduate committee. (At least one class or reading course must be taught by a member of the History Department). Students will also enroll in HIST 5800, the Masters Seminar, a series of workshops and discussions that will culminate with the production of a thesis proposal. Theses may be orally examined at any time. Topics should be chosen with a view to completion within twelve months; students should note, however, that completion within sixteen months is not unusual. To complete their degree, students must submit and orally defend a thesis of not more than 50,000 words. Students in the one-year MA program are required to attend the Department Stokes Seminar which meets weekly during the academic year.

Candidates writing theses in Canadian history must demonstrate a competent reading knowledge of French; those writing theses in other fields must demonstrate a competent reading knowledge of a language.
other than English, as appropriate. A language examination, when this is necessary, is part of the normal thesis approval process.

Students admitted to a qualifying year program must in the first year take five upper level undergraduate history classes and secure at least an average of A-.

B. Doctor of Philosophy (PhD)
For minimum time required to complete the program, see the Faculty of Graduate Studies Regulations in this calendar.

In order to be considered a candidate for the PhD degree, students must prepare three fields, at least one of which must be outside the student’s primary research area, present a thesis proposal before the Department and pass written and oral examinations in all three fields. All students engaged in Canadian, Russian, European, Middle East and Medieval history research (and in other areas, if appropriate) must demonstrate a reading competence in a language other than English. A language examination, if appropriate, is part of the normal thesis approval process. A “pass” of the PhD field work is deemed to be a mark of A- or better in each element. Passes are recorded only as “P” on transcripts. Students who fail to attain the pass standard in one of three exams will be permitted to rewrite within three (3) months of the exam. Students who fail to attain the pass standard on two or three of the fields (or who fail in a rewrite attempt) will be required to withdraw from the PhD program.

A thesis is required which shall not exceed 100,000 words in length, excluding footnote references and bibliography. Doctoral theses are usually to be undertaken in the areas of Canadian, British, Russian (mid-19th century to mid-20th century), and African History. Students wishing to do a PhD thesis in areas other than those named above may be recommended for admission providing that resources are available.

To qualify for the award of the PhD degree, the thesis must make a significant and original contribution to historical study by the discovery of new information, or by the original interpretation of known information, or both.

III. Fields of Study by Directed Reading (PhD)

A. Canadian History
The following fields are offered: History of Atlantic Canada, social, cultural, and political history of Canada, with emphasis on an integrated approach; legal history; welfare history; naval history; gender history.

B. Atlantic History
This field explores the history of the Atlantic world and its relationship to the study of Atlantic Canada. Some areas of concentration include the staples trades, Native peoples, Acadians, the first British Empire, forced migrations, maritime labour, reform and responsible government, gender in Atlantic societies, industrialization, and regionalism.

C. African History
This field may be studied with special attention to gender history, social and economic history, intellectual history or labor history especially of Anglophone Africa during the pre-colonial, colonial and post-colonial periods covering the 19th and 20th centuries.

D. British History
The following fields are offered: British and Scottish legal history, 1150-1850; political, social, and cultural history of England and Scotland, 1150-1700; the history of northern England, 1100-1700; diplomatic, military and political history in the 19th and 20th centuries.

E. United States History
Fields are offered in Colonial and Revolutionary America; 19th century American social, labor, and ethnic history; Civil War and Reconstruction; 20th century American foreign relations; intelligence history; intellectual and cultural history.

F. European History
Fields are available in European history 1650-1914, especially in Italian and French history, intellectual and cultural history, behavioural history, and the social history of music.

G. German History
Only one field is available in German history: Germany 1870-1945. Within this, students may concentrate upon particular topics or periods especially relevant to their thesis work.

H. Medieval History
Fields are available in English, Scottish and medieval European history.

I. Russian History
Two fields are available: one in nineteenth-century Russian history and one in twentieth-century Russian and Soviet history.

J. Caribbean and Latin American History
Fields may be offered in modern Latin American history, especially in Cuban diplomatic history (Cuba-Canada-Mexico), 19th century Cuban intellectual history, and Cuba during the Castro years.

K. Gender History
Fields are offered, both as single units and in combination, on women and gender in 19th and 20th century North America, early modern England, modern Europe, and Africa.

L. Middle East and Islamic History
Fields are available in pre-modern and modern history of the Middle East, Central Asia, Muslim Africa and South Asia.

M. Environmental History
Fields are available in North American and Canadian environmental history.

IV. Senior Undergraduate/Graduate Classes

HIST 4010.03: State Violence, Communal Conflict and Criminality in Modern South Africa.
South Africa is plagued by one of the world’s highest rates of violent crime and social conflict. Despite the unprecedented level of public concern with violence, little attention is paid to the historical origins of this phenomenon. This course explores the changing patterns of crime and violence since the 1890s.
FORMAT: Seminar
CROSS-LISTING: HIST 4401.03

HIST 4000.03: Directed Readings.*

HIST 5001.03: Directed Readings II.*
FORMAT: This is a class of individual instruction.
RESTRICTION: Students may only register for this class with the permission of a Faculty member and the Graduate Coordinator.

HIST 500X/Y.06: Selected Readings in History.*
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
FORMAT: This is a class of individual instruction.
RESTRICTION: Students may only register for this class with the permission of a Faculty member and the Graduate Coordinator

HIST 5004.03: Nature and Romanticism.
Kant’s “Copernican Revolution” in philosophy, ironically, marked a resumption of a full-blown “idealism” philosophy of nature. This class will investigate the attempts of Kant’s followers to construct a natural philosophy and its engagement with the rival mechanical world picture. It explores the implications of this endeavor for the growth of romanticism, vitalism, and our modern picture of “nature.” It begins with an examination of the ambiguous heritage presented by Kant’s writings on nature and proceeds through the attempts to develop a complete program...
of idealist "naturphilosophie and its spread throughout European thought by the medium of romanticist art and natural philosophy.

FORMAT: Seminar
PREREQUISITE: Instructor's permission
CROSS-LISTING: HSTC 4300.03

HIST 5007.03: The European Enlightenment.

The seminar examines eighteenth-century European Enlightenment and continuing controversies over its interpretations and legacies. Class discussions will focus on Enlightenment debates on religion, gender, science, non-European people, society and government, and the possible impact of the Enlightenment on the French Revolution.

FORMAT: Seminar
PREREQUISITE: Permission of instructor

HIST 5045.03: The French Revolution.

The seminar will focus on the current interpretations of the French Revolution. Each time the seminar is offered, it may focus on a specific theme related to the French Revolution, for example, the historiography of its origins, the Terror or the legacy of the French Revolution for modern political culture.

FORMAT: Seminar
PREREQUISITE: A modern European history course above the introductory level

HIST 5056.03: Fascist and National Socialist Movements in Europe, 1900-1945.

Between the World Wars, virtually every European country had one or more groups that considered themselves or were considered fascist: in Germany and Italy, of course, but also in France, Spain, Hungary, Romania, and elsewhere. The seminar will explore the ideals, experiences, aspirations and political realities of the simultaneously threatening and fascinating historical problem.

INSTRUCTOR(S): Bingham, J.
FORMAT: Seminar
PREREQUISITE: A modern European history course above the introductory level

HIST 5060.03: Topics in the Civilization of Baroque Italy.

Emphasizes the techniques and methods of studying history from archival sources in the Italian context, circa 1570-1740. Areas to be explored are Baroque Catholicism, social interaction, social status and display court culture, standards of living, historical ecology and geography. Substantial use of translated and transcribed archival sources.

INSTRUCTOR(S): G. Hanlon
FORMAT: Seminar
PREREQUISITE: reading knowledge of French; permission of instructor

CROSS-LISTING: HIST 3053.03

HIST 5061.03: Prelates, Peasants and Primates: From Italian History to the Behavioral Sciences.

Prelates, Peasants and Primates is a directed readings course with an interest in the social sciences as they apply to historical societies. Weekly readings of classic historical scholarship will be complemented by articles and chapters of books drawn from works of sociology, evolutionary psychology, primate ethology, social psychology, and anthropology.

INSTRUCTOR(S): G. Hanlon
FORMAT: Lecture/tutorial
PREREQUISITE: Early modern Europe course

CROSS-LISTING: HIST 4060.03

HIST 5090.03: Russian Society.

Basic institutions of 20th century Russian society are considered in their historical context, with special attention to the former role of the Party, official culture and literature, the workings of the economy, and social stratification.

RECOMMENDED: RUSN 1000.06, 2000.06
INSTRUCTOR(S): D. Kozlov
FORMAT: Lecture/tutorial
PREREQUISITE: Some Russian history. Recommended HIST 2021.03 and HIST 2022.03.

CROSS-LISTING: HIST 3090.03, RUSN 3090.03

HIST 5104.03: Punishment, Crime, and the Courts in Early Modern England, c. 1550-1850.

This class explores the nature and development of the English criminal justice system during the period in which it first began to be exported to other areas, and at home had to deal with the turmoil wrought by reformation, war, and industrialization. This class will examine the uses of law – did it act in the interests of particular people or groups, and if so, how? Historians have argued that the law had both coercive and symbolic purposes – that it served to enforce and legitimize social and economic structures. We will examine these arguments and their implications. Classes will progress thematically rather than chronologically; some will be devoted to a particular type of punishment, some to the different groups of people involved in the legal process, and others to historical debates.

INSTRUCTOR(S): K.J. Kesselring
FORMAT: Seminar

HIST 5105.03: The English Civil War: Society, Religion and Politics 1603-1660.

An advanced class on one of the most tumultuous and eventful periods in British history, leading up to and including civil war and revolution 1642 to 1660. Select primary sources will be used in addition to secondary works. Topics to be studied include the social structure of early Stuart England; the Church and its critics; foreign policy; radical politics; religious sectarianism; and the impact of the war and its aftermath on the populace.

INSTRUCTOR(S): K.J. Kesselring
FORMAT: Seminar

CROSS-LISTING: HIST 3105.03

HIST 5106.03: Topics in Early Modern English History.

Topics will vary from year to year, but may include the religious reformations, print culture, political protest, and state formation. The class will offer students the opportunity to examine in depth key features of the history and historiography of sixteenth and early seventeenth century England.

INSTRUCTOR(S): K.J. Kesselring
FORMAT: Seminar

CROSS-LISTING: HIST 4106.03

HIST 5110X/Y.06: Rome and the East.

This class will consider relations between Rome and her eastern neighbours -- the Parthians and the Persians -- from 54 B.C. to A.D. 628. It will examine the development of Roman policy in the region from the establishment of imperial control in the Near East to the costly wars of the early Byzantine period. Consideration will also be given to the Parthian and Persian kingdoms and to the frontier region.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

FORMAT: Seminar

CROSS-LISTING: CLAS 4535X/Y.06, 5535X/Y.06, HIST 4110X/Y.06

HIST 5117.03: Winston Churchill.

This course focuses on major controversies and events in British and world history in which Winston Churchill was a leading actor. It will examine the historiography of these subjects, and the impact of Churchill’s own writing in shaping the historical record.

INSTRUCTOR(S): C. Bell
FORMAT: Seminar

CROSS-LISTING: HIST 4117.03

HIST 5160.03: Advanced Seminar in Baroque Culture.

This special summer class involves on-site work at the baroque library and theatre in the State Castle of Cesky Krumlov, Czech Republic. Research projects, in areas such as 18th century theatre, opera, court life or architecture, will involve preparatory and follow-up work at Dalhousie. Working knowledge of a relevant language is required.

FORMAT: Seminar/discussion

CROSS-LISTING: HIST 4160.03, THEA 4733.03
HIST 5222.03: Topics in Canadian Social History.
This seminar will explore major themes in Canadian social development. The topics discussed will vary from year to year but will emphasize such themes as: changing values in Canadian society; the nature of popular cultures; the relationship of order and disorder; the family; gender relations; and social classes. Approved with Canadian Studies.
FORMAT: Seminar
CROSS-LISTING: HIST 3222.03, HIST 4222.03
This class examines changes over the twentieth century in the ways Canadians have dealt with people’s needs, their own or others’, whether for income, housing, personal care, or other matters of survival and well-being. Both private and government forms of welfare provision will be studied, with the overall purpose of understanding why Canada came to have the kind of welfare state it does. Among the topics that may be covered are: changing views on the origins and prevention of dependency; definitions of need; religious and ethnic variations in welfare practices; connections between welfare and women’s lives; charitable fundraising; promoters and opponents of government social programs financing the welfare state; gender, race, constitutional, and class issues in welfare. Approved with Canadian Studies.
INSTRUCTOR(S): S. Tillotson
FORMAT: Lecture/tutorial or seminar
CROSS-LISTING: HIST 3223.03
HIST 5250.03: Popular Culture in the Atlantic World, 1650 to 1800.
This course examines the history of popular culture in the Atlantic world. It focuses on using primary sources, such as diaries and journals, to explore the culture and customs in pre-industrial communities. We will discuss topics such as family relationships, popular ideologies, religious practices and economic discussions. Students will present drafts of their research papers in class, and a revised version of the paper will be submitted at the end of term.
INSTRUCTOR(S): J. Bannister
FORMAT: Seminar
PREREQUISITE: Instructor’s permission
CROSS-LISTING: HIST 4250.03
HIST 5255.03: State and Society in Canadian History.
Political history and social history meet in this class. Its theme is the interaction between the power relations of daily life and the process of government. The topics covered may include the role of the press, the emergence of professions, tax revolts, polling, the changing functions of the law, nationalisms, resource management and the environment, patronage, and the welfare state.
FORMAT: Seminar
CROSS-LISTING: HIST 4255.03
HIST 5260X/Y.03: Cowboys in North American History and Culture.
The cowboy is one of North America’s most influential icons. This class will examine the history of the ranching industry, and its role in such larger issues as land-use conflicts, models of masculinity, and race relations. We will then explore the representation of the cowboy in political and popular imagery, as in national identities, the arts and media, rodeos and exhibitions, in Canada and the United States.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
FORMAT: Seminar
PREREQUISITE: Honours degree in History, with upper-year Canadian and/or American history courses.
CROSS-LISTING: HIST 4260.03
HIST 5300.03: Topics in Latin American History.
This seminar course examines a select theme in Latin American history. The specific theme varies from year to year. Possible topics include race and nation, gender and sexuality, or political radicalism. The bulk of the work involves preparation of a significant research paper and discussion of weekly readings.
INSTRUCTOR(S): B. Cowan
FORMAT: Seminar
CROSS-LISTING: HIST 4300
HIST 5320.03: Empowerment, Gender and Development.
Feminist scholarship and activism has spawned a number of theoretical explanations for gender inequalities. In the last decade poststructuralist and postmodernist critiques have influenced feminist theories in important ways. Grand theories of the past have been called into question; universals have been overtaken by particularities and difference(s). Feminists have reacted to these critiques in a number of ways. Some reject it outright, while others call for a synthesis. Scholars and activists concerned with international development have frequently rejected these debates as irrelevant to the practical concerns of development. However, some scholars have responded more favourably to these ideas. This class will explore the various feminist theories, particularly postmodernist influences, and assess their importance for both the theory and practice of development, especially the development of women.
FORMAT: Seminar
CROSS-LISTING: GWST 4320.03
HIST 5335.03: The Cold War.
The Cold War – a period of intense conflict between the United States and the Union of Soviet Socialist Republics – manifested in the era after the second World War and continued until George Bush and Mikhail Gorbachev proclaimed its end in 1989. In order to explore this topic, we will examine a number of issues including: the origins of the crises; the Korean War; the Cuban Missile Crisis; the Nuclear Arms Race; détente and the end of the Cold War. Rather than concentrating on the events as they unfolded, however, this course will focus on questions of interpretation and methodology. The seminars address both the historiography of the period under question and some of the theories historians have used to think about and/or interpret the Cold War experience.
INSTRUCTOR(S): S.J. Corke
FORMAT: Lecture/discussion
CROSS-LISTING: HIST 3335.03
HIST 5365.03: The Vietnam War.
This course covers the major issues of the war, including: the political and social conditions in Vietnam; the reasons for American involvement; the development of US policy toward Indochina and the legacy of the war. It also deals with the principle domestic issues that were connected to the war. Students will be encouraged to think about the war in Indochina and the domestic crises that occurred during the 1960s as an integral part of the same socio-economic and political process. A central theme of the course is that both the foreign and domestic problems were the product of a unique but interconnected set of circumstances that developed as a result of the onset of the Cold War. Rather than concentrating solely on the events as they unfolded, however, this course will focus on questions of interpretation and methodology. Toward this end, the seminars are designed to introduce students to both the historiography of the period under question and to some of the “theories” historians have used to interpret the American experience in Vietnam.
INSTRUCTOR(S): S.J. Corke
FORMAT: Lecture/seminar
CROSS-LISTING: HIST 3365.03
HIST 5370.03: North American Landscapes.
This course is an introduction to the history of landscapes in North America from the fifteenth century to the present day. Each week we will undertake a careful, in depth examination of a select theme that both the foreign and domestic problems were the product of a unique but interconnected set of circumstances that developed as a result of the onset of the Cold War. Rather than concentrating solely on the events as they unfolded, however, this course will focus on questions of interpretation and methodology. Toward this end, the seminars are designed to introduce students to both the historiography of the period under question and to some of the “theories” historians have used to interpret the American experience in Vietnam.
INSTRUCTOR(S): S.J. Corke
FORMAT: Lecture/seminar
CROSS-LISTING: HIST 3370.03
HIST 5380.03: Topics in African History.
This course will undertake a careful, in depth examination of a select theme in African history. The theme will vary from year to year, but the aim will be to probe the deep complexities of Africa’s past that recent scholarship is bringing to light. Themes may be regional or continental, and could include such topics as witchcraft, resistance, urban history, religious change, migration, or nationalism. The core of the work will be a
significant research paper and seminar presentations. Classes will also involve the reading, presentation, and discussion of selected readings.

INSTRUCTOR(S): G. Kynoch, P. S. Zachernuk
FORMAT: Seminar
CROSS-LISTING: HIST 4400.03

HIST 5401.03: State Violence, Communal Conflict and Criminality in Modern South Africa.
South Africa is plagued by one of the world’s highest rates of violent crime and social conflict. Despite the unprecedented level of public concern with violence, little attention is paid to the historical origins of this phenomenon. This course explores the changing patterns of crime and violence since the 1890s.
INSTRUCTOR(S): G. Kynoch
FORMAT: Seminar
CROSS-LISTING: HIST 4401.03

HIST 5404.3: Crime and Punishment in Modern Africa.
This class will interrogate the extent to which questions of state legitimacy and power can illuminate the trajectories of crime, policing and punishment from the early colonial era in Africa to the present day.
INSTRUCTOR(S): G. Kynoch
FORMAT: Seminar
CROSS-LISTING: HIST 4404

HIST 5430.03: Making of Colonial Africa (1850-1930).
European colonial rulers and business interests laid out the framework of the sub-Saharan African colonial order from about 1850 to the 1920s, seeking ways to exploit African labor and natural resources. But imperial plans were limited and sometimes frustrated by African interests, and by historical dynamics within Africa, such as the rise of new merchants and Islamic revolution. This class assesses how the realities of Africa intersected with European imperial ambitions to profoundly change African society during this early colonial period.
INSTRUCTOR(S): P. S. Zachernuk
FORMAT: Discussion
CROSS-LISTING: HIST 3430.03

HIST 5431.03: Struggles in the City: Labour, Migration and Urban Life in colonial Africa.
There were many important urban centres in pre-colonial Africa; however, colonialism and industrialization changed both the pace and nature of urbanization. Old cities grew and new cities and mining settlements were established. Africans came to Labour in these colonial cities for a host of reasons - some were forced off their homesteads when settlers and colonial governments appropriated vast tracts of land, others needed to enter the cash economy to pay colonial taxes; women and men sought new opportunities and adventure. This movement to the cities transformed the lives of millions of Africans. This course will focus on the lives of these urban dwellers, the development of urban cultures, the gendered character of urbanization, the creation of new social, political, economic and criminal networks, conflict and cooperation amongst urbanites, and the nature of colonial oppression and control in the cities.
INSTRUCTOR(S): G. Kynoch
FORMAT: Seminar
CROSS-LISTING: HIST 3431.03

HIST 5435.03: Rise and Fall of African Slavery.
Many African societies, like pre-industrial societies elsewhere, used slaves as well as other forms of labor for a variety of purposes. The rise of external slave trades after 1700 - notably across the Atlantic and Sahara - transformed many African societies into specialized slave exporters. As external slave trades declined in the 19th century, many African economies used extensive internal slave labor to produce exports, a pattern colonial governments were slow to change in the 20th century. This class examines these changes in African slavery, and how they affected such issues as gender relations and class structure.
INSTRUCTOR(S): P. S. Zachernuk
FORMAT: Discussion

HIST 5452.03: South Africa Since 1860.
The class examines not only the changes in race relations and politics, but also the effects of mining and other industries on rural and urban societies after the discoveries of diamonds and gold. Themes will include British policies and the “imperial factor”, the growth of Afrikaner and African nationalism, the Boer War and unification, the development of apartheid and South Africa’s relations with the wider world.
RECOMMENDED: HIST 3451.03, 2131.03, 2132.03
INSTRUCTOR(S): G. Kynoch
FORMAT: Lecture/discussion
EXCLUSION: HIST 3450.06

HIST 5470.03: Wars and Revolutions in Nineteenth Century Africa.
Africa in the nineteenth century was profoundly reshaped by a complex set of events. Muhammad Ali undertook to modernize Egypt. New Islamic states founded in the west developed plantation economies of unrivaled size. On the Atlantic coast, merchant princes made their fortunes supplying tropical goods for Europe’s Industrial Revolution. In Central Africa the search for slaves and ivory both wreaked havoc and stimulated new states. In the south, the rise of Zulu power generated waves of conquest and consolidation. This class assesses the extent to which Africa was reshaped in the revolutionary century before colonial partition.
INSTRUCTOR(S): P. S. Zachernuk
FORMAT: Discussion

HIST 5471.03: Wars and Revolutions in Twentieth Century Africa.
Africa as portrayed in the Western media is a continent plagued by bloody conflicts. All too often these conflicts have not been carefully explained; rather they have been written off as “tribal” squabbles or incomprehensible episodes of barbarism. This course will examine several types of conflicts throughout the twentieth-century and will seek answers to such questions as: What initiated these conflicts? What were the combatants fighting for? How did these conflicts influence wider social, economic and political developments? In what ways did colonial policies and the colonial legacy influence African conflicts? What role has the international community played in African conflicts? What roles have African elites or local communities played in these conflicts? Grappling with these questions will allow us to move beyond simplistic explanations to acquire a better understanding of the wars and revolutions that have so marked twentieth-century Africa.
INSTRUCTOR(S): G. Kynoch
FORMAT: Seminar
CROSS-LISTING: HIST 3471.03

HIST 5475.03: African Intellectuals and the Modern Experience.
African thinkers have long pondered the challenges of the modern era, and have established lines of thought with which African intellectuals now address Africa’s profound problems. But this engagement with the modern world has moved through different phases, just as the social location of the African intelligentsia has changed over time. This class will explore this intellectual history by setting specific writers in context, and then examining their original writings to ponder such questions as: What were the roots of “African Christianity”? How did African intellectuals respond to “scientific racism”? What was the appeal of Pan-Africanism? What was Ngritude? How socialist was African socialism? How do postmodern insights about the invention of identity affect the idea of being “African”?
INSTRUCTOR(S): P. S. Zachernuk
FORMAT: Discussion

HIST 5500.03: Topics in Modern History.
This seminar is specifically intended for students in the Advanced Major and Honours degree programs in History. The specific content of the seminar varies from year to year, but generally involves examination of a subject in history in some depth, and may include an historiographical, comparative or interdisciplinary dimension.
FORMAT: Seminar
CROSS-LISTING: HIST 4500.03

HIST 5503.03: Sultans and Shahs.
This class will examine the post-Mongol Islamic world, and the emergence and expansion of the Ottoman, Safavid, and Mughal empires between 1500 and 1800. Particular themes of concentration will be notions of legitimacy and authority, religious orthodoxy and heterogeneity and the rise of centralized bureaucracies.
INSTRUCTOR(S): C. Mitchell
CROSS-LISTING: HIST 3510.03
HIST 5510.03: Topics in Islam and Middle East History.
This course dedicated to topics dealing with the Islamic world/Middle East from the medieval era to the present. Topics include: political thought in Islam, slavery in Islamic civilization, Nationalism and Ethnicity in the Middle East and Women in the Islamic world.
INSTRUCTOR(S): A. Ghazal
FORMAT: Seminar
PREREQUISITE: Permission of the instructor
CROSS-LISTING: HIST 4510.03

HIST 5545.03: Scripture and Statecraft: The History of Islamic Political Thought (7th-21st centuries).
This seminar focuses on the concept of the Islamic political state as it was first developed during the time of the Prophet Muhammad and the various debates that ensued in the classical and medieval periods. The seminar also focuses on Islamic scholarly discourse regarding ‘mosque and state’ in the wake of colonialism, westernization, and globalization.
INSTRUCTOR(S): C. Mitchell
FORMAT: Seminar
CROSS-LISTING: HIST 4545.03

HIST 5550.03: Orientalism and Occidentalism.
This seminar is intended for senior undergraduate and graduate students interested in discussing how scholarship has historically approached non-Western and non-Christian areas of the globe. Dating back to Herodotus, Plato, and Isocrates, the description of “the Other” has been a consistent theme in European literary and academic traditions. Whether or not it was the apologetic theological rivalry between Islam and Christianity in the Middle Ages, or the Humanist mania for non-European languages and ethnography, Occidental scholarship has historically been attracted to understanding and depicting the non-Occident. This course will examine the different European intellectual traditions of early modern Europe and how they laid the foundation for subsequent 19th and early 20th century characterizations of the Islamic world. Concurrently, however, there is evidence that a discourse of “Occidentalism” emerged among Muslim scholars and literati, and the ensuing dialectic between West and East framed the introduction of a number of political and religious ideologies to the Middle East, Iran, Central Asia, and India. There will be readings and discussions of a number of different scholars and theorists - Foucault, Chakrabarty, Said - who have commented on these discourses. Equal attention will be given to those Muslim scholars - Shayaghan, Soroush, al-Ahmad - who have written and commented on these dynamics between Western and Islamic civilization.
INSTRUCTOR(S): C. Mitchell
FORMAT: Seminar
CROSS-LISTING: HIST 4550.03

HIST 5600.03: Topics in Late 19th and 20th-Century American and British History.
This class will, depending upon the staffing in any particular year, examine a selection of themes in late 19th and 20th century British and American history, including, for instance, labor/labor history, political history (including state formation), cultural history, and history of race and national identity. Depending upon staffing, this class may concentrate upon the history of one country or may offer a comparative aspect. It will be intended for graduate or senior undergraduate students with some background in either British, American or Canadian history. Evaluation will be through research papers and, possibly, a final exam.
FORMAT: Seminar
CROSS-LISTING: HIST 4600.03

HIST 5613.03: Women’s Suffrage from the French Revolution to World War I.
The question of women’s participation in representative government first emerged during the French Revolution but by 1914, only two European countries granted women the right to vote. This seminar explores the suffrage movement in nineteenth century Europe and the obstacles in the process of women’s enfranchisement.
INSTRUCTOR(S): J. T. Pekacz
FORMAT: Seminar
PREREQUISITE: A modern European history course above the introductory level

HIST 5701.03: Medieval Civilization.
Each year several topics are chosen, broad enough to be used as central themes in the context of which medieval civilization may be closely examined; for instance, monasticism, universities, peasants and popular culture. Such topics are studies in some depth, where possible using original sources, and recent periodical literature and/or monographs. Students master the basic work in certain areas, but are also encouraged to develop particular topics more thoroughly. Class discussions are used to unravel contentious or difficult aspects. Students are expected to contribute to such discussions and to write a formal research-based essay as well as several critical book reviews. Some prior knowledge of medieval European history and of Latin are essential.
INSTRUCTOR(S): C. J. Neville
FORMAT: Seminar
CROSS-LISTING: HIST 4003.03

HIST 5702.03: The Medieval Church.
This class examines the power and influence of the medieval Christian church in the social, political and cultural worlds of medieval Europe, but also includes sections on the impact of the church in a wider global setting. Subjects of study include monasticism, heresy, education, devotional life, “popular” concepts of religion, the crusades, and medieval cosmology. Each year a variety of topics is studied in some detail, with the help of original documents (in translation), and using recent periodical literature and/or monographs. Students prepare two versions of a well-researched paper which, at the graduate level, must include the use of sources in Latin. A prior knowledge of medieval European history is essential. In addition students taking the course at the graduate level must complete several critical book reviews.
INSTRUCTOR(S): C. J. Neville
FORMAT: Lecture/tutorial
CROSS-LISTING: HIST 3002.03

HIST 5703.03: England and the Celtic Realm 1000-1603.
This class examines the social, political and cultural history of the Gaelic speaking peoples of the British Isles from c. 1000 to the union of the crown in 1603, with particular emphasis on relations between the peoples of Wales, Scotland, and Ireland on the one hand, and the culture of the English kingdom on the other. The class begins with a comparative study of such fundamental Celtic institutions as the family, kinship, the law, and the church at the end of the first millennium, and on the various sources that inform the early history of the three realms. It then examines in considerable depth the penetration and influence of European ideas into all three in the aftermath of the Norman Conquest of England in 1066, and in the centuries that followed. Students are expected to participate actively by asking questions or raising discussions on disputed subjects. Graduate level students are expected to be able to use Latin-language primary sources for the research paper; in addition, they are required to complete several critical reviews.
INSTRUCTOR(S): C. J. Neville
FORMAT: Seminar
CROSS-LISTING: HIST 3003.03

HIST 5704.03: Crime and Society in Post-Conquest England.
This class explores the development of the criminal law in England between 1066 and 1500. Attention is given to a study of the development of a more sophisticated hierarchy of courts: the local tribunals presided over by justices of the peace and sheriffs, itinerant sessions headed by the justices of assize, and the central court of King’s Bench. The origins and elaboration of particular offences, including treason, felony (murder, rape, arson, burglary and larceny) and trespass are examined. Emphasis is placed on the social aspects of crime in medieval England, and extensive use is made of recent periodical literature dealing with crime and its effect in this period. Graduate level students are expected to be able to use Latin-language primary sources for the research paper.
INSTRUCTOR(S): C. J. Neville
CROSS-LISTING: HIST 4004.03
HIST 5800.03: The Masters Seminar.
This course is intended to hone students’ sense of their craft as historians. Its chief objective is to get students thinking about their own historical methodology, in theoretical and especially in practical terms. From the conception of a project through to its conclusion, historians should always be self-conscious about exactly what they are doing, why they are doing it, and how they are doing it. This course is designed to help develop that self-consciousness. The course will also include workshops on professional ethics, drafting grant proposals, and other such practical aspects of life as an historian. Its final product will be a polished thesis proposal. Please note that this course is a requirement for all new MA students.
INSTRUCTOR(S): Graduate Coordinator
FORMAT: Seminar

HIST 5988.03: The Historiography of US Foreign Relations.
This class introduces students to the major historiographical and methodological trends in the study of US foreign relations post 1945. Rather than concentrate on the events as they unfolded the class is concentrated around discussions of the various interpretations and methodologies historians have used to historicize a particular historical events. The goal of the course is to encourage student to think critically about the various forces at work in the development and execution of US foreign Policy.
INSTRUCTOR(S): S. J. Corke
FORMAT: Seminar
PREREQUISITE: Admission to the graduate program
CROSS-LISTING: HIST 4988.03

Human Communication Disorders
Location: 1256 Barrington Street, 6th Floor
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-7052
Fax: (902) 494-5151

Director of the School
Armson, J.

Professor Emeritus
Green, W.B., B.S., M.A., Ph.D. (Syracuse)

Professors
Armson, J., B.A., M.S., Ph.D. (Temple). Stuttering
Crago, M., B.A., M.Sc., Ph.D. (McGill). Vice President Research
Wang, J., B.S., M.A., Ph.D. (SUNY). Central auditory and cochlear physiology/pathology
Webster, W., B.Sc., M.A., Ph.D. (Pennsylvania). Dean, Faculty of Health Professions

Associate Professors
Cleave, P., B.A./BSW, M.C.S.C., Ph.D. (Kansas). Specific language impairment, Down syndrome, treatment efficacy, language disorders, intervention
Hickey, E., B.S., M.A., Ph.D. (Washington). Treatment of neurological communication disorders, and disability and development/global health issues
Ingles, J., B.A., Ph.D. (Dalhousie). Adult neurogenic language and cognitive disorders

Assistant Professors
Aiken, S., B.A., M.Sc., Ph.D. (Toronto). Electrophysiology, diagnostic audiology, hearing aids
Hong, P., B.Sc, M.D. (Ottawa), F.R.C.S.(C). Pediatric otolaryngology, pediatric hearing, microtia reconstruction, external ear, pediatric hearing loss.
Appointment in the Department of Surgery, Faculty of Medicine

Instructor
Noel, G., B.A., M.Sc. (Dalhousie). Auditory processing disorders, tinnitus/hyperacusis, auditory evoked potential

Academic Coordinators of Clinical Education
Delorey, R., B.Sc, M.Sc (UWO). Speech-language pathology
Floyd, D., B.A., M.Sc (Dalhousie). Audiology

Special Projects and Clinical Education
Wozniak, L., B.A., MA (SUNY). Director - InteRACT
Kostopolous, E., B.Sc (Dalhousie). Coordinator - InteRACT

Adjunct Professors
Atkinson, S., B.A., M.Sc (Dalhousie). Speech-language pathology, dysphagia
Dobbelsteyn, C., B.Sc, M.Sc, M.Sc (Dalhousie). Pediatric speech disorders, cleft lip/palate, resonance disorders, pediatric feeding disorders
Harris, L., B.Sc, M.Sc (UWO). Speech-language pathology, augmentative & alternative communication
Mencher, G.T., B.A, M.A, Ph.D (Mich). FASHA, Pediatric audiology, hearing disorders, auditory diagnosis
Sharpe, M., BSc, MSc, MSc (Dalhousie). Noise and Industrial audiology, nursing, linguistics, or education. However, students with other backgrounds will also be considered if they have completed courses in one or more of the following topics: human biology or physiology, acoustics, developmental psychology, gerontology, learning theory or abnormal psychology, speech perception, psychoacoustics, or other areas of language or linguistics. There are no specific prerequisite courses for admission into our programs. Students whose undergraduate degree is in either speech-language pathology or audiology may be considered for entrance into the program at a more advanced level under exceptional circumstances only.

Students must have attained a minimum of a B+ average in the last two years of undergraduate work to be considered for admission. Two academic letters of recommendation from professors in the student’s undergraduate major will be required as well as a statement from the applicant indicating personal reasons for pursuing graduate work in speech-language pathology or audiology. Applications must indicate the student’s preference for either audiology or speech-language pathology.

Application deadline is January 15 for September admission

III. Practicum/Fieldwork Placements Outside Halifax

Students enrolled in entry to practice graduate programs of study in the Faculty of Health Professions are advised that they may have to do some or all of their required clinical education/fieldwork at sites outside Halifax, and hence may have to incur additional personal expenses for travel and temporary accommodation.

In some situations, sites may require a payment to the site for support of clinical education/fieldwork supervision, and some sites may require separate disability insurance in lieu of eligibility for Worker Compensation coverage. Such costs are the responsibility of the student.

IV. Class Descriptions

A. Core Curriculum

While students pursue a course of study that leads to specialization in either speech-language pathology or audiology, they will be required to take classes that contain information that is basic to both professions. These classes will be described in the class listings that follow.

HUCD 5020.03: Phonetics.

This class considers the articulatory, linguistic, and acoustic aspects of phonetics. The application of phonetics to communication disorders, and training in broad and narrow phonetic transcription are included.

HUCD 5050.03: Fundamentals of Speech Science.

This class is an introduction to speech science. It provides an overview of basic acoustics as well as the structure and function of speech systems. It provides preliminary coverage of theoretical research issues in speech physiology as well as basic topics in speech acoustics such as source-filter theory.

HUCD 5063.03: Clinical Methods.

This course will introduce students to the principles and procedures of clinical practice in speech-language pathology and audiology to develop fundamental skills for entry level of clinical competence. It will be presented in two sections: Part I covers procedural skills and Part II deals with interpersonal and counseling skills.

HUCD 5120.03: Hearing Measurement.

This class deals with an overview of the basic audiologic test battery including pure tone air/bone conduction, speech audiometry, immittance measurements and electrophysiologic testing (i.e., otoacoustic emissions and auditory brainstem response (ABR)). Case studies are used to solidify knowledge into clinical practice. The principles and techniques for audiometric screening are presented.

HUCD 5130.03: Introduction to Audiology and Speech-Language Pathology.

This course will help students acquire a basic understanding of the roles of speech-language pathologists (SLPs) and audiologists (AUDs) in working with clients with communication disorders. This course is meant to prepare students for further study in other specialized courses; thus, this course is designed to provide an introduction to issues that impact clinical practice in both disciplines/professions (e.g., socio-cultural issues, aging). This course will also discuss advocacy for persons with communication disorders across the lifespan.

HUCD 5140.03: Aural (Re)Habilitation with Children.

This class is designed to familiarize students with the general principles and features of communication management programs for preschool and school-age children with hearing loss. Emphasis is placed on the role and appropriate use of audition in the habilitative process.

HUCD 5150.03: Speech-Language Acquisition.

This class acquaints students with current theories of language development, the course of language acquisition, and factors that impact language development. The domains of phonology, semantics, morphology, syntax, and pragmatics are addressed, from infancy through adolescence, in spoken and written modalities. Cultural and linguistic variation is discussed throughout.

HUCD 5260.03: Hearing Disorders.

This class considers diseases, disorders and dysfunction of the auditory system which may be encountered by speech-language pathologists and audiologists. Pathologies of the peripheral and central mechanisms are included.

HUCD 5290.03: Introduction to Neurosciences for Communication Disorders.

The purpose of this class is to provide the student with a basic knowledge of the neurological foundations for human communication processes. This knowledge will serve as a basis for a variety of classes in the audiology and speech-language pathology curricula.
HUCD 6310.03: Audition I.
This class provides knowledge of hearing science at an introductory level. The core of this class is the anatomy and fundamental physiology of the auditory system, from external ear through middle ear, inner to central auditory pathway. It also provides basic knowledge and principles of psychoacoustics and psychological evaluation.

HUCD 6980.03: Research Design.
This class addresses both the evaluation and implementation of research methods in speech, language and hearing disorders. It focuses on the importance of research to the clinical setting and on the development of skills to evaluate the quality of research findings. It also aims to develop the skills to design and implement theoretical and applied research: searching the literature, focusing it upon a research problem, reflecting upon models or theories and applying hypotheses, constructing internally valid methodology, analyzing and interpreting results, and drawing accurate and useful conclusions.

HUCD 7001.03/7002.03: Project.
The student is expected to choose an area of interest to engage in a research project or activity under the direction of a faculty member. Research projects and activities will be assigned to students by a School committee, matching student interest with faculty offerings. A focus of the research experiences will be development of critical thinking and writing skills. Products may include a research proposal, research paper, series of critiques of journal articles, as well as other options.

HUCD 9000.00: Thesis.
The student is expected to formulate an original question related to human communication disorders or sciences, and with guidance from a faculty supervisor and two other members of a supervisory committee, implement a plan to answer the question.

B. Speech Language Pathology Curriculum (above and beyond core)

HUCD 5250.03: Speech Disorders - Children.
This course explores the nature and etiology of both articulatory and phonological disorders in children. It strives to provide a broad introduction to theoretical knowledge regarding assessment, differential diagnosis and treatment of these disorders, with application of this knowledge to clinical populations.

HUCD 5270.03: Language Disorders in Preschool Children.
This class deals with general principles of assessment and management of language disorders in preschool children across the clinical etiologies. Theories of language and contemporary treatment approaches are presented. A critical review of the evidence base for practice is included.

HUCD 6350.03: Assessment of Neurogenic Language and Cognitive Disorders - Adult.
The course will focus on language and cognitive disorders associated with aphasia, dementia, traumatic brain injury, and right hemisphere damage. The neurological foundations clinical symptomatology, and assessment of these conditions will be covered.

HUCD 6370.03: Fluency Disorders.
This class deals primarily with the nature and treatment of developmental stuttering. Topics include facts about its features and patterns of occurrence, theoretical perspectives concerning its nature and etiology, and treatment approaches for children and adults. The class also includes a brief overview of cluttering, psychogenic stuttering, and stuttering associated with acquired neurogenic disorders.

HUCD 6390.03: Voice/Resonance Disorders.
This class is designed to provide the student with an overview of the etiology, assessment, differential diagnosis and treatment of voice and resonance disorders in children and adults. Perceptual and instrumental assessment of the laryngeal and velopharyngeal mechanisms are addressed with respect to various disorders.

HUCD 6450.03: Speech Disorders - Adults.
This class considers speech disorders of neurologic origin in the adult population. The neurophysiologic basis of these disorders, their effect on the motor control of speech, and their clinical diagnosis and management are addressed.

HUCD 6460.03: Treatment of Neurogenic Language and Cognitive Disorders - Adult.
This class will focus on treatment planning using various aphasia/cognitive-linguistic rehabilitation models and treatment procedures for adults who have acquired aphasia and cognitive-linguistic disorders. Students will achieve the skills and knowledge necessary to develop individualized intervention plans for adults with these disorders.

HUCD 6470.03: Language Disorders in School Age Children.
This class considers the nature of language impairments in school age children across clinical etiologies. The impact of language impairments on literacy and academic performance are discussed. Contemporary assessment and treatment approaches are presented. The evidence base for various treatment approaches is examined.

HUCD 6490.03: Advanced Language Disorders in Children.
This seminar-style class explores issues of linguistic and cultural diversity and how they impact the development, assessment and treatment of speech and language disorders. As well, various language disorders such as intellectual disabilities, autism, and specific language impairment are examined in detail.

HUCD 6550.03: Seminar in Adult Communication Disorders.
This class will focus on contemporary topics in adult speech-language pathology and will vary from year to year. Student-led seminars may cover the relevant research literature, professional issues, and clinical cases.

HUCD 6611.03: Augmentative and Alternative Communication.
This course provides introduction to augmentative and alternative communication (AAC) issues. Active participation will help students discover the knowledge necessary to collaborate in AAC assessment and intervention. Examination of recent research will prepare students to choose an appropriate assessment and treatment approach for a variety of clients.

FORMAT: Lecture and Lab

HUCD 6612.03: Dysphagia.
This course provides an overview of normal and disordered swallowing; the elements of clinical examination and instrumental assessments; and the fundamental principles of swallowing rehabilitation. It covers both pediatric and adult populations.

C. Audiology Curriculum (above and beyond core)

HUCD 5220.03: Diagnostic Audiology.
This class considers the principles and methods of basic audiological diagnostic investigation. Emphasis is placed on speech audiometry, clinical masking, and aural immittance measures. A laboratory component provides experience with measurement techniques and exposure to the instrumentation used in these measures.
HUCD 5240.03: Aural Rehabilitation with Adults.
The first part of this class is a follow-up from HUCD6360 Amplification and covers advanced amplification issues. The second part addresses the rehabilitative needs of individuals with hearing losses, with special consideration given to older adults. Emphasis is placed on communication assessment and management approaches.

HUCD 5280.03: Audition II.
This class provides advanced knowledge of hearing science in close association with clinical practice of audiology. The focus includes cochlear biophysics, physiology and signal processing; signal processing and neurophysiology in the central auditory system; advanced discussion of psychoacoustics in association with auditory neuroscience.

HUCD 6070.03: Topics in Audiology Procedures.
Selected topics relevant to the practice of clinical audiology will be covered including tinnitus, balance disorders, ototoxicity, central auditory plasticity, and audiology instrumentation.

HUCD 6320.03: Pediatric Audiology.
This class considers the appropriate audiological assessment and management procedures used with the pediatric population. The class prepares the audiology student to work with children in a clinical setting.

HUCD 6360.03: Amplification.
This is the first class dealing with amplification. It covers hearing aid components and electroacoustic properties, methods of hearing aid selection, and verification of hearing aid fittings. Hearing needs and amplification options for people of all ages are discussed.

HUCD 6380.03: Electrophysiological Audiometric Measures.
This class considers the theory, technique, clinical application and interpretation of otoacoustic emissions and electrophysiologic measures, including the auditory brainstem response, the auditory steady-state response, and middle-and late-latency potentials.

HUCD 6420.03: Aural Rehabilitation with Adults.
This class provides advanced knowledge of hearing science in close association with clinical practice of audiology. The focus includes cochlear biophysics, physiology and signal processing; signal processing and neurophysiology in the central auditory system; advanced discussion of psychoacoustics in association with auditory neuroscience.

HUCD 6440.03: Noise in Industry and the Community.
This class covers a wide range of issues in industrial audiology. It acquaints students with principles of noise measurement and analysis, updated studies on noise induced hearing loss, and hearing conservation programs. Various national and international standards, legislation, and workers’ compensation will be addressed in conjunction with community noise. Laboratory experiences in industrial settings and the community are included.

HUCD 6630.03: Cochlear Implants and Other Implantable Technologies.
This course is designed to address services and technology offered by cochlear implants (CI) and other implantable devices such as auditory-brainstem implants (ABI), bone-anchored hearing aids (BAHA), and middle-ear implants in terms of design, engineering, patient candidacy, surgical procedures, outcomes, and potential complications as well as their impact on the deaf and hard-of-hearing community.

HUCD 6640.03: Advanced Audiologic Rehabilitation.
Rehabilitation (Amplification II) courses. It is designed to increase students’ knowledge on advanced hearing aid technology and FM systems, and to expand their clinical skills in the fitting of hearing aids and the provision of audiological rehabilitation services post-fitting.

Additional Classes Available
HUCD 6500.03: Tutorial Readings.
HUCD 6700.03: Independent Study.
D. Interprofessional Health Education
Students are required to maintain enrolment in IPHE 5900 for the duration of their studies. Successful completion of this course is a requirement for graduation, and will be recognized further with the awarding of a special Certificate in Interprofessional Collaboration to be presented by the Faculty of Health Professions. Students are asked to consult with their individual school/college to determine the specific guidelines and expectations regarding the required portfolio.

IPHE 5900.00: Interprofessional Health Education Portfolio.
This course is intended to prepare students to work in collaborative and patient/client/community/family-centered work environments. Students in entry-to-practice graduate programs are required to maintain registration in this course for the duration of their studies. The student will be required to have completed, by the end of their program of study, a total number of different meaningful and relevant interprofessional collaborative learning experiences (as determined and approved by the School/College) equal to two times the number of years or part years of study in the program. At least one of these experiences will be in a practice setting (in the event there are no students from other professions in any of the student’s practice settings, credit may be granted for interactions with non-student professionals which follow an approved structured format). The experiences will include interactions with undergraduate and/or graduate students from a total of at least 4 different related professions with which there are natural affinities or linkages in the professional environment, some professions of which are outside the student’s home School/College. In accordance with the guidelines/requirements of the home School/College, students will prepare a portfolio (or comparable document/process) which maps their interprofessional collaborative learning experiences on to the specific requirements of the School/College. The portfolio will be graded by the School/College on a Pass/Fail basis. Successful completion of this course is a requirement for graduation in all programs, and will be recognized further with the awarding of a special Certificate in Interprofessional Collaboration to be presented by the Faculty of Health Professions.

FORMAT: Portfolio overseen by individual FHP School/College
RESTRICTION: Health Professions students only
I. Program Description

See Engineering section for Masters’s and Doctoral program details.

II. Class Descriptions

IENG 6900.03: Industrial Engineering Methodologies.
This class gives an overview of industrial engineering methodologies with particular reference to classical industrial engineering and ergonomics. The subject areas covered include: work methods and measurement, engineering economics, plant layout and material handling and industrial ergonomics. Due emphasis will be given to the application of the methodologies in an industrial environment.
PREREQUISITE: This class is not intended for graduates of an Industrial Engineering undergraduate programme.

IENG 6904.03: Industrial Work Systems Design.
This class deals with the improvement of work productivity and quality of industrial working life through optimum design of the job, workplace, work organization and work environment. Due emphasis will be given to integrate the essentials of classical industrial engineering, ergonomic, safety and socio-psychophysiological factors in developing such systems.

IENG 6906.03: Occupational Ergonomics.
Consideration is given to human’s anatomical, physiological and psychological capabilities and limitations for systematic analysis, identification and evaluation of human-machine-environment systems to design consumer products, equipment, tools, and the workstation. Due emphasis will be given to the application of ergonomics principles and data at the human-machine interface in industrial and other occupational settings.

IENG 6908.03: Advanced Production I.
This class deals with the production system and covers the following areas: scale and size of production, plant location, plant layout, and materials handling.

IENG 6909.03: Advanced Production II.
This class deals with the operation and control of the production system and covers the following areas: quality control and inspection systems, scheduling and inventory control and location of warehouses.

IENG 6912.03: Introduction to Operations Research.
This class is a graduate level introduction to the fundamental ideas of operations research. The class focuses on mathematical modelling in deterministic and non-deterministic settings. The class covers topics in the theory and application of mathematical optimization, network analysis, decision theory, inventory theory, and stochastic processes including queuing processes. The class requires background in probability theory and linear algebra as well as some skill in computer programming.
PREREQUISITE: This class is not intended for graduates of an Industrial Engineering undergraduate programme.

IENG 6916.03: Stochastic Processes.
This class is an introduction to the fundamentals of stochastic processes. Emphasis is placed on the analysis of the probability structure of stochastic models. Topics discussed include renewal processes, counting processes, Markov chains, Markov decision processes, birth and death processes. Stationary processes and their spectral analysis may also be discussed. Applications of stochastic processes in operations research, quality and reliability engineering are presented.

IENG 6917.03: Simulation of Industrial Systems.
Computer simulation of industrial systems, the design of discrete simulation models, and the generation of random variables are all covered by this class. Also included is the design of simulation languages. Applications of simulation models in decision making situations arising in production, distribution and economic systems are studied.
IENG 6918.03: Decision Analysis.
This class is an introduction to the fundamentals of rational decision-making, starting with a review of payoff and regret tables, as well as different decision-making situations and criteria. Topics discussed include the value of perfect and imperfect information, decision trees, utility theory, game theory, and Markovian decision models. Applications of decision analysis in operational research, production systems, quality engineering, insurance and financial planning are presented.

IENG 6920.03: Advanced Topics in Linear and Integer Programming.
PREREQUISITE: IENG 4304.03 or equivalent.

IENG 6921.03: Nonlinear Optimization.
Key issues in engineering design are the optimization of the design parameters and optimization of overall system performance. The objective of this class is to expose the student to modern techniques in finite dimensional optimization. Topics in unconstrained optimization will include steepest descent, conjugate gradient and quasi-Newton methods. In the field of constrained optimization, topics will include Kuhn-Tucker theory and algorithmic methods such as reduced gradients, gradient projection, penalty and barrier methods. The use of constructive dual methods may also be included. Throughout the class, students will be encouraged to apply the theory to engineering decision problems.

IENG 6923.03: Distribution Management.
The class will explore the mathematical models in distribution management, and the relationship between theoretical advances and useful applications. The following topics will be covered: location problems, vehicle routing and scheduling with multiple constraints, dynamic routing & scheduling, implementation strategies. Students will be required to undertake a project in solving a distribution management problem.

IENG 6924.03: Capital Investment and Capacity Expansion Planning.
This class involves the use of appropriate decision models to examine problems of capital investment and capacity expansion planning. Single projects under various deterministic criteria, multiple projects with budgetary and non-budgeting constraints, and project selection under uncertainty are all considered. Various aspects of capacity expansion with growing markets and with economics of scale will be examined. Attention will be paid to the role of system operating cost models in making the capacity expansion decision.

IENG 6925.03: Queueing Theory and Its Applications.
This class deals with basic issues in queueing theory. The emphasis is on classical and modern queueing techniques as well as their applications. Besides elementary queueing systems, it also covers special queueing models that are widely applied in areas such as telecommunication networks, flexible manufacturing systems, computer performance evaluation and stochastic service systems. These models include priority queues, retrial queues, assembly line queues, and queueing networks.
PREREQUISITE: IENG 6916.03 or equivalent

IENG 6947.03: Dynamic Programming and Stochastic Control.
Dynamic programming is a methodology for modelling and optimally solving multistage decision problems. The methodology has broad applications in a variety of engineering and other fields. The class emphasizes both dynamic programming as a way of modelling and the numerical solution of the resulting dynamic programming models. The focus of the class is on discrete state, discrete time problems but continuous time and continuous state problems are also encountered. The class deals with both finite horizon and infinite horizon problems. In both cases, deterministic problems and various types of stochastic problems are examined.

IENG 6990.03: Directed Studies in Industrial Engineering I.
This class is offered to students enrolled in a Masters programme in Industrial Engineering who wish to gain knowledge in a specific area for which no appropriate graduate level classes are offered. Each student taking this class will be assigned a suitable class advisor. The student will be required to present the work of one term (not less than 90 hours in the form of directed research, and individual study) in an organized publication format and may, at the discretion of the advisor, be required to take a formal examination.

IENG 7990.03: Directed Studies in Industrial Engineering II.
This class is offered to students enrolled in a PhD programme in Industrial Engineering who wish to gain knowledge in a specific area for which no appropriate graduate level classes are offered. Each student taking this class will be assigned a suitable class advisor. The student will be required to present the work of one term (not less than 90 hours in the form of directed research, and individual study) in an organized publication format and may, at the discretion of the advisor, be required to take a formal examination.

IENG 8500.00: MEng Project.
A Master of Engineering candidate will be required to submit a project satisfactory to the Faculties of Graduate Studies and Engineering and to make a successful oral presentation of the work.

IENG 9000.00: Master’s Thesis/Project.
IENG 9530.00: PhD Thesis.
Information Management

Location: Kenneth C. Rowe Management Building
6100 University Avenue
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-3656
Fax: (902) 494-2451
Email: sim@dal.ca
Website: http://sim.management.dal.ca

Director of School
Spiteri, L.

Administrative Staff
Cox, J., BTHM (MSVU), Communications and Records Assistant
Watson, J., MLS (Long Island University), MLIS Program Coordinator

Professor Emeritus
Dykstra Lynch, M., BA (Calvin), MLS (Dal), PhD (Sheffield)

Professor
MacDonald, B.H., BSc (Acadia), MA, MLS, PhD (UWO). Diffusion and use of
information by scientists/engineers, history of print culture,
research methodology, bibliography of scientific/technical information

Associate Professors
Black, F.A., BEd (Aberdeen), MLIS (Dal), PhD (Loughborough). Print
culture, GIS applications for historical research, professional
development for information professionals
Howard, V., BA, MA (UBC), MLIS (Dal), PhD (Wales-Aberystwyth). Literate for
children, literature for young adults, information behavior.
Moukjad, H., BA (Lebanese U), MA (Boston), MLIS, PhD (McGill).
Information retrieval, multimedia development, multilingual Web
searching
Spiteri, L., BA, MA (York), BEd (Toronto), MLIS (UWO), PhD (Toronto).
Thesaurus construction, classification, indexing, metadata, social tagging

Assistant Professors
Gruzd, A., BS, MS (Ukraine), MLIS (Syracuse), PhD (Illinois)
Lawson, K., BA (Toronto), MA (York), PhD (Toronto)

Lecturer
Toze, S., BA (Queen’s), MLS (Toronto), PhD candidate (Dalhousie).
Information use in corporate settings, professional competencies for
special librarians

Adjunct Professors
MacDonald, J., BSc (MSVU), MLIS (Dal), PhD candidate (Sheffield)
Vagianos, L.G., BA (Hiram College), MA (Suffolk), MLIS (Western Reserve), LLD (UPEI)

Associated Instructional Staff
Barrett, C., BMus (Acadia), MLIS (Dalhousie)
Boxall, J., BA (Saint Mary’s), BEd (Saint Mary’s), MA, MLIS (Dal)
Makani, J., BA (Zimbabwe), MLS/MBA (Dalhousie)
Mckenna, P., BA (Toronto), Bed (Ont. Institute of Studies in Ed), MA (Toroto), MLIS (Toronto)
Nath, U., BSc, MSc (Dhaka, Bangladesh), MS (State University of New
York, USA), PhD (Dunedin, New Zealand)
Pluzhenskaya, M., BS (Yearoslav State in Russia), MS (Yearoslav Pedagogical U. in Russia), MS (Illinois), Ph.D (Illinois)
Richard, N., BA (Moncton), MLIS (Dalhousie)

Students seeking further information or help in planning classes of study
in the School of Information Management should contact:
MLIS Program Coordinator
School of Information Management
Faculty of Management
Dalhousie University
Kenneth C. Rowe Management Building
6100 University Ave
P.O. Box 15000
Halifax, NS B3H 4R2

The goal of the Master of Library and Information Studies Program is to
provide qualified candidates with graduate education which equips them
careers as leaders in the information professions.

The student is introduced to the development and significance of
information management wherever it is practiced, to the underlying
principles of the profession, and to the techniques of information
organization, analysis, retrieval, and use. Each student is challenged to
explore and question through a curriculum which attempts to balance
professional studies with supervised practical experience and advanced
academic study or individual research.

I. Admission Requirements/Deadlines

The School functions within the Faculty of Graduate Studies and its
entrance requirements meet the standards of this Faculty. Candidates for
the MLIS must hold a four-year Bachelor’s Degree with at least a second
class standing (B average, 3.0 GPA) from a university recognized by the
Senate of Dalhousie University. An academic level of a high B+ (3.3 GPA)
or better is generally held by successful applicants.

Although our application deadline is April 1, SIM accepts applications
throughout the year. Early applications are strongly recommended.

The MLIS Program is designed for fall admission.
In special circumstances, the School may admit, in January, applicants
who transfer from another Library & Information Studies (LIS) program,
or applicants with considerable experience in the field.

Application deadline for those who meet January admission intake
criteria: October 31

Candidiates whose mother tongue is NOT English are required to
demonstrate a working and a reading knowledge of English. A TOEFL
score of 600, 250 for computerized testing, or a score of 100 on the TOEFL
Internet-based Test (TOEFL IBT) and 5.5 for the TWE, a MELAB score of
95, an IELTS score of 8.0, a CAEL score of 70, or the General Certificate in
Education in the English Language at the Ordinary or Advanced Level are
acceptable.

Application Deadlines

September Admissions
• January 1: Deadline for International applications
• March 1: Deadline for scholarship consideration
• April 1: Deadline for all Canadian applications

(All applicants are strongly advised to apply earlier)

For Master of Information Management admission deadline dates, please refer to section II part E.

II. Degree Programs

A. Master of Library and Information Studies (MLIS)
The degree of Master of Library and Information Studies is awarded upon
satisfactory completion of:
1. Sixteen half-credit classes -- eight required courses and eight electives
 (one of which must be an advanced technology course)
2. INFO 0590 Practicum (i.e. work placement of 100 hours)
3. In addition, students are strongly encouraged to attend the array of
 professional, research and networking opportunities provided by the
 School and the broader Faculty of Management.
1. Two-Year Program
Full-time attendance during the Fall and Winter terms for two years.

2. Part-Time Program
The degree is to be completed within seven years. Each calendar year, a part-time student may take no more than five half-credit courses offered by Dalhousie University. In the first year a focus on required courses is beneficial.

B. Master of Library and Information Studies/Juris Doctor (MLIS/JD)
A four-year program leading to the degrees of Juris Doctor and Master of Library and Information Studies. The usual order of the program is:
Year 1: First year classes of the MLIS program INFO 0590 Practicum (Spring term)
Year 2: First year classes of the JD program
Year 3: Two MLIS classes (1 required, 1 elective); 23-25 hours of JD classes
Year 4: 2 MLIS classes 23-25 hours of JD classes
Students who apply for the combined MLIS/JD program must meet the admission standards for both the Faculty of Law and the School of Information Management.

For further information about this program contact the MLIS Program Coordinator, School of Information Management, and/or the Director, Admissions & Career Development, Faculty of Law.

C. Master of Library and Information Studies/Master of Public Administration (MLIS/MPA)
A three-year full-time course of study leading to the degrees of Master of Library and Information Studies and Master of Public Administration. A total of 27 credits (12 MLIS and 15 MPA) are needed to complete the MLIS/MPA program.

Applicants must gain separate and independent admissions to both Schools. For further information contact the MLIS Program Coordinator or the MPA Graduate Coordinator.

D. Master of Library and Information Studies/Master of Resource and Environmental Studies (MLIS/MREM)
A twenty-eight month course of study leading to the combined degrees Master of Library and Information Studies and Master of Resource and Environmental Management (MLIS/MREM). A total of 22 courses (8 MLIS, 6 MREM including an internship, MGMT 5000 and 7 electives) are needed to complete the MLIS/MREM Program.

Applicants must gain separate and independent admission to both Schools. For further information contact the MLIS Program Coordinator or the MREM Program Coordinator.

E. Master of Information Management (MIM)
The Master of Information Management (MIM) is a limited enrolment program for mid-career professionals “with at least 5 years’ experience” in the private, public or NGO sectors. It is a part-time program offered primarily by distance complemented by face-to-face intensives.

Students earn a Certificate in IM after successfully completing 12 credit hours (equivalent to 3 full part I and part II courses), and a Graduate Diploma in IM after successfully completing 24 credit hours (equivalent to 6 full part I and part II courses).

The Master of Information Management (MIM) requires 36 credit hours for completion (nine courses of four credit hours each; three for online component and one for intensive component). Eight courses are required and one elective. The program may be completed in three years of part-time study.

MIM application deadline
Fall: June 1
Winter: November 15
Spring: February 28

For further information about this program contact the Centre for Advanced Management Education Cfame@dal.ca

III. Class Descriptions

A. MLIS
In the following list the required classes are numbered 0590, 5000, 5500-5570, 5590 and 6540; all other 6000 classes are electives. All classes with the ‘0’ prefix are non-credit; 7000 classes are experimental or occasional classes. Not all 6000 and 7000 level classes are offered each year. The curriculum has been organized with sufficient flexibility to allow students to pursue an individual research project, or to develop a subject specialty through reading classes or the thesis option.

SIM students are encouraged to take graduate-level courses offered outside SIM, and may take a maximum of four half-credit courses outside the School. Advance approval must be obtained from the course instructor and the MLIS Program Coordinator or the Director of SIM.

Required Courses

MGMT 5000.03: Management Without Borders: A Foundation Course for Masters Students in Management.
This course places management in its broadest context and helps students from diverse disciplines understand the complex social, economic, ecological, political and technological forces shaping 21st century leadership in the public, private and non-profit sectors. Key themes explored in the course include systems thinking, collaboration across sectoral boundaries, values based approaches to management, sustainable economic development and personal/professional development. The course is taught by leading faculty from across the Faculty of Management as well as guest speakers. Learning opportunities are delivered in a mix of formats, including lectures, tutorials, readings, multidisciplinary cases and group discussions. The course is characterized by a strong emphasis on interdisciplinary team work for effective problem solving in complex environments.

FORMAT: Lecture, tutorial, group work, class participation

INFO 0590.00: Practicum.
Enables the student to test and evaluate class theory, to contribute by actual participation, and to explore areas of particular interest for course specialization and future employment. Placements are arranged in consultation with the MLIS Program Coordinator. (100 hours, Non-credit). Full details are provided in the Practicum Guide. (http://sim.management.dal.ca/Courses/MLIS_URL_Courses_Offered/INFO0590.php)

INFO 5500.03: Information in Society.
Provides an introduction to the economic, political, and social dimensions of an information-rich environment. Includes consideration of the historical development of library and information studies, knowledge production, issues of control versus free flow of information, the social organization of knowledge, and the ethical and legal aspects of information services.

INFO 5515.03: Organization of Information.
Introduces the theory and applications of information organization. Primary topics include: describing and representing information in various media; subject classification theory and techniques; authority control; controlled vocabulary; indexing fundamentals; and relation of organization to information retrieval systems. Traditional, library-oriented and more recent computer-based techniques, tools, and theories are examined.
INFO 5520.03: Research Methods.
Introduces concepts, methods (both quantitative and qualitative), and the practices of research that are appropriate to library and information studies. Addresses the nature and uses of research, tools for research, handling of evidence, analysis and interpretation of findings, reporting of results, evaluation of published reports, and the management of research.

INFO 5530.03: Information Sources & Retrieval.
Offers both a theoretical and a practical introduction to information services. Discusses users and their information-seeking behaviours, major categories of reference resources and how best to match appropriate resources to the user via effective reference interviews. Explores evaluation techniques and uses of reference resources in various formats. Includes strategies of online searching both in specialized databases and the Web.

INFO 5570.03: Organizational Management & Strategy.
Introduces management theories and practices for organizational functions occurring in any type of information setting. Examines all elements involved in effective strategic planning, implementation and management including personnel, budgeting, and change management. Discusses evaluation methods for all information centre functions. Introduces techniques relevant for training and development issues, policy and procedure writing, requests for proposals (RFPs), etc.
PREREQUISITE: INFO 5530.03

INFO 5590.03: Information Management Systems.
Covers the principles of systems analysis, as well as library management systems and modules, and project planning. Modules include acquisitions, public access catalogue, full-text access, circulation, non-print booking, etc. The class introduces fundamental concepts, and facilitates understanding of how automated systems are selected and managed for the benefit of professionals and patrons/clients.
PREREQUISITE: INFO 5515.03, INFO 5530.03, INFO 5570.03

INFO 6540.03: Database Management Systems.
Focuses on the theoretical and practical aspects of the process of relational database design. Topics covered include data modeling, the Entity-Relationship data model, data normalization, and structured query language. The database design process is covered from conceptualization to implementation.
PREREQUISITE: IT Competencies listed in Admissions Requirements

Electives

INFO 6050.03: International Perspectives.
A study of the nature of library and information science from a global point of view. Analyzes library information services and systems in various countries and regions of the world, and explores information needs of different or ethnic groups.

INFO 6070.03: Reading and Reading Practices.
This seminar class will examine theories of reading from social, psychological and literary perspectives. The class will discuss literary practices and the evolution of the concept of literacy in an era of cultural and technological change.

INFO 6150.03: History of the Book.
Explores the history of the book from its early beginnings to its present manifestations. While greatest emphasis will be placed upon the history of the book from the mid-15th century to the present, the class will also discuss the history of important precursors of mechanical printing, and literacy, books, and manuscripts in the ancient and medieval periods.

INFO 6250.03: Services and Resources for Young Adults.
Introduces the social, intellectual and psychological nature of adolescence, with respect to reading, listening and viewing interests.

INFO 6300.03: Government Information Resources.
Examines the structures of governments and the ways in which they produce information for their own use and for the general public. Emphasis is placed on the nature and scope of Canadian, American, and British government information as well as information of intergovernmental agencies such as that of the United Nations. Acquisition, organization, access, use and evaluation of government information are considered.
PREREQUISITE: INFO 5530.03

INFO 6310.03: Resources for Business Intelligence.
Examines the value of information in a competitive environment from the perspectives of various types of business information, cost and management of information, developments on the Internet, and the role of governments. In addition, discerning client needs and packaging of information for client use are considered.
PREREQUISITE: INFO 5530.03

INFO 6320.03: Legal Literature and Librarianship.
An introduction to the major sources of Canadian legal information, and the fundamental principles, issues, and practices in law librarianship.
PREREQUISITE: INFO 5530.03

INFO 6330.03: Cataloguing and Classification I.
This course focuses on theoretical and practical considerations involved in metadata records creation for published monographs. Major descriptive codes such as the Anglo-American Cataloguing Rules, the International Standard for Bibliographic Description, Library of Congress Subject Headings, Dewey Decimal Classification, and the Library of Congress classification will be examined.
PREREQUISITE: INFO 5515.03

INFO 6340.03: Cataloguing and Classification II.
Course focuses on theoretical and practical considerations regarding metadata records creation for published non-book media. Major descriptive codes (Anglo American Cataloguing Rules, International Standard for Bibliographic Description, Dewey Decimal Classification, Library of Congress Classification, Functional requirements for Bibliographic Resources, and Resource Description and Access) will be examined.
PREREQUISITE: INFO 5515.03, INFO 6330.03

INFO 6350.03: Indexing and Abstracting.
Presents the principles of subject analysis and development of thesauri, as well as indexing and abstracting systems. Provides practice in the principles and methodologies used in thesauri construction, periodical indexing, back-of-the-book indexing, Web indexing, abstracting, and automatic indexing and abstracting.
PREREQUISITE: INFO 5515.03

INFO 6370.03: Records Management.
A comprehensive introduction to the field of records and information management. Topics covered include: records creation, evaluation, maintenance and control; issues relating to the maintenance, storage and disposition of records; and electronic records management.
PREREQUISITE: INFO 5515.03
CROSS-LISTING: MGMT 5012.03

INFO 6400.03: Knowledge Management.
Surveys the latest knowledge Management theories and practices from information science, management, cognitive/educational psychology and computer science. Focuses on the nature of knowledge construction by examining the identification, capture, application and sharing of organizational knowledge, cognitive techniques and the technological systems that facilitate these processes.

INFO 6450.03: Services and Resources for Children.
Examines the reading and viewing interests of children. Topics covered include a brief overview of developmental psychology, the history of children’s literature, developing successful library programmes for children and their caregivers, building the children’s library collection, and enhancing children’s visual literacy.

INFO 6500.03: Users and Services.
Explores both sides of the users and services equation, focusing on profiling specific user groups, exploring the methods and tools used in community analysis and service evaluation, and determining the manner in which a proper fit or match may be achieved.
INFO 6560.03: Collections Management.
Examines the principles and methods of building library collections in all
types of libraries, including the formulation of selection policy, criteria for
evaluating materials, and the relationship of the selection process to user
requirements and to other library procedures. Includes the problem of
censorship, the art of the book review, and the relationship of the
publishing industry to collection development.

INFO 6590.03: Information Sources in Science and
Technology.
Examines Canadian and international scientific and technical information, and
considers the production, dissemination, access, organization, and use of
the two types of information.
PREREQUISITE: INFO 5530.03

INFO 6600.03: Information Sources in the Humanities/
Social Sciences.
Examines the information requirements of the various disciplines in the
humanities and the social sciences, and discusses the relevant information
sources for each subject area.
PREREQUISITE: INFO 5530.03

INFO 6610.03: Information Policy.
Explores, in a graduate seminar setting, a range of issues currently facing
information professionals and the effect of these issues on policy
development. Discusses the roles of all levels of government, the private
and not-for-profit sectors, and key individuals in developing policies
which affect information creation, control, access, and use. Focuses on
Canadian issues, and includes international affairs as appropriate to the
information society.

INFO 6620.03: Electronic Text Design.
Examines the theories, techniques and processes used to create, structure,
and deliver electronic text and the implications of e-text for the future role
of libraries. Aspects covered include analysis of the electronic information
environment, the preparation of source material, and methods of adding
value to electronic text.
PREREQUISITE: INFO 6540.03

INFO 6630.03: Designing Interaction with Information
Systems.
Explores how technology affects human use, and examines the process
from conception of an idea to design and evaluation, with a particular
emphasis on Web-based activities.
PREREQUISITE: BUSI 6525
CROSS-LISTING: BUSI 6525.03

INFO 6640.03: Electronic Access to Information.
Explores the principles and methods involved in the retrieval of
information from online databases. Topics discussed include the
organization and structure of online databases, the formulation of search
strategies, the evaluation of the content and search interfaces of online
databases, and the management of online search services.

INFO 6650.03: -6680.03: Academic Classes.
Available by arrangement with the Director.

INFO 6680.03: Information Seeking Behaviour.
This class will examine information seeking behaviour in a variety of
settings (health care, private and public organizations, academic
institutions, etc.), individuals and groups information seeking and use in
these contexts, and the theories and models of information seeking
behaviour that explore and explain information behaviour.
PREREQUISITE: INFO 5520.03 and INFO 5530.03

INFO 6700.03: -6710.03: Reading Classes.
Provide students with the opportunity to develop a specific interest in the
library/information studies field by studying an aspect of a topic in
greater detail than is possible within an existing class, studying an area not
currently covered by the curriculum, or conducting a research study or
special project. Available by arrangement with the Director.

INFO 6750.03: Health Sciences Literature &
Information Sources.
Introduces students to the concepts and practice of health science
librarianship with particular emphasis on the various print and electronic
reference sources in the health sciences.
PREREQUISITE: INFO 5530.03

INFO 6800.03: Archives.
Provides an overview of the issues and practices of archival science, with
emphasis on Canadian approaches. Considers principles of acquisition,
arrangement, description, reference and use of archival records, along
with the management of archives and the relationship between archival
work and other divisions of the information professions.
PREREQUISITE: INFO 5515

INFO 6810.03: Information Literacy.
Introduces theories and practices of educating clients in information
research skills. Concepts covered relate to the design, implementation, and
evaluation of instructional programmes for a wide variety of clients/
patrons. Includes theories of learning and how these can be utilized for
effective client instruction and education.
PREREQUISITE: INFO 5530.03

INFO 6830.03: Information Retrieval.
An overview of information retrieval emphasizing current research and
current developments. Both search engines and the interface are explored
with an emphasis on evaluation and user testing.

INFO 6840.03: Digital Libraries.
Introduces the requirements and technologies of networked library
systems. Follows the evolution of the digital library and its impact on
information dissemination. Examines issues and trends influencing the
development and structure of digital libraries.

INFO 6850.03: Special Topics in Information
Management.
Builds on topics introduced in required courses, particularly those dealing
with applications of information technology in information management.
This class will take a more in-depth look at the major topics in the field.
The content will change rapidly as the field progresses. Current topics
include: information ethics, design of usable information systems, digital
media, network design, electronic communication, software lifecycle
management, and design of an information-based organization.

INFO 6880.03: Systems Analysis.
Introduces knowledge, skills, and techniques necessary for describing,
analyzing requirements, and designing the user-oriented aspects of
information-technology-supported systems in organizations.
PREREQUISITE: INFO 5590.03

INFO 7390.03: Quantitative Methods.
Introduces quantitative methods and their application to public policy.
Broadly, the course has four objectives: students will (1) recognize the
importance and relevance of statistics (2) be able to adopt a statistical
perspective and identify when it is useful when analyzing events around
them, (3) be equipped with the basic tools and methods of statistical
analysis, and (4) demonstrate a critical understanding of their practical
applications in public policy and everyday life.
PREREQUISITE: INFO 5520.03
CROSS-LISTING: PUAD 5140.03
INFO 9000X/Y.12: Thesis
Available by arrangement with the Director. The Thesis option replaces four of the School’s electives.

INFO 9003.00: Thesis Continuing.

B. MIM

MGMT 5001.03: Information, People and Society, Part 1.
This course provides an introduction to the economic, political, and social dimensions of an information-rich environment. It includes an overview of the historical and social development of information and knowledge management, issues of control versus free flow of information management in support of situational understanding and decision-making, the organization of knowledge, and the ethical and legal aspects of information management.

FORMAT: Online via BLS including some or all of the following: voice-over presentations, video presentations, group discussions, instructor/student threaded discussions, hyper-linked lecture notes, live chat, etc.

MGMT 5002.03: Organization of Information, Part 1.
Information management is the organization of organizational processes and systems that acquire, create, organize, distribute, and use information. This course examines the various means by which information can be organized to facilitate its retrieval, management and use, and provides an overview of the principles and theories of metadata development and implementation in the digital environment. Emphasis will be placed on metadata interoperability, vocabulary control, standardization, quality control and evaluation. Contextually-relevant information is essential to support decision making and strategic planning by individuals, groups and organizations. An introduction to the principles of IA is included, as they interconnect with best practices in the Organization of Information.

FORMAT: Online via BLS including some or all of the following: voice-over presentations, video presentations, group discussions, instructor/student threaded discussions, hyper-linked lecture notes, live chat, etc.

This course makes clear the relationship between IT and IM, often misconstrued in organizations. The course includes theories of databases and integrated systems design, allied with practical applications of a wide range of information technologies to support organizational goals. These include traditional intranet and extranet applications along with emerging Web 2.0 technologies. Concepts of information architecture (IA) are introduced relating to the design of shared information environments which are often web-based, including intranets, databases and online communities. The practices of IA are examined through analyses of real organizations and how the information environment can best serve their mission, goals, processes, clients, suppliers and other stakeholders.

FORMAT: Online via BLS including some or all of the following: voice-over presentations, video presentations, group discussions, instructor/student threaded discussions, hyper-linked lecture notes, live chat, etc.

MGMT 5004.03: User Experience, Part 1.
Understanding of theories and practices of human computer interaction is a key determinant of organizational success. This course explores how technology affects human use, and examines the process of the conception of an idea to design and evaluation, with a particular emphasis on Web-based activities. The course discusses individuals and groups’ information seeking behaviours in public and private contexts, and the theories and models of information seeking behaviour that contribute to a nuanced understanding of the user experience.

FORMAT: Online via BLS including some or all of the following: voice-over presentations, video presentations, group discussions, instructor/student threaded discussions, hyper-linked lecture notes, live chat, etc.

MGMT 5005.03: Information Policy, Part 1.
Course complements MGMT 5005. Part 1 and is a face-to-face, two day intensive period. Course will allow students to bring together and apply the concepts and materials from MGMT 5005, consider the international context within which information policy issues in Canada are situate, and to provide students with the opportunity for sufficient grounding in relevant areas of law.

FORMAT: Online via BLS including some or all of the following: voice-over presentations, video presentations, group discussions, instructor/student threaded discussions, hyper-linked lecture notes, live chat, etc.

MGMT 5007.03: Research Methods, Part 1.
Introduces concepts, methods (both quantitative and qualitative), and the practices of research that support evidence-based information management practice. Addresses the nature and uses of research, tools for research, handling of evidence, analysis and interpretation of findings, reporting of results, evaluation of published reports, and the management of research.

FORMAT: Online via BLS including some or all of the following: voice-over presentations, video presentations, group discussions, instructor/student threaded discussions, hyper-linked lecture notes, live chat, etc.

MGMT 5008.03: Knowledge Management, Part 1.
Knowledge management (KM) encompasses a range of theories and practices relating to the creation, identification, accumulation and application of knowledge to meet organizational goals. This course discusses theories of KM, intellectual capital and learning organizations, and practices for efficient and effective harnessing of organizational knowledge. An integrative approach is adopted, based on the key KM theories and concepts developed in the past decade and applying them across a wide range of organizational settings.

FORMAT: Online via BLS including some or all of the following: voice-over presentations, video presentations, group discussions, instructor/student threaded discussions, hyper-linked lecture notes, live chat, etc.

MGMT 5009.03: Collaboration, Part 1 (Elective).
Geographically dispersed workplace teams who cross time, space and organizational boundaries are increasingly common. Information managers increasingly contribute expertise to ensure that such teams have effective decision-making processes and contribute to organizational strategic goals. Virtual collaboration can take place through many modes including audio or teleconferencing, online communities and others. Team members have a common purpose and interdependent organizational and performance goals. This course introduces theories and concepts relating to the rationale for, benefits and challenges of virtual workplace teams, steps for developing effective virtual teams and examples of technology that supports such teams.

FORMAT: Online via BLS including some or all of the following: voice-over presentations, video presentations, group discussions, instructor/student threaded discussions, hyper-linked lecture notes, live chat, etc.

MGMT 5010.03: Project Management, Part 1 (Elective).
This course introduces theories and practices of project management (PM) related to project objectives, development stages and control variables such as time, cost and scope. PM stages include initiation, development, execution and maintenance and the course explores these through workplace case studies related to students’ professional experience.

Adaptable as well as pre-planned methods and approaches are explored, including process based systems, critical path and event chain.

FORMAT: Online via BLS including some or all of the following: voice-over presentations, video presentations, group discussions, instructor/student threaded discussions, hyper-linked lecture notes, live chat, etc.

MGMT 5012.03: Records Management, Part 1.
This course will provide an introduction to the basic theories, methodologies, and most significant problems relating to records management. The course will also introduce students to the ways records managers are responding to the challenges of managing and preserving electronic records.

FORMAT: Online via BLS including some or all of the following: voice-over presentations, video presentations, group discussions, instructor/student threaded discussions, hyper-linked lecture notes, live chat, etc.

PREREQUISITES: MGMT 5002.03
CROSS-LISTINGS: INFO 6370.03

MGMT 5015.01: Information Policy, Part 2.
This course will provide a general overview of law, and particularly the common law, primarily from a Canadian perspective, in order to allow students to analyze their own work environments from a legal perspective. The course will also introduce students to various areas of policy making in the legal content affecting the information field.

FORMAT: Lectures/classroom discussions/students presentations
MGMT 5020.03: Capstone Course, Part 1.
Based on individual learning objectives, students may choose either a case study or a research project as the final assessed item for the Program Structure. They will have been advised, in light of their interests, to take either MGMT 5006 or MGMT 5007 as preparation for the Capstone. Students work with an advisor, under the general supervision of the course instructor, to complete a case or a project of special relevance to their workplace. Cases and projects are assessed on the extent to which they demonstrate application of the theories and techniques explored throughout the program.
FORMAT: Online via BLS including some or all of the following: voice-over presentations, video presentations, group discussions, instructor/student threaded discussions, hyper-linked lecture notes, live chat, etc.

NOTE: Additional courses will be listed on the website once approved.

School Publications
- Dalhousie Journal of Interdisciplinary Management (http://djim.management.dal.ca/)
- Inform: Newsletter of the School of Information Management (annual)
- YA Hotline (Irregular)
Interdisciplinary PhD Program

Location: Faculty of Graduate Studies
Room 314, Henry Hicks Academic Administration Building
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-8078
Fax: (902) 494-8297
Email: idphd@dal.ca
Website: idphd.grad.dal.ca

Acting Director and Graduate Coordinator
Pluzhenskaya, M.

Graduate Secretary
Clark, E., Faculty of Graduate Studies

Interdisciplinary PHD

Information for Prospective Students

The Interdisciplinary PhD Program is a full-time research-based program designed to meet the needs of an increasing number of mature, experienced students for research opportunities which cut across disciplinary boundaries. Interdisciplinary research integrates the insights of two or more disciplines to advance knowledge and solutions beyond the scope of a single discipline. Within the program’s framework, the student of study is customizable to the needs of the student and their research direction. Students take graduate classes across Faculties at Dalhousie and work with faculty members in existing PhD-granting disciplines and other areas. They then complete a set of comprehensive examinations, defend a PhD thesis proposal, and then complete and defend an original research program leading to the doctoral thesis.

Applicants for the program must have demonstrated prior academic excellence. Before making application, prospective students must consult with faculty members in the disciplines relevant to their proposed research program. Particular attention should be paid to the following features of the Interdisciplinary PhD program:

1. Entering students must hold a thesis-based Master’s degree or equivalent independent research experience as demonstrated through first-authored publications etc. The cumulative GPA must be 3.7 or greater.
2. The responsibility largely lies with students to organize a unique, genuinely interdisciplinary program of studies with identified supervisor(s) and supervisory committee. The supervisory committee must be fully identified by the second stage of the program’s admissions process.
3. Doctoral programs are designed to produce graduates who are capable of acting as independent investigators. Within that model of increasing independence, the supervisory committee is responsible for defining and supervising the student’s overall program of study, including advice on funding, setting and scheduling of comprehensive examinations, the development of a thesis proposal, the research program, thesis-writing and defence.
4. The student should plan their program of study in the context of an overall career goal to ensure that, as far as possible, an appropriate qualification is developed for desired employment upon graduation.

The admissions process for the Interdisciplinary PhD is a three-stage process consisting of: (i) evaluation of academic credentials, (ii) evaluation of interdisciplinary research interests, supervision, and planning, and (iii) applicant interviews. Anyone wishing to pursue admission to the program should plan it within the framework of the following admission process.

1. The student should develop, in consultation with at least one faculty member, a tentative program of proposed study, making sure that it: (a) is truly interdisciplinary, and (b) cannot be completed within the framework of a single discipline.
2. The student, in consultation with the potential supervisor, should prepare a Statement of Interdisciplinary Research Interest.
3. The student should discuss the proposed program with appropriate faculty members and obtain written support from a supervisor and two committee members.
4. The application process is described in detail on the Web at: http://idphd.grad.dal.ca/. Please see that website for details on the documents required for a full application, including: transcripts, Statement of Interdisciplinary Research Interest, program proposal, three letters of reference, letters of support from proposed supervisor and committee members, and other supporting documentation. Please also see the program website (http://www.idphd.grad.dal.ca) for application deadlines.

Because the application process is a lengthy one, prospective students are advised to plan well in advance. Application for external funding by all eligible applicants is strongly advised. Limited university funding may be available.

Admission Deadlines

Canadian students: October 1 for January or May start; February 1 for September start.
International students: February 1 for September start.

Program Requirements

Preliminary class work will generally consist of 4-6 half-credit classes chosen from the graduate offerings of the Faculty and may include up to two directed reading classes. During the second year, comprehensive examinations are written in fields appropriate to the topic of research. The number (no more than 3) and nature (written, oral, combination of written and oral, or project-based) are decided by the supervisory committee. Soon after comprehensives are passed the student submits a written thesis proposal to the supervisory committee. After successfully defending the written proposal the student works exclusively on the research program leading to the thesis. The finished thesis is presented and orally defended in compliance with the Faculty of Graduate Studies procedures.

For more information contact the, Faculty of Graduate Studies, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H6. Telephone (902) 494-8078; Fax: (902) 494-8797; Email: idphd@Dal.Ca, http://dal.ca/grad.

INTE 7000.03: Interdisciplinary Directed Studies.

INTE 7005.03: Research Directed Studies.

The purpose of this class is to provide all Interdisciplinary PhD students with an opportunity within their programmes to concentrate on the development of a research proposal. Normally, the student would read broadly, prepare a bibliography of related work, prepare critical analyses of current work, and meet with the supervisor on a weekly basis. Each instance of this class would, however, be designed by the student and his or her supervisor to reflect the interdisciplinary nature of the individual programme. The goal of this directed study class is for the student to formulate research questions that may be developed into the formal research proposal. The class would entail both written and oral contributions by the student.

INTE 7100.03: Research Methods from Management, Policy, and Science for Interdisciplinary Studies.

This class is designed to provide interdisciplinary students with a broad range of research method approaches from management, policy, and science perspectives. The goal is for the student to determine the research methods most appropriate for their thesis work and to be able to design simple to moderately complicated research studies including those for their dissertation. In addition, this course will provide the basis for critical reading of research findings in the literature.

INSTRUCTOR(S): TBA
FORMAT: Lecture/discussion
INTE 7120.03: Advanced Qualitative Methodologies For Interdisciplinary Studies.
The objective of this course is to provide students with the skills and support necessary to design their dissertation research, and collect and analyse qualitative data. The philosophical underpinnings of qualitative methodologies are examined, and their relevance, transfer, and implications for interdisciplinary research practice are considered.
INSTRUCTOR(S): TBA
FORMAT: Seminar/discussion
PREREQUISITE: A masters level qualitative methods course.

INTE 9530.00: Doctoral Thesis.
PHDP 8000.00: Doctoral Comprehensive Requirement.
Following completion of class work, students will register in the Doctoral Comprehensive Requirement while they prepare for, and until they have passed, the Comprehensive Examination.

International Development Studies

Location:	3rd Floor, A&A Building Room 339
Telephone:	(902) 494-3814
Fax:	(902) 494-2105
Email:	idsgrad@dal.ca
Website:	http://www.dal.ca/ids

Chair of Department
Cameron, J., BA (Dal), MA (SFU), PhD (York)

Graduate Coordinator
Ulicki, T., BA (McGill), MA (St. Mary's), PhD (Sussex)

Being interdisciplinary in nature and structure, the program draws on a wide selection of faculty who teach and research in development studies and related fields. The following is a list of faculty who contribute to the program.

Please consult individual departmental/school entries for faculty member research interests.

Professor Emeritus
Parpart, J.L., (International Development Studies/History)

Faculty
Adl, S., (Biology)
Arthur, P., (Political Science)
Binkley, M.E, (Sociology & Social Anthropology)
Black, D., (Political Science, International Development Studies)
Cameron, J., (International Development Studies)
Chircop, A., (Law/Marine Affairs)
Corke, S.-J., (History)
DuBois, L., (Sociology & Social Anthropology)
Fieribeck, K., (Political Science)
Finbow, R.G., (Political Science)
Fitting, E., (Sociology & Social Anthropology)
Gahagan, J., (School of Health and Human Performance)
Gardiner Barber, P., (Sociology & Social Anthropology)
Harvey, F., (Political Science)
Huish, R., (International Development Studies)
Jackson, L., (School of Health and Human Performance)
Karabanow, J., (Maritime School of Social Work)
Kirk, J., (Spanish)
Kynoch, G., (History)
Lane, P., (Biology)
Lesser, B., (Economics)
Mannathukkaren, N., (International Development Studies)
Mopoho, R., (French)
Murphy, C., (Sociology & Social Anthropology)
Noble, B. (Sociology & Social Anthropology)
Oakley, R., (Sociology & Social Anthropology)
Palermo, F., (Planning)
Saunders, P., (Law)
Schnurr, M., (International Development Studies)
Tirone, S. (Health & Human Performance)
VanderZwaag, D., (Law)
Willis, O., (International Development Studies)
Wright, T., (Environmental Programs)
Zachernuk, P., (History)
Adjunct Professors
Chohen, F.
Kamra, O.P.
McAllister, R.I.
O’Malley, A.
Sharif, N.
Shaw, T.
Tastoglou, E.
Zurbrigg, S.

I. Master of Arts
An interdisciplinary masters degree by class work and thesis which focuses on problems of and prospects for development in the countries and communities of the global South.

The program brings together Dalhousie’s considerable resources in development studies - individual, institutional and informational. We offer an innovative degree program based on established graduate classes. The degree draws heavily, though not exclusively on classes and supervisors in Economics, History, Political Science and Sociology and Social Anthropology. It is offered by the Faculty of Graduate Studies through the International Development Studies Department and has limited enrollment per annum.

This degree exists as an interdisciplinary offering with the following requirements:
1. One-half credit in theory
2. One-half credit in methods
3. Out of the five half-credit classes at least one half-credit should be taken in different discipline
4. The masters thesis normally counts as two and a half credits;
5. Thesis readers are normally drawn from at least two departments; one of the three committee members may come from outside of Dalhousie.

The degree is available on a full and part-time basis. Saint Mary’s University offers a similar MA, permitting students from both campuses to take a broader range of offerings and participate in a wider range of events. The MA at Dalhousie is designed to be complementary to and require the same standards as related degrees, such as the masters in Development Economics, International Business, Marine Management and communities of the global South.

II. Course Descriptions
INTD 5000.03: Advanced Topics in International Development Studies.
A class on a particular aspect of international development taught only by special arrangements between individual IDS students and individual instructors associated with the program. The course is available in Summer as well as in the regular academic sessions.
FORMAT: Individual tutorial

INTD 5001.03: Readings in International Development Studies.
A reading class on a particular aspect of international development taught only by special arrangements between individual IDS students and individual instructors associated with the program. The course is available in Summer as well as in the regular academic sessions.
FORMAT: Individual tutorial

INTD 5002.03: Graduate Seminar in Research Design for Development Studies.
This course is designed to help the student to learn from a variety of research case experiences - drawing upon readings, case studies, meetings with experienced researchers and, as the year progresses, sharing their research interests and findings. It is designed to support the student in the preparation of their thesis proposals.
FORMAT: Seminar

INTD 5003.03: Special Topics in INTD I.
A class on a particular aspect of international development taught only by special arrangements between individual IDS students and individual instructors associated with the program. The course is available in Summer as well as in the regular academic sessions.
FORMAT: Individual tutorial

INTD 5006.03: Development and the Philosophy of Social Science.
This class is intended to serve as an initial step in undertaking research in development studies. Development cannot be studied without understanding how we construct knowledge about social phenomena. Therefore, development, in particular, and the social science, in general, are intrinsically connected to philosophy. While we have come across a wide variety of theories about development, it is imperative that we step back and analyze the philosophical and theoretical assumptions about knowledge that inform these theories. Similarly, research is not only about deriving the correct methodologies, but also about uncovering the epistemology (ways of knowledge) behind the different methodologies. Once we have a sense of these assumptions, it becomes easier to choose our own frameworks and methodologies in studying development, whether in the archives, or in the field.
INTD 5007.03: Environment and Development.
This seminar investigates the intersections between environmental science and development science. Our primary focus will be to understand how the non-human environment impacts and constrains development interventions, both in the past and the present. Topics to be covered include agriculture and pastoralism, biodiversity and conservation, agricultural biotechnology, climate change, and environmental security. FORMAT: Seminar

INTD 5320.03: Empowerment, Gender and Development.
Feminist scholarship and activism has spawned a number of theoretical explanations for gender inequalities. In the last decade poststructuralist and postmodernist critiques have influenced feminist theories in important ways. Grand theories of the past have been called into question; universals have been overtaken by particularities and difference(s). Feminists have reacted to these critiques in a number of ways. Some reject it outright, while others call for a synthesis. Scholars and activists concerned with international development have frequently rejected these debates as irrelevant to the practical concerns of development. However, some scholars have responded more favourably to these ideas. This class will explore the various feminist theories, particularly postmodernist influences, and assess their importance for both the theory and practice of development, especially the development of women. CROSS-LISTING: HIST 4320.03

INTD 5321.03: Engendering Globalization.
Over the last twenty years fundamental transition in the way life is ordered have created enormous changes. These changes have permeated economic, political and social life and have had/are having consequences for gender assumptions and practices as well. From the creation of the transnational road warrior with its masculinist brand to the feminization of poverty and lower end employment, the economic world has been changing for men and women. Politics has more women in it, but access to power and authority remains highly skewed towards men. The social world has been deeply affected by the rise of fundamentalism with its misogynist tendencies, while greater sexual and personal freedom gives rise to social problems as well as benefits around the world. The course will look at the way the gendered nature of globalization is affecting developmental problems and prospects around the world. FORMAT: Lecture/seminar
CROSS-LISTING: INTD 4321.03

INTD 5600.03: Gender and Development.
The primary aim of this course is to provide a broad foundation to some of the theoretical perspectives which have informed current thinking in gender and development. The course introduces students to key concepts in the analysis.

III. IDS Approved Classes From Other Departments
NOTE: Some of these classes may require prerequisites: see departmental rules. Not all classes are offered every year. Please consult individual department/school entries for class descriptions.

Biology
BIOL 5060.03: Environmental Ecology
BIOL 5065.03: Sustainability and Global Change
BIOL 5160.03: Political Ecology

Business Administration
BUSI 6803.03: International Transportation
BUSI 6807.03: International Financial Management
BUSI 6808.03: International Banking
BUSI 6815.03: Doing Business Effectively in Asia-Pacific Region
BUSI 6819.03: Marketing Under NAFTA

Economics
ECON 5250.06: Applied Development Policy, Practice and Economics
ECON 5251.03: Seminar in Development Studies
ECON 5252.03: From Disaster Relief to Development
ECON 5431.03: International Finance
ECON 5516.03: Resource and Environmental Economics I (Resources)
ECON 5517.03: Resource and Environmental Economics II (The Environment)
ECON 5522.03: labor Economics I
ECON 5523.03: labor Economics II
ECON 5582.03: Applied Class in Development Policy & Practice

English
ENGL 5918.03: The Politics of Representation

Environmental Studies
ENVI 5000.06: Introduction to Environmental Studies
ENVI 5020.03: Resource Systems and Economic Development
ENVI 5030.03: Seminar on Managing for Sustainable Development
ENVI 5031.03: Environmental/Ecological Economics
ENVI 5035.03: Research Methods
ENVI 5041.03: Environmental Education
ENVI 5120.03: Environmental Ecology

Gender and Women's Studies
GWST 6010.03: Theories of Feminism
GWST 6020.03: Feminist Methodologies

Health Administration
HESA 6570.03: International Comparative Funding and Insurance Systems

History
HIST 5400.03: Topics in African History
HIST 5430.03: The Making of Colonial Africa (1850-1930)
HIST 5435.03: Rise and Fall of African Slavery
HIST 5452.03: South Africa Since 1860
HIST 5461.03: Gender and Development in Africa
HIST 5462.03: African Economic History
HIST 5470.03: Wars & Revolutions in 19th Century Africa
HIST 5471.03: Wars & Revolutions in 20th Century Africa
HIST 5475.03: African Intellectuals and the Modern Experience

Law
LAWS 5022.03: Law of the Sea
LAWS 5051.03: International Environmental Law
LAWS 5056.03: International Trade Law
LAWS 5068.03: Ocean Law & Policy: International Fisheries
LAWS 5200.03: Environmental Law

Marine Affairs
MARA 5001.06: Contemporary Issues in Ocean Management & Development
MARA 5003.03: Marine Science & Technology
MARA 5008.03: Integrated Maritime Enforcement

Political Science
POLI 5302.03: Comparative Development Administration
POLI 5303.03: Human Rights & Politics
POLI 5315.03: African Politics
POLI 5340.03: Approaches to Development
POLI 5345.03: Politics of Southern Africa
POLI 5350.03: Governance & Globalization
POLI 5360.03: Politics of Latin America
POLI 5475.03: Democratic Theory
POLI 5531.03: UN in World Politics
POLI 5535.03: New International Division of Labor
POLI 5537.06: Management and Conservation of Marine Resources
(Summer Only)
POLI 5540.03: Foreign Policies in the Third World
POLI 5560.03: Human Development/Security at the Start of the Twenty-first Century
POLI 5581.03: Diplomacy and Negotiation
POLI 5585.03: Politics of the Environment

Public Administration
PUAD 6500.03: Business & Government
PUAD 6520.03: Program Evaluation Seminar
PUAD 6521.03: Program Evaluation Practicum
Internetworking

Location: Internetworking Program
Dalhousie University
PO Box 15000
1360 Barrington St. Room A208
Halifax, NS
B3H 4R2
Telephone: (902)494-1114
Fax: (902)494-2057
Email: internet.eng@dal.ca
Website: http://internetworking.engineering.dal.ca

Program Director
Robertson, W., BSc (Eng Hons), MSc (Aberdeen), PhD (TUNS), PEng

Instructors
Aslam, N., BSc (Eng) (UET Lahore), MEng, PhD (Dalhousie)
Fenton, G.A., BEng, MEng (Carleton), MA, PhD (Princeton), PEng
Ilow, J., BSc (Poland), MSc, PhD (Toronto)
Phillips, W.J., BSc (Eng), MSc (Queen’s), PhD (UBC)
Srinivas, S., BEng (Bangalore), PhD (Inst. of Science, Bangalore)

I. Introduction
Internetworking is an area of growing significance and importance in today’s world. It is a multidisciplinary area which requires knowledge and skills in the related areas of engineering, communications, mathematics and modeling, computer and network architectures, and computer software. It is an industry that draws on interdisciplinary knowledge, requires practical ability, and capitalizes on individual strengths.

The Master of Engineering in Internetworking was introduced in 1997 as the first graduate program in the world dedicated to Internetworking. The Internetworking Program is a specialized course-based graduate degree program which prepares students to enter industry in the field of Internetworking. Students receive a solid theoretical education that delivers the underlying theory of the Internet, how it works, how to design LAN’s, WAN’s, and inter and intra nets. It also covers security, management, and protocols that are used on the Internet. Practical skill development is a key component of this program and is achieved through the intensive laboratory requirements.

The program is designed to allow students to apply their knowledge and develop hands-on experience in a unique environment where they can analyze, test and integrate their knowledge, concepts and ideas through interactive learning. Through collaborative group work in the Internetworking laboratories, students have the opportunity to develop the team skills which are highly valued in industry.

II. Program Classes
The classes are continually under review and are shown here as they were at the time of going to press. The order of presentation is updated regularly on the Web page. Students are required to take classes in the prerequisite order given on the Web page. A project is not mandatory and registration requires departmental approval.

Any new proposed classes will be posted on the program Website once approved by the university. In addition to classes, all students are required to present a technical seminar. Registration is required for the seminar.

NOTE: Completion of any or all engineering classes offered by the Department does not qualify persons to hold the designation “Professional Engineer” as defined by various Provincial Acts governing the Engineering Profession.
INWK 6000.00: Program Continuance.

INWK 6111.05: Introduction to Computer Networks.
This class offers a general introduction to computer networks. It explores the structure, goals, services and problems of computer networks. The structure of computer communications is examined using the Open Systems Interconnection (OSI) seven layer protocol model. The purpose of each layer is discussed from both conceptual and practical aspects, and data communication standards are examined in terms of their layered structures. The distinction between circuit and packet switching is highlighted, and client server distance applications are discussed.
EXCLUSION: EINE 5101.03, INWK 5101.03, 6101.03

INWK 6112.05: Physical and Datalink Standards and Protocols.
This class covers issues relating to the physical and datalink layers of data communication networks. A review of basic digital communication theory is given, including modulation and demodulation techniques and their performance in noise and under bandwidth constraints. Physical layer standards of several wireline-based protocols are examined, and optical and wireless channels are also considered. Media access control techniques, framing structures, and error control procedures of several protocols are investigated.
EXCLUSION: EINE 5102.03, INWK 5102.03, 6102.03

INWK 6113.05: Telecommunication and Wide-Area Networks.
This class presents an overview of the technologies used in present telecommunications systems and wide area networks. Standard telecommunication transport and signalling standards are introduced. The Integrated Services Digital Network and broadband access alternatives are discussed. Wireless standards for cellular and satellite systems are considered, and emerging personal communication services are introduced.
EXCLUSION: EINE 5103.03, INWK 6103.03

INWK 6114.05: Internet Communication Protocols.
This class provides an in-depth coverage of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol stack suite, including IP and protocols for address resolution, internet control, routing, broadcasting and multicasting. End-to-end communication issues associated with TCP will be discussed. Network management and domain name systems will be covered. Applications including telnet, file transfer, and simple mail transfer protocols will be covered in detail.
EXCLUSION: EINE 5104.03, INWK 5104.03, 6104.03

INWK 6115.05: Network Architecture.
This class covers the design of network architecture protocols the placement of servers and monitors, and firewalls. Internetworking, bridging, routing, and encapsulation are covered. Algorithms for bridging and routing are examined.
EXCLUSION: EINE 5105.03, INWK 5105.03, 6105.03

INWK 6117.05: Emerging Internetworking Technologies.
The primary focus of this class is to provide a comprehensive coverage of the major developments that lay the foundation for the next generation high performance networks. The student will study, the emerging technologies, design alternatives, and the underlying theory and practice required for the Internet to grow beyond a best effort dat delivery service to become a reliable and multi-service environment.
EXCLUSION: INWK 5107.03, 6107.03

INWK 6119.05: Network Security.
The primary objective of this course is to provide a comprehensive coverage of the theory, concepts, design principles and technologies for network security. The course focuses on the design principles and techniques of two major aspects of network security: (a) how to secure a network; and (b) how to secure data transactions.

INWK 6211.05: Mathematics for Internetworking.
This class includes a review of Probability and Statistics, data collection and distribution fitting. Markov chains, reliability, Markov Chains, stochastic processes and queuing systems, random number generators, sampling from various probability distributions, Monte Carlo simulation.
EXCLUSION: EINE 5201.03, INWK 5201.03, 6210.03

INWK 6411.05: Real Time Programming for Internetworking.
The objective of this course is teach the student the fundamentals of real time programming for internetworking. Topics covered include message queuing, resource sharing, priority assignments, event flags, interrupts, device handling, and protocol stack techniques.
EXCLUSION: EINE 5401.03, INWK 5401.03, 6401.03

INWK 6800.00: Internetworking Seminar Topic.
Students are required to research and present a seminar on an Internetworking topic.
INSTRUCTOR(S): Wm. Robertson
FORMAT: Seminar

INWK 6801.00: Internetworking Seminar Continuance.
Students are required to research and present a seminar on an Internetworking topic.
FORMAT: Seminar

INWK 6900.00: Project Continuance.
EXCLUSION: INWK 5900.00

INWK 6911.05: Project.
The student will be required to analyze the performance of a network and either design a new network or an upgrade to an existing network. The project should preferably be undertaken with an industrial company.
EXCLUSION: EINE 5901.03, INWK 5901.03, 6901.03

INWK 6912.05: Network Design.
The objective of this course is to provide a solid foundation for the design principles for the design of networks at all levels. The course focuses on the design principles and techniques for total network design from initial planning to management issues.

FORMAT: Seminar
INSTRUCTOR(S): Wm. Robertson
IPHE 5100.03: A Multidisciplinary Course in Addiction Studies.

This is a multidisciplinary graduate-level course for students and professionals interested in addictions. The field of addictions is by nature multi-disciplinary and touches on aspects of health, sociology, psychology, psychiatry, social work, pharmacology, toxicology, international policy, and other disciplines. This course will provide students with core knowledge and understanding of different behavioural, biological, historical, medical, and socio cultural aspects of addictions. It will also provide information about the aetiology of addictions and contemporary approaches to prevention and treatment.

FORMAT: Lecture/seminar/discussions
The New Ventures Stream utilizes existing undergraduate courses offered by the Faculty of Management. Journalism students will have a dedicated teaching assistant who will tailor the Faculty of Management content to the media industry. Students will also have additional readings and assessments beyond those required for undergraduate students.

Each student will complete an independent professional project in the winter term (JOUR 7701 or JOUR 7901), working under the supervision of an expert in the field and a member of faculty. Students in the Investigative Stream will complete an investigative project. Students in the New Ventures Stream will complete a business plan or business case and prototype for a new journalism enterprise. The project is worth one credit. Students may have the opportunity to do projects in partnership with existing media organizations.

The professional project is a significant component of the degree requirement and the centerpiece of the student’s portfolio. A faculty member will supervise the students and their mentors using the preceptor model. Preceptors will be working professionals recruited and supervised by the University of King’s College. Many of them will be outside Nova Scotia. Preceptors will work one-on-one with students. Most preceptors will work with only one student at a time. No preceptor will work with more than four students at a time.

Visit the Faculty of Graduate Studies website at www.dalgrad.dal.ca and/or the School of Journalism website at www.ukings.ca/journalism for the most up to date information.

III. Class Descriptions

JOUR 6001.03: Digital Journalism 1.
This course offers basic instruction in the key skills of digital journalism, from creating multimedia and interactive content to integrating social media and writing search-optimized headlines.

JOUR 6002.03: Audience & Content Strategies.
This course examines the nature of community and audience in various formats with an emphasis on social networks and emerging platforms and systems. Students will identify and research a specific underserved audience and draft a proposal to serve that community in a unique way with an interactive and multimedia approach.

JOUR 6003.03: Digital Journalism 2.
This course builds on Digital Journalism 1 to perfect digital journalism skills. Students will develop a specific beat that forms the foundation of their online journalism portfolios.
PREREQUISITE: JOUR 6001.03

JOUR 6700.03: Public Records.
Public records are the foundation of investigative journalism. This course reveals how journalists locate, obtain and read records that were created for other purposes, and how they probe connections and patterns of information that are not apparent reading any one record alone.

JOUR 6701.06: Methods of Investigative Journalism.
This course covers basic methods and explores how data analysis techniques borrowed from the social sciences provide journalists with ways to investigate complex systems. Students will learn how to acquire and analyze large datasets, how to conduct spatial investigations using mapping software and how to turn data into compelling stories.
PREREQUISITE: JOUR 6700.03

JOUR 6900.03: Business Fundamentals for Journalists.
This class introduces journalists to business disciplines and frameworks used to launch and manage a new enterprise, with particular emphasis on tools and concepts specific to journalism and journalism organizations. The course also offers an overview of legal and regulatory structures relevant to the news industry.

JOUR 6901.03: Managing the Venture Process.
Managing the Venturing Process explores the strategic elements required to venture successfully. Delivery is in a seminar format with students taking significant responsibility for their own learning. The constructs of venture stage, venture process and venture context are used to frame the discussion and a simulation (capstone) is used as a practical way for students to build competence in managing a large venture strategically.
PREREQUISITE: JOUR 6900.03

JOUR 6907.03: New Venture Creation.
This class is about venturing - the process of creating new ventures in both the for-profit and not-for-profit environment. The issue of Social Entrepreneurship will receive specific attention. The course is designed to expose students to the issues, problems and challenges of creating new ventures and to provide students with the opportunity, within the framework of a formal class, to explore and develop venture ideas they have been considering or wish to investigate. Experiential exercises enable the student to better understand themselves, their venture potential and the merits of their new venture ideas.
PREREQUISITE: JOUR 6900.03, JOUR 6602.03

JOUR 7001.03: Emerging Business Models in Journalism.
This class explores how the business model of a media organization influences the content, form and quality of the journalism produced by that organization. Students will understand the strengths and weaknesses of new models as they arise, and be able to predict which models best support the type of journalism they want to practice.
PREREQUISITE: JOUR 6602.03

JOUR 7002.03: Exemplars in Contemporary Journalism.
This lecture course features leading figures in contemporary journalism. Each lecture will focus on different aspect of journalism innovation. Particular emphasis will be placed on leading figures in investigative journalism and new venture journalism. This course is delivered through distance learning.
PREREQUISITE: JOUR 6001.03, JOUR 6002.03, JOUR 7001.03

JOUR 7701.06: Professional Project in Investigative Reporting.
Students will plan, organize and execute a major investigative project using tools learned in the Investigative Methods and Public Records Research classes. Students will work with industry mentors on the project. Students may choose to work in teams, with prior permission. The project does not have to be completed on campus, and may be national or international in scope and location.
PREREQUISITE: JOUR 6700.03, JOUR 6701.06, JOUR 6001.03, JOUR 6003.03, JOUR 6602.03, JOUR 7001.03

JOUR 7901.06: Professional Project: New Ventures in Journalism.
Students will develop a detailed business plan and prototype for a new venture in journalism. Students will work under the supervision of a mentor from the industry. Students may choose to work in teams, with prior permission. Some students may have the opportunity to partner with a media organization for the project. The project may be completed off campus and may be national or international in scope and location.
PREREQUISITE: JOUR 6900.03, JOUR 6907.03, JOUR 6901.03, JOUR 6001.03, JOUR 6602.03, JOUR 7001.03
Law

Location: Weldon Law Building
6061 University Avenue
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-3495
Fax: (902) 494-1316
Website: http://law.dal.ca/Propective_Students/

Dean, Faculty of Law
Brooks, K., BA (Tor), LLB (UBC), LLM (Osgoode)

Associate Dean, Academic
Deturbide, M., BSc (Dal), BJ (King’s), LLB, LLM (Dal). Corporate Law, Commercial Law, Media Issues, Entertainment Law, Environment and Business

Associate Dean, Graduate Studies
Coughlan, S.G., BA (Ottawa), MA (Toronto), LLB (Dal), PhD (Toronto), Criminal Law and Procedure

Professors Emeriti
Charles, William H., Q.C., BA (Sir Geo Wms), LLB (Dal), LLM (Harvard), LLM (Mich)
Wiktor, C., LLM (Wrocław), MS (Col)

Professors
Archibald, B.P., BA (King’s), MA, LLB (Dal), LLM (Col). Criminal Law and Procedure, Evidence, Comparative Law, Precedents Policy, labor Relations Law
Black, V., BA, MA (Carleton), LLB (Toronto), LLM (Calif. Berkeley).
Private International Law, Torts, Commercial Law
Chircop, A.E., BA, LLB, LLM (Malta), JSD (Dal). Marine and Environmental Law and Policy, Coastal and marine Management, Education and Training
Devlin, R.F., LLB (Queen’s Ireland), LLM (Queen’s, Ont). Jurisprudence, Legal Ethics, Judicial Education, Contracts
Downie, J.G., BA, MA (Queen’s), MLitt (Cambridge), LLB (Toronto), LLM, S.J.D. (Mich). Health Law; Policy & Ethics; Legal Ethics
Girard, P.V., BA (Brock), LLB (McGill), LLM (Cal, Berkeley), PhD (Dal).
Legal History, Comparative Law, Property Law
Kaiser, H.A., BA, LLB, LLM (Dal), LSE. Criminal Law and Procedure, Mental Disability Law
MacKay, A.W., BA (MtA), BEd (MtA), LLB (Dal). Human Rights, Rights, Administration, Constitutional Law, Civil Liberties
McConnell, M.L., BA (Victoria), LLB (Dal), PhD (Sydney). Business and Environment, Feminist theory, International and Environmental Law
Pothier, D., BA (Dal), LLB, LLM (Mich). Constitutional, labor, Human Rights, Equality and Disability Issues
Thompson, D.A., BA (McGill), LLB (Dal). Family Law, Evidence, Children and the Law, Clinical Law
Thornton, E.M.A., BA, Dip Ed (McGill), LLB (UQAM), Dip Int’l & Comp Law (San Diego), MA (Montreal), LLD (CUNY), LLM (Concordia).
Critical race theory, human rights, international law, black history, black women’s studies, anti-racist pedagogy
VanderZwaag, D., BA (Calvin), MDiv (Princeton), JD (Arkansas), LLM (Dal), PhD (University of Wales). Environmental Law, Ocean Law and Policy
Woodman, F.L., BA (Dal), LLB (Queen’s). Tax and Social Policy, especially regarding Women and Children, Estates and Trusts

Associate Professors
Aylward, C., BA, LLB, LLM (Dal). Criminal Law, Critical Race Theory, Litigation, Legal Ethics

I. Degree Programs

A. Master of Laws (LLM)
An intensive graduate program in law leading to the Master of Laws degree is offered to well-qualified candidates by the Faculty of Law of the University. The program is primarily intended for professional specialists and prospective law teachers. The program may consist of either a combination of course work, seminars and a thesis, or a combination of course work and seminars involving substantial written papers. In either case the program can be taken on a full-time basis over one full academic year, or on a part-time basis over two full academic years. Applicants who plan to take the degree on the basis of course work, seminars and a thesis are required to submit outlines of their proposed thesis topic at the time of the application. Thesis topics may concentrate on any area of law in which faculty supervisors and library resources will support original work. In recent years, thesis supervision has been provided in the following fields, among others: international law, administrative law, labor law, human rights, public law/jurisprudence, constitutional law, commercial law, tax law, tort law, criminal law and restorative justice, family law, health law, law of the sea, maritime law, and environmental law.

1. Admission Requirements/Deadline
Applicants for admission to the LLM program should hold a first degree in law equivalent to the Dalhousie JD, passed with at least a “B” average (or Upper Second Class Honours). The ability to conduct independent research and to work easily in the English language is a prerequisite for admission. Candidates from outside Canada whose native language is other than English will be required to pass an English language proficiency test (TOEFL 600/250/100). Applicants who are seeking funding should ensure that their completed application is received by December 31st. All other applications are due no later than January 31st.
2. Residency Requirements
The degree may be taken on the basis of either one academic year (September 1 to August 31) of full-time residence at Dalhousie, or two academic years of part-time residence at Dalhousie, after registration for the LL.M degree. It should be noted that the two-year residence requirement for part-time candidates differs from that required elsewhere in the calendar of the Faculty of Graduate Studies.)

3. Class Requirements
The degree may be taken on the basis of either course work, seminars and a thesis, or course work and seminars only. Applicants are required to indicate at the time of formal application on which basis they would prefer to take the degree, but the Graduate Studies Committee of the Faculty of Law, at the time an offer of a place is made, will decide on which of the two alternative bases a place is offered. The availability of places for the thesis alternative is governed by the availability of adequate faculty supervision and library resources. All class work for the degree, whichever of the two alternative bases is decided upon, must be completed with no grade below B-. Graduate students taking classes that are normally evaluated by an examination are required to complete a research paper or other written assignment, as agreed with the instructor, in place of the examination.

All candidates for the degree are required to take the graduate seminar especially designed for our graduate students in law. This seminar is given in the fall term (and early part of the spring term) and requires from the student a comprehensive class presentation based on a substantial written paper. Some students who have not had previous exposure to Jurisprudence may be required to take a graduate jurisprudence class.

If the degree is taken by course work, seminars and thesis, a candidate is required to (a) in addition to the graduate seminar, complete at least two additional one-term classes from the class and seminar offerings of the Faculty of Law (the choice of classes to be determined by the Law School's Graduate Studies Committee), and (b) present a well-researched substantial thesis of scholarly quality produced under the continuous supervision of a member or members of the law faculty. Such a thesis would normally be 150-300 typescript pages in length (double-spaced). Six copies of the thesis must be submitted to the supervisor on or before the dates given in the Law School's "Guidelines for Supervision and Evaluation of Graduate Students" (normally August 10 to meet deadlines for fall convocation). The thesis requirements and regulations of the Faculty of Graduate Studies must be met. Theses are usually supervised by a two person committee comprised of a supervisor and a reader or, in certain circumstances, two co-supervisors. Theses are examined by an examination committee comprised of the supervisory committee, an "arm's length" examiner and a chairperson, who is normally the Chair of the Graduate Studies Committee/Graduate Co-ordinator. A thesis may be graded as falling within one of the following categories: approved as submitted; approved upon specified corrections being made; failed, but with permission to submit a revised thesis; or failed outright.

If the degree is taken by course work and seminars without thesis, in addition to the graduate seminar, candidates are required to take at least an additional five one-term classes from the advanced class work and seminar offerings of the Law Faculty considered to be suitable as graduate classes and seminars by the Law Graduate Studies Committee. Of those five classes, at least three must be designated as "major paper classes" by the Faculty of Law, or be approved by the Graduate Studies Committee as having a substantial written component. Graduate students taking classes that are evaluated by a "major paper" must submit a paper of appropriate scholarly quality which will normally be between 40 and 50 pages in length (including text, and endnotes or footnotes). In the remaining classes, the student will be evaluated by means of a substantial research-based written assignment, normally 25-50 pages, or equivalent assignment(s).

At the discretion of the Graduate Studies Committee of the Faculty of Law, a candidate may be required to submit to an oral examination by the Committee or its nominees in the field of the thesis or that of any written paper presented by the candidate. The Graduate Studies Committee of the Faculty of Law may recommend the substitution of not more than two seminars or graduate level classes in a discipline other than law, which may be highly relevant to the candidate's thesis topic or area of specialization, provided that any such substituted class or seminar has, in the opinion of the Committee and the Dean of Graduate Studies, equivalence to the law classes being substituted.

Before deciding on the course work and seminars, or course work, seminars and thesis option, candidates who are contemplating future doctoral studies should note that some doctoral programs may require the completion of a Master of Laws degree which includes a thesis.

4. General
The Graduate Studies Committee of the Faculty of Law may at any time require any candidate for the degree to show cause, in such manner as it may determine, why such candidate should be permitted to continue his or her candidacy.

It should be noted that candidates taking the degree on a part-time basis are not eligible for graduate scholarships.

A student is required to comply with the directions of the supervisor and the decisions of the Graduate Studies Committee of the Faculty of Law, as well as the rules and regulations of the Faculty of Graduate Studies.

A full description of programs available in the Law School which may be of relevance to graduate students can be found in the general Law School Calendar and in its class selection materials.

B. Doctor in the Science of Law Degree (JSD)
An advanced graduate program in law leading to the JSD (Juries Scientiae Doctor) degree is offered to a very limited number of highly qualified candidates by the Faculty of Law of the University. Applicants who meet the admission requirements are invited to submit a detailed outline of their proposed thesis and a detailed description of their research plans with their application forms. Such topics will have to be limited to those areas of law for which faculty and library resources will support original research. It is expected that such resources will normally be available in marine law, environmental law, international law, comparative law, health law, law and technology, and public law/jurisprudence.

1. Admission Requirements/Deadline
Applicants for admission to the JSD program must have demonstrated superior academic ability during their previous legal education. Normally it will be necessary to have (i) attained at least the equivalent of a Dalhousie A- average grade at the JD level and (ii) completed successfully a Master's degree in law. Preference will be given to applicants with established credentials in published scholarship of a professional calibre. The ability to conduct independent research and work easily in the English language is a prerequisite for admission. Foreign candidates are required to pass the TOEFL (Test of English as a Foreign Language) to the satisfaction of the Graduate Studies Committee of the Faculty of Law prior to admission. Applicants seeking JSD funding from Dalhousie University should ensure that their completed applications are received by the University no later than January 31st of the year in which they intend to commence their studies.

2. Residency Requirements
Applicants must be prepared to spend at least one full academic year (12 months) in continuous residence at Dalhousie after registration for the JSD program. The Graduate Studies Committee of the Law School reserves the right in certain cases to require the completion of a second year of residency. It is to be noted, however, that consistent with other doctoral programs at Dalhousie University, JSD candidates must pay fees at the full-time rate for two years regardless of whether they have been required to spend a second year in residence at Dalhousie.

3. Class Requirements
In addition to the period in residence, candidates must complete the following:

i) fully supervised research work leading to a substantial and significant dissertation

ii) one directed reading class
4. Special Skill Examination Requirements
A candidate may, at the discretion of the thesis committee, be required to pass a special examination designed to demonstrate the examinee’s proficiency in a foreign language, statistical method, computer analysis, or other skill deemed to be important for successful completion of the candidate’s thesis in the chosen area.

5. Thesis Requirements
The primary requirement for the JSD degree is the completion of a substantial thesis which should not only display original scholarship of high standard, but also represent a significant and professional contribution to the literature of the chosen subject. In applying for admission, an applicant is required to satisfy the Graduate Studies Committee of the Faculty of Law that the suggested topic is suitable for development as a doctoral thesis. Normally, a JSD thesis should be between 350 and 500 typescript pages in length (double-spaced). After an applicant has been accepted, a thesis committee consisting of a supervisor and two advisors will be appointed by the Graduate Studies Committee of the Faculty of Law. All candidates are required to comply with the decisions of their thesis committees. In normal circumstances, the completed JSD thesis must be submitted to the Graduate Studies Committee of the Faculty of Law within five years of the date of original registration in the program. Submission of the thesis must follow the rules and regulations laid down by the Faculty of Graduate Studies.

6. Thesis Defence Requirements
Each JSD candidate is required to defend the completed thesis in an oral examination. This defence shall be conducted in accordance with the Faculty of Graduate Studies Regulations for Oral Examination of a Doctoral Candidate.

7. Teaching Activities
The Graduate Studies Committee of the Faculty of Law may give permission to a JSD candidate to engage in teaching activities during the period of residency, if such activities are deemed to fall within the field of the candidate’s thesis topic. Under no circumstances shall any JSD candidate be permitted to spend more than six hours per week in teaching activities and related preparations.

C. Classes
For a description of classes offered in Law, see the Dentistry, Law, Medicine calendar.

For more information, please contact our website: http://www.marineaffairsprogram.dal.ca

Marine Affairs Program

Location: 6100 University Avenue, Suite 2127
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-3555
Fax: (902) 494-1001
Email: Marine.Affairs@Dal.ca
Website: http://www.marineaffairsprogram.dal.ca

Director
Fanning, L., BSc, MMM, PhD (Dal)

Faculty
Apostle, R., B.A, MA, PhD (Calif, Berkeley) (Sociology and Social Anthropology and Marine Affairs Program)
Binkley, M., B.A, MA, PhD (Toronto) (Sociology and Social Anthropology and Marine Affairs Program)
Brooks, M., BOT, MBA, PhD (Wales) (Business Administration)
Cavanagh, E., BSc, BArch, PhD (Lehigh) (Architecture)
Chircop, A., LLD, LLM, JSD (Dal) (Law and Marine Affairs Program)
De Santo, E., BA, MEM, MSC, PhD (UCL)
Hill, P., AB (Dartmouth), MSc, PhD (Wash.) (Oceanography)
Lane, P.A., MSc, PhD (SUNY Albany) (Biology)
McConnell, M.L., BA, LLB, PhD (Sydney) (Law)
Pelot, R.P., BSc, MSC, PhD (Waterloo) (Industrial Engineering)
Taggart, C., BSc, MSc, PhD (McGill), (Oceanography and Marine Affairs Programme)
VanderZwaag, D., BA, MDIV, JD, LLM (Dal) PhD (Univ. of Wales) (Law)

Adjunct Professors
Charles, A., BScH, PhD (UBC) (Finance and Management Science, St. Mary’s University)
Côté, R., BSc, MSC (MUN) (School for Resource and Environmental Studies)
Fournier, R., MSc, PhD (URJ)
Hildebrand, L., BScH, MES (Dal) (Environment Canada)
Hodgson, J. R., BSc, MSc (London), FCILT
Kearney, J., BSc (Acadia), MES (Dalhousie), PhD (Laval) (John F. Kearney & Associates)
Mahon, R., BSc, MSc, PhD (Guelph) (University of the West Indies)
McAllister, R.I., BA, MA (Cantab)
McCalla, R., BA, PhD (Hull), (Geography, St. Mary’s University)
McConney, P., BSc, MES, PhD (UBC) (University of the West Indies)
Wells, P.G., BSc, MSC, PhD (Guelph) (International Ocean Institute)
Williamson, H., BSc, BE, LLB, MBA (Dal), (Marine Affairs Program)
Willison, J.H.M., PhD (Nottingham) (Biology and School for Resource & Environmental Studies)

Adjunct Research Associates
Bailey, F., BSc, DEA, PhD (U. Nice Sophia-Antipolis), Division for Ocean Affairs and the Law of the Sea, United Nations
Butler, M., BSc, MSc (Memorial), International Ocean Institute
Carrera, G., B. Geophys. Eng., MSC Eng, PhD (Toronto)
Gustavson, K., BSc, MSc, PhD (University of Victoria), Rescan Environmental Services Ltd.
Mugridge, D., BA, MSc (Kingston University), MA (King’s College London), Plymouth Business School

I. Introduction
The main focus of the Marine Affairs Program is the Master of Marine Management (MMM), a professional degree program that links many stakeholders in the marine and oceans community. Students pursue the MMM in one or more of five related areas (streams): (1) integrated coastal
II. Master of Marine Management

The Master of Marine Management (MMM) provides a theoretical and practical basis for understanding coastal and ocean development, planning, and regulatory issues affecting the maritime industries and the sustainable use of the seas’ resources. The MMM degree is a professional, interdisciplinary, non-thesis program requiring core classes in the marine, social and management sciences as well as a choice of electives from areas such as marine science, policy and law.

Subject areas addressed in the program include but are not limited to coastal tourism, coastal zone management, community based co-management, ecosystem based management, conflict management, development and conservation of living and non-living resources, managing for climate change, fisheries management, marine law and policy, integrated coastal and ocean planning, marine protected areas, maritime enforcement, maritime transport, and transport and preservation of the coastal and marine environment. Students are required to complete a graduate project with an emphasis on management, and to undertake a training internship at an organization relevant to their expertise and interests. The overarching emphasis of the program is on the solution of marine management problems by trans-disciplinary synthesis. Teamwork in research and planning is the primary modus operandi of the Marine Affairs Program. The MMM degree’s format attracts a high proportion of mid-career professionals from all over the world.

Admission Requirements/Deadlines

Applicants must satisfy general requirements for admission to the Faculty of Graduate Studies. These include a Bachelor’s Degree from a university of recognized standing with honours or its equivalent with a minimum average of B (3.0 GPA, 73% or Second Class Honours, Upper Division). In some cases, additional university education may be required. Selection criteria include an essay demonstrating interdisciplinary, relevant work experience, and career objectives. Applicants from outside Canada whose first language is not English must demonstrate proficiency in English before admission or have completed a university degree in English. The standard test is TOEFL (Test of English as a Foreign Language). It is also recommended that potential students take the Test of Written English component of the TOEFL. Dalhousie sets a minimum acceptable TOEFL score of 580 for the paper-based test, 237 for the computer-based test and 92 for the internet-based test. Other tests that are accepted by Dalhousie are MELAB (minimum score of 90), IELTS (minimum score of 7) and CAEL (minimum score 60 overall, no band score lower than 50). Scholarships are available on a competitive basis.

The MMM degree may be completed on a part-time basis. Applicants must meet the same requirements for admission as full time MMM students.

A limited number of part-time MMM students can be enrolled in an academic year. Part-time MMM students will complete the MMM degree over a period no greater than five contiguous calendar years (i.e. 60 months). The MMM degree is a Program fee degree and part-time MMM students must meet the tuition fee requirements of the Registrar's Office.

III. Class Descriptions

All elective classes are open to graduate students in other programs by permission of the instructor.

To facilitate the success in the MMM interdisciplinary degree program, Marine Affairs requires students lacking a foundation in marine sciences or social sciences be exposed to introductory courses in oceanography (OCEA 201 The Blue Planet) and/or in the social sciences (SOSA 2100 Environment and Culture). Both OCEA 201 and SOSA 2100 are undergraduate courses that provide students with some exposure to the forces at play in the marine environment, and social science theories, methodologies and approaches. The MAP Director in association with the MAP Admissions Committee advises the student on which course(s) are required by the student to take as ancillary courses during the MMM program.

NOTE: Not all classes are offered every year. Please consult the current timetable to determine this year’s class offerings.

A. Required Classes

MARA 5001X/Y.06: Contemporary Issues in Ocean Management and Development.

This class offers an introduction to the field of marine affairs and to the broad suite of contemporary issues confronting the ocean and coastal manager. As a foundation core course for MMM students, the class draws on examples from topical streams of the MMM degree program. Subject areas addressed include current governance approaches, negotiation and consensus building, managing and assessing risk to both the human and natural components of the ecosystem and protection and preservation of the coastal and marine environment and the communities that depend on them. The class employs interactive teaching techniques with a group work component.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term. INSTRUCTOR(S): L. Fanning, E. De Santo

MARA 5002.06: Graduate Project.

Students are required to apply the knowledge gained through class work to a specific planning and management problem or issue of interest to them. The project contains both a written and a practical component. The written portion is completed under the supervision of an appropriate academic advisor. Students are required to give a presentation on their graduate project. The practical component provides students an internship period with a local public or private sector agency of relevance to the project topic. The area of research must be approved by the MAP Director and Graduate Project Committee.

INSTRUCTOR(S): L. Fanning

MARA 5003.03: Marine Science and Technology.

This class provides a survey of marine science and technology (basic marine-basin geography and geology, physical, chemical and biological oceanography). Various fields and topics are addressed from a scientific research and technology application perspective. Where possible, and relevant, the application of the scientific findings to issues of management, resource exploitation and policy formation are addressed. Course content and assignments should help marine managers use science and technology to: 1) recognize / formulate problems; 2) identify relevant information necessary to address problems; 3) find relevant and reliable information/assistance; 4) reliably interpret the information to make objective management decisions.

INSTRUCTOR(S): R. Fournier

MARA 5009.03: Coastal Zone Management.

This class is designed to introduce students to the concepts, principles, approaches, and issues associated with integrated management of coastal zones worldwide. It uses a systems approach to understanding the global context of coastal zone management. Case studies and examples from developed and developing countries are used to present practical
approaches to the management of multiple uses in the coastal zone, including community-based management models.

INSTRUCTOR(S): L. Fanning
CROSS-LISTING: ENVI 5204.03, LAWS 2041.03

MGMT 5000.03: Management Without Borders: A Foundation Course for Masters Students in Management.
This course places management in its broadest context and helps students from diverse disciplines understand the complex social, economic, ecological, political and technological forces shaping 21st century leadership in the public, private and non-profit sectors. Key themes explored in the course include systems thinking, responsible leadership, sustainable economic development, stakeholder theory, risk management and knowledge management. A significant portion of the course is devoted to interdisciplinary / inter-professional group work. Students from different programs are brought together to work with a Nova Scotia organization that has identified a relevant and timely project topic for the group. The project provides students with the opportunity to hone important skills in team dynamics, inter personal communication, project management, managing scope and ambiguity, information gathering, research and writing professional reports. The course is team taught by leading faculty from across the Faculty of Management as well as guest speakers. Learning opportunities are delivered in a mix of formats, including lectures, tutorials, readings, multidisciplinary cases and group discussions.
INSTRUCTOR: P. Cunningham
FORMAT: Lecture, tutorial, group work, class participation

B. Electives
Students select the remaining complement of classes from the broad range offered in the marine field at Dalhousie. Elective courses offered through the Marine Affairs Program are listed below.

MARA 5005.03: Independent Readings.
This class is an option for MMM students who wish to pursue independent research into a specific topic not covered in another class. The topic and area of research must be approved by the MAP Director and the research supervisor.

MARA 5008.03: Integrated Maritime Enforcement.
The aim of this class is to sensitize students to the complexities of maritime enforcement within a coastal and ocean management framework by building an understanding of the roles of maritime enforcement in integrated planning and management. In doing so, students are introduced to concepts, tools, techniques and procedures of enforcement.
INSTRUCTOR(S): Staff
CROSS-LISTING: MGMT 4008.03

MARA 5012.03: Community-Based Co-Management.
This class will critically examine the extent to which community-based co-management provides a viable approach to marine resource management in terms of its costs and benefits, opportunities for and barriers to its implementation, and conditions necessary for its long-term survival as a practical management tool.
INSTRUCTOR(S): Staff
CROSS-LISTING: SOSA 5540.03

MARA 5013.03: Marine Protected Areas.
The role of Marine Protected Areas (MPAs) in ecosystem conservation has become increasingly recognized as a tool for mitigating anthropogenic impacts on the marine environment. Still a relatively new phenomenon compared with terrestrial parks, the implementation of MPAs allows for a similar range of protection measures, from fully-closed “no take zones” or “marine reserves” to multiple-use areas allowing some forms of extractive use and recreation. However, while the international community has committed on paper to protecting the marine environment and establishing networks of MPAs by 2012, actual commitments have lagged behind targets. Marine parks pose unique challenges compared with their terrestrial counterparts, and the physical complexity of the marine environment further complicates effective management. This course provides the latest available information on MPAs to practitioners and students interested in this developing area of marine management, as well as an understanding of the compromises and balances struck in the designation and operation of MPAs.

INSTRUCTOR(S): E. De Santo
CROSS-LISTING: BIOL 5013.03, MGMT 4013.03

MARA 5015.03: Marine Transportation Policy and Administration.
This class will provide a comprehensive overview of marine transportation and related activities. Special emphasis is placed on the role of government, including the formulation of marine transportation policy, supporting legislation/regulation, the development and delivery of regulatory programs, the provision of public marine support services, and associated governance considerations.
INSTRUCTOR(S): Staff
CROSS-LISTING: MGMT 4015.03

MARA 5021.03: Fisheries Management.
This interdisciplinary course focuses on the theory and practice of fishery management, with emphasis on Sustainable Fishery Systems. It will address the structure and dynamics of fisheries, and key themes in managing fisheries for sustainability and resilience, through class seminars and discussion, as well as attendance at related fisheries and coastal events.
INSTRUCTOR(S): Staff
CROSS-LISTING: ENVI 5021.03, MGMT 4021.03

MARA 5589.03: Politics of the Sea.
The course will examine environmental, political and economic forces which affect contemporary ocean governance and management. Contemporary issues will be used to explore the geo-political ocean on a sectoral basis (transportation, fisheries and resources, military, etc.), as well as analyzing the evolution of national oceans policies and institutions.
INSTRUCTOR(S): Staff
FORMAT: Seminar/lecture
CROSS-LISTING: POLI 4590.03, POLI 5589.03
Mathematics and Statistics

Location: Chase Building
P.O. Box 15000
Halifax, NS B3H 4R2

Telephone: (902) 494-2572
Fax: (902) 494-5130
Email: paula@mathstat.dal.ca
Website: http://www.mathstat.dal.ca

Chairperson of the Department
Dilcher, K., PhD (Queens)

Professors Emeriti
Field, C.A., MSc, PhD (Northwestern)
Fillmore, P.A., MSc, PhD (Minn), FRSC
Grunenfelder, L., PhD (ETH Zurich)
Radjavi, H., MA, PhD (Minn)
Swaminathan, S., MA, MSc, PhD (Madras)
Thompson, A.C., PhD (Newcastle upon Tyne)
Paré, R., MSc, PhD (McGill)

Professors
Brown, J., MSc, PhD (Toronto)
Coley, A.A., PhD (London), Killam Professor
Dilcher, K., PhD (Queen’s)
Hamilton, D., MA, PhD (Queen’s) (Graduate Advisor Stats)
Janssen, J.C., MSc (Eindhoven), PhD (Lehigh)
Milson, R., MSc, PhD (McGill) (Director of Mathematics)
Nowakowski, R.J., MSc, PhD (Calgary)
Smith, B., MA (Calgary), PhD (Berk)
Susko, E., PhD (Waterloo)
Taylor, K., BSc (St. FX), PhD (U. Alberta)
Thompson, K., PhD (Liverpool) (NSERC University Research Fellow) (jointly with Oceanography)
Wood, R.J., MSc (McMaster), PhD (Dalhousie)

Associate Professors
Bielawski, J., MA, PhD (Texas A & M Univ) (joint appointment with Biology)
Dowd, M., MBA, MES, PhD (Dalhousie) (Undergraduate, Co-op Academic and Honours Advisor Stats)
Faridi, S., MA (Brandeis), PhD (Michigan)
Fraser, A.J., MSc (Toronto), PhD (Princeton)
Gu, H., MSc (Peking), PhD (Hong Kong) (Director of Statistics)
Herbinger, C., MSc (Paris), PhD (Dalhousie) (joint appointment with Biology)
Iron, D., MSc, PhD (UBC)
Johnson, K.P., MSc (Toronto), PhD (Brandeis) (Graduate Advisor Math)
Kolokolnikov, T., MSc, PhD (UBC)
Mitnitski, A., PhD (Leningrad) (joint appointment with Medicine)
Prong, D., MSc, PhD (U of Victoria)
Selingor, P., PhD (U. Pennsylvania)
Smirnov, R., BSc (Kyiv), PhD (Queens)
Zhao, Y., MSC (Western Kentucky), PhD (British Columbia) (joint appointment with Management)

Assistant Professors
Beiko, R., PhD (Ottawa) (joint appointment with Computer Science)
Kennay, T., PhD (Cambridge)
Mills-Flemming, J., MSc (Tuns), PhD (Dalhousie)

Lecturers
Barger, J., BSc (Pace N.Y.), BEd, MA (Dal)
Surovell, A., MA (U.Mass), AB (Boston)

Postdoctoral Fellows
Ghandehari, M. (Waterloo)
Lumsdaine, P.L., PhD (Carnegie Mellon)
Valiquette, F., PhD (Minnesota)
Wang, H. (Ottawa)

Adjunct Professors
Astatke, T., PhD (Queen’s), NS Agricultural College
Beattie, M.A., PhD (Queen’s), Mt. Allison University
Bonato, A., PhD (Ryerson), Wilfred Laurier University
Bovrein, J.M., FRSC (Univ. of Newcastle), Australia
Brunner, H., PhD (Zurich), Memorial University
Clarke, N., PhD (Dalhousie), Acadia University
Clements, J.C., MA (UBC), PhD (Dalhousie), Dalhousie University
Cole, D.E.C., PhD (McGill), University of Toronto
Curry, E., PhD (Rutgers), Acadia
Dawson, R., PhD (Dalhousie), St. Mary’s University
Field, C.A., MSc, PhD (Minn), FRSC
Fitzpatrick, S., PhD (Dalhousie), UPEI
Fry, R., PhD (Toronto), Thompson Rivers University
Grant McIoughlin, J., PhD (SUNY at Buffalo), UNB
Gupta, R.P., MSc (Agra), PhD (Delhi), Dalhousie University
Hartnell, B., PhD (Waterloo), St. Mary’s University
Haynes, R., PhD (Simon Fraser), Acadia University
Hervik, S., PhD (Cambridge), Univ. Stavanger, Norway
Hofmann, G., PhD (Tu Darmstadt), Flagstone RE
Irving J., PhD (Waterloo), St. Mary’s University
Keast, P., PhD (St. Andrews), Dalhousie University
Mastnak, M., PhD (Dal) St. Mary’s
McLenaghan, R., PhD (Cambridge), Waterloo
Messinger, M.E., PhD (Dalhousie), Mt. Allison University
Millar, M., MSc, PhD (Dalhousie), St. Mary’s University
Muir, P., PhD (Toronto), St. Mary’s University
Paré, R., MSc, PhD (McGill), Dalhousie University
Piccinini, R., PhD (Wisconsin), Univ. of Milan and Dalhousie Univ.
Prat, P., PhD (Adam Mickiewicz, Poland) Univ. of West Virginia
Rosebrugh, R., PhD (Dalhousie), Mt. Allison University
Sarhan, A., MSc(Mansoura), PhD (Gdansk)
Sastri, C.C.A., MSc (Andhra), PhD (NY), Dalhousie University
Sneddon, G., PhD (Dalhousie), Mt. St. Vincent University
Sutherland, W.R.S., PhD (Brown), Dalhousie University
Tan, K.K., PhD (UBC), Dalhousie University
Traves, W., MSc, PhD (Toronto), US Naval Academy
Van den Hoogen, R., PhD (Dalhousie), St. Francis Xavier University
Wolfe, D., PhD (Berkeley), Gustavus Adolphus
Yung, W., PhD (Carleton), Statistics Canada

Research Associate
Piccinini, R. (Milan)

Statistical Consultant
Stewart, S., MSc (Waterloo)

Information concerning programs and classes in Mathematics follows immediately. For information on programs and classes in Statistics and Computer Science (including Computing Science) please refer to these sections of this calendar.
I. Admission Requirements
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies. Candidates will normally be expected to hold a degree recognized by Dalhousie University as the equivalent of a Bachelor’s degree with Honours in one of its own faculties. TOEFL scores or equivalent English Language Competency tests as listed in the graduate calendar are required for applicants whose native language is not English. Official scores from the appropriate organization must be presented. To ensure consideration for scholarship funds, applications should be received by January 15.

II. Degree Programs
A. Masters

Requirements
1. At least three full-credit classes (18 credit hours), not including seminar classes, at the graduate level to be chosen in consultation with a departmental advisor (i.e., a potential supervisor or the graduate coordinator). In addition, students whose preparation in a particular area of mathematics is deficient will be required to complete appropriate classes which will be designated by the advisor.
2. Attendance and participation in seminars.
4. Students are required to give an oral presentation (defence) of their thesis and at that time to answer questions about the thesis. This presentation will be made after the thesis is in the hands of the student’s committee and will be taken into account when the committee makes its decision.

B. Doctor of Philosophy (PhD)

Requirements
1. At least two full-credit classes (12 credit hours)
2. Comprehensive examinations which must be taken for the first time within 12 months and successfully completed within 16 months of registration in the program.
3. Attendance and participation in an appropriate seminar.
4. Preparation and defence of a satisfactory research thesis.

III. Class Descriptions
Below is a list of the most frequently offered graduate courses. Please contact the Graduate Coordinator for any details regarding these courses.

MATH 5010.03: Introduction to Measure Theory and Integration.
A discussion of Lebesgue’s theory of measure and integration. The topics include: the extended real number system, the definition of measurable sets, Lebesgue measure and the existence of non-measurable sets, the Lebesgue integral, differentiation of monotonic functions (e.g., the Cantor function), absolute continuity, the classical Lebesgue spaces.
PREREQUISITE: MATH 3500.06
CROSS-LISTING: MATH 4010.03

MATH 5020.03: Analytic Function Theory.
Topics include: review of analytic complex functions including topological properties of the plane, Mobius mappings, exponential, logarithmic, trigonometric and related functions, integration and the Cauchy theorem. Cauchy’s integral formula, residues, harmonic functions, analytic continuation, entire and meromorphic functions, some results of conformal mapping, including the Riemann mapping theorem.
CROSS-LISTING: MATH 4020.03

MATH 5025.03: Commutative Algebra I.
This introduction to commutative algebra includes a selection of the following topics: prime and maximal ideals, primary decomposition, Noetherian rings, Hilbert’s Basis Theorem and the Nullstellensatz.
PREREQUISITE: MATH 3030.06 or equivalent
CROSS-LISTING: MATH 4025.03

MATH 5045.03: Advanced Algebra I.
Topics may include: Euclidean rings, principal ideal domains, unique factorization domains, polynomial rings, modules, classification of modules over principal ideal domains, and Jordan and rational canonical forms.
PREREQUISITE: MATH 3030.06
CROSS-LISTING: MATH 4045.03

MATH 5055.03: Advanced Algebra II.
Topics may include: groups, group actions, quotient groups, Sylow theorems, field theory and field extensions, and Galois theory.
PREREQUISITE: MATH 3030.06
CROSS-LISTING: MATH 4055.03

MATH 5065.03: Algebraic Geometry.
This is a first course in algebraic geometry and will introduce students to the basic properties of affine and projective varieties. Topics covered will include a selection from: local properties of plane curves, elliptic curves, Bezout’s Theorem, Riemann-Roch Theorem.
PREREQUISITE: MATH 3030.06
CROSS-LISTING: MATH 4065.03

MATH 5066.03: Advanced Statistical Theory I.
This class, together with STAT 5067.03, provides a solid basis in the theory of statistical inference. After a review of some probability and distribution theory, the Bayesian and classical theories of estimation and testing are introduced.
CROSS-LISTING: MATH 4066.03, STAT 4066.03/5066.03.

NOTE: Students interested in pursuing a degree program in Applied and Computational Mathematics designed to prepare them for the work environment should consider the following classes:

MATH 5190.03
MATH 5200.03
MATH 5220.03
MATH 5230.03
MATH 5270.03
MATH 5290.03
MATH 5300.03
MATH 5310.03
MATH 5400.03
One of STAT 5080.03, STAT 5370.03, or STAT 5620.03

Chair of Department
Dilcher, K.

Director of Division
Milson, R.

Graduate Coordinator
Johnson, K.

The department offers programs leading to the degrees of MSc and PhD in the following areas: algebra, algebraic topology, applied mathematics, category theory, combinatorics, combinatorial game theory, commutative algebra, differential equations, differential geometry, functional analysis, general relativity theory, graph theory, harmonic analysis, logic, number theory, wavelet theory.

Mathematics
Location: Chase Building
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-2572
Fax: (902) 494-5130
Website: http://www.mathstat.dal.ca

Graduate Coordinator
Johnson, K.

The department offers programs leading to the degrees of MSc and PhD in the following areas: algebra, algebraic topology, applied mathematics, category theory, combinatorics, combinatorial game theory, commutative algebra, differential equations, differential geometry, functional analysis, general relativity theory, graph theory, harmonic analysis, logic, number theory, wavelet theory.

I. Admission Requirements
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies. Candidates will normally be expected to hold a degree recognized by Dalhousie University as the equivalent of a Bachelor’s degree with Honours in one of its own faculties. TOEFL scores or equivalent English Language Competency tests as listed in the graduate calendar are required for applicants whose native language is not English. Official scores from the appropriate organization must be presented. To ensure consideration for scholarship funds, applications should be received by January 15.

II. Degree Programs
A. Masters

Requirements
1. At least three full-credit classes (18 credit hours), not including seminar classes, at the graduate level to be chosen in consultation with a departmental advisor (i.e., a potential supervisor or the graduate coordinator). In addition, students whose preparation in a particular area of mathematics is deficient will be required to complete appropriate classes which will be designated by the adviser.
2. Attendance and participation in seminars.
4. Students are required to give an oral presentation (defence) of their thesis and at that time to answer questions about the thesis. This presentation will be made after the thesis is in the hands of the student’s committee and will be taken into account when the committee makes its decision.

B. Doctor of Philosophy (PhD)

Requirements
1. At least two full-credit classes (12 credit hours)
2. Comprehensive examinations which must be taken for the first time within 12 months and successfully completed within 16 months of registration in the program.
3. Attendance and participation in an appropriate seminar.
4. Preparation and defence of a satisfactory research thesis.

NOTE: Students interested in pursuing a degree program in Applied and Computational Mathematics designed to prepare them for the work environment should consider the following classes:

MATH 5190.03
MATH 5200.03
MATH 5220.03
MATH 5230.03
MATH 5270.03
MATH 5290.03
MATH 5300.03
MATH 5310.03
MATH 5400.03
One of STAT 5080.03, STAT 5370.03, or STAT 5620.03

III. Class Descriptions
Below is a list of the most frequently offered graduate courses. Please contact the Graduate Coordinator for any details regarding these courses.

MATH 5010.03: Introduction to Measure Theory and Integration.
A discussion of Lebesgue’s theory of measure and integration. The topics include: the extended real number system, the definition of measurable sets, Lebesgue measure and the existence of non-measurable sets, the Lebesgue integral, differentiation of monotonic functions (e.g., the Cantor function), absolute continuity, the classical Lebesgue spaces.
PREREQUISITE: MATH 3500.06
CROSS-LISTING: MATH 4010.03

MATH 5020.03: Analytic Function Theory.
Topics include: review of analytic complex functions including topological properties of the plane, Mobius mappings, exponential, logarithmic, trigonometric and related functions, integration and the Cauchy theorem. Cauchy’s integral formula, residues, harmonic functions, analytic continuation, entire and meromorphic functions, some results of conformal mapping, including the Riemann mapping theorem.
CROSS-LISTING: MATH 4020.03

MATH 5025.03: Commutative Algebra I.
This introduction to commutative algebra includes a selection of the following topics: prime and maximal ideals, primary decomposition, Noetherian rings, Hilbert’s Basis Theorem and the Nullstellensatz.
PREREQUISITE: MATH 3030.06 or equivalent
CROSS-LISTING: MATH 4025.03

MATH 5045.03: Advanced Algebra I.
Topics may include: Euclidean rings, principal ideal domains, unique factorization domains, polynomial rings, modules, classification of modules over principal ideal domains, and Jordan and rational canonical forms.
PREREQUISITE: MATH 3030.06
CROSS-LISTING: MATH 4045.03

MATH 5055.03: Advanced Algebra II.
Topics may include: groups, group actions, quotient groups, Sylow theorems, field theory and field extensions, and Galois theory.
PREREQUISITE: MATH 3030.06
CROSS-LISTING: MATH 4055.03

MATH 5065.03: Algebraic Geometry.
This is a first course in algebraic geometry and will introduce students to the basic properties of affine and projective varieties. Topics covered will include a selection from: local properties of plane curves, elliptic curves, Bezout’s Theorem, Riemann-Roch Theorem.
PREREQUISITE: MATH 3030.06
CROSS-LISTING: MATH 4065.03

MATH 5066.03: Advanced Statistical Theory I.
This class, together with STAT 5067.03, provides a solid basis in the theory of statistical inference. After a review of some probability and distribution theory, the Bayesian and classical theories of estimation and testing are introduced.
CROSS-LISTING: MATH 4066.03, STAT 4066.03/5066.03.
MATH 5070.03: Topics in Number Theory.
The course begins with a detailed discussion of quadratic reciprocity. The main topics from analytic number theory will be arithmetic functions and Dirichlet L-series, resulting in a proof of Dirichlet’s theorem on primes in arithmetic progressions. Fundamental properties of algebraic number fields will be discussed, emphasizing quadratic and cyclotomic fields.
PREREQUISITE: MATH 3070.03
CROSS-LISTING: MATH 4070.03

MATH 5090.03: Probability.
A mathematically rigorous treatment of probability theory in Euclidean space. Topics include measure and integration, probability measures, the definitions and properties of random variables and distribution functions, convergence concepts, Borel-Cantelli lemmas, laws of large numbers, characteristic functions and central limit theorems, conditional probability and expectation. Although the necessary measure theory is introduced, a previous analysis class is an asset.
PREREQUISITE: MATH 3360.03 and a third year analysis class
CROSS-LISTING: MATH 4090.03, STAT 4090.03/5090.03

MATH 5135.03: Introduction to Category Theory.
Categories, functors, natural transformations and adjointness are introduced with emphasis on examples drawn from undergraduate Mathematics and theoretical Computer Science. The calculus of diagram chasing, limits, colimits and Kan extensions is explored in detail.
PREREQUISITE: MATH 3030.06 or permission of the instructor
CROSS-LISTING: MATH 4135.03

MATH 5136.03: Topics in Category Theory.
Topics of current interest in category theory will be discussed with an emphasis on open problems. No previous knowledge of category theory is required. The necessary concepts will be discussed in the context of their applications. However, a certain familiarity with the basic concepts of modern abstract mathematics such as found in courses on algebra and topology would be an asset.
PREREQUISITE: MATH 3030.03 and consent of instructor
CROSS-LISTING: MATH 4136.03

MATH 5140.03: Introduction to Functional Analysis.
An introduction to the basic principles of functional analysis including the following topics: infinite dimensional vector spaces, normed spaces, inner-product spaces, Banach and Hilbert spaces, linear and continuous linear functionals, the Hahn-Banach Theorem, the principle of uniform boundedness, dual spaces, weak* topology, and the Alaoglu theorem, the open mapping and closed graph theorems, and consequences and applications.
PREREQUISITE: MATH 2135.03 and 3500X/Y.06
CROSS-LISTING: MATH 4140.03

MATH 5165.03: Mathematical Methods in Physics.
Complex variables and applications including solutions to Laplace equation, ideal fluid flow and Joukowski airfoil. Fourier series and eigenfunction expansions, integral transforms, maximum principles and Green's functions in one and two dimensions. Asymptotic evaluation of integrals and special functions. Plus some additional topics in mathematical physics.
PREREQUISITES: MATH 3120.03
CROSS-LISTINGS: MATH 4165.03, PHYS 4160.03/5160.03

MATH 5170.03: General Topology.
An introduction to topological spaces that includes the following topics: classification in terms of cardinality of bases, separation, etc., product spaces, Tychonoff theorem, compactness, compactifications, Tychonoff spaces, metrization.
PREREQUISITE: MATH 3500X/Y.06
CROSS-LISTING: MATH 4170.03

MATH 5180.03: Introduction to Algebraic Topology.
An introduction to algebraic topology including the following topics: the definitions, properties and methods of computation of the fundamental group of a topological space; simplicial, singular and cellular homology groups; basic properties and methods of computation of homology groups; a selection of application such as the classification of surfaces and fixed point theorems.
PREREQUISITE: MATH 2505.03
CROSS-LISTING: MATH 4180.03

MATH 5190.03: Ordinary Differential Equations.
A graduate-level introduction to ordinary differential equations. Topics covered include flows, existence and uniqueness theorems, continuity of solutions, coordinate transformations, symmetry methods and reductions, linearization of dynamical systems, and ODEs on manifolds.
PREREQUISITE: MATH 3500.06 (3090.03 and 3100.03) and 2030.03/2040.03 or 2135.03
CROSS-LISTING: MATH 4190.03

MATH 5195.03: Topics in Topology and Functional Analysis.
Topology is the mathematical subject that allows one to make precise the concept of continuity. Rudin defines functional analysis as the study of certain topological-algebraic structures and of the methods by which knowledge of these structures can be applied to analytic problems. He adds that the subject is huge and growing rapidly and, accordingly, we offer a “topics” class.
PREREQUISITE: MATH 3500X/Y.06
CROSS-LISTING: MATH 4195.03

MATH 5200.03: Ordinary Differential Equations - Qualitative Theory.
Qualitative theory is concerned determining the behaviour of solutions of differential equations without finding explicit solutions. Topics are selected from Liapunov stability theory, stable and unstable manifolds of singular points and periodic solutions, classification of plane singular points, structural stability and Hamiltonian systems. Other topics at the instructor’s discretion.
PREREQUISITE: MATH 4190.03
CROSS-LISTING: MATH 4200.03

MATH 5220.03: Introduction to Partial Differential Equations.
This course is a basic introduction to the theory of partial differential equations. Topics covered include: modelling physical systems, method of characteristics, Laplace, wave and heat equations, separation of variables, eigenfunction expansions, integral transforms, maximum principles and Ritz-Raleigh theory.
PREREQUISITE: MATH 3110.03
CROSS-LISTING: MATH 4220.03

MATH 5230.03: Partial Differential Equations.
This course will provide students with an introduction to advanced topics in partial differential equations in a variety of settings. Topics may include: reaction diffusion systems, pattern formation, numerical methods, applications to physical sciences, variational methods, Sobolev Theory.
PREREQUISITE: MATH 4220.03
CROSS-LISTING: MATH 4230.03

MATH 5250.03: Asymptotic Analysis.
Most mathematical models of physical systems cannot be solved exactly. Often such systems have a naturally occurring small parameter which may be exploited using asymptotic analysis techniques. In this course, we will study a variety of physical systems which illustrate many of the common approaches used in asymptotic analysis. Focus will be on applications to ordinary and partial differential equations.
PREREQUISITE: MATH 2001, MATH 2002, MATH 2030
CROSS-LISTING: MATH 4250.03

MATH 5320.03: Combinatorial Optimization.
Various graph algorithms will be presented and analyzed. Specifically we will treat the algorithms for the problems: minimum spanning tree, shortest path, maximal flow, minimum cost flow, maximum matching. For each problem, various algorithms will be presented and compared. The link with Linear Programming, especially LP-Duality, will receive special attention.
PREREQUISITE: Linear algebra should be a prerequisite, while some knowledge of linear programming and the theory of algorithms is recommended.
CROSS-LISTING: MATH 4320.03
MATH 5330.03: Topics in Graph Theory.
This class is intended for math and computer science students. Items to be selected from the following topics: graphs and matrices, graphs and groups, network analysis, extremal graph theory, enumeration problems, and algebraic methods in graph theory.
PREREQUISITE: MATH 3300.03 or CSCI 3115.03 or permission of the Instructor
CROSS-LISTING: MATH 4330.03, CSCI 4115.03

MATH 5340.03: Discrete Random Structures.
This course will cover basics of probability and stochastic processes, and then focus on areas where probability and combinatorics interact. Topics include: probabilistic method, stochastic graph models for complex networks, probabilistic algorithms. Probabilistic techniques include: expectation and concentration of random variables, stochastic processes, conditional expectation, Markov chains, martingales, branching processes.
PREREQUISITE: MATH 4300.03 OR MATH/CSCI 2113, or permission of the Instructor
CROSS-LISTING: MATH 4340.03

MATH 5360.03: Combinatorial Modelling.
This course introduces a common framework for combinatorial structures (graphs, digraphs, hypergraphs, posets, preorders, lattices, topologies, simplicial complexes), with an emphasis on how to model these structures with other fields of mathematics, such as matrix theory and linear algebra, commutative algebra, topology, analysis, probability and logic.
PREREQUISITE: MATH 2060.03, MATH 3030X/Y.06
CROSS-LISTING: MATH 4360.03

MATH 5410.03: Topics in Cosmology.
A self-contained introduction to cosmology will be given and no prior knowledge of differential geometry or general relativity will be assumed (although some knowledge of elementary differential equations will be useful). A cosmological model is a model of the universe, as a whole, on the largest scales; the emphasis of the class will be on the modelling aspects of cosmology.
PREREQUISITE: Instructor's permission
CROSS-LISTING: MATH 4410.03, PHYC 4660.03 / 5660.03

MATH 5530.03: Differential Geometry.
This class is an introduction to differential and Riemannian geometry. It serves advanced undergraduates and graduate students with interests in geometry and mathematical physics, and in particular general relativity. There are 4 major topic areas.
1. Elements of Surface Theory. First and second fundamental form; curvature; theorema egregium; intrinsic versus extrinsic geometry; parallel transport; geodesics.
2. Tensors. Vector spaces and duals; invariance; covariance; contravariance; exterior and tensor algebra.
3. Differential Manifolds. Review of point-set topology; charts and atlases. Vectors and the tangent bundle; vector fields and 1-parameter flows. Tensor fields. Intrinsic differential operations: pull-backs, the vector brackets, the exterior derivative. Differential forms and integration. 4. Riemannian geometry. The metric tensor; length of curves and volume. The Levi-Civita connection; parallel transport and geodesics; curvature; covariant differentiation; the Laplacian and the gradient operators.
PREREQUISITE: MATH 3065.03
CROSS-LISTING: MATH 4530.03

MATH 5540.03: Applied Analysis.
This course is an introduction to the methods of modern applied analysis. Topics include: Fourier series, tensor calculus, and the calculus of variations. The course is suitable for advanced undergraduates and the graduate students specializing in applied mathematics, relativity, differential geometry, and differential equations.
PREREQUISITE: Math 3120.03 or consent of instructor
CROSS-LISTINGS: MATH 4540.03

MATH 5650.03: Relativity and Cosmology.
A review of differential geometry will be given followed by an introduction to the general theory of relativity. Various topics will be discussed, including: linearized theory and gravitational radiation, spherically symmetric metrics and the Schwarzschild solution, gravitational collapse, black holes, and cosmology.
PREREQUISITE: MATH 3045.03 or permission of the Instructor
CROSS-LISTING: MATH 4650.03, PHYC 4650.03 / 5650.03

MATH 5660.03: Automata and Computability.
This is a class on formal languages and computational models. Topics covered include finite automata, pushdown automata, Turing machines, undecidability and recursive and recursively enumerable functions. Some applications to computer science are also discussed such as compiler design and text processing.
CROSS-LISTING: MATH 4660.03, CSCI 4112.03

MATH 5680.03: Topics in Logic and Computation.
This course covers topics of current interest in logic and/or the foundations of computation. Suitable topics include: formal logic, soundness and completeness, Gödel's incompleteness theorem, formal set theory, the Zermelo-Fraenkel axioms, non-standard models, independence of axioms, lambda calculus and foundations of functional programming languages, proof theory, semantics.
PREREQUISITE: MATH 3030.03 OR MATH 3500.03, OR CSCI 3110.03 AND CSCI 3136, or permission of the instructor.
CROSS-LISTING: MATH 4680.03

MATH 5800.03: Introduction to Mathematical Research.
This class is intended to introduce students to the science and methodology of research in the mathematical sciences. The class will be organized around topics from a wide spectrum of mathematics from which students will be guided to investigate open problems. Conjectures will be formulated and evidence will be developed.
PREREQUISITE: MATH 3030X/Y.06 or permission of the instructor
CROSS-LISTING: MATH 4800.03, CSCI 4800.03

MATH 5900.03: Combinatorial Game Theory.
This course looks at 2-player games of strategy where there are no chance devices and both players have perfect information. The surprising mathematical structure underlying these games will be introduced along with the evaluation scheme and its application to specific games in the classes of hot, all-small and impartial games.
PREREQUISITE: MATH 2030.03 / 2040.03, MATH 2001.03 / 2002.03
CROSS-LISTING: MATH 4900.03
MD/PhD Programs / Combined

Admission to the MD/PhD program is suspended. The program will continue to be delivered to any current students until all students have graduated, or the time allowed for program completion has elapsed, or all students have left the program.

Mechanical Engineering

Location: "C1" Building
Telephone: (902) 494-3917
Fax: (902) 423-6711
Email: mechanical.engineering@dal.ca

Department Head
Pegg, M.J., BSc, PhD (Leeds), PEng.

Professors Emeriti
Cochkanoff, O., BASc (UBC), MASc (Toronto), PhD (Iowa State), FCASI, FEIC, FC, SME, PEng, CD.
Russell, L.T., BEng (TUNS), MSc (Qu), PhD (Car), PEng.

Professors
Allen, P.L., BSc (MtA), BEng (TUNS), MESc (UWO), PhD (TUNS), PEng.
Solar thermal energy utilization, heat exchangers
Basu, P., BE (Cal), PhD (Burd), PhD (Aston), PEng. Air pollution control, recycling, heat transfer, boiler design & expert system, fluidized bed combustion
Bauer, R.J., BSc (Waterloo), PhD (Toronto), PEng. Dynamics and control, grinding, flexible space structures. (Undergraduate Coordinator)
Chuang, J.M., BSc (Nat. Taiwan Ocean), MEng (Memorial), PhD (TUNS), PEng (Naval Architecture). Numerical modelling of nonlinear free-surface flow, optimal hull form for a SWATH ship, low-cost Unix system for computational mechanics
Hubbard, T., BSc (Dal), BEng (TUNS), PhD (CalTech), PEng. MEMS - Micro Electro Mechanical Systems
Kalamkarov, A.L., BSc, MASc, PhD (Moscow State), DSc (Acad Sci., USSR), PEng. FASME, FCSME. Stress and strength analysis, modeling, design and optimization of composite materials and smart structures (Graduate Coordinator)
Kujath, M.R., MSc (TU Warszawa), PhD (Polish Academy of Sciences), PEng. Mechanisms and machinery, MEMS, robotics, space mechanics
Militzer, J., BSc (EEM Brazil), MSc (USP Brazil); PhD (Wat), PEng. Hydrodynamics of circulating fluidized bed boilers, computational fluid dynamics
Ugursal, V.I., BSc (Bogazici), MEng, PhD (TUNS), PEng. Modeling of residential energy consumption, energy conversion and conservation.
Watts, K.C., BSc, MSc, PhD (Guelph), joint appointment with Biological Engineering

Associate Professor
Pan, Y.J., BEng (Yanshan Univ.), MEng (Zhejiang Univ.), PhD (National University of Singapore), PEng. Nonlinear systems and control, Network control systems, teleoperation, Intelligent vehicle control

Assistant Professors
Doman, D., BASc, MASc (Waterloo), PhD (Dalhousie)
Groulx, D., BSc, PhD, (Sherbrooke), PEng. Multiphase processes, applied heat transfer and fluid mechanics, energy conversion and conservation systems
Swan, L., BSc (Cal Poly), MASc, PhD (Dalhousie) (Graduate Seminar Coordinator)

Adjunct Associate Professors
Beausoleil-Morrison, I., BASc, MASc (Waterloo), PhD (U of Strathclyde)
Sato, M., BSc, MSc, PhD (UBC). PEng

Adjunct Assistant Professor
Fung, A., BSc (Dal), BEng, MASc (TUNS), PhD (Dal), PEng

Adjunct Professor
Quinn, W., BSc (U. ASc Hamburg), MSc (TU Berlin), MSc, PhD (QU)
I. Introduction
Mechanical Engineering covers a very broad field of professional activity in such areas as land, sea, air, and space transportation; primary and secondary manufacturing industries; power generation, utilization and control; environmental control; and industrial management. In these areas, the Mechanical Engineer may become involved with design, construction, operation, development, research, planning, sales and management. The curriculum is designed to develop an understanding of the fundamental principles of Mechanical Engineering through lecture, tutorial, and laboratory activities. Modern well-equipped laboratories in thermofluids, energy conversion, stress analysis, vibrations, and control systems provide experience in measurements and applications to ensure a thorough understanding and appreciation of the subject matter. Classes in mathematics, engineering management and various non-technical subjects are offered to broaden the student's outlook and understanding of this profession.

Postgraduate studies in the Department are concentrated in the areas of stress analysis, heat transfer, multi-phase flow, fluid and thermal power, dynamics of rotating machines, robotics, composite materials and smart structures, MEMS, computer aided design and manufacturing and naval architecture. Research and project master’s degrees as well as the doctoral degree are offered.

II. Class Descriptions
NOTE: All graduate classes are not offered every year. Class offerings depend upon faculty availability and student interest.

MECH 6010.03: Manufacturing Processes.
This course introduces the student to the fundamentals of manufacturing processes. Emphasis will be placed on metal cutting and grinding processes. Specific topics include: chip formation, cutting mechanics, tool material and geometry, temperature, heat transfer, tool wear, thermal damage, machine tool dynamics for grinding and single point machining.
INSTRUCTOR(S): A. Warkentin
FORMAT: Lecture

MECH 6100.03: Boundary Layer Theory.
The derivation of the Navier-Stokes equations and several exact solutions are considered. The boundary layer equations and some solutions for two dimensional axially symmetric flows are treated as well as non steady boundary layers. The integral method of solution of boundary layer equations is followed by boundary layer control. An introduction to the theory of turbulence is given.

MECH 6110.03: Turbulence in Real Fluids.
The first part of this class deals in some detail with the theory of measurements and the analysis of random data. Statistically based functions such as turbulence intensities, correlation functions, energy spectra, are examined in relation to fluid processes. The second phase of this class examines the present level of knowledge of turbulence of fluids in rigid and visco-elastic ducts, without and with superimposed pressure gradients. Properties of real fluids are stressed and considerable emphasis is laid upon experimental results, applying the methods of measurement and analysis outlined above. Two and three dimensional anemometry techniques are examined applied.

MECH 6120.03: Computational Fluid Dynamics and Heat Transfer.
The finite difference discretization method is applied to the solution of the partial differential equations arising from the mathematical modelling of fluid flow, heat transfer and combustion processes. The equations can be parabolic, elliptic or hyperbolic. Items like convergence, stability, consistency, numerical diffusion and turbulence modelling will also be presented. The computer code PHOENICS (Copyright CHAM Ltd.) will be used to solve several sample problems.

MECH 6140.03: Fluidization Phenomena I.
The physical properties of the fluidized state, the behaviour of bubbles, the flow patterns of fluids and heat and mass transfer in a bubbling fluidized bed boiler reactor.

MECH 6142.03: Steam Plant Engineering.
This class aims to provide basic fundamental and practical information to engineering students to design and operate thermal power plants. The following topics are covered: classification of steam generator; comparison of water-tube and fire-tube boilers; energy sources; nuclear and fossil fuel; fuels land combustion; thermal analysis of furnaces; superheaters, economizers, and air pre-heaters; boiler efficiency calculations; description of different types of heat exchangers; evaporators and condensers; steam generation systems; Pulverized, Cyclone, Fluidized beds; auxiliary equipment (fans, stacks); control system; cooling system design; environmental considerations.
FORMAT: Lecture/design/ tutorial design/project
PREREQUISITE: ENGI 2800.03 or equivalent
CROSS-LISTING: MECH 4840.03

MECH 6145.03: Fluidization Phenomena II.
This class deals with circulating fluidized bed and fluidized bed heat transfer. It will cover design of fluidized bed reactors, heat exchangers and combustors. Mechanical design of components such as distributor, solid-field system, reactor shell and equipment control will also be covered.

MECH 6200.03: Advanced Heat Transmission I.
This class deals with advanced topics in convection heat transfer. The governing equations for forced and natural convection are derived and solved by scaling analyses. Integral and similarity solutions are also obtained for the governing equations. The development of empirical correlations for evaluating the heat transfer from commonly encountered geometries is also covered.

MECH 6210.03: Advanced Heat Transmissions II.
An advanced study of the transmission of heat by radiation. Topics covered include: physical properties of radiation, thermal radiation laws, characteristics of real and ideal systems, geometric shape factors, grey and non-grey system analysis, energy transfer in absorbing media and luminous gases, solar radiation.

MECH 6325.03: Micro-electro-mechanical Systems (MEMS).
This class deals with micro-machining and MEMS (micro-electro-mechanical systems). The following topics will be covered: scaling issues, fabrication technologies and production methods, classification and analysis of MEMS devices (both sensors and actuators). The integration of multiple devices into systems will be addressed including issues of assembly and interfacing. Micro-machining will be compared and contrasted to both micro-electronics and traditional micro-machining. The development and use of MEMS simulation and design tools will be covered.
PREREQUISITE: Approval of instructor.

MECH 6340.03: Energy Management I.
The purpose of this class is to introduce the concepts and techniques of energy management and conservation. The subjects that will be discussed are energy supply and demand, energy pricing, scope of the energy problem and approaches to provide solutions; energy auditing; improving energy utilization in space conditioning and steam, hot water and compressed air systems; energy saving opportunities in refrigeration and cooling systems; insulation; and electrical energy conservation. An interdisciplinary approach will be employed in this class to provide a wider understanding of the subject.
CROSS-LISTING: MECH 4340.03

MECH 6341.03: Energy Management - II.
This class is a continuation of MECH 6340. The subjects that will be discussed in this class are computer technology for energy conservation; energy saving opportunities in fired heaters and boilers; cogeneration; waste heat recovery; and synthesis of heat and power networks. Although MECH6340 is not a prerequisite for this class, it is advisable that both classes are taken to have a complete coverage of the subject.

MECH 6350.03: Advanced Engineering Design.
An undergraduate education necessarily concentrates on analysis. This class focuses on synthesis. Creativity is the engine of design and analysis is the feedback governing design. Through the media of case studies, laboratory exercises, instruction, and practice, this class studies the process of design; the business of translating societal needs into real,
manufacturable objects. Lecture topics will include: the hierarchical, iterative nature of design; aids to creativity; the appropriate use of analysis; the translation from functional space to physical space; prototype design; consumer durable versus capital equipment design; and special lectures on microprocessors in machinery, optimization, and CAD/CAM.

MECH 6420.03: Advanced Fluid Mechanics.
A general review of principle concepts and methods in fluid dynamics will be conducted. Advanced treatment with mathematical techniques for solving specific classes of fluid-flow problems will be introduced, including: surveys of governing equations and basis theories; two- and three-dimensional potential flows; surface waves; boundary-layer theory; and, shock-wave phenomenon.

PREREQUISITE: ENGM 4343.03 and MECH 3420.03 or equivalent.

MECH 6440.03: Principles of Marine Craft Design.
An introduction to the basic principles of hydrostatics and hydrodynamics for surface ships, submarines, and other marine craft. Topics include: hydrostatics, stability, dimensional analysis and modelling; resistance estimation of low-speed and high speed craft, and propulsion. Students will use software tools.

INSTRUCTOR(S): Seto, M.L.
FORMAT: Lecture/labs/tutorials

MECH 6500.03: Mechanical Vibrations.
Free and forced vibrations of elastic bodies, such as beams, plates, and shells are examined. Response due to shock and random loading is introduced. Vibration measuring instrumentation is described and several laboratory experiments are carried out. Industrial applications are studied including vibration of machinery, ships, and the response of humans to whole body vibration.

MECH 6510.03: Advanced Mechanics of Solids.
The class provides an introduction to the general equations of the theory of elasticity of an anisotropic solid. Elastic equilibrium and boundary value problem formulations are considered. The theories of thermoelasticity, viscoelasticity and plasticity are introduced. The class also provides an introduction to modeling of inhomogeneous composite solids, the effective moduli theory, and the elasticity of composite laminates. The fundamentals of fracture mechanics and applications to mechanical design are considered.

INSTRUCTOR(S): A. Kalamkarov
PREREQUISITE: ENGM 2200.03, MECH 4300.03

MECH 6521.03: Applied Dynamics.
This class begins with a review of planar kinematics and kinetics of rigid bodies. These concepts are extended to kinematics and kinetics of rigid bodies undergoing general three dimensional motion. Euler’s Equations are applied to a wide range of engineering problems including vehicular and gyroscopic dynamics. Energy methods for bodies undergoing three dimensional motion are applied to multi-degree-of-freedom systems. Single-degree-of-freedom systems subjected to random and shock inputs are analyzed.

FORMAT: Lecture 2 hours, lab/tutorial 3 hours
CROSS-LISTING: MECH 4521.03

MECH 6530.03: Mechanics of Composites and Smart Structures.
The class introduces classification of composite materials, basic relations of anisotropic elasticity, and macro- and micromechanical scales of analysis. The elastic behaviour of fibre reinforced composites; effective moduli theory; elasticity and strength of composite laminates are considered. Asymptotic homogenization method and its applications to mechanical modeling of composites are introduced. Smart (adaptive) structures and their constituents are discussed and the mechanical behaviour of smart structures is considered.

INSTRUCTOR(S): A. Kalamkarov
FORMAT: Lecture/laboratory
PREREQUISITE: ENGM 2200.03, MECH 4300.03

MECH 6540.03: Continuum Mechanics.
This class introduces the students to the fundamental principles of continuum and applied mechanics. The class will cover tensor algebra/calculus, strain and deformation measures (both Lagrangian and Eulerian approaches), stress, conservation laws in solid and fluid mechanics and constitutive laws in elastic materials, Newtonian fluids and viscoelastic solids.

FORMAT: Lecture and tutorial, seminar
PREREQUISITE: Stress Analysis (e.g., MECH 4300, CIVL 3700, MATL 3621), Fluid Mechanics (e.g., ENGI 2300), basic ordinary differential equations (e.g., ENGM 2021), basic linear algebra (e.g., ENGM 3361).

MECH 6560.03: Space Systems.
This class deals with the engineering design and analysis of space systems and their interrelationships. Topics include orbital mechanics, satellite perturbations, satellite actuator and sensor systems, communication facilities and networks, satellite access and coverage.

FORMAT: Lecture 3 hours, tutorial 2 hours
CROSS-LISTING: MECH 4560.03

MECH 6620.03: Identification of Systems.
The objective of this class is to introduce methods of dynamic system identification. System identification leads to development of optimal mathematical models of physical systems from experimentally collected digital data. Topics include: experiment design for identifiability, digital signal filtering, mathematical optimization, system parameter estimation, modal analysis of vibratory systems.

MECH 6640.03: Robot Mechanics.
This class provides a brief introduction to the field of Robotics, a brief review of selected topics from linear algebra, and an introduction to theoretical kinematics. The main part of the class includes such topics as: robot geometry, velocity Jacobians, derivation of equations of motion; force, manipulability, inertia and compliance analysis; position and force control, optimization of kinematic redundancy, multirobot coordination; robot calibration; performance testing and characterization. The class also provides an introduction to space robots, smart structures, and walking machines as well.

PREREQUISITE: MECH 4640.03 or equivalent

MECH 6660.03: Finite Element Method in Mechanical Design.
Class deals with the application of the finite element method to stress analysis problems encountered in mechanical design. Introduction to the finite element method is followed by the necessary relationships from linear elasticity, beam and plate theory. Various categories of structural elements are discussed in order of increasing complexity. Stresses in one- and two-dimensional trusses, beams, axisymmetric solids, and plates are considered. Finite element programme is introduced and used in the class assignments.

FORMAT: Lecture 2 hours, lab/tutorial 3 hours
CROSS-LISTING: MECH 4660.03

MECH 6710.03: Computational Hydrodynamics I.
This course deals with the computational methods for 2-D and 3-D potential flow in the infinite domain. The theories of boundary integral equation (BIE), Cauchy’s formula and conformal mapping are introduced. The discretization techniques for numerical solution of hydrodynamics problems are emphasized. The alternative formulation of BIE for the thin body is discussed. The body-geometry approximation with Non-Uniform Rational B-Spline (NURBS) is also covered.

PREREQUISITE: MECH 3300.03, approval of the instructor

MECH 6838.03: Dynamics of Marine Vehicles.
This class deals with the dynamics of marine vehicles. Topics to be covered include: water wave theory, undamped motions in still water, coupled motions in waves, and the strip theory of ships. Throughout, the practical importance of seakeeping and wave loads to performance of marine vehicles at sea is stressed. Finally, maneuverability in still water is introduced, both in the practical and theoretical senses.

PREREQUISITE: MECH 5440.03 or Instructor’s consent

MECH 6855.03: Theory of Marine Propellers.
This class begins with the theory of dimensional analysis and correlation. Propeller model design and testing is introduced including potential theory of lifting surfaces, lifting line theory of propellers, lifting surface theories, propeller selection, propeller design and strength calculations, blade vibration analysis, cavitation and its effects, wake adapted propellers, bow thrusters and other propulsion devices.
MECH 6860.03: Theory of Marine Hydrodynamics I.
This is the first of two classes providing students with an advanced background of theoretical and experimental principles in Marine Ship Hydrodynamics. Emphasis is laid on applications of potential theory to the free-surface hydrodynamic analysis: Wave phenomena pertinent to problems in naval architectural and ocean engineering are studied. Various theories for unsteady hydrodynamic forces on floating and submerged bodies are considered. Methods for seakeeping and maneuvering analysis for marine vehicles and structures are introduced. PREREQUISITE: ENGM 4343.03 and MECH 6830.03

MECH 6870.03: Theory of Ship Structure Analysis I.
This class provides students with theoretical methods of structural analysis for ships and ocean structures in various marine environments. It contains: probabilistic descriptions of ocean wave loads acting on ships and ocean structures; the input-output relations; responses in long and short crested seas; extreme value statistics of wave loads; variability on hull-strength modes of failure; reliability concepts and design considerations.

MECH 6910.03: Graduate Seminar I.
MENG and MASC students in mechanical engineering will prepare and present seminars on research topics related to their thesis project. Master’s students shall present a minimum of one seminar. Graduate students are required to attend all graduate seminars. Students will be evaluated on their preparation, presentation skills, ability to field questions and regular attendance. Graded pass/fail.

MECH 6950.03: Advanced Control Engineering.
The class continues to develop the students’ capabilities in system simulation and feedforward/feedback control-system design and implementation. Topics include: system-parameter identification, control system hardware, computer-based control systems, design techniques for multiple-input multiple-output systems, and adaptive control. The class is supported by computer-based simulation activities and design procedures, and by hands-on laboratory experience. FORMAT: Lecture 3 hours, lab/tutorial 2 hours CROSS-LISTING: MECH 4950.03

MECH 6951.03: Applied Nonlinear Control.
Advanced nonlinear control approaches are introduced to the students. Applications to highly nonlinear electro-mechanical systems are discussed. Topics include: characteristics of nonlinear systems, feedback linearization, gain scheduling, adaptive control, robust and optimal nonlinear control, sliding mode control, passivity based control, backstepping, describing function, anti-windup saturations and singular perturbations etc. INSTRUCTOR(S): Ya-Jun Pan FORMAT: Lecture/tutorial PREREQUISITE: MECH 4900 or ECED 4600 or CHEE 3550

MECH 6960.03: Computational Methods in Engineering.
The class presents basic computer methods of application of mathematical tools to solve engineering problems. Numerical methods such as finite differences, series expansions, and numerical integration are introduced. Numerical solutions of ordinary and partial differential equations with applications to equilibrium, eigenvalue and propagation problems in engineering are considered. Application of mathematical libraries, X-window system and the software tools associated with the Unix system are included. FORMAT: Lecture 2 hours, lab/tutorial 3 hours CROSS-LISTING: MECH 4960.03

MECH 6990.03: Directed Studies in Mechanical Engineering I.
This class is available to graduate students enrolled in a Master’s Degree Programme in Mechanical Engineering, who wish to gain knowledge in a specific area for which no graduate-level classes are offered. Students are assigned an advisor and are required to present a formal report, or take a formal examination, at the end of the class. Registration approval is required from the Head of the Department of Mechanical Engineering.

MECH 7910.03: Graduate Seminar II.
PhD students in mechanical engineering will prepare and present seminars on research topics related to their thesis project. PhD students shall present a minimum of two seminars (one of which may be the thesis proposal). Graduate students are required to attend all graduate seminars. Students will be evaluated on their preparation, presentation skills, ability to field questions, and regular attendance. Graded pass/fail.

MECH 7990.03: Directed Studies in Mechanical Engineering II.
This class is available to graduate students enrolled in PhD Programme in Mechanical Engineering who wish to gain knowledge in a specific area for which no graduate-level classes are offered. Students are assigned an advisor and are required to present a formal report, or take a formal examination, at the end of the class. Registration approval is required from the Head of the Department of Mechanical Engineering.

MECH 8500.00: MEng Project.
A Master of Engineering candidate will be required to submit a project satisfactory to the Faculties of Graduate Studies and Engineering and to make a successful oral presentation of the work.

MECH 9000.00: Master’s Thesis/Project.
MECH 9530.00: PhD Thesis.
I. MSc/PhD in Medical Sciences

Major advances in biomedical research are now being made in an environment where basic scientists and research-trained clinicians are interacting. There is a critical need to increase the number of such trained physicians locally, regionally, and nationally. This program is designed for persons who will become clinical specialists, but who plan careers as clinician scientists. The program allows the MD graduate to concentrate primarily on thesis research in Medical Science and bridge the gap between clinical and basic medical research. In addition, the program offers training in clinical research, which is not otherwise formally offered at this University.

Students considering this program must pay particular attention to the following requirements:

1. All students must have an MD degree from an LCME accredited Medical School and all candidates must meet the admission requirements of the Faculty of Graduate Studies.
2. Candidates must be currently registered in a Canadian Royal College Residency Program, a Residency Program in the Canadian College of Family Physicians or hold positions as a clinical fellow at a Canadian teaching hospital.
3. In most cases, candidates will already have an honours bachelor’s degree in a basic science discipline, or a bachelor’s degree in an appropriate discipline with some evidence of competence in a laboratory or research environment. However, it is recognized that there will be some excellent students whose preparation for their MD may not have followed this route. These candidates will be assessed by the Medical Sciences Program Committee on an individual basis based upon their past performance and suitability for graduate research in the medical sciences. Students who are judged acceptable but who have gaps in their knowledge base or relevant laboratory skills may be required to take additional coursework and should recognize that this may extend the time required to complete the program.
4. The Medical Sciences Graduate Program may also accept graduates from foreign medical schools who are not registered as residents provided they are landed immigrants (or Canadian citizens) residing in Canada. Such foreign graduates must provide evidence of proficiency in English by satisfactory TOEFL or IELTS score and a GRE score to the level required by the program. Graduates of foreign medical schools may have to undertake supplementary courses at the undergraduate level before acceptance in the graduate program. The foreign medical school in question must be an approved school (eligible for MCC examination).
5. A letter from the Clinical Department Head or external funding agency confirming secure funding for the training period must accompany all applications.
6. The minimum stipend for non-residents to enter the MSGP will be equivalent to the amount awarded by CIHR as a Masters level scholarship

II. Supervision

The program is a research-intensive program. Normally, residents applying to the Medical Sciences Graduate Program will have made mutually acceptable arrangements with a faculty member(s) for the supervision of their research prior to applying for their program at Dalhousie. Within three months of initiation of the program, a supervisory committee of qualified faculty, including the supervisor(s), will be appointed. These faculty will aid in the planning of the thesis research and be available to the student throughout the program for advice. There will be at least two meetings of the Supervisory Committee each year with the student to discuss research progress and future directions. The standards of the program are very high and the thesis research needs to be of international quality. Publication of the thesis research in peer-reviewed journals is expected.

It should be noted that this program is separate from the Royal College Clinician Investigator Program (CIP), but that the Director of the CIP sits on the Graduate Committee of the Medical Sciences Graduate Program for effective communication between the two programs. Students in the Medical Sciences Graduate Program may also register for the CIP concurrently, but there is no requirement to do so.

III. Program Requirements

At the first meeting of the Supervisory Committee, relevant course work for the student will be identified by the committee in agreement with the student and the supervisor. There is a minimum requirement of one-half credit in the discipline most relevant to the research project; however, the Committee may require that additional classes be taken to provide the knowledge base required for the thesis research. In addition, regular contributions to, and attendance at, a Journal Club and a Seminar series are a requirement to ensure a firm grounding in experimental methods.

Two degree programs are offered; but all students will initially enroll in the MSc program*, which would normally be for 2 years**. If, after one year of study, the student wishes to transfer to the PhD Program, and if his/her committee recommends such a transfer, a recommendation will be sent to the Medical Sciences Program Committee, and from it to the Faculty of Graduate Studies for consideration and approval. The PhD program would be expected to be completed within 3 years; a maximum of 5 years would be allowed. In addition, within 18 months of initiation of the Program, the student must complete a comprehensive examination, which will have an oral and a written component.

* Exceptions will be made for those Residents who already have a MSc degree in a relevant discipline. Decisions on which MSc degrees are acceptable for admission to the Medical Sciences PhD program are left up to the discretion of the Graduate Program Committee for Medical Sciences.

** flexibility for individuals with parental responsibilities will be considered.

For more information contact the Program Manager. Telephone: (902) 494-3886; Fax: (902) 494-7119; Email: jesslyn.kinney@dal.ca
I. Disciplines Within Microbiology and Immunology

Graduate degrees can be pursued in the areas of Virology, Bacteriology, Microbial Pathogenesis, Microbial Genetics, Molecular Genetics, Cancer Biology, and Cellular and Molecular Immunology. Graduate students are expected to acquire a conceptual understanding of the disciplines in microbiology and immunology and an in depth knowledge of their particular area of specialization. Notwithstanding this, the existence of specified streams in Cellular and Molecular Immunology, Virology, Bacteriology, Microbial Pathogenesis and Molecular Genetics in the Department may allow well-qualified students, with at least minimal training in Microbiology and Immunology, but a strong background in the appropriate subject area, to concentrate their studies.

II. Admission Requirements

In conjunction with the general requirements for admission, candidates must have received sound basic instruction in Biochemistry and Cell Biology and four credits in a relevant discipline or disciplines with a B+ average or better.

III. Degree Programs

All graduate students are required to take MICI 5400.03 in their first year. Students and supervisors may request a one year deferral under special circumstances, for example, students required to upgrade their academic background.

A. Master of Science (MSc)

For minimum time required to complete this program, see the Faculty of Graduate Studies Regulation 1.3.1 in this calendar. Participation in seminars and journal clubs (one of MICI 5001.06, 5006.06 or 5007.06) is required. The class requirements for each MSc candidate, normally consisting of 1.5-2 credits, are determined by consultation between the student and the supervisory committee, and must be approved by the departmental Graduate Studies Committee. A research project must be completed, the result of which will be embodied in a thesis.

B. Doctor of Philosophy (PhD)

For minimum time required to complete this program, see the Faculty of Graduate Studies Regulations in this calendar. Participation in seminars and journal clubs (one of MICI 5001.06, 5006.06 or 5007.06) is required. The class requirements for each PhD candidate, normally consisting of 1.5-2 credits, are determined by consultation between the student and the supervisory committee, and must be approved by the departmental Graduate Studies Committee. Comprehensive knowledge of the area of specialization must be demonstrated and will be assessed by written and oral examination.

Research of a high calibre is required, the results of which must be embodied in a thesis which makes a significant contribution to knowledge in the chosen field. An oral defence of the thesis before an external examiner is required.

IV. Class Descriptions

MICI 5001.06: Cancer Biology Seminars.

A seminar based class in which students prepare and present papers from the recent cancer biology literature. Each student presents one paper per term and submits a written one-page summary and critique. Following each presentation, active discussion of the paper and relevant issues is encouraged from all participants, so as to discuss the merits, strengths and weaknesses and scientific importance of the paper presented.

INSTRUCTOR(S): P. Lee and R. Duncan

MICI 5003.03: Special Topics in Microbiology and Immunology.

This class allows students to investigate, under the supervision of a faculty member, an area of microbiology or immunology that is not covered in formal classes. The topics in which the Department can offer instruction are dependent on the research interests and expertise of department members.
MICI 5006.06: Topics in Advanced Immunology.
The class is seminar based with weekly presentations of a recent paper in a selected area of Immunology. The class will cover aspects of cellular and molecular immunology in areas such as (but not restricted to) cancer, transplantation, inflammatory diseases, autoimmunity, allergy, immunological and infectious diseases. All MSc students present two papers in the first academic year and one in the second academic year. PhD students present two papers in the first year and one per year in the following years. The student should provide a learning objective for the presentation. The learning objective should include background knowledge and the novelty of the paper. The students are expected to have a broad introduction of the background of the paper. Point out what knowledge is lacking in the literature, which leads to the current study. The novelty of the paper should be emphasized. The student is then expected to review the experimentation methods and data analysis. This is a pass/fail class with grading dependent on the quality of the student presentation, participation of discussion and attendance (at least 80% of attendance is expected).
INSTRUCTOR(S): J. Marshall and J. Wang

MICI 5007.06: Advanced Topics in Molecular Pathogenesis.
A seminar-based class in which students prepare and present papers from the recent literature. Papers are selected from topical and sometimes controversial areas in bacterial and viral pathogenesis. Each student presents one paper per term and submits a written summary and critique. Following each presentation, active discussion of the paper and relevant topics is encouraged from all participants, so as to evaluate the merits, strengths and weaknesses and scientific importance of the paper presented. Evaluation is a pass/fail based on the quality of student presentations, written critiques and contributions to discussion.
INSTRUCTOR(S): R. Garduno

MICI 5027.03: Molecular Mechanisms of Cancer.
This class focuses on the molecular mechanisms of cancer and consists of lectures and student presentations. Topics include: receptors and downstream signaling, oncogenes and tumor suppressors, cancer metastasis and angiogenesis, DNA repair, cell cycle control and apoptosis.
INSTRUCTOR(S): P. Lee and D. Waisman
FORMAT: Lecture/student presentations/discussion
PREREQUISITE: Minimum grades of B+ in a 3000 level Microbiology, Pathology or Biochemistry class. Permission of instructor required.
CROSS-LISTING: MICI 4027.03/PATH 5027.03/BIOC 4027.03

MICI 5038.03: Molecular Biology of Yeast.
A seminar-based class in which students prepare and present papers from the recent molecular biology literature. Each student presents one paper per term and submits a written one-page summary and critique. Following each presentation, active discussion of the paper and relevant issues is encouraged from all participants, so as to discuss the merits, strengths and scientific importance of the paper presented. This is a pass/fail class based on the quality of student presentations, written critiques and contributions to discussion.
INSTRUCTOR(S): C. Barnes
FORMAT: Seminar
PREREQUISITE: Permission of instructor required

MICI 5100.03: Processes and Mediators of Inflammation.
A lecture and seminar based class designed to provide students with an in-depth understanding of the major mechanisms of inflammation at a molecular and cellular level; to introduce students to the current challenges and emerging methods of treatment for inflammation; to develop student critical appraisal skills as they relate to the current scientific literature in this area.
INSTRUCTOR(S): B. Johnston
FORMAT: Lecture/presentation/discussion
CROSS-LISTING: MICI 4100.03, PATH 5100.03

MICI 5114.03: Advanced Topics in Molecular and Medical Virology.
A class designed to look in detail at selected aspects of molecular and medical virology. The class is based on student presentation of current literature, in combination with introductory lectures and paper discussions.
INSTRUCTOR(S): R. Duncan
FORMAT: Lecture/presentation/discussion
CROSS-LISTING: MICI 4114.03

MICI 5116.03: Current Topics in Mucosal Immunology.
The mucosal immune system maintains a state of tolerance to environmental antigens while mounting a rapid and robust specific immune response to infectious agents. This balance has led to certain physical and functional characteristics unique to mucosal sites. The class will consist of lectures and student-led presentations and discussions of current publications (chosen by the course coordinator). Each week will be focused on a single theme but covering topics in the gastrointestinal tract and respiratory and genitourinary systems. Weekly themes will include, oral tolerance, intraepithelial lymphocytes, models of intestinal inflammatory diseases, parabiotics, role of IgA, vaccines use in respiratory diseases, urinary tract infection and aspects of reproductive immunology. Students will typically present three publications in the class. Evaluations are based on student presentations (50%), written summaries of the discussion following their own presentations (20%), participation in the discussions of other student presentations (10%) and a research report or grant on a topic chosen by the student (40%). There are no exams.
INSTRUCTOR(S): A. Stadnyk
PREREQUISITE: MICI 3115.03
CROSS-LISTING: MICI 4116.03

MICI 5118.03: Molecular Bacterial Pathogenesis.
An advanced class on the molecular basis of bacterial pathogenesis. The class will use selected bacterial pathogens to develop basic principles regarding genes encoding virulence factors, their regulation and the molecular function of their gene products in surface colonization, invasion, intracellular growth and toxin production. The class may include student presentations of reviews and original research papers, and will emphasize the use of modern molecular biological tools in research and problem solving.
INSTRUCTOR(S): R. Garduno
FORMAT: Lecture/student presentations/discussion
CROSS-LISTING: MICI 4118.03

MICI 5302.03: Molecular Immunology.
An advanced class which investigates the molecules involved in the generation and expression of immune responses. Topics typically include the molecular mechanisms of cell death, molecular regulation of cytokines, the generation of antibody diversity by immunoglobulin gene rearrangement, the structure and function of cell surface receptors such as the T cell antigen receptor, MHC and adhesion molecules, receptor signaling and the genetics of immune regulation.
INSTRUCTOR(S): T. J. Lin
FORMAT: Lecture/student presentations/discussion
CROSS-LISTING: MICI 4302.03, BIOL 5302.03, BIOL 4302.03

MICI 5400.03: Host Pathogen Interactions and Human Disease.
This advanced course explores host-pathogen interactions in human disease, focusing on how pathogens modify, disrupt or utilize cellular functions and the significance of these processes in human disease. Students will also learn how to critically evaluate the scientific literature, develop hypotheses and design experiments to test these hypotheses. NOTE: All graduate students are required to take MICI 5400.03 in their first year. Students and supervisors may request a one year deferral under special circumstances, for example, students required to upgrade their academic background.
INSTRUCTOR(S): C. McCormick and N. Thomas
FORMAT: Lecture/presentations/discussion/writing exercises

MICI 9000.00: MSc Thesis.

MICI 9530.00: PhD Thesis.
Musicology

Location: 6101 University Ave.,
P.O. Box 1500
Halifax, NS B3H 4R2
Telephone: 902.494.8517
Fax: 902.494.2801

Chairperson of Department
Bain, J.

Graduate Studies Coordinator
Joubert, E.

Professor Emeritus
Schroeder, D.P., AMus, BA, MA (Western) PhD (Cantab)

Associate Professors
Bain, J., BMus (Wilfrid Laurier), MA (McGill), PhD (SUNY Stony Brook)
Baur, S., BA (Music) (Loyola Marymount), MA, PhD (UCLA)
Blais, J., BMus (McGill), MMus, DMus (Montreal)
Warwick, J., BMus (Toronto), MA (York), PhD (UCLA)

Assistant Professor
Joubert, E., BMus, MA (Toronto), DPhil (Oxford)

Adjunct Members
MacDonald, C., BA (Trent), MA, PhD (UBC)
Hennessy, J., BSc (Trent), BMus (Acadia), MA (UBC), PhD

Cross-listed Member
Barker, R., BA (King’s), MA (Dal), PhD (Shakespeare Institute)

I. Introduction
The Department of Music welcomes students interested in the study of musicology at the graduate level, leading to the MA degree. Students in the MA in Musicology program will have the opportunity to investigate music’s role and meaning in various social and historical contexts, through text-based analysis informed by cultural studies. Our faculty members pursue research in genres ranging from medieval chant to contemporary experimental composition, canonic orchestral repertoire, film music, and diverse styles understood to be popular music. We foster a vibrant intellectual climate that encourages innovative approaches and non-traditional thinking about music as a social text, and the small size of our program guarantees a great deal of specialized attention and the possibility of tailoring courses of study to suit individual interests. The MA in Musicology is suitable preparation for doctoral studies in musicology and some other humanities disciplines, as well as work in the fields of journalism, music education, editing, and arts administration.

II. Admission Requirements
Admission to the program is granted to applicants with a Bachelor’s degree in a relevant field, and who demonstrate an outstanding capacity for research in music. Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies.

III. MA Degree Program
The MA is a thesis-based program, in which students take two required seminar classes and choose three other seminars before embarking on a thesis prospectus and then thesis research. This is normally a two-year degree. Students in the program are eligible for Dalhousie graduate scholarships and teaching assistantships in the Department of Music.

IV. Classes Offered

MUSC 5000.03: Research Methods in Music.
In this course students will develop skills in current musicological research practices.
INSTRUCTOR(S): E. Joubert
FORMAT: Seminar
PREREQUISITE: Undergraduate degree in Music

MUSC 5001.03: Proseminar in Musicology.
This class is an introduction to recent methods and techniques of music scholarship: we will consider the scholarly approaches of music theory, historical musicology, music criticism, popular music studies and cultural studies. The focus of our inquiry will be the potential advantages of such lines of questioning, and their significance for musicology as a scholarly discipline.
INSTRUCTOR(S): J. Bain, S. Baur, J. Warwick, J. Blais, E. Joubert
FORMAT: Seminar
PREREQUISITE: Bachelor’s degree

MUSC 5002.03: Directed Studies I.
Individually directed research and writing under the supervision of an appropriate member of the Department.
INSTRUCTOR(S): D. Schroeder, J. Bain, J. Warwick, S. Baur, J. Blais, E. Joubert
FORMAT: Individual work
PREREQUISITE: Permission of instructor and the graduate coordinator

MUSC 5003.03: Directed Studies II.
Individually directed research and writing under the supervision of an appropriate member of the Department.
INSTRUCTOR(S): D. Schroeder, J. Bain, J. Warwick, S. Baur, J. Blais, E. Joubert
FORMAT: Individual work
PREREQUISITE: Permission of instructor and the graduate coordinator

MUSC 5004.03: Research Methods II.
An exploration of the ways in which gender shapes musical discourse. Three broad themes will be examined in the context of various music styles and genres: gender and composition, gender and performance, and representations of gender through music.
INSTRUCTOR(S): J. Warwick
FORMAT: Seminar
PREREQUISITE: Bachelor’s degree in music or permission of the instructor

MUSC 5005.03: Proseminar in Musicology.
In this course students will develop skills in current musicological research practices. These may include advanced modal and 12-tone writing, interval and texture-oriented procedures, as well as aleatoric strategies.
INSTRUCTOR(S): J. Blais
FORMAT: Seminar
PREREQUISITE: MUSC 2202, or permission of instructor
CROSS-LISTING: MUSC 2202, or permission of instructor

MUSC 5006.03: Music and Gender.
An exploration of the ways in which gender shapes musical discourse. Three broad themes will be examined in the context of various music styles and genres: gender and composition, gender and performance, and representations of gender through music.
INSTRUCTOR(S): J. Warwick
FORMAT: Seminar
PREREQUISITE: Bachelor’s degree in music or permission of the instructor

MUSC 5280.03: Contemporary Techniques.
Some of today’s main compositional techniques will be studied in this course. These may include advanced modal and 12-tone writing, interval and texture-oriented procedures, as well as aleatoric strategies.
INSTRUCTOR(S): J. Blais
FORMAT: Seminar
PREREQUISITE: Undergraduate degree in Music
CROSS-LISTING: MUSC 4280.03

MUSC 5283.03: Early Music Analysis.
A seminar exploring the various approaches to early music analysis, covering monophony and music by significant figures before 1600 including Hildegard, Machaut, DuFay and Josquin.
INSTRUCTOR(S): J. Bain
FORMAT: Seminar
PREREQUISITE: Undergraduate degree in Music
CROSS-LISTING: MUSC 4283.03

MUSC 5285.03: Late 19th-Century Chromaticism.
A seminar exploring chromaticism as it was practised in the late 19th century. Through selected readings, we will examine various independent chords, progressions and sequences, the intersection of different ‘scalar’ collections and chromaticism, the changing nature of harmonic function, and the role of transformation and large-scale key relationships.
INSTRUCTOR(S): J. Bain
FORMAT: Seminar
PREREQUISITE: Undergraduate degree in Music
CROSS-LISTING: MUSC 4285.03
MUSC 5353.03: Music Since 1945.
This course examines themes in music since 1945. Topics to be considered include compositional techniques, music and cultural theory, and avant-garde and mainstream musics.
INSTRUCTOR(S): J. Warwick
FORMAT: Seminar
PREREQUISITE: Bachelor's degree in music or permission of the instructor
CROSS-LISTING: MUSC 4353.03

MUSC 5354.03: Popular Music Analysis.
We examine various methods and techniques for studying popular music, the central debates of this relatively new field of scholarly inquiry, and the contributions of popular music scholarship to the larger fields of music study.
INSTRUCTOR(S): J. Warwick
FORMAT: Seminar
PREREQUISITE: Bachelor's degree in music or permission of the instructor
CROSS-LISTING: MUSC 4354.03

MUSC 5355.03: Narrative Strategies in Nineteenth-Century Music: Gender, Identity, and Social Politics.
An interdisciplinary survey of nineteenth-century instrumental music, focusing on the narrative potential of nineteenth-century musical conventions and their relationship to other aspects of nineteenth-century Western culture. Representative works will be studied within the context of broader social and cultural issues including gender, race, class, sexuality, nationality, ethnicity, and identity.
INSTRUCTOR(S): S. Baur
FORMAT: Seminar
PREREQUISITE: Bachelor's degree
CROSS-LISTING: MUSC 4355.03, GWST 4355.03

MUSC 5356.03: Opera Studies.
An examination of current critical issues in opera studies. Specific topics may vary from year to year; examples include 'Opera and Politics' and 'Operas of Mozart on Stage and Screen,' 'Women in Opera,' 'Opera on Film.'
INSTRUCTOR(S): E. Joubert
FORMAT: Seminar
PREREQUISITE: MUSC 2352: Open to non-majors by permission of instructor
CROSS-LISTING: MUSC 4356.03

MUSC 5362.03: Topics in Canadian Music.
This course focuses on one or more of the following topics: Canadian composers, performers and musical institutions. The perspective may be analytical, aesthetic, and/or historical.
INSTRUCTOR(S): J. Blais
FORMAT: Seminar
PREREQUISITE: Bachelor's degree in music or permission of instructor
CROSS-LISTING: MUSC 4362.03

MUSC 5364.03/5365/5366: Topics in Musicology.
These are intensive studies of selected topics announced annually.
INSTRUCTOR(S): D. Schroeder, J. Bain, J. Warwick, S. Baur, J. Blais, E. Joubert
FORMAT: Seminar
PREREQUISITE: Undergraduate degree in music

MUSC 5367.03/5368/5369: Topics in Musicology.
These are intensive studies of selected topics announced annually.
INSTRUCTOR(S): D. Schroeder, J. Bain, J. Warwick, S. Baur, J. Blais, E. Joubert
FORMAT: Seminar
PREREQUISITE: Undergraduate degree in music

MUSC 5370.03/5371: Selected Composer Studies.
An intensive study of a single composer, focusing on works and cultural context.
INSTRUCTOR(S): D. Schroeder, J. Bain, J. Warwick, S. Baur, J. Blais, E. Joubert
FORMAT: Seminar
PREREQUISITE: Undergraduate degree in music

MUSC 5379.03: Music in Paris at the fin de siècle.
A survey of musical culture in Paris between roughly 1875 and 1915, investigating the leading individuals, institutions, movements, and themes of the period through critical analyses of representative musical works.
INSTRUCTOR(S): S. Baur
FORMAT: Seminar
PREREQUISITE: Bachelor's degree

MUSC 5380.03: Music and Society in Nineteenth-Century America.
An exploration of music and its relationship to American social issues during the nineteenth century, tracing multiple and varied musical traditions throughout the period and investigating their role in the negotiation of race, class, gender, and other vital social issues.
INSTRUCTOR(S): S. Baur
FORMAT: Seminar
PREREQUISITE: Bachelor's degree

MUSC 8000.00: M. A. Thesis Prospectus.
Although not a formal seminar class, this course number identifies the student's independent work in developing the thesis prospectus and in research towards the thesis.
INSTRUCTOR(S): D. Schroeder, J. Bain, J. Warwick, S. Baur, J. Blais, E. Joubert
FORMAT: Individual work
PREREQUISITE: Permission of graduate coordinator

MUSC 9000.00: M. A. Thesis.
INSTRUCTOR(S): D. Schroeder, J. Bain, J. Warwick, S. Baur, J. Blais, E. Joubert
FORMAT: Individual work
PREREQUISITE: Permission of graduate coordinator
Neuroscience

Contact: Dr. V. Rafuse
Department of Anatomy and Neurobiology
Telephone: (902) 494-3609
Fax: (902) 494-1212
Email: vrafuse@dal.ca
or Graduate Coordinator of individual Departments

Faculty Advisors

Department of Anatomy & Neurobiology
Allen, G.V., PhD (Dal)
Awatramani, G., PhD (Suni, Buffalo)
Baldridge, W.H., PhD (McMaster) (joint appointment in Ophthalmology)
Brownstone, R., MD, PhD (Manitoba) (primary appointment in Neurosurgery)
Clarke, D., MD, PhD (McGill) (primary appointment in Neurosurgery)
Currie, R.W., PhD (Man)
Darvesh, S., MD, PhD (UNB) (primary appointment in Neurology)
Iulianella, A., PhD (Montreal)
Kablar, B., MD (Zagreb), PhD (Zagreb and Pisa)
Leslie, R.A., PhD (Cambridge)
Marsh, D.R., PhD (Alberta)
Mendez, L.M., MD, PhD (UWO) (primary appointment in Neurosurgery).
Neumann, P.E., MD (Brown)
Rafuse, V., PhD (Alberta)
Semba, K., PhD (Rutgers)
Smith, F.M., PhD (UBC)
Wassersug, R.W., PhD (Chicago)
Zhang, Y., PhD (Cornell). Development and function of locomotor neural networks

Department of Biochemistry and Molecular Biology
Byers, D.M., PhD (Alta)
Karten, B., PhD (Graz)

Department of Pharmacology
Denovan-Wright, E., PhD (Dal)
Downie, J., PhD (Man.)
Fawcett, J. (McGill)
Howlett, S.E., PhD (Memorial)
Hung, O., MD (Dal) (primary appointment in Anaesthesiology)
Kelly, M., PhD (Southampton)
Robertson, G.S., PhD (Dalhousie)
Robertson, H.A., PhD (Cantab)
Sawynok, J., PhD (Queen's)

Department of Physiology & Biophysics
Barnes, S., PhD (Berkely)
Chauhan, B.C., PhD (Wales) (primary appointment in Ophthalmology).
Croll, R.P., PhD (McGill)
Fine, A., VMD, PhD (Penn)
French, A.S., PhD (Essex)
Guernsey, D.L., PhD (Hawaii) (primary appointment in Pathology).
Krueger, S., PhD (Zurich)
Murphy, M.G., PhD (Dalhousie)
Pelzer, D., MD (Heidelberg)
Rasmussen, D.D., PhD (Dalhousie)
Torkkeli, P., PhD (Alberta)
Wilkinson, M., PhD (London) (joint appointment in Obstetrics/Gynaecology)

Department of Psychology
Adamo, S.A., PhD (McGill)
Barrett, S., PhD (McGill)
Brown, R.E., PhD (Dalhousie)
Crowper, N. (Alberta)
Duffy, K. R., PhD (McMaster)
Eskes, G.A., PhD (Berkeley) (primary appointment in Psychiatry).
Gadbois, S., PhD (Dalhousie)
Klein, R.M., PhD (Oregon)
McGrath, P.J., PhD (Queen's)
McMullen, P.A., PhD (Waterloo)
Meinertz-Hagen, L.A., PhD (St. Andrews)
Newman, A., PhD (Oregon)
Perrot-Sinal, T., PhD (UWO)
Phillips, D.P., PhD (Monash)
Phillmore, L., PhD (Queen's)
Rusak, B., PhD (Berkeley) (joint appointment in Psychiatry)
Schellinck, H., PhD (Dalhousie)
Stamp, J. (Cambridge)
Taylor-Helmick, T., PhD (Dal)
Westwood, D., PhD (Waterloo)

In addition to the above, over 30 members of clinical departments and divisions in the Faculty of Medicine (Anaesthesiology, Pathology, Ophthalmology, Geriatric Medicine, Neurology, Neurosurgery, Psychiatry, Physical Medicine and Rehabilitation, and Urology). Faculty of Computer Science, and the Department of Electrical and Computer Engineering are involved in neuroscience research.

The University offers a graduate program leading to the Master of Science and/or Doctor of Philosophy degree. This interdisciplinary program is coordinated with the departments of Anatomy and Neurobiology, Biochemistry and Molecular Biology, Pharmacology, Physiology and Biophysics, and Psychology with the degree being awarded in Anatomy/Neuroscience, Biochemistry/Neuroscience, etc. Approximately fifty faculty members in these five departments are involved in Neuroscience research and can serve as supervisors in this program. The student must be accepted first by the Departmental Graduate Program Committee and then by the Neuroscience Program Committee.

The program is designed to give the student a broad knowledge of the field of Neuroscience in addition to specialized training in one field of research. Normally, the student must take the Principles of Neuroscience (NESC6100) during his or her first year; this replaces some of the departmental class requirements. The student’s Supervisory Committee will be selected by the Departmental Graduate Program Committee and the Neuroscience Program Committee; the Supervisory Committee is primarily responsible for designing and approving the program that will best meet the student's needs.

I. Admission Requirements

Students apply to one of the five departments (see above) in which they will perform their research and then to the Neuroscience Program. Students are strongly encouraged to contact prospective Neuroscience faculty members prior to submitting a full application. Once an agreeable supervisor has been identified, full applications should be submitted. They must be accepted by both the department and the Neuroscience Program. The department with which they plan to affiliate, e.g. Neuroscience (Psychology) should be indicated in the proposed field of study section. Students who are already in the graduate program of one of the five departments may apply for a transfer. All students must have a 4-year honours bachelor's degree with an average of A- or better in two most recent years, or equivalent. Students with a Bsc or BA degree wishing to do a PhD are usually registered initially in the MSc program, but may be considered for transfer into the PhD program after successful completion of the MSc class requirements. Students with strong undergraduate training in Neuroscience may apply to have some of the class requirements waived.

208 Neuroscience
II. Class Descriptions

ANAT 5100.06: Human Neuroanatomy.
This class consists of two parts: lectures and labs in the Fall Term, and seminars in the Winter Term. Lectures and labs are designed to acquaint the student with the anatomy and organization of the human central nervous system. Lecture topics include: cellular morphology; gross and microscopic anatomy of the spinal cord, brain stem, diencephalon (thalamus and hypothalamus), and telencephalon (cerebral hemispheres); blood supply of the CNS, meninges, and cerebrospinal fluid. Laboratory exercises involve exposure to aspects of microscopic and ultrastructural morphology of the CNS, examination of selected cross sections of spinal cord, brain stem, and diencephalon and telencephalon, and dissection of the brain. Seminars in the Winter Term are organized to discuss selected topics in neuroanatomy. Readings selected by the instructor or by students form the basis for discussion. Some sessions are supplemented by lectures. Students take written and practical examinations (Fall Term), give presentations, and write a term paper on a topic agreed upon in consultation with the instructor (Winter Term).
INSTRUCTOR(S): K. Semba

CSCI 6508.03: Fundamentals of Computational Neuroscience.
This course introduces the principles of information processing in the brain, including the functionality of single neurons, networks of neurons, and large-scale neural architectures for specific cognitive functions. Specific topics include information theory, memory, object recognition, adaptive systems, vision, motor control, and an introduction to MATLAB.
PREREQUISITE: Permission of the instructor

NESC 5060.03: Neurobiology of Neurological Disorders.
Please see class description for ANAT 5060.03 in the Anatomy and Neurobiology section of this calendar.

NESC 5070.03: Chemical Neurobiology.
Please see class description for ANAT 5070.03 in the Anatomy and Neurobiology section of this calendar.
CROSS-LISTING: PHAC 5070.03, PHYL 5494.03

NESC 5603.03: Neuroparmacology of Pain.
CROSS-LISTING: PHAC 5603.03

NESC 5605.03: Role of the Brain’s Immune/Inflammatory System in Disease.
CROSS-LISTING: PHAC 5605.03

NESC 5619.03: The Autonomic Nervous System and its Pharmacology.
CROSS-LISTING: PHAC 5619.03

NESC 6071.03: Topics in Behavioural Neuroscience.
This seminar class covers contemporary, fundamental topics in physiological psychology, including methods, research and/or theory. Various topics such as brain mechanisms of reinforcement, hormones and behaviour, and biological rhythms, will be covered in different years.
INSTRUCTOR(S): &65279;R.E. Brown
FORMAT: Seminar
PREREQUISITE: &65279;PSYO or NESC graduate student
CROSS-LISTING: &65279;NESC 6071.03

NESC 6100X/Y.06: Principles of Neuroscience.
The first term will focus on cellular and molecular neurobiology and will cover topics such as membrane potentials, synaptic transmission, second messengers, trophic factors, cell differentiation and neurodegeneration. The second term will focus on systems and behavioural neurobiology and will cover topics such as visual and somatosensory systems, motor programme generation, autonomic and neuroendocrine functions, motivation, learning, circadian rhythmicity and sleep/wake cycles and cognitive neuroscience. Evaluation will be based on quizzes, several oral presentations prepared throughout the year, and grant proposals.
NOTE: Students taking this class must register in both X and Y in consecutive terms; credit will only be given if both are completed consecutively.

INSTRUCTOR(S): K. Semba, V. Rafuse, H. Schellinck

NESC 6101.03: Principles of Neuroscience: Cellular and Molecular Neuroscience.

NESC 6102.03: Principles of Neuroscience: Systems and Behavioral Neuroscience.
Neuroscience 6101.03 and 6102.03 are Neuroscience 6100X/Y.06 divided into terms A and B for suitable incorporation into non-Neuroscience programmes. Please see class description of NESC 6100X/Y.06.

PHAC 5405.03: Advanced Pharmacology.
This required class is a vehicle for graduate students to gain practical familiarity with research level concepts in receptor pharmacology. The main theme is analysis of receptor-mediated events, both in terms of the interaction of a drug at its binding site and in terms of the transduction of that initial signal. Both classical and modern molecular approaches will be discussed. We will also consider related drug discovery strategies. The class has two sessions/week, one a didactic session to introduce concepts and the second a workshop session for discussion of practical assignments.
COORDINATOR: G. S. Robertson
FORMAT: Lecture and Discussion
PREREQUISITE: Normally required PHAC 5406 (Grade of B- or higher)

PHYL 5519.03: Molecular Physiology of Ion Channels.
This class focuses on the molecular properties of ion channels, and includes an overview of the techniques used to study ion channel structure and function, ion permeation and selectivity, channel gating and modulation, the mechanisms by which channels are affected by drugs and toxins, and genetic diseases causing channel dysfunction.
DIRECTOR(S): P. Linsdell
FORMAT: Lectures/student presentations
PREREQUISITE: PHYL 3320.03 or 4327.03 or equivalent plus permission of the class director

PHYL 5521.03: Molecular Physiology.
Offered every second year, next offered in 2012/2013. This is a lecture/seminar class designed to give the student an in-depth exposure to contemporary concepts of the physiology of intracellular communications. Topics include transmembrane and intracellular receptors, molecular adaptor proteins, signal transduction pathways and signal cross-talk. The class consists of lectures, guided reading and student presentations of recent research papers in the field. Evaluation is based on participation and presentations (50%), and on a written paper in the format of a research grant application.
INSTRUCTOR(S): TBA
FORMAT: Lecture/seminar and guided reading
PREREQUISITE: BIOC 4301.03 or permission of the class director

PSYO 6051.03: Neural Basis of Perception.
This seminar class explores the correlations between 1) stimulus properties and neural responses produced by sensory stimulation and 2) the neural coding of environmental events and the behaviours that may be involved in the context of these events. These correlations will be studied within the auditory, visual and tactile modalities.
INSTRUCTOR(S): Staff

PSYO 6160.03: Comparative Psychology.
Different topics in comparative psychology (such as kin selection, parental behaviour, hormonal control of behaviour, olfaction and behaviour) are covered in seminar format.

PSYO 6313.03: Topics in Cognitive Psychology.
Varied topics in cognitive psychology (such as theories of attention, memory and amnesia, cognitive inhibition) are covered in a seminar format.
INSTRUCTOR(S): R. Klein, P. McMullen
Nursing

Location: Forrest Building, First Floor
9669 University Avenue
PO Box 15000
Halifax, NS B3H 4R2

Telephone: (902) 494-2535
Fax: (902) 494-3487
Website: http://nursing.dal.ca

Director
Sullivan, P., BScN (MSVU), MSc (Boston), PhD (Alberta), RN. Maternal-child, women’s and family health, families in conflict, international health and development

Associate Director Research and International Affairs
(Acting)
Tomblin Murphy, G., BN, MN (Dal), PhD (Toronto), RN. Health policy, health human resource planning, healthcare delivery (system, provider, health outcomes), evaluation, global health.

Associate Director Graduate Studies
Macdonald, M., BN, MScN (Shane), PhD (San Diego), RN. Difficult nurse-patient encounters, SARS, home health care, patient safety (Jan-Dec 2011; Jan-Dec 2013)
Martin Misener, R., DOCHN, BScN, MN (Dal), PhD (Calgary), RN, NP. Nurse Practitioners, primary health care, rural/northern health (Jan-Dec 2012)

Assistant Director Graduate Studies
Steenbeek, A., BScN, MScN, PhD (UBC), RN. Infectious diseases among Inuit and First Nations populations (July 2011-June 2012)

Associate Director Undergraduate Studies
Gilbert, C., BScN, MBA (S.III), MSN (Case Western Reserve), NP. Nurse practitioner; geriatrics; interprofessional collaborative clinical education; end-of-life care for dementia patients.

Assistant Director Undergraduate Admissions and Student Affairs
Houk, S., BSc (Sask), MN (Dal), RN. Professional practice, accountability, quality care, interprofessional learning, clinical evaluation.

Professors
Downe-Wamboldt, B.L., DipPH, BN, MEd (Dal), PhD (Texas-Austin), RN. Stress and coping, meaning of illness, psychosocial adjustments to chronic and life-threatening illnesses, content analysis, quantitative analysis
Sullivan, P., BScN (MSVU), MSc (Boston), PhD (Alberta), RN. Maternal-child, women’s and family health, families in conflict, international health and development
Tomblin Murphy, G., BN, MN (Dal), PhD (Toronto), RN. Health policy, health human resource planning, healthcare delivery (system, provider, health outcomes), evaluation, global health.

Associate Professors
Aston, M., BNSc, MEd (Queen’s), PhD (Toronto), RN. Community health nursing, family nursing, maternal, child and infant care, critical pedagogy, feminist research, poststructuralism
Hughes, J.M., BN (Dal), M5 (Boston), PhD (McGill), RN. Family violence: child abuse/maltreatment, mother-child interaction/parenting, empathy, mental health issues/policy, autonomy/resilience
Latimer, M., BA (MtA), BScN (Dal), MN (Dal), PhD (McGill), Post Doc (Laval) RN. Pediatric pain care, nurses’ workplace and patient outcomes, knowledge translation, organizational research

Macdonald, M., BN, MScN (Shane), PhD (San Diego), RN. Difficult nurse-patient encounters, SARS, home health care, patient safety
Martin Misener, R., DOCHN, BScN, MN (Dal), PhD (Calgary), RN, NP. Nurse Practitioners, primary health care, rural/northern health
Murphy, A., BSc (Pharm) (Dal), PharmD (UBC). Pharmacotherapeutics, optimal prescribing, nurse practitioners, interdisciplinary e-learning, knowledge utilization
Salbo, B., BA (Manitoba), MN, PhD (Dal), RN. Psychosocial oncology issues, specifically psychological distress (e.g., depression, anxiety, traumatic stress), coping and meaning of the cancer experience among patients, spousal caregivers and healthcare professionals, interpretive phenomenology, mixed methods, interpretive studies.
Steenbeek, A., BScN, MScN, PhD (UBC), RN. Infectious diseases among Inuit and First Nations populations
Tamlyn, D., BN (McGill), MEd (Ottawa), PhD (Dal), RN. Leadership policy initiatives, women and aging

Assistant Professors
Chircop, A., BScN, MN, PhD (Dal), RN. Health equity, social justice, environmental health, social and cultural determinants of health, community and family health, critical ethnography, institutional ethnography.
Edgecombe, N. BN (Lethbridge), MN (Alberta), PhD (Alberta), NP. Health issues of the Inuit population, culturally appropriate interventions
Gilbert, L. BScN, MBA (S.III), MSN (Case Western Reserve), NP. Nurse practitioner; geriatrics; interprofessional collaborative clinical education; end-of-life care for dementia patients.
Goldberg, L. BA (CBU), MA (Dal), PhD (Alberta), RN. Perinatal nursing, feminist phenomenology, queer women’s health, and nursing philosophy
McLeod, D. BN, MN (Dal), PhD (Calgary), RN. Psychosocial oncology, couple and family interventions, sexuality, spirituality and suffering, illness narratives, hermeneutic and interpretive methodologies
Murphy, N. (Dal), MScN (UBC). Mental health/psychiatric nursing, citizen participation in health policy
Snelgrove-Clarke, E. BN (Mem), MN (Dal), PhD (McGill), RN. Knowledge translation (research utilization), implementation strategies, maternal child nursing, quantitative research methods, clinical trials, focus group research, realist synthesis
Thibeault, C., BScN (MSVU), MN (MUN), PhD (McGill), RN. Nursing adults with severe mental illness, mental health outcomes, nurse-patient relationship in acute psychiatric settings, inpatient psychiatric milieu
White, E.M., BN (UNB), MN (Dal), RN. Childbearing families, breastfeeding, interprofessional education, distributed learning, health informatics.
Wight Moffatt, F., BN (MUN), MN (Boston C), PhD (Toronto), RN. Childbearing families, stressors and anxiety in pregnancy, psychology and physiology of women with high-risk pregnancies, fetal health assessment, perinatal loss/grief

Adjunct Professors
Bryanton, J., BN (New Brunswick), MN (Dalhousie), PhD (McGill)
Gillis, Angela, BScN, MAdEd (SFx), PhD (Texas)
Gregory, David, BScN (Ottawa), MN (Manitoba), PhD (Arizona)
Leipert, B., BA, BSN (Sask), MSN (British Columbia), PhD (Alberta)
Solberg, Shirley, BA (MUN), MN, PhD (Alberta)

Lecturers
Burrows, M., BN (BCTT), MN (UBC), NP. Primary health care and nurse practitioners, vaccinology and immunizations, women’s health
Herbert, K., BN (MUN), MN (Athabasca), NP. Nurse practitioner primary health care, clinical teaching and simulation.

I. Admission Requirements/Deadlines

A. Master of Nursing (MN)
All applicants must be licensed to practice as a registered nurse (active practitioner) in a province in Canada or in a foreign country. Applicants must have a 4-year Bachelor’s degree or its equivalent with a minimum “B” standing. Basic preparation including work experience within one of
the clinical foci of the program is required, as are introductory classes in research, statistics, community nursing, and family nursing.

The application deadline for the Master of Nursing is February 1.

B. Master of Nursing/Master of Health Administration (MN/MHA)

Applicants must apply to both the School of Nursing and the School of Health Administration and must satisfy the entrance requirements of both programs. Applicants must take the Graduate Management Admission Test (GMAT) and have the results forwarded to the Coordinator of the Graduate Program, Health Administration, prior to the application deadline.

C. PhD (Nursing)

All applicants must be licensed to practice as a registered nurse (active supervisor).

The application deadline for the PhD (Nursing) is February 1.

II. Degree Programs

A. Master of Nursing (MN)

Dalhousie University School of Nursing offers a Master of Nursing program that is framed within a philosophy of primary health care that recognizes the unique strengths and contributions of individuals, families, and communities. It is a 36-credit hour research and practice-based program which prepares students to lead in professional nursing and provides a solid foundation for doctoral studies. Students in the thesis stream are required to complete 8 courses (24 credit hours) and a thesis equivalent to (12 credit hours). Students in the Health Policy Practicum stream are required to complete 10 courses (30 credit hours) and a policy practicum equivalent to (6 credit hours). Nurse Practitioner students complete 10 courses (30 credit hours) and a final practicum (6 credit hours) for a total of 36 credit hours. A candidate for the degree Master of Nursing will require at least 24 months of full-time study to complete all degree requirements. However, in most cases completion of the degree will take more than the 24 months for thesis and health policy practicum students.

Students complete required courses in practice-related theory and research that are the foundation of all advanced practice nursing roles. Students select one of three program options: thesis, health policy practicum, or nurse practitioner (for available specialties, consult department):

a. The thesis option is intended for those students seeking to conduct independent and/or collaborative research.

b. The health policy practicum option is intended for those students seeking to increase knowledge and skills in health care policy development, implementation or evaluation.

c. The nurse practitioner option is intended for those students seeking preparation in advanced nursing practice.

Prospective applicants are encouraged to consult the School of Nursing to identify specific clinical offerings in any academic year. Elective class(es), from a variety of fields, may be chosen in consultation with the academic advisor.

Non-nursing electives may be taken at other universities (prior approval must be obtained from the School of Nursing). Graduate nursing classes (excepting specific nurse practitioner courses) are also offered by distance education modes to other centres. Consult department for details.

B. Master of Nursing with Master of Health Administration (MN/MHA)

The combined MN/MHA program enables students to select classes leading to the degrees of Master of Nursing and Master of Health Administration. The MN/MHA program is designed to enable students to:

• Advance knowledge in the area of nursing management;
• Analyze, implement, and evaluate theories and models relevant to nursing;
• Conduct independent and/or collaborative research;
• Work collaboratively with other health professions in planning, implementing, and evaluating health care; and
• Demonstrate leadership in nursing and society.

The method of delivery includes traditional classroom seminar/classes, professional clinical experiences, a residency in administration in a nursing area, and a thesis with an administration focus. The thesis committee will include faculty committee members from the Schools of Nursing and/or Health Administration. The integrity of both programs is maintained by the design of the MN/MHA program; however, the number of credits required is reduced by electing to take this joint program. A minimum three year commitment will normally be necessary to satisfy the requirements of this program.

C. PhD (Nursing)

The goal of the PhD (Nursing) program is to prepare nurse scholars who will provide leadership in the advancement of nursing knowledge, nursing theory and practice, and health policy through scholarly research and the dissemination of research findings.

The orientation of the doctoral program is on the short and long term impacts of nursing practices and health outcomes at the individual, family, community, and/or population levels, or women’s health outcomes specifically. The required classes and the doctoral seminar provide forums to analyse, discuss, and critique the concepts of health outcomes and health and social policies from the perspective of nursing practice. Health related policy is addressed through the thesis, doctoral seminars, and classes in the student’s substantive area.

The program is organized around the student’s research question which frames an intensive investigation of a particular question relevant to nursing. This starting point becomes the vehicle for the student to develop an advanced understanding of research methodologies and techniques and to gain knowledge which contributes to the theoretical development and practice of nursing.

Core classes, the doctoral seminar, and the thesis are all designed to prepare students who:

• Understand the philosophical and theoretical foundations of nursing science.
• Critically analyse their own and other’s perspectives in relation to research and nursing practice.
• Demonstrate the requisite cognitive skills to develop health outcomes generally, or women’s health outcomes specifically.
• Develop nursing practices that improve health outcomes generally, or women’s health outcomes specifically.
• Influence health and social policy to improve health and health care systems.

The program consists of:

1. A minimum of four core classes:
 • NURS 6050, Contemporary Views of Nursing Science: Philosophy, Research, and Practice
 • two classes in the student’s substantive area of study (one of which will be NURS 6200, Nursing Sensitive Health Outcomes, or NURS 6210, Women’s Health Outcomes)
 • an advanced research methods/design course

2. NURS 6300, Doctoral Seminar
3. Comprehensive Examination
4. NURS 9530, Thesis

The PhD Comprehensive Examination in the student’s area of study is normally taken in the second year, and not later than the beginning of the third year, of the program. Comprehensive examinations may be taken only after the completion of all required class work and they cannot be taken less than one year prior to the submission of the thesis for final defence. By the end of the student’s first year of study, the Thesis Supervisory Committee will be identified. It is to be comprised of the Thesis Supervisor and a minimum of two additional faculty having

Nursing 211
III. Immunization

Before undertaking clinical practical (NURS 54X5, NURS 54X6, NURS 5487, NURS 5620, NURS 5740), students must provide evidence of appropriate immunization and their immune status, as required by the clinical agency. This will include, but may not be restricted to: polio, diphtheria, tetanus, rubella, measles, mumps, and varicella. Evidence of tuberculin testing (Mantoux) is also required. Immunization against Hepatitis B is recommended.

IV. Class Descriptions

Note: Not all classes are offered every year. Please consult the current timetable for this year’s offerings.

A. Master of Nursing Courses Required in All Program Options

NURS 5050.03: Nursing Philosophy, Knowledge and Theory.

This class explores the major philosophical and methodological underpinnings of science and knowledge. This exploration will inform a critical analysis of how nursing knowledge has evolved and will illuminate how the experience of nurses, along with the production of knowledge, meanings and values, can best be understood. Learners will develop an understanding of the assumptions underlying different research paradigms and the knowledge they generate by exploring issues such as: What is science? How has science evolved? What is knowledge? What is truth? What are the various research/science paradigms? How is knowledge translated into action?

NURS 5060.03: Research and Evidence Based Practice in Nursing.

The course explores the processes of research and scholarly inquiry in nursing research utilization and knowledge to foster evidence-based practice. Students will explore the fundamental principles governing Quantitative and Qualitative research methods, identify clinical research questions, learn the essential components of literature searches and critiques, and develop a better comprehension of research utilization and evidence based practice in the clinical setting.

NURS 5200.03: Health Care System Policy Analysis.

Health policy can be defined as “a set of interrelated decisions, taken by authorities, concerning the selection of goals and the means of achieving them” (as defined in A Code of Good Practice on Policy Dialogue). This seminar course examines critical issues and trends affecting health policy in addition to the management practices of health care delivery services in Canada. Students engage in analytical debate while drawing on the assigned readings, other research, and their own clinical experience. Discussions incorporate historical and global perspectives as well as a range of influencing factors to understand, test, challenge, and contrast the effectiveness of current health policy in relation to the health care system in Canada.

B. Required in Thesis and Health Policy Practicum Options

Advanced Theory/Practice I Classes (NURS 54X5)

These classes are an integration of the theories, research, and practice related to selected health-related concepts and issues in assessment and understanding of patterns of health and illness relevant to advanced practice across the specific clinical speciality area. This class includes 2-3 class hours and 6 clinical practice hours per week. Not all clinical foci will be offered every year, subject to faculty resources and student demand. Check with the Department.

Each student completes one of the following:

NURS 5435.03: Adult Nursing: Theory/Practice I.

In this seminar class, students will be challenged to think about and reflect on beliefs and values that inform nursing knowledge with consideration of the comprehensive societal issues occurring in settings where the discipline of nursing is undertaken. While our focus is on the care of adults in the context of illness, the class will reflect a critical analysis of the existing theoretical and evidence-based perspectives influencing health and decision-making that span from the individual to the organization. In the student-professor negotiated clinical practicum component, students will examine how individuals/families/communities manage health related concerns throughout the health-illness continuum with the goal being improved quality of life. Students are challenged to think creatively and critically with regard to the design of their clinical experience.

NURS 5445.03: Community Nursing: Theory/Practice I.

This class is designed to analyse and integrate concepts, theories, research, and practice knowledge that is relevant to community assessment, understanding, planning, and advanced practice of community health nursing. The philosophy and principles of population health, primary health care, health promotion, and community development are foundational to the class and provide a broad framework for reflection and critical analysis of current issues and trends in community health nursing.

NURS 5455.03: Mental Health Nursing: Theory/Practice I.

This class assists students to enhance the development of advanced knowledge and competency regarding mental health and psychiatric nursing. Critical inquiry and clinical practice opportunities will be used to examine complex mental health phenomena, apply related theoretical concepts (with individuals, families, and/or groups), and strengthen students’ skill base.

NURS 5465.03: Maternal-Child Nursing: Theory/Practice I.

This class explores selected phenomena that are relevant to advanced nursing practice in child-bearers and women’s health settings, and does so within a context of primary health care, the changing nature of the Canadian health care system, and a perspective of client as individual, family, and/or community. Students will explore literature in perinatal/neonatal nursing and other disciplines to discover how the phenomena are manifested in human responses to health and illness, how the patterns of those responses have been and could be assessed, and identify implications for advanced nursing practice. As part of the class requirements, students will engage in clinical practice to focus on the assessment and understanding of patterns of development, health, and illness occurring within a child-bearing population of personal interest.

NURS 5475.03: Nursing Families of Ill Children: Theory/Practice I.

This class examines the theoretical and research basis on which the nurse acts in providing care for families with ill children. Physiological, psychosocial, cultural, and nursing concepts, theories, and research reports will be studied and applied to the understanding of the behaviour and needs of the child and family when faced with illness and/or health care. Students engage in clinical practice with children and families and apply relevant theories, paradigms, and concepts in the plan of care.

Advanced Theory/Practice II Classes (NURS 54X6)

These classes further integrate theories, research, and practice related to selected health-related concepts and issues in assessment and understanding of patterns of health and illness relevant to advanced practice across the specific clinical speciality area. The class includes 2-3 class hours and 6 clinical practice hours per week. Not all clinical foci will be offered every year. Subject to faculty resources and student demand. Each student completes one of the following. Check with the Department.

PREREQUISITE: NURS54X5
Each student completes one of the following:

NURS 5436.03: Adult Nursing: Theory/Practice II.
Building on NURS 5435, students will be challenged to think about and reflect on beliefs and values that inform nursing knowledge with a consideration of the comprehensive societal issues occurring in settings where the discipline of nursing is undertaken. Students will share new knowledge resulting from the synthesis and transfer of evidence across disciplines and health care sectors and will examine how society is currently dealing with health related concerns throughout the entire health-illness continuum. Contextual issues within the broad social, economic, and cultural environments of nursing practice will be addressed through an analysis of competencies needed to support health system changes that value innovation and create new collaborative partnerships not previously fostered within traditional health care settings. The clinical practicum component builds on the work conducted in NURS 5435. Students, as emerging nurse leaders, will engage in the implementation and evaluation of conceptual and/or theoretical frameworks being applied in their practice setting. Innovation and creative thinking will support the implementation process.

NURS 5446.03: Community Nursing: Theory/Practice II.
This class is designed to analyse and integrate concepts, theories, research, and practice knowledge that are relevant to the advanced practice of community health nursing. The philosophy and principles of public health, population health, primary health care, health promotion, and community development are foundational to the class and provide a broad framework for reflection and critical analysis of current issues and trends in community health nursing.

NURS 5456.03: Mental Health Nursing: Theory/Practice II.
This class assists students to enhance the development of advanced knowledge and competency regarding mental health and psychiatric nursing. Critical inquiry and clinical practice opportunities will be used to examine complex mental health phenomena, apply related theoretical concepts (with individuals, families, and/or groups), and strengthen students' skill base.

NURS 5466.03: Maternal-Child Nursing: Theory/Practice II.
This class builds on the knowledge, skills, and experiences of NURS 5465. Through critical inquiry and active communication and decision making, students will use scientific and empirical evidence to implement an advanced nursing practice role in a clinical childbearing setting within a primary health care context.

NURS 5476.03: Nursing Families with Ill Children: Theory/Practice II.
This class provides an opportunity for students to increase understanding of the child and family in high-risk and/or chronic health situations, to increase nursing proficiency through the development of theoretically- and empirically-based approaches to nursing care, and to provide leadership in working with staff and families to develop approaches to the problems encountered. The class requires students to implement advanced nursing approaches to biopsychosocial phenomena on individual and aggregate bases.

C. Required in Nurse Practitioner Option

NURS 5485.03: Principles and Theories for Nurse Practitioner Practice.
This master's level course will introduce all nurse practitioner students to a general healthcare focus of populations across the lifespan and in multiple clinical settings. This course will consist of theories, terminology, point-of-care technology, assessment, diagnosis and treatment directed towards a population of all ages. Theories of family, change and adult learning will be presented to guide the nurse practitioner student in the development of a holistic plan of care for health promotion and disease prevention, health maintenance, health assessment, and acute and chronic disease management.

NURS 5486.03: Principles and Theories for Health and Disease Management in Adult Nurse Practitioner Practices.
This course will expand on the nurse practitioner student's knowledge, skills, and competency in health promotion, health maintenance, health assessment and management of disease in adults. The focus is the adult population (18+) who seeks healthcare services in multiple clinical settings. A strong emphasis will be placed on health issues and common illnesses of adults with higher acuity levels and comorbidities, recognizing the acute and chronic nature of disease and targeting optimal health outcomes.

NURS 5487.03: Principles and Theories for Health and Disease Management in Family All Ages Nurse Practitioner Practice.
This course is designed for nurse practitioner students who have chosen the Family All Ages focus for their future practice. Students will utilize a family-focused approach in assessing clinical and research literature as a means of developing competence in health promotion, health maintenance, and cultural sensitivity in caring for clients in the community setting.

NURS 5610.03: Advanced Practice Role Development.
The focus of this course is the role of advanced practice nurses in health care. Emphasis will be on the examination and critique of the role components of the clinical nurse specialist, nurse practitioner and combined roles. These components include: direct care, consultation, coaching, research, collaboration, leadership/administration and ethical decision-making. Issues surrounding the implementation of these roles within various health care contexts and clinical specialties will be discussed.

NURS 5620.06: Advanced Practice Role Practicum.
This class provides the student with the opportunity to integrate, synthesize, and analyze previously developed knowledge and skills in an intensive clinical practice experience directly related to the student's chosen client population in an advanced nursing practice role. Practice settings will offer experiences with clients experiencing acute and chronic illness states with multiple and complex care needs. These will be used to consolidate skill development related to the comprehensive management of clients' needs across the continuum of health. These include advanced skills related to health assessment, diagnostic testing and treatment planning with emphasis on systems thinking, developmental issues, and collaboration with clients, families, and other health care professionals. The student will work closely with a clinical preceptor negotiated by the student and professor. While implementing the advanced practice role, students will consider the organizational, political, and health care policy-related issues that relate to advanced nursing practice and change in health care delivery that affect role development and implementation. Students in the Nurse Practitioner option will complete a minimum of 700 precepted clinical hours; these hours are distributed between NURS 5620, NURS 5740, NURS 5485, NURS 5486, and NURS 5487. PREREQUISITE: NURS 5486.03, or NURS 5487; NURS 5732.03; NURS 5734.03; NURS 5735.03; NURS 5740.03; NURS 5610.03 is a pre or corequisite.

NURS 5732.03: Pathophysiology for Advanced Nursing Practice.
This class uses an evidence-based conceptual approach to critically and comprehensively examine pathophysiologic phenomena relevant to advanced nursing practice. The phenomena examined are commonly encountered in acute and long-term illnesses, are alterations in function involving multiple body systems, are seen across the boundaries of age, disease entities, and clinical states, and are those for which nurses have a major role in assessing, monitoring, managing, and evaluating. Seminars are framed to systematically and critically examine the impact of these
pathophysiologic phenomena on cell function, host defense responses, maintenance of vital functions, and neuro-endocrine-immune responses in individuals and groups across the lifespan.

NURS 5735.03: Pharmacotherapeutics for Nurse Practitioners.

The course focuses on clinical applications of drug therapies relevant to nurse practitioner practice. Students will be given the opportunity to gain knowledge in order to integrate pharmacokinetic and pharmacodynamic concepts for a chosen client population in their clinical setting and practicums. Students will gain therapeutic knowledge that includes the mechanism of actions, usual dosages, absorption, distribution, metabolism, elimination, and therapeutic use of medications. Principles of management for side effects and drug interactions of medications frequently encountered by nurse practitioners will be reviewed and applied. Additionally, students will be provided with the opportunity to identify and utilize timely and appropriate drug information resources that are applicable to their daily practice. Legal and ethical responsibilities related to pharmacotherapeutic interventions are addressed.

NURS 5740.03: Advanced Health Assessment.

This class prepares students to perform advanced health assessments of young, middle-aged, and elderly adults who are healthy, as well as those who are experiencing illness. It will focus on the knowledge, skills, and procedures required for advanced health assessment. Students will develop competence in completing focused and comprehensive health assessments including history taking, physical examination, synthesis, critical analysis, diagnostic reasoning, clinical judgment, and interpretation of health data. Students will further develop their understanding of the pathophysiologic basis of clinical findings and will integrate an increasing knowledge of pathophysiologic and pharmacological principles as a basis for formulating a plan of care. Elements of an advanced health assessment include physical and mental health, psychosocial, family, cultural, and community factors, the determinants of health, and risk appraisal as they relate to a client’s health status. Clinical, theoretical, and scientific knowledge will be synthesized in the identification and management of existing and potential states of health and illness. Approaches to effective written and verbal communication of advanced health assessments to lay and health professional colleagues will be addressed. It is expected that students will be competent in basic health assessment techniques prior to beginning the course. All students will develop an Individual Learning Plan (ILP) to guide their learning experience.

FORMAT: Seminar with lab and practicum components

D. Required in Health Policy Practicum Option

NURS 8000X/Y.00: Health Policy Practicum.

This practicum provides students with an opportunity to build knowledge and skills regarding health policy development, its application and/or evaluation. The practicum will focus on one particular policy relevant to the student's discipline/field of practice and will be tailored to individual student needs. The focus of the practicum can be generated from student's discipline/field of practice and will be tailored to individual needs. Elements of an advanced health assessment include physical and mental health, psychosocial, family, cultural, and community factors, the determinants of health, and risk appraisal as they relate to a client’s health status. Clinical, theoretical, and scientific knowledge will be synthesized in the identification and management of existing and potential states of health and illness. Approaches to effective written and verbal communication of advanced health assessments to lay and health professional colleagues will be addressed. It is expected that students will be competent in basic health assessment techniques prior to beginning the course. All students will develop an Individual Learning Plan (ILP) to guide their learning experience.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

Focused Electives for Health Policy Practicum Option

NURS 5893.03: Health Program Planning and Evaluation.

The focus of this course is on the theoretical and practical knowledge and abilities required for the cycle of health program planning and evaluation (HPPE) in contemporary health care. Students will build their own theoretical knowledge related to program planning approaches, evaluation models, theories and methods of data collection. Knowledge translation will be discussed, analyzed and critiqued including the contextual influences in program planning and evaluation such as ethics, politics, evaluator roles and stakeholder involvement. Prior knowledge of research methods will be beneficial.

NURS 6000.03: Nursing Administration and Leadership.

This class focuses upon the changing role and expectations for health care managers and leaders within the Canadian health care system. Class topics such as organizational theories, the philosophy of primary health care, management theory and research based practice, and management challenges are covered through a variety of course activities including extensive readings, case studies, student presentations, field assignments, and papers.

CROSS-LISTING: HESA 6000.03

Consult department regarding other possible course selections.

E. Required in Thesis Option

NURS 9000X/Y.00: Masters Thesis.

Focused Electives for Thesis Option

NURS 5000.03: Intermediate Statistics.

This class provides graduate studies with a working knowledge of statistical issues and methods commonly used by researchers in the Health Professions. The statistical software package SAS is introduced and used by students throughout the course. Topics covered include a review of probability and one or two sample interferences for means and proportions. This is followed by some common experimental designs, contingency tables and odds ratios. Final topics are correlation and linear regression (simple and multiple), analysis of variance, analysis of covariance, and logistic regression. A term data analysis project is required in which students make use of both statistical methods learned in class and the SAS software package.

PREREQUISITE: MATH 1060.03

CROSS-LISTING: HESA 6500.03, HEED 5503.03, LEIS 5503.03, PHAR 5980.03, PHSE 5503.03, KINE 5503.03, STAT 5990.03

NURS 5100.03: Qualitative Research Methods.

In this qualitative research class, we will differentiate between method and methodology. The latter addresses all assumptions which guide research as a political process. Method refers to the ways in which data are collected, or the techniques for designing methods of analysis. Various methodologies will be examined in detail in order to acquire an understanding of the differences in assumptions between traditional qualitative research and critical, action oriented, participatory, and feminist qualitative research.

NURS 5120.03: Quantitative Research Methods.

There is a basic structure and process to the development of a design for scientific inquiry. This class focuses on research methods in general and quantitative research methods in particular. These research methodologies are used in nursing science as they relate to the development and/or testing of theoretical formulations, design, critique, and writing of research proposals.

NURS 9000X/Y.00: Masters Thesis.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

F. Other Electives

NURS 5000.03: Intermediate Statistics

NURS 5100.03: Qualitative Research Methods

NURS 5120.03: Quantitative Research Methods

NURS 5330.03: Theoretical Concepts & Competencies Related to the Helping Relationship in Advanced Nursing Practice

NURS 5610.03: Advanced Practice Role Development

NURS 5732.03: Pathophysiology for Advanced Nursing Practice

NURS 5734.03: Principles of Pharmacotherapy for Nurse Practitioners

NURS 5735.03: Pharmacotherapeutics for Nurse Practitioners

NURS 5800X/Y.06/5810.03/5820.03: Reading Class

NURS 5830.03: Death and Dying/Palliative Care

NURS 5840.03: Human Resources in Health Care (cross-listed with HESA 6340.03)
Nursing, health service delivery, and policy decision-making with an emphasis on maintaining the links between the research problem, theory, and research methods. Consideration is given to both quantitative and qualitative research approaches, designs, and data collection and analysis. Knowledge translation as a core component of research design will be discussed. Strategies for critically analyzing research studies and for utilizing findings are examined.

NOTE: Students taking this class must register in both X and Y in consecutive terms; credit will only be given if both are completed consecutively.

NURS 6800.03: Directed Doctoral Study.
This class offers doctoral students the opportunity to undertake further study in a specific topic of interest that is not covered by regular class offerings. The student will be supervised by a faculty member who is competent in the area of interest. Regular meetings between the student and the supervising faculty member will be held. The method of evaluation will be contracted by the student and supervising faculty member.

FORMAT: Independent study

NURS 6820.03: Doctoral Reading Course.
This class offers doctoral students the opportunity to undertake further study in a specific topic of interest that is not covered by regular class offerings. The student will be supervised by a faculty member who is competent in the area of interest. Regular meetings between the student and the supervising faculty member will be held. The method of evaluation will be contracted by the student and supervising faculty member.

FORMAT: Independent study

NURS 9530.00: Doctoral Thesis.

PHDP 8000.00: Doctoral Comprehensive Requirement.
Following completion of class work, students will register in the Doctoral Comprehensive Requirement while they prepare for, and until they have passed, the Comprehensive Examination.
Occupational Therapy

Location: (Atlantic) School of Occupational Therapy
Forrest Building, Dalhousie University
Room 215, 5869 University Avenue
P.O. Box 15000
Halifax, NS B3H 4R2

Telephone: (902) 494-8804
Fax: (902) 494-1229
Email: occupational.therapy@dal.ca
Website: http://www.occupationaltherapy.dal.ca

Director
Packer, T., BSc (OT) (Western), MSc, PhD (Queen’s)

MSc (Occupational Therapy) Graduate Coordinator
Merritt, B., BS (Psychology), MS(OT), PhD (Colorado State)

MSc (Occupational Therapy - Post-Professional) Graduate Coordinator
Stadnyk, R., BA (Alberta), BSc (OT) (Queen’s), PhD (Toronto)

Professors Emeriti
O’Shea, B., DipP & OT (Toronto), BSc (Queens), MS (Colorado State), LL.D. (Dal), honorary PhD. Occupation as a determinant of health; curriculum design for professional studies; cross-cultural transfer of knowledge
Townsend, E., DipP & OT, BSc (OT) (Toronto) MAdEd (St. FX), PhD (Dal). Educational and social foundations of occupation and occupational therapy: social organization of knowledge and systems; power and empowerment, client-centred practice, enablement

Professor
Packer, T., BSc (OT) (Western), MSc, PhD (Queen’s) Self Management of disability and chronic disease

Associate Professors
Beagan, B., BA, MA (Soc) (Dal), PhD (Soc) (UBC). Sociology of health and illness, health profession education, social inequality, research methodology
Carswell, A., Dipl. (OT) (McGill), BSc (OT), MSc (McGill), PhD (Toronto). Occupational therapy outcome measures; dementia care; aging research; mindfulness and depression in older adults
Doble, S., BSc (OT) (Western), MS (Boston), PhD (Dal). Measurement related to occupational function; care giving of seniors; occupational analysis of seniors
Warner, G., Ph.D. (Epidemiology) (Case West Reserve University). Measurement and Evaluation, Health Services Research, Knowledge Transfer and Exchange, Health System Change to improve participatory outcomes

Assistant Professors
Brown, J., BSc (OT) (Toronto), MSc (OT-Post-Professional) (Dal). Primary Health Care, occupational therapy in mental health, recovery-oriented services and psychiatric rehabilitation, chronic disease management
Grass, C., BSc (OT) (Western), MSc (Queen’s), PhD (Queen’s). Mental health care for criminal offenders with mental illness, policy implementation in dual prison-hospitals, understanding crime as occupation
Lauckner, H., BSc (OT), MSc (Queen’s), PhD (Queen’s). Community development and occupational therapy; community-base rehabilitation; qualitative research; fieldwork education
MacKenzie, D., BSc Physical Education (Saskatchewan), BSc (OT) (Alberta), MA(Ed) (MSVU). Neurological rehabilitation; spasticity management; interprofessional education, observation skills
Merritt, B., BS (Psychology), MS (OT), PhD (Colorado State). Occupation-based assessment, occupational therapy theory, educational leadership, efficacy of occupation-based practice
Saunders, J., BSc (OT) Dal, MBA (St Mary’s). Private practice, professional leadership, continuing professional development
Stadnyk, R., BA (Alberta), BSc OT (Queens), MSc (Queens), PhD (Toronto). Community practice; everyday lives of frail elderly persons and policies and services to support them
Versnel, J., BSc (OT) (Toronto), MSc (OT) (Western). PhD (Queen’s). Occupational transitions in children, adolescents and families, cognition and learning, and chronic disease self management
Waldron, I., BA (McGill), MA (U of London), PhD (Toronto). Social determinants of health; race, gender and health; race and psychiatry; sociology of mental illness

Lecturer
Landry, K., BSc(OT) (Dal), MSc(Rehabilitation Research - Physiotherapy) (Dal)

School Fieldwork Education Coordinator
Saunders, J., BSc (OT) (Dal), MBA (St Mary’s)

International Fieldwork Education Coordinator
Lauckner, H., BSc (OT), MSc (Queen’s), PhD (Queen’s)

Provincial Fieldwork Education Coordinators
New Brunswick: Roussel, M., DipHS (S-L Maillet), BSc, MA (Montreal)
Newfoundland: Head, B., BSc (OT) (Alberta), MSc (OT-Post - Professional) (Dal)
Nova Scotia: Saunders, J., BSc (OT) (Dal), MBA (St Mary’s)
Prince Edward Island: Cutcliffe, H., Dip(OT) (Man)

Cross Appointments
Gahagan, J., BA (Hons) (Carleton), MA (Windsor), PhD (Wayne State)
Hutchinson, S., BA (U Vic), MA (Dal), PhD (Georgia)
Manuel, P., BA (Carleton), MSc (McGill), PhD (Dal)
Unruh, A., BSc (OT) (Western), MSW (Carleton), PhD (Dal)

Adjunct Professors (Academic)
Basiletti, M., MSc (OT-Post-Professional) (Dal)
Craik, J., BSc (OT) (Queen’s), MSc (Toronto)
Edem, D., BSc (OT) MHS(A) (Dal)
Egan, M., BSc (OT) (Western), MSc (OT) (Alberta), PhD (McGill)
Kirsch, B., BSc (OT), M.Ed., PhD (Toronto)
Laliberte Rudman, D., BSc (OT) (Toronto), MSc (OT) (Western), PhD (Dal)
Mitcham, M., DipOT (Northampton), BSc(OT), MHE, PhD (Georgia)
Palmadottir, G., DipOT (Aarhus, Denmark), MSc(OT) (Colorado)
Pranger, T., BSc (OT), MEd , PhD (Toronto)
Taylor, S., MA (Saint Mary’s), PhD Cand (Univ of South Australia)
Wicks, A., BAS (OT) (Curtin), MHS (OT) (South Australia), PhD (Charles Sturt)

External Scholars
Please see Professional Adjunct Faculty section on the School website for list of names.

I. Introduction
The Atlantic School of Occupational Therapy was established in 1982 as the only occupational therapy education program in Atlantic Canada. The School exists in response to strong regional advocacy, particularly since 1958 when a School was approved in principle by the University Senate. The regional orientation of the School fosters collaborative teaching, research and professional activities linking those at the university with occupational therapy and other service providers, government workers, and citizens in the four Atlantic Provinces. This regional mandate is combined with an international perspective linking Dalhousie with universities and communities for fieldwork and research.
Occupational therapy is a health profession concerned with promoting participation in meaningful and desired daily life occupations (e.g., caring for the self or home, engaging in leisure pursuits, working, studying). Occupational therapists work to promote justice and equity so that all persons have the opportunity and ability to engage in meaningful daily occupations.

Occupation is viewed broadly to include everything we do to “occupy” ourselves in enjoying life, looking after ourselves and others, and contributing to the social and economic productivity of our communities.

Health is viewed broadly as having the ability, opportunity and resources, for quality of life with meaningful occupations in supportive environments.

Occupational therapists use their unique and diverse knowledge and skills to enable individuals, groups, and organizations to overcome obstacles that limit their ability to do the things they need and want to do. Obstacles addressed by occupational therapists may include illness, injury, physical or mental disability, developmental delay, social disadvantage, old age, and environmental barriers within the home, community and workplace.

The focus can be either on enabling individual change, or enabling change in physical and social environments, policies or legislation to enhance occupational performance and engagement in society. Strategies may facilitate change in skills, attitudes, routines, design of buildings, use of assistive technology, policies, etc.

The role of an occupational therapist is varied and challenging. Occupational issues are never the same because no two people or environments are ever exactly the same. The challenge for occupational therapists is to plan and implement the “just right” program or strategy for each and every client so that everyone can achieve just opportunities to participate in society.

II. Degrees Offered

A. Master of Science (Occupational Therapy): Master’s program to enter the profession

B. Master of Science (Occupational Therapy–Post-Professional): Master’s program for qualified occupational therapists

C. Doctor of Philosophy (PhD)

Faculty in the School of Occupational Therapy welcome applications for PhD studies focused on occupational therapy or occupational science. Interested persons are encouraged to contact individual faculty. Applications will be submitted either to the Faculty of Graduate Studies Interdisciplinary PhD program or the Faculty of Engineering Biomedical Engineering PhD program. Prospective students may be eligible for funding through scholarship programs at NSERC, SSHRC, CIHR, or from the Nova Scotia Health Research Foundation (NSHRF). Within Dalhousie funding possibilities include Killam scholarships.

III. Program Requirements

A. Master of Science (Occupational Therapy) - MSc (OT) to enter the profession

1. Introduction

The MSc(OT) program was implemented in 2006 and replaced the BSc(OT) program of study. The MSc(OT) program is a full-time, on-site program of study that is designed to prepare students to enter into the profession of occupational therapy. The program is fully accredited by the Canadian Association of Occupational Therapists (CAOT) and World Federation of Occupational Therapists. The program is twenty-two months in total, beginning in September and concluding in June. Following the completion of their program, students are eligible to write the CAOT national examination in July or November, which in turn provides eligibility for licensure by provincial, territorial, and international regulatory bodies. Graduates have a wide range of employment options in Canada and abroad.

1. MSc (OT) Program: 13 credits, 78 credit hours full-time study
 a) Academic component: 9 credits, 58 credit hours over 22 consecutive months (6 semesters).
 b) Interprofessional health education component: Within the 22 month program, students will engage in a constellation of required interprofessional collaborative learning experiences. Students are required to maintain continuous registration in the Interprofessional Health Education course (IPHE 9900) for the duration of the program.
 c) Fieldwork component: 3.3 credits, 20 credit hours for a total of 1027.5 hours. Students may be assigned to fieldwork sites in any of the four Atlantic provinces. Normally, a student will complete no more than one fieldwork class in the Halifax/ Dartmouth area. Applicants who anticipate difficulty meeting fieldwork requirements are strongly encouraged to contact the School Fieldwork Education Coordinator to explore options early in their first academic term. National and International fieldwork options are available.

2. Single classes: with Entry Level Graduate Program Coordinator and Instructor permission, see Regulation 4.3.7.

2. Admission Requirements MSc (OT)

• Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies
• Admission to the MSc (OT) program requires the completion of a four-year Bachelor’s degree in any field of study at a recognized academic institution, with a minimum B average (73-76%), calculated on the last 20 half credits of the degree.
• Two prerequisite courses are required:
 • Six (6) credit hours in human physiology. The 6 credit hour human physiology prerequisite course should contain study of the following system content: cell, endocrine, neural, muscle, cardiovascular, respiratory, renal, and gastrointestinal.
 • Three (3) credit hours in human/vertebrate anatomy. The 3 credit hour human anatomy prerequisite course should enable the student to explain and describe, at a basic level, the gross anatomy and histology of the human body. Content topics of the course should include study of the following: development, cells, tissues, skeletal, muscular, integument, nervous, cardiovascular, digestive, respiratory, renal and reproductive systems.
• Reference Letters - 2 academic confidential letters
• Admission into the program will normally be 60 students. Admission is on a competitive basis with preference given to residents of the Atlantic Provinces. The provincial quota system currently allocates 35 seats as follows: nine positions to New Brunswick, eight positions to Newfoundland and Labrador, 16 positions to Nova Scotia, and two positions to Prince Edward Island. Remaining seats are non-designated. Selection is based on completion of prerequisites, academic achievement, and affirmative action.
• Single Classes: with Entry Level Program Coordinator and Instructor permission (see Regulation 4.3.7). The admission category is Special Student-Graduate Studies (SSGS).

3. Application

All applicants must complete

• The Faculty of Graduate Studies Application for Admission Forms which are available at: http://www.dalgrad.dal.ca/admissions/ and,
• The School of Occupational Therapy’s Supplementary Occupational Therapy Application form, available at: http://occupationaltherapy.dal.ca/Files/MSOT_Supplementary_Application_Form.pdf

Affirmative Action: The School of Occupational Therapy is committed to the professional advancement of qualified occupational therapists who are persons with disabilities and/or who are members of the African Canadian or Aboriginal communities of the Atlantic region. Fully qualified applicants from these groups will be given preference in admissions. If you belong to one of these groups and wish to take advantage of this policy, you may voluntarily provide this information
about yourself. Please note that students who request accommodations for a disability of any type are required to be registered with the Dalhousie Office of Student Accessibility and Accommodation.

Application Deadline MSc (OT) Program:
- January 31 is the deadline for submission of the Faculty of Graduate Studies Application for Admission Forms and the Supplementary Occupational Therapy Application Form to the School of Occupational Therapy. All final transcripts for courses that are still in progress must be received by June 1 of the admission year in order for the application to be considered by the Admissions Committee.

Special Student - Graduate Studies Deadlines
- Fall Term: August 1
- Winter Term: November 15
- Spring/Summer Term: April 1

4. Program Information

i. Immunization & CPR Requirements
Fieldwork education, the practice component of the educational program, takes place in a variety of occupational therapy practice sites where students may be exposed to or be carriers of communicable diseases which are vaccine preventable. Students must meet the immunization and other requirements established by the Faculty of Health Professions. Please refer to the following section on the FHP website: http://healthprofessions.dal.ca/files/OccupationalHealthAndInfect.pdf before beginning their fieldwork component.

The School requires that students complete CPR (level C) training prior to their first fieldwork experience.

ii. Transfer Credits
Normally, transfer credits are not granted for OCCU classes. Transfer credit inquiries should be directed to the MSc (OT) Graduate Coordinator and course instructor; transfer credits are subject to approval of the course instructor. Students inquiring about transfer credits must provide a photocopy of the calendar description of the completed course, as well as a copy of the course syllabi.

iii. Academic Dismissal
The School of Occupational Therapy will assume that a student has withdrawn from the program, and will accept another student in the seat, if the first student fails to attend orientation and the first week of classes without prior permission. In addition, a student who absents her/himself from the School of Occupational Therapy without prior permission for an extended period (four weeks or greater) will be presumed to have withdrawn and will be required to re-apply for admission to the MSc (OT) program. See also Regulation 4.2.4

iv. Fieldwork Costs
Students enrolled in entry-to-practice graduate programs of study in the Faculty of Health Professions are advised that they may have to do some or all of their required clinical education/fieldwork at sites outside Halifax, and hence may have to incur additional personal expenses for travel and temporary accommodation.

In some situations, sites may require a payment to the site for support of clinical education/fieldwork supervision, and some sites may require separate disability insurance in lieu of eligibility for Worker Compensation coverage. Such costs are the responsibility of the student.

The School of Occupational Therapy is committed to rural health practice. Students may receive some travel and accommodation support through the School’s Rural and Remote Fieldwork program.

v. Awards, Scholarships, Bursaries
Refer to occupationaltherapy.dal.ca for information regarding awards, scholarships, and bursaries for the entry-level MSc(OT) program.

vi. Special Student - Graduate Studies (SSGS)
(No-Degree, For Class Specific Admission)
Individuals interested in graduate classes offered by the School of Occupational Therapy are welcome to apply for admission to single classes. Applicants will be considered under the category of Special Student - Graduate Studies (SSGS) and must meet Faculty of Graduate Studies admission criteria and have approval from both the Faculty of Graduate Studies and the School of Occupational Therapy. Please see the Faculty of Graduate Studies Calendar, Regulation 4.3.7 for information on applying for Special Student - Graduate Studies status.

Occupational therapists who complete classes under SSGS status and who wish to apply to the MSc(OT - Post-Professional) Program may receive credit for up to two SSGS classes (six credit hours total). Classes completed under SSGS status are also eligible to be considered for continuing professional development or refresher education.

vii. Policy Statement on Interprofessional Health Education
Students in the Faculties of Dentistry, Health Professions and Medicine are required to participate in interprofessional health education activities. These activities, together with specific program requirements, are currently evolving and in transition and are integrated into the curricula of individual programs. Participation is mandatory. The objectives of interprofessional education in the Faculty of Health Professions include developing:
- knowledge and understanding of, and respect for, the expertise, roles and values of other health and human service professionals.
- understanding the concept and practice of patient/client/family-centred care.
- effective communication, teamwork and leadership skills applied in interprofessional contexts.
- positive attitudes related to the value of collaboration and teamwork in health and human service contexts.
- an understanding, from a multi-disciplinary perspective, of the Canadian health and social systems, the legal and regulatory foundation of professional practice, how health and human service institutions are organized and operate, and how different health and human service professions contribute to the systems and institutions.

viii. Required Program of Study for MSc(OT) students
Students admitted to the MSc(OT) program will enroll in the full time program of study documented in the Table below. Progression to each semester of the program is contingent upon completion of all program classes in the previous semester. While each student will maintain continuous enrollment in IPHE 5900 for the duration of the MSc (OT) program, the grade (pass/fail) for this course will not be submitted until the final term of the student’s program. Students must successfully complete all program courses to meet the requirements for graduation. (Note: Student pays program fee for two academic years).

<table>
<thead>
<tr>
<th>Year</th>
<th>1- credit hours</th>
<th>7.5 credits</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>September-August</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Term: Sept - Dec (On-Site)</td>
<td>3.0 credits, 18 credit hours</td>
<td>IPHE 5900.00 Interprofessional Health Education Portfolio (0 cr hr)</td>
<td>OCCU 5000.03 Theories of Occupation, Enabling and Justice (3 cr hr)</td>
</tr>
<tr>
<td></td>
<td>Jan - mid-Apr (On-Site)</td>
<td>2.5 credits, 15 credit hours</td>
<td>OCCU 5001.03 Enabling Occupation 1 (3 cr hr)</td>
</tr>
<tr>
<td></td>
<td>Mid-May to Sept (On-Site)</td>
<td>2.5 credits, 15 credit hours</td>
<td>OCCU 5003.03 Dimensions of Professional Practice (3 cr hr)</td>
</tr>
<tr>
<td></td>
<td>Jan - mid-Apr (On-Site)</td>
<td>2.5 credits, 15 credit hours</td>
<td>ANAT 5217.06 Functional Human Anatomy (6 cr hr)</td>
</tr>
<tr>
<td></td>
<td>Spring/Summer Term: April</td>
<td>2.5 credits, 15 credit hours</td>
<td>IPHE 5900.00 Interprofessional Health Education Portfolio (0 cr hr)</td>
</tr>
<tr>
<td></td>
<td>Spring/Summer Term: May</td>
<td>2.5 credits, 15 credit hours</td>
<td>OCCU 5005.04 Enabling Occupation 2 (4 cr hr)</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>2.5 credits, 15 credit hours</td>
<td>OCCU 5111.01X Fieldwork I: 90 hours total (1 cr hr)</td>
</tr>
</tbody>
</table>
1. Introduction
The School of Occupational Therapy opened a post-professional Master of Science program in occupational therapy in 1998. Admitting qualified occupational therapists from national and international locales, this is an innovative, part-time or full time on-line distance education program. Students require regular and consistent access to the internet to participate successfully in this online distance education program.

1. Full MSc (OT–Post-Professional) Program: 5 credits, 30 credit hours full- or part-time study on line

Please refer to Dalhousie online calendar for class descriptions.

B. Master of Science (Occupational Therapy–Post-Professional)

1. Introduction
The School of Occupational Therapy opened a post-professional Master of Science program in occupational therapy in 1998. Admitting qualified occupational therapists from national and international locales, this is an innovative, part-time or full time on-line distance education, five-credit Master’s program with course work (non-thesis) or thesis options. Students require regular and consistent access to the internet to participate successfully in this online distance education program.

1. Full MSc (OT–Post-Professional) Program: 5 credits, 30 credit hours full- or part-time study on line

Admission Requirements MSc (OT–Post-Professional)
Admission to the degree program is open to occupational therapists who have completed their occupational therapy education at a World Federation of Occupational Therapists (WFOT) approved educational program. Priority will be given to those who hold an entry level baccalaureate or master’s degree in occupational therapy. Occupational therapists with a diploma who present strong evidence of experience or advanced study in theory and research will also be considered. Applicants must satisfy the general requirements for admission to the Faculty of Graduate Studies.

Priority will be given to occupational therapists who demonstrate the most favorable combination of academic excellence, leadership experience, referee recommendation, and knowledge of current trends in occupational therapy. Practice Leaders or Research Thesis Streams are available.

Application
All applicants must complete:
- Faculty of Graduate Studies Application Forms which are available at http://www.dalgrad.dal.ca/admissions;
- If applicable, proof of English language competency;
- Letter of Intent;
- Curriculum Vitae;
- Two letters of Academic Reference;
- Two copies of official transcripts of all university classes;
- If applicable, request for specified classes of interest.

Application Deadlines
1. MSc (OT– Post-Professional) Admissions for Canadian and Non-Canadian Applicants
 Deadline: Feb 28th for May and September admission
 Students admitted to the program may choose to initiate their studies in the Spring/Summer or Fall term. All new students are expected to complete their Program Orientation in August of that calendar year.

2. Special Student-Graduate Studies (SSGS) applications
 Individuals applying to complete classes under SSGS status may apply for admission for the Fall, Winter, or Spring/Summer term.
 SSGS Applicants must submit Faculty of Graduate application form and two copies of official transcripts of all university classes.

 - Fall Term August 1
 - Winter Term November 15
 - Spring/Summer Term April 1

MSc (Occupational Therapy—Post-Professional)

Post Professional Classes (selection for Practice Leaders or Research Thesis Streams). Please note that not all courses are offered every year.

- OCCU 5010.03: Advanced Studies on Enabling Occupation.
- OCCU 5020X/Y.06: Graduate Seminar and Practicum.
- OCCU 5030.03: Advanced Research Theory and Methods for Occupational Therapists.
- OCCU 5040.03: Identity and Transitions.
- OCCU 5041.03: Evidence-Based Occupational Therapy.
- OCCU 5042.03: Community Development for Occupational Therapists.
- OCCU 5043.03: Program Evaluation for Occupational Therapists.
- OCCU 5050.03: Public Dialogue on Occupations and Enablement.
- OCCU 5501.03/5502.03/5503.03/5504.03: Graduate Reading.
- OCCU 6501.03: Special Topics in Health, Health Care, and Social Services.
5. Program Information

i. Residency, Orientation, Additional Classes, Advisors

All full-time and part-time MSc (OT–Post-Professional) students in both Practice Leaders and Research Thesis Streams are required to attend and participate in an on-site residency period of up to two weeks in August. The schedule includes an orientation to the program, library and technology. Each student is assigned a Faculty Advisor upon their admission to the program.

Students wishing to spend more time on campus at any time throughout their program are encouraged to use library and other university and School facilities. Students determine their own schedule in consultations with their Faculty Advisor and subject to class scheduling. Faculty Advisors may or may not become the student’s Thesis Supervisor.

For students in the Research Thesis Stream, negotiations between a student and Thesis Supervisor may result in a student being required to complete an additional half (0.5) class credit in research methods or elective classes, as available and accessible with appropriate permission.

Full-Time and Part-Time Study

The MSc (OT-Post-Professional) program is available to students on a full time or part time basis. Full-time students may enrol in up to five full or ten half credits per year. Part-time students may enrol in up to two and one-half credits in any one academic year. Students are advised to enrol first in OCCU 5010.03: Advanced Studies on Enabling Occupation. The normal upper time limits are four years for full time and five years for part time study. Extensions may be granted in special cases upon petition to the Faculty of Graduate Studies.

Distance Costs

Students pay a Distance Fee per class to cover mailings, limited long distance phone costs, administration, and related expenses. Additional student expenses include: textbooks, long distance telephone and fax costs, photocopy costs for library materials during orientation, access to the Internet and other technology or software, travel and accommodations for the on-site orientation. Depending on a student’s thesis research, statistical or qualitative analysis software and bibliographic software are recommended.

ii. Transfer Credits

Occupational therapists with partial graduate level education in another field or at another university may submit a request to transfer credits to this program if the credits have not been used toward another degree. A maximum of one full credit (two.5 classes) with a grade of B- or above may be transferred, on individual review of transcripts and full class descriptions by the Post Professional Program Coordinator. All transfers are subject to approval by the Faculty of Graduate Studies. Dalhousie MSc(OT) graduates may apply for transfer credit for 1.0 credit given that OCCU 5041 and OCCU 5043 are common to the MSc(OT) and MSc(OT-Post -Professional) degrees.

iii. Dalhousie Letters of Permission

Students may complete up to 1.0 full credit (two.5 elective classes) of the MSc (OT–Post-Professional) program outside Dalhousie under Letters of Permission from the Graduate Program Coordinator. Requests, including a detailed course outline, must be submitted prior to the student enrolling in the class. A grade of B- or higher is required for these classes to be credited towards the student’s MSc (OT–Post-Professional) degree.
Enrollment at Dalhousie enables students to complete classes by Letter of Permission at Canadian Atlantic universities without additional fees. Additional fees are normally required by other universities.

iv. Awards, Scholarships, Bursaries
Refer to http://www.dalgrad.dal.ca/funding for information regarding awards, scholarships and bursaries for the MSc (OT–Post-Professional) program.

v. Special Student - Graduate Studies (SSGS) (No-Degree, For Class Specific Admission)
Occupational therapists who meet Faculty of Graduate Studies criteria, and who have permission of the School Post-Professional Program Coordinator may enroll in a maximum of one full credit (two .5 classes) offered within the MSc (OT–Post-Professional) program.

Normally, classes completed under SSGS status cannot be used for credits towards formal graduate programs. However, occupational therapists who complete classes under SSGS status can at the time of their application to the MSc (OT–Post-Professional) program, apply to receive transfer credit for up to two SSGS classes (6 credits total). Final approval must be granted by the Post-Professional Graduate Program Coordinator and the Faculty of Graduate Studies. (see Regulation 4.3.7)

NOTE: The fees paid as an SSGS do not count towards the program fee paid by a student admitted to the MSc (OT–Post-Professional) program.

IV. Class Descriptions
See list of classes required to complete MSc (OT) and MSc (OT–Post-Professional) degrees.

Please note that some elective courses may not be available due to low enrollment.

OCCU 5000.03: Theories of Occupation, Enabling & Justice.
This class explores and analyzes the theories, practice models and frames of reference that are foundational to the occupational therapist’s view of occupation, occupational performance, enabling occupation, and occupational justice. Consistent with the School’s educational philosophy of experiential learning, the class format will include discussions, scenarios, role play, presentations, labs, and assignments. Students are expected to engage in critical and reflective analysis, and in creative problem solving in the classroom, laboratory, and in assignments.
TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements
INSTRUCTOR(S): B. Merritt
FORMAT: On site, mixed methods, BLS
PREREQUISITE: Admission to the MSc (OT) program, or SSGS (Special Student Graduate Studies) status by permission of the instructor.

OCCU 5001.03: Enabling Occupation 1.
This course introduces the student to the occupational therapy process of practice used to enable individuals who are experiencing changes in their occupational performance abilities due to psychosocial and environmental factors. Practice skills will focus on engaging the client’s strengths, developing psychosocial capacity and environmental modifications to enable occupational performance.
TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements
INSTRUCTOR(S): C. Grass
FORMAT: On site, mixed methods, BLS, skills lab
PREREQUISITE: Admission to the MSc (OT) program, or SSGS (Special Student Graduate Studies) status by permission of the instructor.

OCCU 5002.03: Health Conditions and Occupational Performance.
This class examines the relationship between medically-defined health conditions and occupational performance across the lifespan. Students will learn to describe health conditions and analyze their impact on the performance of occupations in daily life as well as the impact of occupational performance on health conditions. The knowledge base developed will be in the aetiology, medical classification and diagnosis, symptoms, treatment and prognosis of common mental and physical conditions that affect the performance of daily occupations. Knowledge about conditions drawn from various medical specialties will be synthesized with occupation specific knowledge. Multiple learning methods will include lectures, small group tutorials, self-directed inquiry, and critical analysis of the cultural construction of health conditions.
TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements
INSTRUCTOR(S): R. Stadnyk
FORMAT: On site, mixed methods, BLS
PREREQUISITE: Admission to the MSc (OT) program, or SSGS (Special Student Graduate Studies) status by permission of the instructor.

OCCU 5003.03: Dimensions of Professional Practice.
This class is designed to prepare students for professional practice. Emphasis is placed on the importance of professional behaviours, ethical and legal issues that arise in the health care context, and professional reasoning required to begin professional practice in fieldwork experiences. Through a variety of experiences and with a professional perspective, students will expand their current knowledge about occupation, and integrate theory and knowledge from co-requisite and prerequisite to issues that are representative of current occupational therapy practice.
TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements
INSTRUCTOR(S): J. Brown
FORMAT: On site, mixed methods, BLS, skills lab
PREREQUISITE: Admission to the MSc (OT) program, or SSGS (Special Student Graduate Studies) status by permission of the instructor.

OCCU 5004.03: Occupational Assessment and Occupational Analysis.
Students will explore fundamental concepts, processes and strategies to assess and analyze a client’s occupational interests, needs and goals. In assessing individuals and groups, students will analyze physical, cognitive, and affective capacities and skills utilized when engaged in occupations. In assessing occupations, students will analyze how to select, grade and adapt occupations to meet client defined occupational goals. In assessing social, physical, institutional and cultural environments, students will analyze environmental influences in order to understand and adapt the environment to meet occupational goals, and the health of individuals, communities and organizations. Students will critically review how different assessment methods are employed to elicit a comprehensive understanding of the occupational needs of individual clients, groups, agencies or communities.
TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements
INSTRUCTOR(S): T. Packer
FORMAT: On site, mixed methods, BLS, skills lab
PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.

OCCU 5005.04: Enabling Occupation 2.
This class builds on the knowledge and skills acquired in Enabling Occupation I. The course will examine how environmental factors influence individual, group or population's ability to participate in everyday activities. Students will be expected to analyze and develop intervention skills to enhance the individual’s ability to participate and/or to adapt the environment to enhance occupational performance.
TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements
INSTRUCTOR(S): TBA
FORMAT: On site, mixed methods, BLS, skills lab
PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.

OCCU 5006.03: Wellness and Inclusion by Design and Technology.
In this course students learn the principles and best-practice application of environmental design and technology to enable occupational well-being, participation and inclusion in the public and personal sectors. Through practical projects in environmental design, technology and community development, and application in laboratory sessions, students develop...
skills in evaluating, designing and promoting the reachability, usability and accessibility of the built and social environment which has a profound effect on the choice and opportunities we have in engaging in meaningful occupations in everyday life.

TECHNOLOGY & SOFTWARE: Consult http://www.dal.ca/ilo for current technology requirements.

INSTRUCTOR(S): H. Lauckner

FORMAT: On site, mixed methods, BLS, skills lab

PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.

OCCU 5007.03: Research Approaches for Occupational Therapists.

This course introduces theories and epistemologies underlying positivist and naturalist (quantitative and qualitative) approaches to research, particularly focusing on the issues that arise for research on occupation and in occupational therapy. We explore tensions between objectivity and subjectivity, the value of standardized measures, insider/outsider issues unique to clinician-researchers, concerns about inclusion/exclusion, ethical issues in research, and particularly power concerns inherent in research. We examine the epistemological and methodological 'fit' of various research approaches with occupational therapy, asking how research may shift the profession forward. The focus of this course is on critical appraisal of the social, political, economic, and ethical matters that shape the research enterprise. The aim is to develop astute consumers and critics of scholarly research.

TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements.

INSTRUCTOR(S): G. Warner

FORMAT: On site, mixed methods, BLS

PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.

OCCU 5010.03: Advanced Studies on Enabling Occupation.

This 13 week class will facilitate advanced critique on research and theories on occupation, and on processes on enabling change in individuals, environments and systems. Drawing on empirical, interpretive, and critical social science, students will explore the key issues and literature relating to occupation and occupational therapy, particularly focusing on the three areas of concentration for the post-professional MSc program: Foundations, Evaluation, and Systems Organization.

TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements.

INSTRUCTOR(S): R. Stadnyk

FORMAT: Distance, on line

PREREQUISITE: Qualified Occupational Therapists and permission by instructor.

OCCU 5020X/Y.06: Graduate Seminar and Practicum.

This 26-week seminar and practicum class is designed to enable students to identify and assume new roles as occupational therapists. This course is based on our understanding that individuals’ occupational engagement can be supported or constrained by the environments in which they live, work and play. Environments are largely constructed by the services, systems, and policies that humans establish. In this course, students will partner with organizational clients to enable them to more effectively meet the occupational needs of their clients, consumers and/or members. Students are provided with the opportunity to develop their abilities to assume the role of consultant. Using the Canadian Practice Process Framework to guide their interactions with their organizational clients, students will explore and identify how to use theory while enabling occupation. Students are responsible for identifying and negotiating agreements with organizational clients. The course coordinator must approve each student’s proposed practicum project. Students are provided with regular opportunities to receive feedback, guidance, and support from the course coordinator and classmates through journaling assignments.

TECHNOLOGY & SOFTWARE: Consult http://www.dal.ca/ilo for current technology requirements.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

INSTRUCTOR(S): S. Doble

FORMAT: Distance, on line

PREREQUISITE: MSc (OT-Post-Professional) students only

OCCU 5030.03: Advanced Research Theory and Methods for Occupational Therapists.

This 13-week web-based distance-education class gives a comprehensive introduction to theory and epistemology underlying qualitative and quantitative research methods distinguishing between naturalistic and experimental approaches. It then focuses on the development and application of theoretical approaches to research. Goals of the class are to develop facility in designing and pursuing research projects, encouraging students to become critical, independent researchers. In addition to completing research assignments relating to both qualitative and quantitative methods and analysis, students will prepare a proposal which may serve as a first draft of their thesis proposal, giving particular attention to epistemology, methodology, and ethical considerations. Students are encouraged in this class to develop a facility with qualitative and quantitative methods and statistics packages that will benefit their thesis research or interests in evidence-based practice.

TECHNOLOGY & SOFTWARE: Consult http://www.dal.ca/ilo for current technology requirements. Other software may be required at the discretion of the instructor.

INSTRUCTOR(S): G. Warner

FORMAT: Distance, on line

PREREQUISITE: Open to graduate students in any field.

OCCU 5040.03: Identity and Transitions.

People craft identities from what they do and within the social relations of which they are part, and these identities shift and change as people move through their lives and experience their worlds and find new ways to present themselves. This internet-based class explores discourses and narratives of identity construction with particular focus on gender, culture, occupation and meaning, and on transitions both physical or social.

TECHNOLOGY & SOFTWARE: Consult http://www.dal.ca/ilo for current technology requirements.

INSTRUCTOR(S): I. Waldron

FORMAT: Distance, on line

PREREQUISITE: Open to graduate students in any field.

OCCU 5041.03: Evidence-Based Occupational Therapy.

This class provides students with the opportunity to examine and critique evidence-based practice and its application to occupational therapy. Using readings, online exercises, and discussion, students analyze the principles underlying evidence-based practice, learn methods to critically appraise the literature, and integrate these methods into occupational therapy practice. This course has 2 sections, one in each of the masters programs using different teaching formats. Please check with the School before enrolling to ensure you are in the appropriate section.

TECHNOLOGY & SOFTWARE: Consult http://www.dal.ca/ilo for current technology requirements.

INSTRUCTOR(S): TBÁ

FORMAT: On site and distance, on line

PREREQUISITE: Admission to the MSc (OT) or MSc (OT-Post-Professional) program, or SSGS(Special Student Graduate Studies) status by permission of the instructor. Students enrolled in the MSc(OT) program must have successfully completed all program courses in the previous semester.

OCCU 5042.03: Community Development for Occupational Therapists.

This class explores community development as a distinctive domain of practice for occupational therapists. A wellness and community development philosophy is offered within the contexts of primary health care, health promotion and community development. Practical and professional integrated skills and knowledge are developed.

TECHNOLOGY & SOFTWARE: Consult http://www.dal.ca/ilo for current technology requirements.
INSTRUCTOR(S): H. Lauckner
FORMAT: Distance, on line
PREREQUISITE: Qualified occupational therapists; other graduate and SSGS students by permission of the instructor

OCCU 5043.03: Program Evaluation for Occupational Therapists.
This class covers the key issues involved in undertaking program planning and evaluation. This is a knowledge and skill development course that covers such topics as: the purpose and rationale for evaluation; models of evaluation with an emphasis on collaborative (client-centred) approaches; types (Evaluability assessment, process & outcome, summative & formative); stages and ethical issues. This course has 2 sections, one in each of the masters programs using different teaching formats. Please check with the school before enrolling to ensure that you are in the appropriate section.
TECHNOLOGY & SOFTWARE: Consult http://www.dal.ca/ilo for current technology requirements.
INSTRUCTOR(S): J. Brown
FORMAT: On site and distance, on line
PREREQUISITE: Admission to the MSc (OT) or MSc (OT–Post Professional) program, or SSGS (Special Student Graduate Studies) status by permission of the instructor. Students enrolled in the MSc(OT) program must have successfully completed all program courses in the previous semester.

OCCU 5050.03: Public Dialogue on Occupations and Enablement.
This is a ‘capstone’ class, and constitutes the major paper requirement of the distance education, coursework post-professional MSc program. Students develop a public presentation and publishable manuscript to stimulate public dialogue on occupations and enablement.
TECHNOLOGY & SOFTWARE: Consult http://www.dal.ca/ilo for current technology requirements.
INSTRUCTOR(S): TBA
FORMAT: Distance, on line
PREREQUISITE: OCCU 5010.03, Qualified Occupational Therapists and permission by instructor

OCCU 5111X/Y.02: Fieldwork I (90 hr) (September – April).
Students gain first hand experience of the personal and social forces that influence occupational development, participation and engagement of individuals and groups in the Halifax Regional Municipality. Weekly learning activities from the School and student generated learning objectives provide a structure for developing core professional skills of observation, occupational assessment and occupational analysis, enabling approaches, professional conduct, communication and professional reasoning. Students take responsibility for their own learning consistent with the School’s educational philosophy of experiential learning. Students perform learning activities in different community organizations in conjunction with on site supervision, peer support, and group tutorials with licensed occupational therapists. Tutorials guide students in critical reflection on the relationships between their fieldwork experience, academic learning, personal background and prior assumptions.
TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): C. O’Keefe
FORMAT: 13 weeks part-time in Nova Scotia site, mixed methods, BLS
PREREQUISITE: Admission to the MSc (OT) program, or SSGS (Special Student Graduate Studies) status by permission of the instructor.

ANAT 5217.06: Functional Human Anatomy.
Graduate students entering the MSc(OT) program will cover a full-credit (6 credit hours) of gross and neuroanatomy and histology of the human body through the use of lectures, anatomical specimens and demonstrations. The focus is on functional anatomy and neurological control of the head, limbs and back and on the organization of sensory and motor systems. Laboratory study includes osteology, living (surface) anatomy and learning from anatomical specimens about musculo-skeletal, innervation and vasculature anatomy used in the performance of daily life. Emphasis is on critical thinking, and the self-directed use of web-based video, and other modular resources.

OCCU 5222.06: Fieldwork II (337.5 hr) (May – June).
Students focus on the broad scope of occupational therapy practice in mental and physical health settings. There is a focus on rural health in this course. Students develop a clear professional identity and learn to describe and justify their professional reasoning through the full process of occupational therapy practice. Occupational therapist preceptors provide supervision, direct, concrete feedback and frequent coaching sessions.
TECHNOLOGY: Access to internet and e-mail is strongly recommended during fieldwork courses.
INSTRUCTOR(S): J. Saunders
FORMAT: Nine weeks of full-time fieldwork learning in Atlantic Canada
PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.

OCCU 5501.03/5502.03/5503.03/5504.03: Graduate Reading.
In a reading class, the student works with a full-time, part-time, or an Adjunct faculty of Dalhousie’s School of Occupational Therapy, who is also a member of the Faculty of Graduate Studies. The student and faculty member submit a discussion schedule and planned assignments and grading criteria for approval by the School’s Graduate Programme Committee. Available in all four terms (Fall, Winter, Spring, and Summer), the goal is for an individual graduate student to design, critique, debate, and complete a program of reading on a selected topic or area.
INSTRUCTOR(S): Variable based on Students Interests/Faculty expertise
FORMAT: E-mail, posted mail, audioconference, videoconference, web-based learning, as selected by student and instructor.
PREREQUISITE: Open to graduate students in any field

OCCU 6000.02: Applied Research I.
This is the first part of the major project course for the entry-level Master of Science (Occupational Therapy) program. The students choose from a list of possible scholarly projects related to occupational science, occupational therapy, and/or related fields. Together with a faculty member, student teams will negotiate the project to be undertaken, develop a theoretical rationale for the project, conduct an in-depth literature review, design and/or defend the methodology and conduct the project.
TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements
INSTRUCTOR(S): I. Waldron
FORMAT: Onsite, BLS, Seminars, Team meetings with faculty member and group seminars.
PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.

OCCU 6001.05: Enabling Occupation 3.
This course will build upon the practice knowledge and skills developed in OCCU 5005.04 Enabling Occupation 2 by introducing the student to the neurological and cognitive aspects of occupational performance across the lifespan. Focus will be on the occupational therapy process of practice with clients experiencing complex occupational performance issues.
TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements
INSTRUCTOR(S): D. MacKenzie
FORMAT: On site lecture/skills lab
PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.

OCCU 6002.03: Social Influences on Occupational Performance.
This course explores the ways occupational meaning, engagement and performance are shaped by ‘social location’ - the experiences, values, assumptions, expectations that arise out of such factors as our race, class,
gender, sexual orientation, culture, age, ability/disability. We explore how these factors affect therapy and occupation for both clients and therapists.

TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements

INSTRUCTOR(S): I. Waldron

FORMAT: On site seminar

PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.

OCCU 6003.03: Advanced Practice Issues.

This class builds skills in critical analysis, evidence-based professional reasoning, presentation, and synthesizing previous knowledge into current practice. Using current issues in health and occupational therapy practice, the required exercise of reflecting, reasoning, determining, a personal perspective and developing a plan of action strengthens current and life-long learning patterns.

TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements

INSTRUCTOR(S): C. Grass

FORMAT: On site lectures/discussion/skills lab

PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.

OCCU 6111.06: Fieldwork III.

Students focus on developing competence and confidence in integrating theory, research, enabling principles and principles of evidence based practice through the full process of practice with clients experiencing complex occupational performance issues across the life span, and with groups and organizations. Students practice in a safe manner and begin to make a meaningful contribution as a team member. Occupational therapist preceptors provide periodic or occasional coaching.

TECHNOLOGY: Access to internet and e-mail is strongly recommended during fieldwork courses

INSTRUCTOR(S): J. Saunders

FORMAT: Eight week’s of full-time fieldwork learning in Canada or an international site

PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.

OCCU 6130.01: Pharmacology for Occupational Therapists.

The course provides students with relevant and comprehensive information on how contemporary drug therapies, including some alternative natural/herbal remedies, can affect patients receiving occupational therapy. It introduces basic pharmacological principles and includes information on drug delivery, pharmacokinetics and metabolism. Students learn to use commonly available resources to investigate drugs.

INSTRUCTOR(S): K. B. S. Pasumarthi

FORMAT: Onsite lecture

PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.

OCCU 6140.06: Neuroscience for Occupational Therapy.

This course provides students with the foundational neuroscience knowledge and application of human neuroanatomy and neurophysiology concepts for occupational therapy practice. Emphasis will be placed on functional neuroscience of brain systems experiencing common neurological challenges, and involves work in microanatomy, gross anatomy, and neurophysiology of the brain and spinal cord.

INSTRUCTOR(S): D. MacKenzie, P. Neumann, S. Boe

FORMAT: On site lecture/lab/seminar

PREREQUISITE: Successful completion of all MSc(OT) program courses in the previous semester, previously approved Special Student - Graduate Studies (SSGS) status from the School of Occupational Therapy and the Faculty of Graduate Studies, or by permission of instructor.
OCCU 6504.03: Measuring Health Outcomes.
This class provided students, as consumers of research to understand how assessments are developed; determine if assessments generate accurate, consistent and meaningful measures; determine the potential of existing assessments to generate measures; and appreciate how new assignments are constructed to generate reliable, valid, and sensitive measures.
TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements
INSTRUCTOR(S): S. Doble
FORMAT: Distance, on line
PREREQUISITE: Qualified occupational therapists, other graduate and SSGS students by permission of the instructor.

OCCU 6506.03: Practice Management for Occupational Therapy.
Exceptional leadership and management capabilities are required by occupational therapy practice leaders. This course will prepare students to identify and reflect on issues, as well as problem solve potential solutions to practice management challenges.
INSTRUCTOR(S): Champion, M.
FORMAT: Distance, on line
PREREQUISITE: Admission to MSc(OT-Post-Professional) Program

OCCU 6507.03: Critical Perspectives on Inequities.
This fully online course examines how everyday discriminatory events, inequities and unfair treatment play out in what people do every day to occupy life, including work, leisure, health services utilization and schooling. Drawing on an occupational science lens, this course examines the implications of everyday inequities on health and well-being.
INSTRUCTOR(S): Waldron, I.
FORMAT: Distance, on line
PREREQUISITE: Open to graduate students in Health Professions and the Interdisciplinary PhD

OCCU 6600.01: Applied Research II.
This is the second part of the major project course for the entry-level Master of Science (Occupational Therapy) program. The students have completed a scholarly project related to occupational science, occupational therapy, and/or related fields supervised by a faculty member. Together with the faculty member, the students will complete a report and disseminate the outcome of the project with their team to a relevant audience.
INSTRUCTOR(S): I. Waldron
FORMAT: BLS, Seminars, Team meetings with faculty member and group seminars
PREREQUISITE: OCCU 6000.02

OCCU 9001.18: Thesis.
The thesis requires original research at the master’s level. Basic or applied research using qualitative or quantitative methodologies will be conducted as appropriate. Thesis supervision by distance will involve email, telephone, post, teleconference or other communication as appropriate.
TECHNOLOGY: Consult http://www.dal.ca/ilo for current technology requirements
INSTRUCTOR(S): Thesis Supervisor
FORMAT: Distance, on line
PREREQUISITE: MSc(OT-Post-Professional)Research Thesis stream students
RESTRICTION: MSc (OT-Post-Professional) Thesis stream students

Oceanography
Location: Life Sciences Centre 1355 Oxford Street P.O. Box 15000 Halifax, NS B3H 4R2 Telephone: (902) 494-3557 Fax: (902) 494-3877 Email: Oceanography@Dal.Ca Website: http://www.dal.ca/oceanography

Chair of Department
Lewis, M.R.

Graduate Studies Coordinator
Kelley, D.

Professors Emeriti
Bowen, A.J., MA (Cantab), PhD (Scripps), FRSC. Physical oceanography, nearshore dynamics, sediment transport
Fournier, R.O., MSc (Wm. & Mary), PhD (URI). Biological oceanography
Mills, E.L., BSc (Carl.), MS, PhD (Yale), FLS. Benthic ecology, history of oceanography

Professors
Beaumont, C., BSc (Sussex), PhD (Dal), Canada Research Chair. Geodynamics
Bentzen, P., BSc (McGill), MSc (UBC), PhD (McGill) (cross appointment with Biology), DFO Chair Fisheries Resource Conservation Genetics
Boudreau, B.P., BSc (UNB), MS (Texas A & M), MPhil, PhD (Yale). FRSC. Killam Professor and Dean of the Faculty of Graduate Studies.
Dr. Diogenes, sediment-water exchange, modelling
Cullen, J., AB (Calif, Santa Cruz), PhD (Scripps) (NSERC/Satlantic Research Chair, Killam Chair in Ocean Studies) Phytoplankton processes, optical measurements, effects of ultraviolet radiation
Grant, J., BSc (Duke), PhD (South Carolina). Benthic ecology, shellfisheries
Hay, A., BSc, MSc (Western), PhD (UBC). Physical oceanography, ocean acoustics
Hill, P.S., AB (Dartmouth), MSc, PhD (Wash). Fine sediment transport, particle aggregation
Kelley, D., BSc (McA), PhD (Dal). Ocean mixing, deep convection, double diffusion, arctic mixing
Lewis, M.R., BS, MS (Maryland), PhD (Dal). Biological oceanography, marine ecosystem modelling
Louden, K.E., BA (Oberlin), MEd. (Temple), PhD (MIT). Marine geophysics
Metaxas, A., BSc (McGill), MSc (UBC), PhD (Dal), (NSERC UFA). Benthic ecology, larval biology, deep-sea biology, community ecology
Moore, R.M., BA (Oxon.), PhD (Southampton). Chemical oceanography, low molecular weight halocarbons in the marine environment
Ruddick, B.R., BSc (Victoria), PhD (MIT). Physical oceanography
Sheng, J., BSc (East China Technical Univ), MSc, PhD (MUN), (LRET Chair). Shelf circulation, ocean modelling, data assimilation
Taggart, C.T., BSc (Carleton), MSc (York), PhD (McGill). Fisheries oceanography and early life history phenomena, biological-physical interactions, population genetics
Thompson, K.R., BSc, MSc (Manchester), PhD (Liv), jointly with Math and Statistics, Canada Research Chair. Physical oceanography/climatology
Wallace, D.W., BSc (U of East Anglea), PhD (Dal) Canada Excellence Research Chair (CERC) in Ocean Science & Technology. Climate - biogeochemistry interactions in tropical oceans, International SOLAS programme.

Website: http://www.dal.ca/oceanography
I. Admission Requirements

A good Honours degree, or its equivalent, is required for admission to the Oceanography Department.

Undergraduate preparation may be in any of the basic sciences - Biology, Chemistry, Physics or Geology. Degrees in Atmospheric Science, Meteorology, Mathematics or Engineering are also acceptable if the undergraduate work includes a reasonably good background in relevant basic science.

II. Degree Programs

A. Master of Science (MSc)

For minimum time required to complete this program, see the Faculty of Graduate Studies Regulation 1.3.1 in this calendar.

Minimum class requirements are a total of 5 half-credit classes at the 5000 level or higher, at least three of which must be chosen from the core classes (5110.03-5140.03) outside the student's sub-discipline.

Additional classes may be required to strengthen a student's background in basic science.

Research and a thesis are required.

B. Doctor of Philosophy (PhD)

For minimum time required to complete this program, see the Faculty of Graduate Studies regulations in this calendar. Students must complete at least 6 graduate level courses, including at least two Oceanography core courses (5110.03 to 5140.03) outside the student's sub-discipline.

Candidates are expected to meet an extra qualifying criterion. Consult the Oceanography Graduate Handbook for details.

Candidates must write and defend a proposal for thesis research.

Research and a thesis are required.

III. Class Descriptions

Not all courses are offered every year. Please consult the current timetable for this year's offerings.

OCEA 5110.03: Geological Oceanography.

This course is intended to give a broad survey of topics in marine geology and geophysics. The class content covers recent methods and observations with quantitative applications to an understanding of geophysical and geological processes. Some topics covered are: plate tectonics; seismic, heat flow, gravity, and magnetic methods; patterns and processes of sediment transport and deposition.

NOTE: Some laboratory exercises may augment the lectures. No previous background in Geology or Geophysics is required.

INSTRUCTOR(S): K. Louden

CROSS-LISTING: OCEA 4110.03, ERTH 4110.03

OCEA 5120.03: Physical Oceanography.

This course introduces graduate students to the physical properties and dynamics of the oceans. Topics range from global circulation down to the small scales of turbulence. Fact and theory are blended throughout. Quantitative problem solving is emphasized in assignments.

INSTRUCTOR(S): D. Kelley

CROSS-LISTING: OCEA 4120.03

OCEA 5130.03: Chemical Oceanography.

This class covers the major and minor constituents of sea water, the controls on its chemical composition, nutrient cycling, gas exchange, and the influence of the oceans on atmospheric chemistry. Other topics included are chemical tracers, and radiochemical dating methods, stable isotope studies, chemical speciation and chemical models of sea water.

INSTRUCTOR(S): R. Moore

CROSS-LISTING: OCEA 4130.03

OCEA 5140.03: Biological Oceanography.

The goal is to describe how physical, chemical and biological processes interact to determine the species composition, biogeochemical activities, and trophic structure of marine communities. Outstanding problems currently facing biological oceanographers and earth systems scientists are discussed, as are current attempts and methodologies to address them.

INSTRUCTOR(S): J. Cullen

CROSS-LISTING: OCEA 4140.03, BIOL 4661.03, 5661.03, MARI 4661.03
OCEA 5160.03: Fisheries Oceanography.
Oceanographic influences on ecology of marine fish: on population dynamics, distribution, abundance, reproduction, life history, feeding, growth, metabolism, mortality, and recruitment. Emphasis on contemporary hypotheses and primary literature and some on fishery management. Primary-publication-style research paper required. Competence with fundamental population dynamics, ecology, physical oceanography, mathematics, and statistical analyses expected.
INSTRUCTOR(S): C. Taggart
CROSS-LISTING: BIOL 4369.03, OCEA 4160.03, MARI 4369.03

OCEA 5210.03: Time Series Analysis in Oceanography and Meteorology.
This course describes the application of advanced time series analysis in oceanography and meteorology. Time and frequency domain approaches are covered. Students will develop their own computer programs to analyze real observations. Specific topics include stationarity, auto and cross covariance functions, power and cross spectra, and state space models.
INSTRUCTOR(S): K. Thompson
CROSS-LISTING: OCEA 4210.03, STAT 5390.03, STAT 4390.03

OCEA 5220.03: Numerical Modelling of Atmospheres and Oceans.
This class discusses numerical modelling techniques for simulating atmospheric and oceanic circulations. Material includes: review of governing equations; finite difference, finite element, and spectral methods; Eulerian, semi-implicit and semi-Lagrangian time integration techniques; accuracy and stability analyses; data assimilation and ensemble prediction methods; and boundary treatment for ocean models.
INSTRUCTOR(S): J. Sheng
CROSS-LISTING: OCEA 4220.03

OCEA 5221.03: Ocean Dynamics.
An advanced class for students in Physical Oceanography and Atmospheric Science that studies the basic equations governing rotating geophysical flows, plus applications. Topics include geostrophy, conservation of potential vorticity, quasi-geostrophic dynamics, geostrophic adjustment, response to surface forcing (steady and unsteady).
INSTRUCTOR(S): A. Hay
CROSS-LISTING: OCEA 4221.03

OCEA 5222.03: Estuary, Coast and Shelf Dynamics.
An advanced class in the physical processes operative on the continental shelf. Topics include long waves, tides, tidal mixing, thermohaline circulation, wind forcing, upwelling, etc.
INSTRUCTOR(S): J. Sheng
CROSS-LISTING: OCEA 4222.03

OCEA 5223.03: Ocean Waves.
This class investigates the different types of waves known to be important in the ocean, at an advanced level. Topics include: group velocity; surface and internal gravity waves; planetary and topographic waves, nonlinear effects, and various problems related to refraction and interactions with currents.
INSTRUCTOR(S): B. Ruddick

OCEA 5230.03: Biology of Phytoplankton.
The role of phytoplankton as primary producers of organic material in the sea, and as agents of biogeochemical transformations, explored in the context of interactions with physical and chemical oceanographic processes. Emphasis is on the current literature.
INSTRUCTOR(S): J. Cullen / M. Lewis
CROSS-LISTING: OCEA 4230.03, MARI 4662.03, BIOL 4662.03

OCEA 5240.03: Special Topics in Oceanography.
Three modules are taught based on the needs of students in the graduate program. Each module is taught by a suitable faculty member through a combination of lectures, problem assignments, directed reading and group discussion. Potential topics include: Data Assimilation, Observational Technologies, Marine primary productivity, Paleo-oceanography, Turbulence and Mixing, etc.
INSTRUCTOR(S): T. Ross
FORMAT: Lecture/seminar
PREREQUISITE: Permission of instructor

OCEA 5285.03: Marine Biogeochemical Processes.
This advanced class is designed for students interested in cutting-edge developments in marine biogeochemistry. Topics to be discussed include linkages between climate, marine biogeochemistry, carbon cycling, on seasonal to glacial-interglacial time-scales, and their perturbations during the Anthropocene. Students will perform a guided literature survey and present selected topics during classes.
INSTRUCTOR(S): M. Kienast
FORMAT: Seminar
PREREQUISITE: OCEA 4130.03/5130.03, OCEA 4140.03/5140.03

OCEA 5290.03: Advanced Chemical Oceanography.
This class presents research topics in chemical oceanography, taught as 3-4 self-contained modules. Examples include, the oceanic Cl2 system and its relation to climate change, chemical reactions in sediments, photochemistry in the upper ocean, and inferring the chemistry of ancient oceans through the isotope record in sediments.
INSTRUCTOR(S): R. Moore
CROSS-LISTING: OCEA 4290.03

OCEA 5292.03: Chemical Methods in Oceanography.
This class provides a more detailed account of analytical methods used in chemical oceanography. Gas chromatography, mass spectrometry, radiochemical, optical and electrochemical methods will be covered. Emphasis is on techniques that are available either in our own laboratories or at neighbouring institutions.
INSTRUCTOR(S): H. Thomas

OCEA 5293.03: Advanced Marine Particles.
This class explores the various roles of particles in the sea and the processes that govern them. Topics include sources and types of marine particles, particle size distributions, settling velocities, mass transfer to and from small particles, mechanics of particle contact, surface chemistry, and erosion, deposition and transport.
INSTRUCTOR(S): P. Hill

OCEA 5311.03: Fluid Dynamics I.
An introduction to the theory of fluid dynamics, with some emphasis on geophysically important aspects. Contents: tensor mathematics, flow kinematics, equations of motion, viscous flow, potential flow, convection, turbulence, and basic aerodynamics. Occasional reference will be made to current research topics, especially those in Physical Oceanography.
INSTRUCTOR(S): T. Ross
CROSS-LISTING: OCEA 4311.03, PHYC 4311.03/5311.03

OCEA 5330.03: Benthic Ecology.
A graduate/fourth year undergraduate class on major problems of benthic ecology, such as food supply to benthic animals, and geomicrobiological processes in sediments. Classes consist of two lectures per week and one journal paper discussion session. The last three weeks of the class are devoted to a class research project.
INSTRUCTOR(S): J. Grant
CROSS-LISTING: BIOL 4666.03, OCEA 4330.03, MARI 4666.03

OCEA 5331.03: History of Marine Science.
This class describes the development of the marine sciences from biological, chemical, physical and geological knowledge going back to the 17th century or earlier. It includes the important voyages of exploration, the development of marine biology, ocean circulation and plate tectonics, also the importance of technological changes upon marine science.
INSTRUCTOR(S): E.L. Mills
CROSS-LISTING: BIOL 4664.03, HIST 3073.03, HSTC 3331.03, OCEA 4331.03, SCIE 4001.03, MARI 4664.03

OCEA 5335.03: Environmental Impacts in Marine Ecosystems.
Consideration of various activities in marine environments, with focus on ecosystem level influences: dispersion, elemental fluxes, benthic impacts, food webs, biodiversity. Simulation modelling of ecosystems is undertaken using Simile OOP software. Classes include lectures,
modelling examples, and discussion of research papers. Course requirements consist of problem sets and modelling project.

INSTRUCTOR(S): J. Grant

CROSS-LISTING: OCEA 4335.03, BIOL 4335.03, MARI 4335.03

OCEA 5370.03: Deep Sea Biology.

We focus on the biology of organisms inhabiting the deep sea: physiological adaptations to the physicochemical and geological environment; spatial and temporal distributions of biological assemblages; and regulatory factors of these assemblages, such as currents, food availability, reproduction and recruitment. Also, we delve into unique habitats, such as hydrothermal vents.

INSTRUCTOR(S): A. Metaxas

CROSS-LISTING: BIOL 4370.03, OCEA 4370.03, MARI 4370.03

OCEA 5380.03: Marine Modelling.

This class provides a survey of modelling techniques applied to physical, biological and biogeochemical problems in oceanography. Lecture material covers the philosophy of modelling, dimensional analysis, parameterization of various processes, numerical approaches to solving differential equations, etc. Students are given the opportunity to study topics of particular interest to them.

INSTRUCTOR(S): K. Fennel

CROSS-LISTING: OCEA 4380.03

OCEA 5411.03: Atmospheric Dynamics I.

See course description for PHYC 5411.03 in the Physics and Atmospheric Science section of this calendar.

PREREQUISITE: Consent of instructor

CROSS-LISTING: OCEA 4411.03, PHYC 4411.03/5411.03

OCEA 5412.03: Atmospheric Dynamics II.

See course description for PHYC 5412.03 in the Physics and Atmospheric Science section of this calendar.

CROSS-LISTING: OCEA 4412.03, PHYC 4412.03/5412.03

OCEA 5470.03: Introduction to Seismic Imaging.

See course description for ERTH 5470.03 in the Earth Sciences section of this calendar.

INSTRUCTOR(S): M. Nedimovic, K. Louden

FORMAT: Lecture/Lab

PREREQUISITE: Consent of instructor

CROSS-LISTING: OCEA 4470.03, ERTH 4470.03, ERTH 5470.03

OCEA 5480.03: Advanced Seismic Imaging.

See class description for ERTH 5480.03 in the Earth Sciences section of this calendar.

CROSS-LISTING: ERTH 4480.03, ERTH 5480.03, OCEA 4480.03

OCEA 5505.03: Atmospheric Physics.

Moist thermodynamics is applied to a variety of atmospheric phenomenon. These include aerosols, cloud droplets, precipitation formation, convection, supercells, hurricanes, lightning, and the boundary layer. We also discuss the radar equation and the interpretation of radar images.

FORMAT: Lecture

PREREQUISITE: PHYC 5520 or permission of the instructor

CROSS-LISTING: PHYC 5505.03, PHYC 4505.03, OCEA 4505.03

OCEA 5520.03: Introduction to Atmospheric Science.

See course description for PHYC 5520.03 in the Physics and Atmospheric Science section of this calendar.

CROSS-LISTING: OCEA 4520.03, PHYC 4520.03/5520.03

OCEA 5541.03: Synoptic Meteorology I.

See course description for PHYC 5541.03 in the Physics and Atmospheric Science section of this calendar.

CROSS-LISTING: OCEA 4541.03, PHYC 4540.03/5540.03

OCEA 5550.03: Synoptic Meteorology II.

See course description for PHYC 5550.03 in the Physics and Atmospheric Science section of this calendar.

CROSS-LISTING: OCEA 4550.03, PHYC 4550.03/5550.03

OCEA 5570.03: Light Scattering, Radiative Transfer, and Remote Sensing.

See course description for PHYC 5570.03 in the Physics and Atmospheric Science section of this calendar.

CROSS-LISTING: PHYC 5570.03

OCEA 5575.03: Topics in Atmospheric Radiation.

See course description for PHYC 5575.03 in the Physics and Atmospheric Science section of this calendar.

CROSS-LISTING: PHYC 5575.03

OCEA 5580.03: Cloud Physics.

See course description for PHYC 5580.03 in the Physics and Atmospheric Science section of this calendar.

CROSS-LISTING: PHYC 5580.03

OCEA 5595.03: Atmospheric Chemistry.

See course description for PHYC 5595.03 in the Physics and Atmospheric Science section of this calendar.

CROSS-LISTING: OCEA 4595.03, PHYC 4595.03/5595.03

OCEA 5680.03: Ecosystem Modelling of Marine and Freshwater Environments.

See course description for ENGM 6680.03 in the Engineering Mathematics section of this calendar.

CROSS-LISTING: ENGM 6680.03, ENGM 4680.03

OCEA 6500.03: Graduate Seminar in Tectonics.

A lecture and seminar class on quantitative aspects of tectonics that focuses on plate boundary processes on geological timescales.

INSTRUCTOR(S): C. Beaumont/R.A. Jamieson

CROSS-LISTING: ERTH 6500.03

OCEA 9000.00: MSc Thesis.

Students in the MSc Program must be registered in this class in every term.

OCEA 9530.00: PhD Thesis.

Students in the PhD Program must be registered in this class in every term.
Oral and Maxillofacial Surgery

I. Admission Requirements
Candidates to be considered must possess either a DDS or DMD and be eligible for student Licensure in the Province of Nova Scotia (as granted by the Provincial Dental Board of Nova Scotia).

Candidates must register for the entire six years of the program and pay full tuition for the first five years and continuing fees for the sixth year.

II. Application Procedure
To apply for admission to the MD/MSc Oral and Maxillofacial Surgery program you need to submit the following documents:

- Completed Application for Admission Form of Graduate Studies - [link]

The following supporting documents are to be sent directly to the department:

a. Original transcripts of all previous academic work. (2 copies) Official transcripts from Dalhousie are not required from current or previous Dalhousie students.
b. At least two academic letters of reference. The letters should be in sealed envelopes with the referee’s signature over the seal.
c. A letter from the Dean of the graduating Dental School indicating the applicant’s standing in the class during the four years of the program.
d. Curriculum Vitae, including information regarding academic background and work/volunteer experience.
e. Personal statement outlining the reason for interest in oral and maxillofacial surgery
f. Documentation of English Language Competency. Non-Canadian applicants, whose first language is not English must arrange the submission of original documentation of successful TOEFL or other recognized language test by the Testing Service to the Oral and Maxillofacial Sciences Department.

Documents should be mailed to:
Department of Oral and Maxillofacial Sciences
Dalhousie University
981 University Avenue, Room 5132
PO Box 15000
Halifax, NS B3H 4R2

For inquiries regarding applications, email omfs.dentistry@dal.ca

III. MD/MSc Degree Program Requirements
1. Satisfactory completion or credit for the prescribed classes
2. Satisfactory knowledge and skills in all the phases of clinical oral and maxillofacial surgery
3. Satisfactory completion of a research study and submission of the results in the form of a thesis acceptable to the Director of the program

In addition to the requirements for successful completion of the MD degree, the following classes are required to complete the MSc component of the program.

IV. Class Descriptions
Not all classes listed are necessarily offered in any given year.

ORAL 5000.06: Anatomy.
This class is offered during the 1st year, consists of 14 hours of lectures and 36 hours of dissection and serves as an overview of the anatomy of the chest, thoracic cavity, arm and iliac crest areas of the pelvis. Detailed anatomy of the head and neck shall be covered. Emphasis will focus on anatomical structures and adjacencies as they relate to deformities, injuries and other pathological processes of the head and neck.

ORAL 5010.06: Surgical Anatomy.
This class is offered during the 1st year and consists of 30 hours of dissection. It permits the graduate student to perform a variety of surgical procedures on the cadaver. The opportunity exists to not only practice the
steps of the surgical procedures but to explore the major anatomic
adjacencies.

ORAL 5060.06: Oral and Maxillofacial Pathology.
This class is presented to residents over a two-year period, twice during
the 4 years of their program. Students study the cause, pathogenesis,
clinical, radiographic and microscopic characteristics of diseases affecting
the oral and peri-oral structures. Emphasis is placed on recognition of
abnormalities, formulation of differential diagnoses, arrival at definitive
diagnoses and patient management.
CROSS-LISTING: ORAL 6030.06, ORAL 7000.06

ORAL 5070.06: Oral and Maxillofacial Surgery Seminar.
This class is offered during all 6 years of the MSc component of the
program. This seminar, with all the Oral and Maxillofacial Surgery Senior
Staff and residents, will: 1) review, by subjects, the various major
treatment aspects in the total practice of Oral and Maxillofacial Surgery by
Resident presentation, 2) have monthly case reviews, 3) discuss on a
monthly basis pertinent topics researched in the literature.
CROSS-LISTING: ORAL 6040.06, 7010.06, 8010.06

ORAL 5080.06: Clinical Oral and Maxillofacial Surgery.
Is presented during all 6 years of the MSc component of the program. A
major portion of the Graduate Student’s time will be spent in the provision
of Oral and Maxillofacial Surgical services for patients. Residents will be
given increasing responsibility for the care of out-patients in the Teaching
Unit and shall be responsible, through the Senior Resident, to the Chief of
the Service. The Senior Resident shall provide care for all in-patients under
supervision.
CROSS-LISTING: ORAL 6050.06, 7020.06, 8000.06

ORAL 6000.06: Anesthesia.
This is a four month rotation. Working with a tutor assigned monthly, the
Oral and Maxillofacial Surgery Resident will be supervised in pre-
operative and post-operative rounds, and in the minute-to-minute
administration of anesthesia in the operating room. Covered under
Medicine Curriculum.

ORAL 6010.06: Medicine.
The objectives of this one month rotation are: 1) to provide an overview
of the principles of general medicine; 2) to develop skills of assessing patients
in order to consult intelligently with the Department of Medicine; 3) to prepare for anestheia rotation. Covered under
Medicine Curriculum.

ORAL 6030.06: Oral and Maxillofacial Pathology.
CROSS-LISTING: ORAL 5060.06

ORAL 6040.06: Oral and Maxillofacial Surgery Seminar.
CROSS-LISTING: ORAL 5070.06

ORAL 6050.06: Clinical Oral and Maxillofacial Surgery.
CROSS-LISTING: ORAL 5080.06

ORAL 6060.06: Orthopaedics.
This is a two-month rotation with the main objectives being: 1) to provide
the resident with sufficient clinical experience to harvest bone solo from
the iliac crest; 2) to support the clinic skills in (1) with an appreciation of
general principles of bone management; 3) to allow participation in the
management and care of the polytraumatized patient.
Covered under Medicine Curriculum

ORAL 6070.06: Infectious Diseases.
This rotation is one month. The objectives of the rotation are: 1) to
participate in the management of patients who have been admitted to the
Infectious Diseases service; 2) to apply skills and knowledge acquired in
Microbiology class; 3) to acquire the skills of responsible and appropriate
use of antimicrobial agents. Covered under Medicine Curriculum

ORAL 6080.06: Emergency Medicine.
This is a one month rotation with its objectives being: 1) to participate in
the general management of patients in an emergency situation; 2) to apply
skills acquired on Orthopedics and Anesthesia in the management of the
emergency patient; 3) to manage and instruct Emergency Room staff in the
techniques of facial fracture treatment. Covered under Medicine Curriculum

ORAL 6090.06: Neurosurgery.
This is a one month rotation. Covered under Medicine Curriculum.

ORAL 7000.06: Oral and Maxillofacial Pathology.
CROSS-LISTING: ORAL 5060.06

ORAL 7010.06: Oral and Maxillofacial Surgery Seminar.
CROSS-LISTING: ORAL 5070.06

ORAL 7020.06: Clinical Oral and Maxillofacial Surgery.
CROSS-LISTING: ORAL 5080.06

ORAL 7030.06: Research.
The graduate student shall complete a research project and publish the
findings in a thesis, acceptable to the Senior Staff, Programme Director
and Faculty of Graduate Studies. All or animal studies pertaining to
research requirements shall be completed prior to January 1 of the final
year. The complete first draft of thesis shall be available to committee by
February 15, with the completed document ready by April 1 of the senior
year.
CROSS-LISTING: ORAL 9000.00

ORAL 8000.06: Clinical Oral and Maxillofacial Surgery.
Covered under 5080.06

ORAL 9000.00: Thesis.
Covered under 7030.06

V. Medicine
First Year
Second Year
Clinical Years (Full clinical rotations of all disciplines including those
specifically listed above.)

Please refer to the Four-Year Program in the undergraduate calendar for
Medicine.
Pathology

Location: Sir Charles Tupper Building, 11th Floor 5859 University Avenue P.O. Box 15000 Halifax, NS B3H 4R2 Telephone: (902) 494-2091 Fax: (902) 494-2519 Head of Department Heathcote, J.G. Graduate Coordinator Greer, W.L. Professors Anderson, D., M.D., FRCPC Blood transfusion therapy; thromboembolic disorders Blay, J., BSc (Brad, PhD (Cantab). Cancer, tumour microenvironment, cell surface proteins, mass spectrometric analysis of drug metabolites Fraser, R.B., MSC, MD (Dal), FRCP(C), FCAP, PP Greer, W.L., BSc, PhD (Western), FCCMG - Graduate Studies Coordinator. Human molecular genetics; molecular diagnosis of cancer Hanly, J., MD (University College, Cork, Ireland); Rheumatology Hoskin, D., BSc, PhD (McGill). Tumour immunology, cancer biology, apoptosis Issekutz, A., MD (Dal) FRCP (C) (major appointment in Department of Microbiology and Immunology). Pediatrics (inflammation) Issekutz, T., MD (Dal), FRCP (C). Pediatric immunology, inflammation Lee, P.W.K., PhD (Albera) Molecular Virology, Cancer Biology Lee, T., PhD (Glasgow) (major appointment in Department of Microbiology and Immunology). Immunoregulation, transplantation immunology and herbal medicine Marshall, J.S., BSc, PhD (Manchester) (major appointment in Department of Microbiology and Immunology). The role and regulation of mast cells in immune responses to bacteria, viruses and tumours, regulation of cytokines in inflammatory bowel diseases and asthma Nanji, A., MB, ChB, FRCP(C) (Path. Univ. of Nairobi) Medical biochemistry; liver pathophysiology Nassar, B.A., BSc (Beirut), PhD (Newcastle), MB, BCh (Cairo), FRCP(C). Essential fatty acids and prostaglandins; molecular diagnosis of hyperlipidemias; familial cancers; porphyrias Waisman, D., BSc. (Brandon), PhD (Manitoba), major appointment in Biochemistry and Molecular Biology Associate Professors Alwayn, I., MD, PhD (Leiden). Multiorgan Transplantation Easton, A., MBBS, PhD (Univ of London). Neuropathology Harrison, K., PhD, FCCMG (McMaster). Cytogenetics Hatchette, T. Hirsch, G., MD (Mt. Sinai). (major appointment in Department of Surgery) Surgery. Johnston, B., PhD (Calgary). Inflammation and immune response (major appointment in Department of Microbiology and Immunology). Livorsi, R., MD, PhD, FRCP(C) (Dal); hematopathology Riddell, D.C., BSc, PhD (Queen’s). Tumour suppressors; human molecular genetics Sadek, I., MB (Cairo) FRCP. Hematopathology West, K., MD (Western) Dendritic cells and their interaction with T cells and the immune response; transplantation Xu, Z., MD (Shanghai Medical University). Pulmonary pathology; cytopathology

Assistant Professors

Bedard, K., BS (StFX), MSc (Dal), PhD (Atlantic Veterinary College) Oxidative stress; molecular biology; functional genetics Berman, J., MD (Univ Toronto) major appointment in Pediatrics: Cancer, cell biology, zebrafish Davis, L, MD (Univ of Toronto). Infectious Diseases, Microbiology Delaire, G., BSc, PhD (McGill). Cancer biology, DNA repair Hancock Friesen, C., MD, MSc (University of Alberta). Cardiology; transplant immunology Huang, W-Y., MD (Taipei), PhD (Univ Toronto): Anatomic Pathology Koupaei, R., DCC (Univ Toronto), PhD (Bern, Switzerland): Biochemistry Leblanc, J., PhD (Dal): Virology, immunology and molecular epidemiology Legaré, J.F., MD (McGill). Transplantation and mechanism of heart failure (major appointment in Microbiology and Immunology MacLellan, D., MD, BSc. Urinary tract anomalies, proteomics Morash, B., BSc (MSVU), PHD (Dal). Cyto genetics.

Research for the MSc degree may be conducted in experimental pathology and/or allied fields of medical sciences (e.g. clinical chemistry, hematopathology, histopathology or molecular pathology and molecular genetics) for those planning a career as a laboratory scientist

I. Admission Requirements

Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies. In addition, candidates with the MD degree may be admitted.

A. Master of Science (MSc) in Pathology

This program is intended to give the student a strong background in the experimental approach in pathology. Although the program may be completed in 12 months, most students require 24 months.

The research work and thesis defence are valued at 3 credits. All students are required to attend and participate in the research seminar program (PATH5901.03) for a credit value of ½. Those students without a medical background are required to take PATH5000, Introductory Pathology for a credit value of ½. Other classes may be required depending upon the background of preparation of the student, the nature of their thesis or the student’s career goals, bringing the total requirement to 5.0 credits.

Candidates are expected to participate as appropriate in a weekly series of seminars or journal clubs in immunopathology, laboratory medicine or molecular pathology/genetics.

Research and a thesis are required. The thesis must be defended by oral examination which covers the candidate’s area of study and research. Yearly presentations to the Department are required of every candidate.

B. Doctor of Philosophy (PhD) in Pathology

Pre-requisite for acceptance into this program is an MSc degree in Pathology or other Life Sciences field or an MD degree with research experience. Students entering from a BSc would first enter the MSc program but could transfer to the PhD before completing the MSc provided that the student had made satisfactory progress and the project had sufficient scope and depth. Class requirements are the same as for MSc students. Candidates are required to pass both a written and oral comprehensive examination, but the most significant requirement is the preparation and oral defense of his/her thesis describing an extensive original investigation. The minimum time requirement for PhD study is two years for students with an MSc or three years for those transferring from an MSc program.

C. MD/PhD in Pathology

Applications to this program could be considered once the candidate has been accepted into medical school.
II. Class Descriptions

PATH 5000.03: General Pathology.
This class covers basic systems and processes in pathology.
INSTRUCTOR(S): W.Y. Huang

PATH 5001.03: Advanced Mechanisms of Pathology.
This class will provide an in-depth study of such topics as cell injury, adaptation and repair and inflammatory mechanisms followed by specific diseases of the cardiovascular, central nervous, gastrointestinal and genitourinary systems.
NOTE: Not offered in 2011/12
INSTRUCTOR(S): A. Easton

PATH 5011.03: Biochemistry of Clinical Disorders I.
This class is an introduction to the pathophysiology of disease. It provides the clinical and biochemical background to disease groups and system disorders and the laboratory approach to their diagnosis. Topics include cardiovascular, renal, gastrointestinal and hepatobiliary disorders, in addition to acid-base, blood and immune abnormalities.
INSTRUCTOR(S): R. Koupaie CROSS-LISTING: BIOC 4811.03/5811.03

PATH 5012.03: Biochemistry of Clinical Disorders II.
This class is an introduction to the pathophysiology of disease. It uses the same approach as PATH 5011.03 but different groups of diseases are discussed. Topics include carbohydrate, lipid and amino acid disorders; endocrine and rheumatological diseases, as well as tumor markers and toxicology.
INSTRUCTOR(S): R. Koupaei CROSS-LISTING: BIOC 4812.03/5812.03

PATH 5027.03: Molecular Mechanisms of Cancer.
An in-depth study of the molecular and genetic basis of cancer. The multi-step nature of carcinogenesis will be the broad basis for studying oncogenes, tumour suppressor genes, genes regulating differentiation and apoptosis, and cancer susceptibility genes. Certain molecular biology techniques will be discussed in order to fully understand the molecular events of cancer.
INSTRUCTOR(S): P. Lee, D. Waisman CROSS-LISTING: MICI 4027.03/5027.03, BIOC 4027.03

PATH 5035.03: Human Genetics.
Topics include inborn errors of metabolism, human development, transmission genetics, DNA structure, gene function, mutation and chromosomal alterations, population genetics, genetics of immunity and cancer, genetic technology in medicine and ethical and social issues related to medical genetics.
INSTRUCTOR(S): Drs. W.L. Greer, D.C. Riddell CROSS-LISTING: BIOL 4035.03/5035.03/BIOC 4835.03

PATH 5040.03: Pathobiology of Cancer.
This class will outline the pathobiology of neoplasia. It will discuss both normal and abnormal mechanisms of cell growth and differentiation since cancer is ultimately a disease of these processes. The basic biology of carcinogenesis and behaviour of tumours will be highlighted. The clinical aspects of cancer management will also be presented.
INSTRUCTOR(S): G. Dellaire CROSS-LISTING: BIOC 5040.03

PATH 5050.03: Immunopathology.
This class will explore the intricacies, functions and abnormalities of the immune system. Both the humeral and cellular arms of the immune system will be detailed. Immunological deficiencies and autoimmune diseases will be discussed. Clinical aspects of topics such as transplantation and tumour immunology will also be presented.
INSTRUCTOR(S): J. Jordan

PATH 5065X/Y.06: Directed Readings.
This class provides an opportunity for individual students to study, in depth, a subject related to pathology that isn’t offered as a formal class at Dalhousie. A supervisor is chosen for each student, based on his/her expertise and the topic of interest. The student and supervisor meet regularly to discuss assigned readings. The student must prepare a written paper or oral presentation to the Department each term.

III. Seminars - Conferences
A series of weekly seminars, journal clubs, and conferences is conducted throughout the year in various areas of pathology, and laboratory medicine.

IV. Areas of Specialization for MSc or PhD Degree
- Multiprogram Transplantation: I. Alwayn
- Hematology, Oncology: D. Anderson
- Oxidative stress; molecular biology: K. Bedard
- Cancer, cell biology: J. Berman
- Cancer, Tumor microenvironment: J. Blay
- Infectious Diseases; Microbiology: I. Davis
- Cancer biology, DNA repair: G. Dellaire
- Neuropathology: A. Easton
- Animal models of diabetes: R.B. Fraser
- Cardiology; Transplant Immunology: C. Hancock Friesen
- Human molecular genetics; molecular diagnosis of cancer: W.L. Greer
- Rheumatology: J. Hanly
- Cyto genetics: K. Harrison
- Medical Microbiology; infectious Disease : T. Hatchette
- Chronic rejection; allograft arteriosclerosis; vascular biology; cell adhesion molecules and T cell infiltration; cytolytic cell role in transplantation: G. Hirsch
- Tumor immunology: D. Hoskin
- Anatomic Pathology: W-Y. Huang
- Pediatrics (Inflammation): A. Issekutz
- Pediatric Immunology, Inflammation: T. Issekutz
- Inflammation and immune responses: B. Johnston
- Biochemistry: R. Koupaie
- Virology, immunology and molecular epidemiology: J. Leblanc

CLASS COORDINATOR: W. Greer
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

PATH 5066.03: Directed Readings.
See course description for PATH 5065X/Y.06

PATH 5067.03: Directed Readings.
See course description for PATH 5065X/Y.06

PATH 5091X/Y.03: Pathology Research Seminar Series.
The objectives of this class are: 1) to provide a forum for graduate students to develop skills at presenting seminars; 2) to provide constructive evaluation of their research; and 3) to promote interaction between students and faculty.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): W.L. Greer

PATH 5092.03: Pathology Research Seminar.
See course description for PATH 5091X/Y.03

PATH 5093.03: Pathology Research Seminar.
See course description for PATH 5091X/Y.03

PATH 5100.03: Processes and Mediators of Inflammation.
The objectives of this class are to provide students with an in-depth understanding of the major mechanisms of inflammation at a molecular and cellular level; to introduce students to the current research questions and emerging methods of treatment for inflammation; to develop student critical appraisal skills as they relate to the current scientific literature in this area.
INSTRUCTOR(S): B. Johnston CROSS-LISTING: MICI 4100.03, 5100.03

PATH 9000.00: MSc Thesis.

PATH 9530.00: PhD Thesis.
Periodontics

Location: Department of Dental Clinical Sciences
Faculty of Dentistry
Dalhousie University
5981 University Avenue
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-1912

Chair
Matthews, D., BSc, DDS (Alberta), Dip. in Perio (Toronto), MSc (McMaster), Periodontics

Director of Graduate Program
Ghiabi, E., BA (Haverford), DMD, M.Sc and Certificate in Periodontics (Harvard), Periodontics

Professors
Lee, S.F., BSc, PhD (Guelph), Microbiology and Immunology
Matthews, D., BSc, DDS (Alberta), Dip. in Perio (Toronto), MSc (McMaster), Periodontics

Associate Professors
Filiaggi, M.J., BSc Eng (Penn), MASc, PhD (Toronto), Biomaterials, Biomedical Engineering
Marquez, C., DDS (Mexico), MSc (Michigan), Periodontics

Assistant Professors
Ghiabi, E., BA (Haverford), DMD, M.Sc and Certificate in Periodontics (Harvard), Periodontics
Kraglund, F. B.Sc. (UNB), D.D.S. (Dalhousie), M.Sc. (Toronto), Comprehensive Care
Lee, CJ. B.Sc, M.Sc Pharmacy (Ottawa), D.D.S. (Dalhousie), Comprehensive Care
Li, Y.H., PhD, MSc (UM), DMD (WU), Microbiology and Immunology
Robertson, C., DDS (U of W Ont), MD, MSc (Dal), FRCD(C), Oral and Maxillofacial Surgery
Wright, T. B.Sc. Hon (Guelph), D.M.D. (Manitoba), M.Sc. Anatomy (Queen's), Diploma in Periodontics (Toronto), Periodontics

1. Admission Requirements
Candidate must have completed a minimum of an accredited four-year D.D.S. program and be eligible for student licensure in the Province of Nova Scotia (as granted by the Provincial Dental Board of Nova Scotia). A minimum of B average during the undergraduate dentistry program, with an A- average during the last two years of study is required. Candidates whose native language is not English must demonstrate proficiency in English language by obtaining a minimum score of 600 for the written TOEFL and 100 for the internet-based test or IELTS score of 7. For candidates whose undergraduate dentistry studies were completed outside Canada, GRE Aptitude and advanced scores in one of the sciences is required.

2. Program Description
This program will be a minimum of 3 consecutive academic years in length. Basic and clinical sciences instruction will be designed to be relevant to the specialty of Periodontics. Program instruction will consist of formal courses and/or seminars, conferences, reading assignments, hospital rounds, laboratory assignments and experience in either a clinical or laboratory research. Clinical management of patients will include a variety of experiences. Emphasis will be placed upon thoroughness of patient evaluation and accuracy in diagnosis and treatment planning in the treatment of both routine and complex cases. Students will be trained to the level of...
proficiency in the management of patients with periodontal diseases and mucogingival defects, including, but not limited to, healthy, geriatric patients and medically compromised patients. They will be trained to the level of proficiency in the management of patients with facial pain. They will become proficient in oral medicine and oral pathology as they relate to the periodontium, in managing patients requiring dental implant therapy and in conscious sedation techniques.

While this program is primarily aimed at developing clinical specialists, it is also intended to ensure students’ participation in a research experience related to the specialty of periodontics - either in a clinical or laboratory research topic as both an investigator and author, or in the production of a systematic review with meta-analysis. They will be expected to write a scholarly paper to a standard for publication in a refereed journal. A traditional literature review will not be acceptable. In addition, students may choose to take graduate level courses (selected in consultation with their advisor) that are related to their area of research interest. The other Faculty/School involved will be required to approve the student’s participation in the elective courses.

3. Degree Program

The successful completion of this program will lead to a Diploma in Periodontics and a Master of Periodontics.

4. Class Descriptions

Not all classes listed are necessarily offered in any given year.

PERI 5100.06: Basic Sciences for Graduate Dentistry.

Advances in dentistry and relevant topics in immunology, microbiology, molecular biology and functional genomics are presented. The structure and function of periodontal connective tissue cells and matrix, regulation of cells in periodontal connective tissues and bone and the ecology and physiology of microbes in dental biofilms will be explored.

PERI 5110.09: Clinical Periodontics I.

Presented in three didactic, laboratory and clinical modules, this course offers students basic and fundamental skills and knowledge required in treating patients who present with various forms of periodontal disease and those in need of dental implants.

PERI 5120.03: Evidence-Based Dentistry and Biostatistics in Graduate Dentistry.

This class will outline basic research designs and levels of clinical evidence. The dental clinical epidemiology component of this course will cover the scientific basis for clinical decision making in prognosis, causation, diagnosis, and therapy according to the principles of evidence-based health care. Examples from the dental literature are used to illustrate these concepts and their practical application. The Biostatistics section is designed to provide graduate students with a basic understanding of the statistical methods used for data analysis and literature interpretation.

PERI 6110.09: Clinical Periodontics II.

A continuum of Clinical Periodontics I, this course exposes students to more complex cases requiring more advanced treatment modalities. An evidence-based approach to treatment is emphasized throughout the course. Students are expected to document their cases according to the format established by the Royal College of Dentists of Canada (RCDC).

PERI 6160.03: Oral Medicine, Pathology and Radiology for Graduate Dentistry.

Various advanced imaging modalities in oral radiology will be presented. Emphasis will be placed on the interpretation of abnormalities in the oral and maxillofacial region encountered in the dental specialty practice. Oral soft and hard tissue pathologies involved in infections, developmental defects, reactive hyperplasia, benign and malignant tumors will be discussed.

PERI 7110.9: Clinical Periodontics III.

A continuum of Clinical Periodontics I and II, this course exposes students to more complex cases requiring more advanced treatment modalities. An evidence-based approach to treatment is emphasized throughout the course. Students are expected to document their cases according to the format established by the Royal College of Dentists of Canada (RCDC).

PERI 7130X/Y.07: Graduate Dentistry Seminars.

These classes cover many aspects of specialty practice not covered in other required classes. Students will present clinical cases they treated in the clinic according to the format established by the Royal College of Dentists of Canada.

PERI 7140.03: Hospital Rotation for Graduate Dentistry.

Special clinical rotations in implants, pediatric dentistry, oral medicine/diagnosis and treatment of facial pain and temporomandibular disorders. Students will also be exposed to training in single drug I.V. sedation techniques, and other conscious sedation methods.

PERI 7150X/Y.09: Literature Review in Periodontics.

Taught in a seminar format, this course exposes students to contemporary periodontal and dental implant literature, drawn from various peer-reviewed journals. Students are expected to read and critique the assigned papers and to be able to convey their findings.

PERI 7170X/Y.18: Research Practicum in Graduate Dentistry.

The course is designed to enhance the student’s critical analysis and presentation skills and expose students to research methodologies. Students will work directly with a faculty advisor in developing a research project, carrying out the research and preparing a presentation for a scientific audience and a manuscript for publication based on their completed research.

234 Periodontics
Petroleum Engineering

Location: Sexton Campus (A108)
Telephone: (902) 494-1288
Fax: (902) 420-7639
Email: gsr@dal.ca
Website: http://www.dal.ca/engineering/oilandgas

Graduate Coordinator
Pegg, M.J., BSc, PhD (Leeds), PEng

Faculty
Faculty members with appointments in the various disciplinary departments of the Faculty of Engineering and the Faculty of Science who are directly involved in teaching the core Petroleum Engineering program are:

- Fels, M., (PhD Waterloo; PEng). Air and water pollution control, process development
- Garagash, D., (PhD Minnesota). Fracture mechanics
- Hill, J., (PhD Waterloo). Environmental geology, petroleum geology
- Pegg, M.J., (PhD Leeds; PEng). Safety and loss prevention in the process industries, fire and explosion hazards
- Rockwell, M.C., (PhD TUNS; PEng). Petroleum engineering, reservoir engineering, mine and waste management, mine production engineering, ocean mining
- Wach, G.D., (PhD Oxford). Petroleum geology, sequence stratigraphic, seismic well log, basin analysis, sedimentology, depositional environments
- Yuet, P., (PhD MIT; PEng). Chemical Engineering. Characteristics of complex fluids, colloids and surfactants. Chemical engineering thermodynamics. Oil and gas exploration techniques

I. Introduction
Petroleum engineering at Dalhousie is viewed as a specialized professional discipline focused on the fundamental knowledge and skills associated with the production, transport and processing of petroleum products. The petroleum industry traditionally distinguishes between its “upstream” and “downstream” sectors. Engineers in the “upstream” sector focus on the transportation, processing, refining and distribution of petroleum products, while engineers in the “downstream” sector deal with oil and gas reservoir facilities and operations for exploration and production.

II. Degree Programs
MEng Degree in Petroleum Engineering
This degree program is designed primarily for graduate professional engineers seeking a thorough introduction to the field of petroleum engineering. The curriculum (academic year 2010-11) consists of a core set of six prescribed courses, one approved elective, a graduate seminar, and a project.

The core courses in petroleum engineering are:
- PETR 6010.03: Reservoir Engineering
- PETR 6030.03: Natural Gas Reservoirs
- PETR 6040.03: Drilling Engineering
- PETR 6060.03: Petroleum Geoscience
- PETR 6050.03: Production Technology
- PETR 6980.03: Directed Studies

Approved elective courses may be chosen from a variety of subjects to suit each student’s disciplinary background, oil and gas industry interests, and professional project area. Subjects include advanced classes in engineering disciplines and classes in law, economics, earth science, environmental studies and oceanography. Descriptions of these classes are in the Graduate Studies Calendar.

Engineering classes from various disciplines are available as electives for students of petroleum engineering. Examples include:
- CIVL 6147.03: Advanced Theory of Structures
- MECH 6701.03: Dynamics of Offshore Structures
- CIVL 6144.03: Geotechnical Aspects of Waste Management
- PETR 6020.03: Enhanced Oil and Gas Recovery
- CHEE 6737.03: Chemical Process Control
- MATEL 6014.03: Welding Metallurgy
- MATEL 6030.03: Fracture of Metallic Materials
- MINE 6010.03: Solid-Liquid Separation
- MINE 6001.03: Advanced Rock Mechanics
- MECH 6510.03: Advanced Mechanics of Solids
- ENGM 6662.03: Dynamics of Ocean Fluids
- FOSC 6333.03: Industrial Rheology
- IENG 6912.03: Introduction to Operations Research
- IENG 6924.03: Capital Investment and Capacity Expansion Planning
- IENG 6918.03: Decision Analysis
- ENGM 6674.03: Theory of Random Fields
- MINE 6008.03: Advanced Petroleum Engineering
- MINE 6009.03: Offshore Drilling and Production

Selections from this list are expected to be consistent with the student’s background, interest, and research or project area. Electives may also be chosen from the following list of classes in related disciplines:
- LAWS 2104.03: Environmental Law I
- ECON 5516.03: Resource and Environmental Planning
- ERTH 5270.03: Applied Geophysics
- ENVI 5004.03: Management of Chemicals and Wastes
- OCEA 5120.03: Introduction to Physical Oceanography

Both of these elective lists are illustrative and subject to revision.

III. Class Descriptions
PETR 6010.03: Reservoir Engineering.
Basic concepts, principles and techniques relating to hydrocarbon reservoirs from an engineering viewpoint. Properties of reservoir rocks and reservoir fluids are examined in association with developing an understanding of the dynamics of fluid flow in porous rock. Review of basic well logging instruments and determination of reservoir characteristics.

PETR 6020.03: Enhanced Oil and Gas Recovery.
Basic concepts and principles relating to primary, secondary and enhanced recovery of oil and gas. Reservoir simulation — model types and principles, methods of model formulation, particular aspects of gas reservoir modelling, reservoir case study data, use of commercial reservoir simulators, etc. Overall economic and environmental assessment of the development of oil and gas fields.

PETR 6030.03: Natural Gas Reservoirs.
Types of well tests and their use in analysis of reservoir production performance. Automated well logging data systems and well data analysis software applications. Case studies of gas reservoirs — e.g. the Sable gas fields. Introduction to reservoir production management (planning, performance analysis, forecasting, data management, and economics).

PETR 6040.03: Drilling Engineering.
Overview of drilling activities with an emphasis on offshore operations. Design of drilling tools (systems, drilling bits) and study of drilling techniques (directional, horizontal, MWD, etc.) and drilling fluids. Basic well completion (design requirements, materials, equipment, and procedures). Economic, health, safety and environmental aspects of drilling.
PETR 6050.03: Production Technology.
Overview of oil and gas production facilities with an emphasis on offshore situations. Engineering design and operation of wells, pipelines, and oil and gas processing equipment. Health, safety and environmental aspects of production operations.

PETR 6060.03: Petroleum Geoscience.
Petroleum exploration and hydrocarbon reservoirs from the perspective of professional geoscientists. Exploration methods (magnetic, gravity, seismic, borehole, telemetry, etc.) Subsurface and marine geology used to interpret measurement data. Generation and migration of petroleum, geological traps and seals, and sedimentary basins. Assessment of hydrocarbon reserves. Environmental impacts of exploration activities.

PETR 6980.03: Directed Studies in Petroleum Engineering.
This class provides an opportunity to pursue studies in a specific area of petroleum engineering in which no graduate classes are offered. Studies must be pursued according to a clear plan under the guidance of a designated faculty member.

PETR 6990.00: Graduate Seminar in Petroleum Engineering.
This seminar is designed for communication and discussion on the latest research and technical developments in petroleum engineering and the oil and gas industry. Each student is required to make an oral presentation, in accordance with Faculty guidelines, on a topic relating to his/her thesis or project work.

PETR 9000.00: MEng Project.

Pharmacology

Location: Sir Charles Tupper Medical Building, Sixth Floor 5850 College St. P.O. Box 15000 Halifax, NS B3H 4R2
Telephone: (902) 494-1384 Fax: (902) 494-1388 Email: pharmacology@dal.ca

Head of Department
Sawynok, J.

Graduate Coordinator
Denovan-Wright, E.M.

Professors
Blay, J., BSc (Brad), PhD (Cantab). Cancer, tumour microenvironment, cell surface proteins, mass spectrometric analysis of drug metabolites
Denovan-Wright, E.M., BSc, PhD (Dal). Molecular neurobiology, Huntington’s Disease, gene expression
Howlett, S.E., BSc (Concordia), MSc, PhD (Memorial). Cardiovascular pharmacology and electrophysiology, cardiac excitation-contraction coupling, heart disease
Kelly, M.E.M., BSc, PhD (Southampton). Ion channels, membrane transport, cell signaling, retinal neurobiology, ocular pharmacology
Robertson, G.S., BSc, PhD, (Dal). Neurodegenerative disorders, apoptosis, gene therapy, inflammation, drug discovery, genetic disease models
Sawynok, J., BSc, MSc (Melb), PhD (Queen's). Adenosine, ATP, nociception, spinal cord, inflammation, caffeine
Sinal, C., BSc, BSc (McMaster), PhD (UWO). Nuclear hormone receptor, cholesterol, liver, cholestasis, bile acid, gene regulation, atherosclerosis

Associate Professors
Fawcett, J., BSc, MSc, MSc(T) (McMaster), PhD (McGill). Axon guidance, proteomics, signal transduction
McDougall, J., BSc (Hons), PhD (Glasgow U. Scotland). Arthritis, pain, neurogenic inflammation, proteinase activated receptors, cannabinoids
Pasumarthi, K.B.S, DVM (India), PhD (Manitoba). Cardiac regeneration, cell cycle, myocyte apoptosis, cell transplantation, embryonic stem cells, gene expression, cloning, gene transfer and transgenic mice

Assistant Professors
Dupré, D.J., BSc, PhD (Sherbrooke). Adrenergic receptor, chemokines, signalling, chaperones
Pelis, R., BSc, MSc (U. of Massachusetts), PhD (U. of Connecticut). Pharmacokinetics, metabolism, transport, barrier epithelia, structure - activity relationships in transporters, drug-drug interactions, adverse drug reactions.

Cross Appointment
Goralksi, K., BSc (Hon) (Manitoba), PhD (Manitoba), Major Appointment in College of Pharmacy
Lehmann, Ch., PhD, MD (Humboldt University, Berlin), Major Appointment in Anesthesia

I. Admission Requirements
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies.

II. Degree Programs
The following are the MINIMUM requirements for our graduate programs.
A. MSc Pharmacology
Candidates must satisfactorily complete the following classes or their equivalents: 5405.03, 5406.03, 5508.03. Thesis research (9000.00), preparation and oral defense of a thesis are required.

B. MSc Pharmacology/Neurosciences
Candidates must satisfactorily complete the following classes or their equivalents: 5405.03, 5406.03, 5508.03, NESC 6100.06 (full credit). Thesis research (9000.00), preparation and oral defense of a thesis are required. Student Advisory Committees for this program must include an extradepartmental Neuroscientist faculty member.

C. PhD Pharmacology
Candidates must satisfactorily complete the following classes or their equivalents: 5405.03, 5406.03, 5509.03, and one (1) 5000 level class. For students transferring from a MSc program to PhD program or for students admitted directly to PhD program, a comprehensive examination (PHDP 8000.00) should be taken in the second year of the program or not later than the beginning of the third year. Thesis research (9530.00), preparation and oral defense of a thesis are required.

D. PhD Pharmacology/Neurosciences
Candidates must satisfactorily complete the following classes or their equivalents: 5405.03, 5406.03, 5507.03, 5509.03, NESC 6100.06. For students transferring from a MSc program to PhD program or for students admitted directly to PhD program, a comprehensive examination (PHDP 8000.00) should be taken in the second year of the program or not later than the beginning of the third year. Thesis research (9530.00), preparation and oral defense of a thesis are required. Student Advisory Committees for this program must include an extradepartmental Neuroscientist faculty member.

III. Class Descriptions

PHAC 5405.03: Advanced Pharmacology.
This required class is a vehicle for graduate students to gain practical familiarity with research level concepts in receptor pharmacology. The main theme is analysis of receptor-mediated events, both in terms of the interaction of a drug at its binding site and in terms of the transduction of that initial signal. Both classical and modern molecular approaches will be discussed. We will also consider related drug discovery strategies. The class has two sessions/week, one a didactic session to introduce concepts and the second a workshop session for discussion of practical assignments.
COORDINATOR: G. S. Robertson
PREREQUISITE: Normally required PHAC 5406 (Grade of B- or higher)

PHAC 5406.03: Introduction to Pharmacology I.
This introductory class is designed to acquaint students with the actions of drugs on physiological and biochemical functions in mammals including humans. Factors which affect the blood levels of drugs (absorption, distribution, metabolism, and elimination) will be considered, together with the mechanisms by which drugs act and their potential uses. The interaction of drugs with various body systems will be covered, including the central and peripheral nervous systems and the cardiovascular system. Drugs that assist or regulate host defence mechanisms will also be studied. Graduate students will also prepare a paper reviewing a selected drug.
COORDINATOR: S.E. Howlett
FORMAT: Lecture 3 hours
PREREQUISITE: A previous class in physiology and biochemistry is recommended. Extra reading may be required for students without these classes.
CROSS-LISTING: BIOL 4404.03, BIOC 4804.03 and NESC 4374.03

PHAC 5409.03: Introduction to Pharmacology II.
This class is intended to cover specific aspects of drug action not covered in PHAC 5406.03. The class includes: drug receptor signaling, ion channels, second messengers, G-proteins and immunopharmacology, plus specific consideration of drugs used for pain, inflammation, cancer, diabetes and asthma. Graduate students also will complete a research elective in a pharmacology research laboratory.
COORDINATOR: D. Dupré
FORMAT: Lecture 3 hours
PREREQUISITE: Phac 5406.03
CROSS-LISTING: BIOL 4407.03, BIOC 4806.03, NESC 4376.03

PHAC 5507.03: PhD Lectures (2).

PHAC 5508.03: (MSc)/5509.03 (PhD): Pharmacology Graduate Seminar.
A mandatory class that all graduate students must complete in order to graduate. Satisfactory performance in the class components is required throughout the degree programme in order for the student to be permitted to register for the course in their final year. The main objectives of the class are to provide opportunities for students to acquire experience in giving seminars and poster presentations to scientific audiences, and in assimilating and evaluating scientific information presented by others. There are three components to the class:
1. The Pharmacology Departmental Seminar Series. There are several seminars per year and attendance is mandatory for all graduate students. Students are often given the opportunity to meet informally with guest speakers. Graduate students are also expected to attend relevant seminars in other Faculty of Medicine and University Departments.
2. Faculty of Medicine Graduate Student Research Day. M.Sc. students are required to present a poster at the annual Faculty of Medicine Graduate Student Research Day in their second year of study (and annually thereafter for as long as they are in the programme). Ph.D. students must participate in the Faculty of Medicine Graduate Student Research Day in their second year of study and yearly thereafter. Presentation of a poster at a national or international conference is considered as equivalent to presenting at the Faculty of Medicine Graduate Student Research Day.
3. Presentation of departmental seminars during the Pharmacology Graduate Student Research Day. M.Sc. students present at least two times during their programme; Ph.D. students must present two Departmental Seminars over the course of their programme. Each student seminar is monitored by attending Faculty who provide oral and written feedback on their presentation.
DIRECTOR(S): Graduate Coordinator.

PHAC 5612.03: Clinical Trials.
This course is suitable for graduate students and medical residents. The main objective of the course is to provide an overview understanding of clinical trial methodology. Topics covered include: clinical evidence and different levels of evidence; the role of clinical trials in evidence-based medicine; types of clinical trials; search strategies; placebo; role of sample size, bias, inclusion/exclusion criteria; role of research ethics boards; quality control and trial registration.
COORDINATOR: J. Sawynok
FORMAT: Lecture and Discussion
PREREQUISITE: Permission of instructor

PHAC 5626.03/5627.03/5628.03: Special topics in Pharmacology.
Students interested in topics not covered in formal classes may ask the department for special classes to meet their needs. The fields in which the department can offer instruction are reflected in the list of faculty research areas. Since different subjects may be covered each year, each class in the series has a separate number.
NOTE: Review and discussion of relevant literature recorded through a brief written summary. Additional written component encompassing either a term paper or grant proposal; formal departmental seminar. A written outline of the proposed course of study must be submitted for review prior to final approval.
FORMAT: Discussion/Lecture
PREREQUISITE: Enrollment as a Dalhousie graduate student in good standing with permission from the students Supervisory Committee and the Pharmacology Graduate Coordinator. Students from departments other than Pharmacology are eligible to be enrolled, but require permission from the Graduate Coordinator of their own home department as well as the Pharmacology Graduate Coordinator.
PHAC 5755.3: Pharmacology and Therapeutics of Systemic Cancer Therapy.
This course is intended for students from a wide range of backgrounds, including graduate students in discovery research, medical residents and pharmacists or other health practitioners. Each session provides a balanced perspective between an understanding of how the drugs work and an explanation of their use in a clinical context. The new class will have a wider audience, including medical residents and pharmacists as well as graduate students in the basic sciences. The intent is to cross-fertilize between these different perspectives and enhance the training process.
COORDINATOR: J. Blay
FORMAT: Lecture/discussion
PREREQUISITE: Permission of the course administrators

PHAC 9000.00: MSc Thesis.
PHAC 9530.00: PhD Thesis.

Pharmacy

Location: Burbidge Building
5968 College Street
PO Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-2378
Fax: (902) 494-1396
Website: http://www.dal.ca/Pharmacy

Director of College
Caldwell, R.K., BSc (Pharm), MHSA (Dal)

Associate Director Research
Sketris, I.S., BSc (Pharm) (Toronto), PharmD (Minn), MPA (HSA) (Dal)

Graduate Coordinator
Jakeman, D.L., BSc, PhD (Sheffield)

Professors
Jakeman, D.L., BSc, PhD (Sheffield). Applications of enzymes and carbohydrates, protein engineering, medicinal chemistry.
Yeung, P.K.F., BSc (Pharm), MSc (Man), PhD (Sask). Pharmacokinetics, Drug Metabolism, and Biomarker Assessment.

Associate Professors
Agu, R., BPharm, MPharm (Pharmacology) (U Nigeria), MPharm (Pharmaceutics), PhD (Biopharmaceuticals) (Katholieke Universiteit, Belgium)
Goralski, K., BSc (Biochem/Micro), PhD (Pharmacology and Therapeutics) (Manitoba)
Jurgens, T., BSc(Pharm), MSc (Dal), PhD (Miss)
Massoud, E., MB, BCh (Cairo), MSc (Cairo), FRCSC (Royal College), Major Appointment in Surgery, Faculty of Medicine.

The goal of the Master of Science degree in Pharmaceutical Sciences program is to educate students to become high quality research-based scientists who can contribute to drug discovery and development in academia and the pharmaceutical industry.

I. Admission Requirements
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies. More specifically, the admission requirements and standards will be as follows:
1. Any international student, as applicable, will be required to demonstrate an ability to communicate and write in English (TOEFL > 600).
2. At least two letters of support.
3. Appropriate academic background. Students will be considered for acceptance into the Master of Science in Pharmaceutical Sciences via:
 i) a completed BSc(Pharm) or PharmD degree with a suitable letter of recommendation from a faculty member with first-hand knowledge of the potential students academic abilities.
 ii) a completed BSc (honors) degree (or equivalent demonstrated research experience) in a related scientific field, not limited to: pharmacology, biochemistry, chemistry, microbiology, chemical or biochemical engineering, with a suitable letter of recommendation from a faculty member with first-hand knowledge of the potential students academic abilities (e.g. thesis supervisor).
 iii) a completed MD, DVSSc, DDS, or equivalent with demonstrated research experience with a suitable letter of recommendation from a faculty member with first-hand knowledge of the potential students academic abilities (e.g. thesis supervisor).
Students without these prerequisites, that wish to be accepted into the program, may enroll in specific courses at Dalhousie in consultation with a potential graduate supervisor, in order to demonstrate their ability and aptitude. Subsequent entry into the MSc (Pharmaceutical Sciences) in a later academic year will be dependent upon satisfactory performance in the chosen courses and is not guaranteed.

General Regulations

All graduate students are required to carry out novel, original research. In addition, all graduate students are required, as part of their training, to present and participate in graduate student seminars, and to attend invited speaker seminars. The learning outcomes of this program are as follows:

- Students will be competent in performing general laboratory techniques as well as techniques specific to their chosen area of research.
- Students will be able to develop and execute a research project.
- Students will develop scientific writing skills through the writing of a thesis and scientific paper(s) that result from their research.
- Students will develop oral presentation skills through their participation in the seminar series and thesis committee meetings.
- Students will develop the ability and confidence to clearly and succinctly communicate the results of their research to the scientific community.
- Students will develop clinical thinking skills required of a researcher.

II. Degree Options

MSc Degree

Full-time Program

The Master of Science in Pharmaceutical Sciences program will normally be completed in two years of full-time study. Candidates must satisfactorily complete PHAR 5001.03 and a minimum of two of the elective classes. Candidates will be permitted to select alternative classes with the permission of the Graduate Coordinator and Research Supervisor. In addition, all students will be required to take the Integrated Health Research Training Program (http://www.ihrtp.ca). There will be no credit provided for this seminar series but there will be a notation on the student’s transcription following successful completion. Following completion of these courses, the students will complete PHAR 9000.00, their MSc thesis. The program will be structured using a combination of courses and thesis-based research, with a supervisor and supervisory committee overseeing progress. Financial support is available for all students accepted into the program, either from the student’s supervisor, funding within and available to the College of Pharmacy, or a combination of these sources.

Part-time Program

The full-time MSc class requirements and thesis regulations apply. The thesis must be supervised by a member of the College of Pharmacy.

III. Class Descriptions

A core graduate class (5001) and advanced classes (6000) are offered. The core class constitutes the main framework of a student’s formal class work, and is designed to be broad-based but at an advanced level. It is intended to help the student gain a wide understanding in several major areas of the pharmaceutical sciences and thus students are strongly encouraged to take some classes outside their area of specialization. Specialized classes provide the opportunity for in-depth study of selected topics which are more closely related to the student’s research area.

PHAR 5001.03: Pharmaceutical Sciences “From Drug Discovery to Therapeutics”

This class discussed the fundamental sciences involved in the discovery and development of new drugs. It presents an overview of the techniques used in each scientific field and the important role each plays in the drug discovery process.

FORMAT: Lecture/discussion/term-paper as per instructor 3 hours per week

PREREQUISITE: CHEM 3601.03 and BIOL 3200.03 (all grade B or higher) or B.Sc (Pharm) or by instructor’s consent

PHAR 6010.03: Bioactive Compounds from Plants.

The chemistry and pharmacology of medicinally important natural health products (NHPs) will be explored. Emphasis will be on factors that affect the quality of products and the impact on efficacy of NHPs.

INSTRUCTOR(S): T. Jurgens

FORMAT: Lecture/discussion 3 hours per week

PREREQUISITE: PHAR 5001.03 or by instructor’s consent

PHAR 6030.03: Drug Transporters in Pharmacology and Therapeutics.

Drug transporters exist in every organ in the body and can affect therapeutic responses to medications. Through a combination of lectures and student presentations the course will cover the major drug transporter families and examine the clinical importance of drug transporters with respect to drug absorption, distribution, elimination, efficacy and toxicity.

INSTRUCTOR(S): K. Goralski

FORMAT: A combination of lectures, student presentations and group discussions

PREREQUISITE: PHAR 5001 or PHAC 5406 and PHAC 5409 or PHYL 3323 or equivalent. Consent from the course instructor will be required for those students without these prerequisites

PHAR 6040.03: Pharmacokinetics, Metabolism and Biomarker for Preclinical and Clinical Drug Development.

The course provides lectures and laboratory experience in the concepts and techniques involved in pharmacokinetics, metabolism and biomarker science research for preclinical and clinical drug development.

INSTRUCTOR(S): P. Yeung

FORMAT: Didactic lectures and seminars (one hour/week) as well as laboratory demonstrations and experiments

PREREQUISITE: PHYL 3320.03, PHYL 3120.03; BIOL 3000.03; MICI 3115.03; FOSC 3010.03; CHEE 2420.03; BIOE 3241.03; BIOL 3050.03; or consent of instructor

PHAR 6050.03: Biopharmaceutical Aspects of Preclinical Drug Development.

The course will cover biopharmaceutical aspects of preclinical drug development including basic and advanced concepts in drug delivery using in vitro, in vivo and in silico approaches.

INSTRUCTOR(S): R. Agu

FORMAT: Lecture/discussion/term-paper

PREREQUISITE: Undergraduate courses in any of the following disciplines: Pharmacology, Pharmacology, Physiology, Biochemistry, Physical chemistry or other related courses

PHAR 6060.03: Chemical Biology: Understanding Biological Processes using Chemical Approaches.

This class discusses the use of chemical methods and techniques to probe biological systems. Examples will include the use of bi-functional molecules for delivery into cell systems to probe cellular function, approaches for affinity-based protein profiling and the use of chemical synthesis to identify potent enzyme inhibitors.

INSTRUCTOR(S): D. L. Jakeman

FORMAT: Lecture/discussion/seminar as per instructor 3 hours per week

PREREQUISITE: CHEM 3601.03 and BIOL 3200.03 (all grade B or higher) or B.Sc (Pharm) or by instructor’s consent

PHAR 9000.00: MSC Thesis.

A research thesis (PHAR 9000.00) comprising publishable work by the student will be carried out under the direct supervision of one of the faculty members of the College of Pharmacy (the principal supervisor) with expertise in the pharmaceutical sciences, subject to the regulations of the Faculty of Graduate Studies. The principal supervisor will be appointed to the College of Pharmacy and have earned a Ph.D. or have equivalent research experience, as judged by the faculty members of the College of Pharmacy, and be a member of the Faculty of Graduate Studies at Dalhousie University.
Philosophy

Location: 6135 University Avenue
PO Box 1500
Halifax, NS B3H 4R2

Telephone: (902) 494-3810
Fax: (902) 494-3518
Email: dalphil@dal.ca
Website: http://www.philosophy.dal.ca

Chairperson of Department
MacIntosh, D.

Graduate Coordinator
Hymers, M.

Professors Emeriti
Braybrooke, D., BA (Harvard), MA, PhD (Cornell), FRSC. Interests: Political philosophy
Campbell, R.M., BA (Harvard), PhD (Cornell), Munro Chair in Philosophy. Interests: Moral theory, epistemology, feminist theory, and philosophy of biology
Sherwin, S.B., BA (York), PhD (Stanford), FRSC, University Research Professor. Interests: Feminist theory, bioethics, ethics

Professors
Glazebrook, P., BA (Alberta), MA, PhD (Toronto). Interests: Environmental philosophy, philosophy of science, Heidegger
Hymers, M., BSc, MA (Dalhousie), PhD (Alberta). Interests: Epistemology, philosophy of language, Wittgenstein
MacIntosh, D., BA (Hons) (Queens), MA (Waterloo), PhD (Toronto). Interests: Philosophy of language and science, meta-ethics, decision theory, action theory, metaphysics
Schotch, P.K., PhD (Waterloo). Munro Chair in Metaphysics. Interests: Philosophy of logic and its applications to economic and moral philosophy
Vinci, T., BA (Toronto), PhD (Pittsburgh). Interests: Epistemology, philosophy of science, history of modern philosophy, decision theory

Associate Professors
Abramson, D., BA(Hons) (Toronto), MSc., PhD, (Indiana). Interests: Philosophy of computing, philosophy of cognitive science, and philosophy of mind
Meynell, L., BA (Hons) (York), MA (Calgary), PhD (Western). Interests: Philosophy of science, epistemology, feminist philosophy, and aesthetics.

Assistant Professors
Borgerson, K., BA (Saskatchewan), MA, PhD (Toronto). Interests: Philosophy of medicine, bioethics, philosophy of science, feminist philosophy
Jeffers, C., BA (Hons) (York), PhD (Northwestern). Interests: Africana Philosophy, Philosophy of Race, Ethics, Social & Political Philosophy
Scherkoske, G., BA (Hons) (Clark), MA (Simon Fraser and California), PhD (Cambridge). Interests: Moral and political philosophy, practical reasoning and history of philosophy
Tomsons, K., BA (Hons) (Acadia), MA (Queen's), PhD (Dalhousie). Interests: Applied ethics, feminist ethics, and feminist theory

Adjunct Professors
Barresi, J., BS (Brown), MA (Southern California), MS, PhD (Wisconsin)
Brett, N.C., BA (New Hampshire), MA, PhD (Waterloo)
Burns, S.A.M., BA (Hons) (Acadia), MA (Alberta), PhD (London)
Campbell, R.M., BA (Harvard), PhD (Cornell), Munro Chair in Philosophy.

Fenton, A., BA Hons. (Acadia), MA (Dalhousie), PhD (Calgary).
Kernohan, A., MA (Dalhousie), PhD (Toronto).
Maitzen, S.A., BA (Northwestern), MA, PhD (Cornell)
Schellenberg, J., BA, MA (Calgary), DPhil (Oxford)
Sherwin, S.B., BA (York), PhD (Stanford) FRSC.
Watkins, M., BA, MA (Tennessee), PhD (Ohio State)
Wein, S., BA Hons., MA, PhD, (Waterloo)

Cross-Appointment
Baylis, F., BA (McGill), MA, PhD (Western), FRSC. Canada Research Chair in Bioethics and Philosophy, (Cross-appointment with the Faculty of Medicine)

Each student’s program is arranged individually in consultation with the department in relation to the student’s interests and preparation. Enquiries should be addressed to the Graduate Studies Coordinator in the Department.

I. Admission Requirements
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies.

Application Deadline: January 31st

II. Degree Programs

A. Master of Arts (MA)
For minimum time required to complete this program, see the Faculty of Graduate Studies Regulation 1.3.1 in this calendar

One Year
For students with an Honours BA or equivalent in philosophy. Requirements include six half-credit classes (of which at least three are Seminar Classes) and a thesis.

Two Year
For those with an honours degree in a related field. Requirements include eight half-credit classes in the first year, six half-credit classes (of which at least three are Seminar Classes) in the second year, and a thesis.

Part-Time
A part-time MA over a longer period is available for fully qualified students.

B. Doctor of Philosophy (PhD)
For students with an MA in philosophy. For minimum time required to complete this program, see the Faculty of Graduate Studies regulations. Doctoral students are required to take six half-year classes (eighteen credit hours), including at least four Seminars (see “Class Descriptions” below) beyond the requirements for the MA. The program includes four comprehensive examinations in the 2nd year. Reading knowledge will usually be required in one language other than English in which a significant body of philosophical literature exists. Completion of the program requires original research on a project of substantial dimensions, culminating in the submission and oral defence of a thesis. This research should be in an area already well-established as a specialty by members of the department, such as, epistemology, ethics, bioethics, philosophy of mind, feminist philosophy, political and social philosophy, philosophy of language, or logic. Doctoral students are expected to present two papers at Departmental colloquia as part of their program of studies.

III. Class Descriptions
The Philosophy Department offers three kinds of graduate classes: General, Seminar, and Directed Study. General classes survey a wide range of topics and are designed to acquaint students with the major theories and developments in a field. They are suitable for those who have not specialized in the field as an undergraduate. Seminar classes, which assume some previous exposure to the subject, are central to the graduate program. Students in the MA program must take a minimum of three half-
year seminar classes (9 credit-hours) as part of their total (18 credit-hours). Students in the PhD program must take at least four half-year seminar classes (12 credit-hours) as part of their total (18 credit-hours). These Seminars are designed to deepen the student’s understanding of an area by focusing on a specific theme or problem. Directed Study classes are developed jointly by a student and the instructor in special cases to suit individual interests and needs. For example, a student with no previous training in modern symbolic logic would complete a directed study class. This may include attending a class that provides a comprehensive introduction to the subject and completing some additional work. These classes are subject to departmental approval.

NOTE: The classes listed are half-year, unless otherwise indicated, and not all are given in any one year. Instructors in seminar classes are likely to vary from year to year. Consult the department for further information.

General Classes

PHIL 5051.03: Epistemology.
A study of fundamental issues in the theory of knowledge. The class examines skepticism, and investigates the nature of knowledge, belief, meaning, evidence, and truth. Questions are raised about perception and memory and their relation to knowledge as are questions about our knowledge of ourselves and other people.
INSTRUCTOR(S): D. MacIntosh, G. Scherkeske
FORMAT: Lecture/discussion
CROSS-LISTING: PHIL 3051.03
EXCLUSION: PHIL 3010.06

PHIL 5105.03: Ethics.
A systematic study of the foundation of morality, including readings from central sources in both classical and contemporary moral theory.
INSTRUCTOR(S): D. MacIntosh, G. Scherkeske
FORMAT: Lecture/discussion
CROSS-LISTING: PHIL 3105.03
EXCLUSION: PHIL 3100.06

PHIL 5140.03: Logic: Logical Theory I.
An introduction to metalogic, with special attention to the soundness and completeness of formal systems, and to the philosophical evaluation of non-classical logics.
INSTRUCTOR(S): P.K. Schotch
FORMAT: Lecture/discussion
CROSS-LISTING: PHIL 3140.03
EXCLUSION: PHIL 3100.06

PHIL 5165.03: Logic: Logical Theory II.
Devoted primarily to the study of formal semantics and its relation to symbolic language.
INSTRUCTOR(S): P.K. Schotch
FORMAT: Lecture/discussion
PREREQUISITE: PHIL 2130.03 or equivalent
CROSS-LISTING: PHIL 3165.03

PHIL 5170.03: Contemporary Feminist Theories.
Contemporary feminism is not a single theory but comprises multiple theoretical perspectives, reflecting both a diversity in women’s experience of subordination and a diversity of interests and approaches. This class aims to present some of the richness and variety in feminist theory while offering students the opportunity for sustained critical engagement with influential feminist thinkers.
INSTRUCTOR(S): Staff
FORMAT: Lecture/discussion
CROSS-LISTING: GWST 3580.03, PHIL 3170.03

PHIL 5211.03: Philosophy of Law.
Is coercion central to law? How are law and morality related? What justification can be given for punishment? What is the appropriate scope of individual liberty? These and other issues relating to the analysis and evaluation of law will be considered. The class will examine the competing claims of the Positivist, Realist, and Natural Law accounts of law before turning to some normative issues concerning the justification of legal practice.
INSTRUCTOR(S): K. Tomsons
FORMAT: Lecture/discussion
CROSS-LISTING: PHIL 3211.03

PHIL 5300.03: Philosophy of Language.
What does it mean to say that the elements of language have meaning?
INSTRUCTOR(S): D. MacIntosh, M. Hymers
FORMAT: Lecture/discussion
PREREQUISITE: Two previous classes in Philosophy including one logic class, half or full-year
CROSS-LISTING: PHIL 3300.03

PHIL 5420.03: Philosophy of Biology.
This class provides an up-to-date examination of the central issues in the philosophy of biology. Topics typically include: How far can the Darwinian paradigm be taken to explain adaptive complexity? Is the new emphasis on developmental theory likely to revolutionize evolutionary theory? What are the most fundamental units of selection? Can the concept of biological function be understood without attributing purpose to nature? Why is the concept of species so elusive? Is there a human nature? Is genuine altruism possible given the forces of selection? Is there progress in evolution? How should clashes between faith and reason over the nature of our evolution be resolved?
INSTRUCTOR(S): L. Meynell
FORMAT: Lecture/discussion
CROSS-LISTING: BIOL 3580.03, PHIL 3420.03

PHIL 5445.03: Philosophy of Mind: The Mind-Body Problem.
This class will critically examine philosophical and scientific articles, and possibly short works of fiction, which explore various theories, problems and arguments regarding the status of minds in the physical world and the relationships between mind, body and world. We will explore and discuss controversies regarding the thesis that the mind is (nothing but) the brain, and issues such as the theoretical foundations of artificial intelligence, the problem of subjectivity and consciousness, “naturalized” intentionality (how thoughts—if they are physical things or processes—can have the property of being about other things), and animal cognition.
INSTRUCTOR(S): D. Abramson
FORMAT: Lecture/discussion
PREREQUISITE: Two previous classes in philosophy
CROSS-LISTING: PHIL 3445.03
EXCLUSION: PHIL 5440.03

PHIL 5450.03: Philosophy of Emotions.
We will concentrate on the resurgence of philosophical interest in the emotions over the last twenty years. Although it is obvious that much human action is emotionally driven, traditionally many philosophers have expressed skepticism about the value of emotions to rational and ethical conduct. Recently, philosophers such as Martha Nussbaum, Amelie Rorty and Ronald De Sousa have argued that rationality requires emotions. Other philosophers have argued that we need a renewed assessment of the epistemic importance of emotion in revealing power and value. Topics will include emotional rationality; emotion and value; first person authority; cognitive, social constructivist and psycho-evolutionary approaches; emotion and feminist epistemology; emotion, power and racial construction.
INSTRUCTOR(S): Staff
FORMAT: Lecture/discussion
PREREQUISITE: Two previous classes in Philosophy
CROSS-LISTING: PHIL 3450.03

PHIL 5455.03: Philosophy of Mind: Personal Identity.
A systematic study of theories of personal identity. We will look not only at classic analytic thought experiments about identity in authors like Bernard Williams and Derek Parfit, but also at literary treatments of metamorphosis and at political texts that call upon persons to undertake identity shifts. Our interest will be in what these texts indicate about the nature of personal continuity from within a view of persons as socially constituted.
INSTRUCTOR(S): Staff
FORMAT: Lecture/discussion
PREREQUISITE: Two previous classes in philosophy
CROSS-LISTING: PHIL 3455.03
EXCLUSION: PHIL 5440.03
PHIL 5476.03: Liberalism and Global Justice.
This is a course in normative political theory. We will critically examine some recent normative political theory, and then examine the prospects and perils of attempts by recent liberal theory to articulate a principled vision of global justice. We will consider Rawls' original bounded theory of justice and examine some challenges it faces from both cosmopolitan theories of justice and proponents of nationalism. Next we'll consider rival conceptions of liberal international justice, and Rawls' response in the form of his recent The Law of Peoples. Concluding, we will examine specific issues of applied political justice (namely, human rights and immigration) as well as issues of economic and social justice and poverty.
INSTRUCTOR(S): G. Scherkoske
FORMAT: Lecture/discussion
PREREQUISITE: 2 courses in Philosophy or Political Science or permission of instructor
CROSS-LISTING: PHIL3476.03, POLI 3476.03, POLI 5476

PHIL 5530.03: Freedom, Action, and Responsibility.
An investigation of the nature of action, seeking criteria for individuating, describing, and explaining actions. Topics may include the roles of volitions, intentions, motives, and reasons in actions; responsibility for actions and the concept of free action.
INSTRUCTOR(S): P.K. Schotch, D. MacIntosh
FORMAT: Lecture/discussion
CROSS-LISTING: PHIL 3530.03

PHIL 5630.03: History of Philosophy: Kant.
In this class we study Kant's theoretical philosophy, centering on the two editions of the Critique of Pure Reason, the Prolegomena and some of the earlier writings, including the 1768 (pre-critical) writing, Regions of Space.
INSTRUCTOR(S): T. Vinci
FORMAT: Lecture/discussion
CROSS-LISTING: PHIL 3630.03

PHIL 5635.03: History of Philosophy: 19th-Century Philosophy.
This class will study the major figures in 19th-century philosophy between Kant and Russell: Fichte, Hegel, Schopenhauer, Marx, Kierkegaard, Mill, Nietzsche, James and Bradley. Attention will also be paid to some important figures in related arts and sciences (e.g., Beethoven, Wagner, Ibsen, Freud, Feigl). We shall trace the main lines of development in epistemology and metaphysics as well as in ethics and political philosophy.
INSTRUCTOR(S): Staff
FORMAT: Lecture/discussion
CROSS-LISTING: PHIL 3635.03

PHIL 5640.03: History of Philosophy: Twentieth-Century Philosophy.
The Twentieth Century has been a period of revolutionary change in Anglophone philosophy. This class surveys the most influential figures, including Wittgenstein, Quine, Moore and Austin.
INSTRUCTOR(S): D. MacIntosh
FORMAT: Lecture/discussion
CROSS-LISTING: PHIL 3640.03

PHIL 5650.03: Modern Philosophy.
“Modern Philosophy” refers to a philosophical perspective that arose during the great advances of Western science in the 17th and 18th centuries. Modern Philosophy seeks to advance the thesis that persons are beings with conscious thoughts (ideas) and that all of the interesting forms of contact people have with the world - perceptual, semantic, epistemic, casual - are mediated by conscious thoughts. Modern Philosophy also seeks to reconcile this thesis with the scientific/materialistic image of the world then emerging. This class involves a study of the systematic properties of this perspective employing both historical primary sources and contemporary commentary. (This class is designed to complement PHIL 5660.03 but can be taken independently.)
INSTRUCTOR(S): T. Vinci
FORMAT: Lecture/discussion
CROSS-LISTING: PHIL 3650.03

PHIL 5660.03: Postmodern Philosophy.
Modern philosophy is a philosophical perspective in which individuals and their conscious thoughts are paramount. Postmodern philosophy rejects this perspective, replacing it with one in which language and society are paramount. We shall study this perspective in the writings of post-Wittgenstein philosophers like Rorty in the English-speaking world as well as those like Derrida, Irigaray and Habermas on the Continent.
PHIL 5125.03: Topics in Ethics II.
INSTRUCTOR(S): G. Scherkoske

PHIL 5190.03: Topics in the History of Philosophy I: Wittgenstein.
In this seminar class, students focus on a particular topic in the History of Philosophy and investigate it in detail. When the class is offered, the topic is assigned by the Department at the end of the preceding academic year and is then posted at the Department and in the Faculty’s timetable on the Web.
INSTRUCTOR(S): M. Hymers
FORMAT: Seminar
CROSS-LISTING: PHIL 4190.03

PHIL 5191.03: Topics in the History of Philosophy II.
In this seminar class, students focus on a particular topic in Modern Philosophy (e.g., the work of Descartes or Spinoza) and investigate it in detail. When the class is offered, the topic is assigned by the Department at the end of the preceding academic year and is then posted at the Department and in the Faculty’s timetable on the Web.
INSTRUCTOR(S): Staff
FORMAT: Seminar
CROSS-LISTING: PHIL 4191.03

PHIL 5192.03: Topics in the History of Philosophy III.
In this seminar class, students focus on a particular topic in Modern Philosophy (e.g., the work of Locke or Hume) and investigate it in detail. When the class is offered, the topic is assigned by the Department at the end of the preceding academic year and is then posted at the Department and in the Faculty’s timetable on the Web.
INSTRUCTOR(S): Staff
FORMAT: Seminar
CROSS-LISTING: PHIL 4192.03

PHIL 5200.03: Topics in Normative Theory.
In this seminar class, students focus on a particular topic in Normative Theory (e.g. Environmental Justice, Meta-Ethics, Peace and War, Evolutionary Ethics) and investigate it in detail. When the class is offered, the topic is assigned by the Department at the end of the preceding academic year and is then posted at the Department and in the Faculty’s timetable on the Web.
INSTRUCTOR(S): G. Scherkoske
FORMAT: Seminar
CROSS-LISTING: PHIL 4200.03

PHIL 5215.03: Topics in Philosophy of Law.
In this seminar class, students focus on a particular topic in the Philosophy of Law and investigate it in detail. When the class is offered, the topic is assigned by the Department at the end of the preceding academic year and is then posted at the Department and in the Faculty’s timetable on the Web.
INSTRUCTOR(S): Staff
FORMAT: Seminar
CROSS-LISTING: PHIL 4215.03

PHIL 5220.03: Contemporary Philosophical Issues.
Intensive study of a few topics which are currently being debated and may fall outside of or cut across standard classification of areas of interest. Examples are: evolution and value, philosophical accounts of “race” and culture, artificial intelligence, theories of causation, supervenience.
INSTRUCTOR(S): Staff
FORMAT: Seminar
CROSS-LISTING: PHIL 4220.03

PHIL 5470.03: Contemporary Liberalism and Democracy.
Liberalism takes a variety of forms and includes many topics including the rule of law, limited government, the free exchange of goods, entitlement to property, the self, and individual rights. Its philosophical and political assumptions provide the intellectual context within which its account of the individual, its vision of the community and its preferred allocation of resources will be assessed.
INSTRUCTOR(S): G. Scherkoske
FORMAT: Seminar
CROSS-LISTING: POLI 4479.03/5479.03, ECON 4446.03/5446.03, PHIL 4470.03

PHIL 5480.03: Social Choice Theory.
Arrow’s theorem brings together the theory of voting and welfare economics, seemingly leading both (and the theory of democracy as well) to ruin. This class will consider how to cope with the problem.
INSTRUCTOR(S): P.K. Schotch
FORMAT: Seminar
CROSS-LISTING: POLI 5480.03, ECON 5448.03

PHIL 5500.03: Topics in Feminist Philosophy: Embodiment and Agency.
In this class we shall explore some of the current research in a focused area of feminist philosophy. Previous topics have included feminist ethics, feminist epistemology, postmodern feminism, the feminist sexuality debates, and ecofeminism.
INSTRUCTOR(S): L. Meynell, K. Tomsons
FORMAT: Seminar
CROSS-LISTING: GWST 5500.03, PHIL 4500.03

PHIL 5510.03: Topics in Philosophy of Language.
In this seminar class, students focus on a particular topic in the Philosophy of Language and investigate it in detail. When the class is offered, the topic is assigned by the Department at the end of the preceding academic year and is then posted at the Department and in the Faculty’s timetable on the Web.
INSTRUCTOR(S): M. Hymers
FORMAT: Seminar
CROSS-LISTING: PHIL 4510.03

PHIL 5580.03: Topics in Philosophy of Science.
In this seminar class, students focus on a particular topic in the Philosophy of Science and investigate it in detail. When the class is offered, the topic is assigned by the Department at the end of the preceding academic year and is then posted at the Department and in the Faculty’s timetable on the Web.
INSTRUCTOR(S): K. Borgerson
FORMAT: Seminar
PREREQUISITE: Graduate student or permission of the instructor.
CROSS-LISTING: PHIL 4580.03, BIOT 5801.03

PHIL 5855.03: Topics in Metaphysics.
In this seminar class, students focus on a particular topic in Metaphysics and investigate it in detail. When the class is offered, the topic is assigned by the Department at the end of the preceding academic year and is then posted at the Department and in the Faculty’s timetable on the Web.
INSTRUCTOR(S): D. MacIntosh, P. Schotch
FORMAT: Seminar
CROSS-LISTING: PHIL 4855.03

PHIL 9000.00: MA Thesis.

PHIL 9530.00: PhD Thesis.

PHIL 9560.03/5980.03; 5970X/Y.06/5990X/Y.06: Directed Study Class.

PHIL 9000.00: MA Thesis.

PHIL 9530.00: PhD Thesis.
Physics and Atmospheric Science

Location: Sir James Dunn Science Building
P.O. Box 15000
Halifax, NS B3H 4R2

Telephone: (902) 494-2337
Fax: (902) 494-5191
Website: http://www.physics.dal.ca
Email: physics@dal.ca

Chairperson of Department
Rotermund, H.H. (494-2342)

Graduate Coordinator
Martin, R. (494-3915), Randall.Martin@dal.ca

Coordinator, Atmospheric Science
Drummond, J.R. (494 2324)

Professors Emeriti
Betts, D.D., BSc, MSc, Dalhousie, PhD (McGill), FRSC - Research
Jericho, M.H., BSc, MSc, Dalhousie, PhD (Cantab), FRSC
Stroink, G., BSc, MSc (Delft), PhD (McGill), PEng

Professors
Dahn, J.R., BSc (Dalhousie), MSc, PhD (UBC), FRSC, NSERC/3M Canada Inc. Industrial Research Chair, Canada Research Chair in Materials for Batteries and Fuel Cells, cross appointment with Chemistry, cross appointment with Process Engineering and Applied Science
Drummond, J.R., BA, MA, PhD (Oxford), FRSC-Canada Research Chair, Remote Sensing of Atmospheres
Dunlap, R.A., BS (Worcester), AM (Dartmouth), PhD (Clark), Director, Institute for Research in Materials, cross appointment with College of Sustainability
Geldart, DJ, W., BSc (Acadia), PhD (McMaster), FRSC - Research
Hill, I.G., BSc, PhD (Queen’s)
Kreuzer, H.J., MSc, DSc (Bonn), FRSC - A.C. Fales Professor of Theoretical Physics
Martin, R.V., BS (Cornell), MSc (Oxford), MS, PhD (Harvard), Killam Professor, cross appointment with Environmental Programs, Chemistry
Rotermund, H.H., PhD (Berlin), George Munro Professor of Physics
White, M.A., BSc (UWO), PhD (McMaster), University Research Professor, primary appointment with Chemistry
Zwaniger, J., W., BA (Chicago), PhD (Cornell), Canada Research Chair in NMR Studies of Materials, primary appointment with Chemistry

Associate Professors
Bonev, S.A., MSc (Dalhousie), PhD (Cornell)
Duck, T., BSc, PhD (York)
Folkins, I., BSc (Dalhousie), MSc, PhD (Toronto), cross appointment with Oceanography
Hall, K.C., MSc, PhD (Toronto), (Canada Research Chair in Ultra Fast Science)
Hewitt, K., BSc (Toronto), PhD (Simon Fraser), P PHYS
Kreplak, L., MSc (Sapellec), PhD (Univ. Paris XI)
Krykiadikis, J., BSc, MSc (Dalhousie), PhD (Basil)
Labrie, D., BSc (Montreal), MSc, PhD (McMaster)
Lesins, G.B., PhD (Toronto), Research
Maksym, G.N., PhD (McGill), primary appointment in the School of Biomedical Engineering
Monchesky, T., BASc (Toronto), PhD (Simon Fraser)

Rober, J., MSc (McGill), PhD (UBC), primary appointment with Radiation Oncology
Rutenberg, A.D., BSc (Toronto), PhD (Princeton)

Assistant Professors
Hall, M., PhD (UNB), primary appointment with Radiation Oncology, Dalhousie
Pierce, J., BS (Northeastern), PhD (Carnegie Mellon)
Wells, S.M., BSc (Western), PhD (Toronto), (NSERC University Faculty Award)

Adjunct Professors
Azzouz, M. PhD (J.F., France), Physics & Astronomy, Laurentian University
Bennett, C., PhD (Waterloo), Physics, Acadia U.
Beyea, S., PhD (UNB), National Research Council of Canada
Bowen, C., PhD (UWO) Institute for Biodiagnostics, NRC
Butler, M., PhD (Caltech), Astronomy and Physics, SMU
Grabtschak, S., PhD (UPEI)
Greatbatch, R., BSc (Liverpool), PhD (Cambridge), University of Kiel in Germany
Hornridge, D., PhD (U of Saskatchewan) Physics, Mount Allison
Kanungu, R., PhD (Calcutta U), Astronomy & Physics, SMU
Purcell, C., PhD (Dalhousie), Defence Research and Development Canada
Ritchie, H., MSc, PhD (McGill), Meteorological Service of Canada-Atlantic
Robertson, M., PhD (Waterloo), Physics, Acadia U.
Sarty, A., PhD (U of Saskatchewan), Astronomy and Physics, SMU
Schmidt, P., PhD (Michigan)

Postdoctoral Fellows/Research Associates
Bayinder, Z., PhD (Clark University)
Bousserez, N., PhD (U Toulouse III)
Byrne, T., MSc (Dalhousie)
Croft, B., PhD (Dalhousie)
Gagne, S., PhD (U. Helsinki)
Kharol, S., PhD (Andhra)
LeBlanc, L., MSc. (U of Waterloo)
Nayak, C., PhD (Cochin University, India)
Romero, J., PhD (Syracuse)
Sanderson, R., PhD (Dalhousie)
Sinha, N., PhD (IIT, Bangalore)
Stevens, D., PhD (Dalhousie)
Suei, S., PhD (Cochin University, India)
Wang, M., PhD (Tsinghua University)
Yildirim, M., PhD (Iowa)

I. Introduction
The Department of Physics and Atmospheric Science offers both masters and doctoral degree programs. Research in the department has an interdisciplinary approach with major activities in: Atmospheric Science, Biophysics, Condensed Matter Physics, Materials Science, Surface Science, Photonics, and Computational Physics and involves collaborations with other units such as Biomedical Engineering, Chemistry, Mathematics, Medicine, and Oceanography, as well as government and industrial laboratories. Research facilities include a large array of sample preparation and analytical tools as well as extensive computational facilities. The most up-to-date information about our graduate programs, admission requirements, academic regulations, graduate classes and research activities is available at our Website: http://www.physics.dal.ca

II. Admission Requirements
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies. An MSc is the normal admission requirement for the PhD program. It is recommended that all international students provide the Department with an official copy of the Advanced Graduate
III. Degree Programs

A. Master of Science (MSc)
For minimum time required to complete this program, see the Faculty of Graduate Studies Regulation 1.3.1 in this calendar.

At least two full credit classes are normally required. Research, preparation, and oral defense of a thesis are required.

B. Doctor of Philosophy (PhD)
For minimum time required to complete this program, see the Faculty of Graduate Studies regulations in this calendar.

At least one and a half full credit classes are normally required and additional classes may be specified by supervisory committees.

A preliminary oral examination must be completed successfully.

Research and the preparation and oral defense of a thesis are required.

The PhD degree will be granted primarily on the basis of the candidate’s ability to carry through original investigation. Part of the evidence of this will be acceptance of scientific material for publication in refereed journals and the preparation of a satisfactory thesis.

IV. Class Descriptions

5000-level classes are fourth-year undergraduate classes which may be taken for graduate credit in certain circumstances. They are normally taken by new graduate students having background deficiencies in specific areas. 6000-level classes are full graduate classes.

All graduate students are required to attend and participate in regular departmental seminars.

A selection of the following graduate classes will be offered subject to demand.

PHYC 5100.03: Electromagnetism.
Topics will normally include electrostatics and magnetostatics, boundary value problems, fields in matter, time-dependent phenomena. Maxwell’s equations, electromagnetic waves, radiation.
FORMAT: Lecture 3 hours
PREREQUISITE: PHYC 2510.03, 4160.03; MATH 3110.03/3120.03; or the permission of the instructor

PHYC 5151.03: Quantum Physics II.
This class is a continuation of PHYC 3460.03. Topics include: time-independent perturbation theory, the variational principle, the WKB approximation, time-dependent perturbation theory, scattering, Born approximation.
PREREQUISITE: PHYC 3460.03

PHYC 5152.03: Quantum Physics III.
Topics covered can include scattering theory, symmetries, relativistic quantum mechanics, second quantization, many-body systems and quantum applications in materials science.
FORMAT: Lecture 3 hours
PREREQUISITE: PHYC 5151.03

PHYC 5160.03: Mathematical Methods of Physics.
Topics discussed include: complex variable theory, Fourier and Laplace transform techniques, special functions, partial differential equations.
FORMAT: Lecture 3 hours
PREREQUISITE: PHYC 2140.03, MATH 3120.03 or permission of the instructor

PHYC 5170.03: Topics in Mathematical Physics.
This class is a continuation of PHYC 5160.03 and deals with special topics in mathematical physics selected from areas such as the Green’s function technique for solving ordinary and partial differential equations, scattering theory and phase shift analysis, diffraction theory, group theory, tensor analysis, and general relativity.
FORMAT: Lecture 3 hours
PREREQUISITE: PHYC 5160.03, or permission of the instructor

PHYC 5180.03: Nuclear and Particle Physics.
This is an introductory class in nuclear physics. Topics discussed include: nucleon-nucleon interactions, nuclear structure, gamma transitions, alpha decay, beta decay, nuclear reactions and elementary particle physics.
FORMAT: Lecture 3 hours
PREREQUISITE: PHYC 3640.03 or permission of the instructor

PHYC 5220.03: Microcomputer Based Instrumentation.
Subject material: instrument design, analog to digital and digital to analog techniques, custom interfacing to sensors, algorithms, parallel and serial output data links, software testing and debugging, hardware testing and debugging, research project.
FORMAT: Lecture 3 hours
PREREQUISITE: PHYC 3810.03 or permission of the instructor

PHYC 5230.03: Introduction to Solid State Physics.
An introduction to the basic concepts of solid state physics which are related to the periodic nature of the crystalline lattice. Topics include crystal structure, X-ray diffraction, phonons and lattice vibrations, the free electron theory of metals, and energy bands.
FORMAT: Lecture 3 hours
PREREQUISITE: PHYC 3460.03, PHYC 3210.03, or permission of the instructor

PHYC 5311.03: Fluid Dynamics.
An introduction to the theory of fluid dynamics with some emphasis on geophysically important aspects. Topics include kinematics, equations of motion, viscous flow, potential flow and basic aerodynamics.
FORMAT: Lecture 3 hours
PREREQUISITE: Permission of the instructor CROSS-LISTING: OCEA 5311.03

PHYC 5330.03: Crystallography and Physical Properties.
The class covers an introduction to space groups, single crystal diffraction, powder x-ray and neutron diffraction as well as Rietveld profile refinement methods. The impact of structure on physical properties of solids will be examined. There will be hands-on experimental activities in addition to lectures.
FORMAT: Lecture 3 hours
PREREQUISITE: PHYC 3140.03 or permission of the instructor

PHYC 5411.03: Atmospheric Dynamics I.
The basic laws of fluid dynamics are applied to studies of atmospheric motion, including the atmospheric boundary layer and synoptic scale weather disturbances (the familiar highs and lows on weather maps). Emphasis will be placed on the blend of mathematical theory and physical reasoning which leads to the best understanding of the dominant physical mechanisms.
FORMAT: Lecture 3 hours
PREREQUISITE: Permission of the instructor CROSS-LISTING: OCEA 5411.03

PHYC 5412.03: Atmospheric Dynamics II.
The approach is the same as for PHYC 5411.03, with emphasis on synoptic-scale wave phenomena, frontal motions, and the global circulation. Additional topics including tropical meteorology, middle atmospheric dynamics, severe storms, mesoscale meteorology and numerical weather prediction may be included.
FORMAT: Lecture 3 hours
PREREQUISITE: PHYC 5411.03, or permission of the instructor CROSS-LISTING: OCEA 5412.03

PHYC 5460.03: Advanced Optics.
This class covers a selection of topics in advanced optics, that may include: a quantum treatment of light-matter interactions, strong field effects, quantum optics, nonlinear optics, optical resonators, laser physics, laser dynamics, and photonic devices.

PHYC 5505.03: Atmospheric Physics.
Moist thermodynamics is applied to a variety of atmospheric phenomenon. These include aerosols, cloud droplets, precipitation formation, convection, supercells, hurricanes, lightning, and the boundary
layer. We also discuss the radar equation and the interpretation of radar images.

PHYC 5540.03: Synoptic Meteorology I.
This class introduces the practical skills of meteorological observation and analysis. Emphasis is on developing skills in drawing and interpreting weather maps, and on studying the three-dimensional structure of weather systems. Satellite and radar remote sensing of the atmosphere is also introduced. Case studies of atmospheric systems and processes are carried out during the tutorial-laboratory period.

PHYC 5550.03: Synoptic Meteorology II.
This class extends the analysis and diagnosis of atmospheric dynamics and weather processes introduced in PHYC 4540.03. Emphasis is on the practical application of meteorological theory, particularly in the area of diagnosing the cases of weather events. Modern computer and statistical methods are discussed, and students receive an introduction to weather forecasting.

PHYC 5555.03: Advances in Solar, Thermoelectric and Energy Harvesting Materials.
Materials and technologies for sustainable energy production and storage will be introduced. Topics include state-of-the art and emerging photovoltaic solar cells, materials and applications of thermoelectric materials, heat storage in phase change materials and materials and systems for energy harvesting.

PHYC 5570.03: Light Scattering, Radiative Transfer, and Remote Sensing.
The equations of radiative transfer are developed and applied to the interaction of solar and terrestrial radiation with molecules, aerosols, and clouds in the atmosphere. Emphasized topics include satellite remote sensing, scattering and absorption, and the Earth radiation budget.

PHYC 5595.03: Atmospheric Chemistry.

PHYC 5650.03: General Relativity.
A review of differential geometry will be given followed by an introduction to the general theory of relativity. Various topics will be discussed, including: linearized theory and gravitational radiation, spherically symmetric metrics and the Schwarzschild Solution, gravitational collapse, black holes, and cosmology.

PHYC 5660.03: Cosmology.
A self-contained introduction to cosmology will be given and no prior knowledge of differential geometry of general relativity will be assumed (although some knowledge or elementary differential equations will be useful). A cosmological model is a model of the universe, as a whole, on the largest scales; the emphasis of the class will be on the modelling aspects of cosmology.

PHYC 6121.03: Quantum Theory.
Selected topics in quantum mechanics: field theoretic and computational techniques.

PHYC 6201.03: Solid State Physics.
Topics covered include crystal structures, reciprocal lattices, space groups, x-ray scattering, Debye scattering formalism, lattice vibrations, phonon dispersion, specific heat of solids, electronic structure, free electron model and nearly-free electron model.

PHYC 6202.03: Solid State Physics II.
This course is a continuation of PHYC 6201.03 and covers the physical properties of solids at a more advanced level.

PHYC 6225.015: Topics in condensed Matter Physics.
This course explores current research topics in condensed matter research. Topics vary according to student interests and the current literature, but could include graphene, topological insulators, organic electronics, dilute magnetic semiconductors and new-high TC superconductors.

PHYC 6230.03: Nanophotonics: Principles and Applications.
Introduction to a multidisciplinary field covering the following topics: near-field interactions and microscopy, quantum-confined materials, plasmonics, photonic crystals, nanoparticles, nanofabrication and characterization, applications of nanophotonics, sensors, nanobiophotonics, nanoparticles in light-activated therapy and optical imaging modalities.

PHYC 6250.03: Experimental Techniques in Material Science.
An introduction to six experimental techniques used in materials science will be given. Examples of techniques that may be covered include x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy, Mossbauer spectroscopy, neutron diffraction, nuclear magnetic resonance.

PHYC 6261.03: Statistical Mechanics I.
Statistical mechanics describes the equilibrium properties of systems. Really it is about how to model properties of soft-systems in the face of fluctuations. We will start with a review of the basic formalism, then discuss mean-field theories, critical phenomenon, diffusion, and stochastic models. Depending on interest and time, we may also discuss opological defects, non-equilibrium phenomenon, and computational techniques. Physical examples and simple models will be discussed throughout the course.
PHYC 6291.03: Surface Science I.
Topics include experimental methods of surface characterization; structure of surfaces and adsorbates; adsorption, desorption and diffusion; surface reconstruction.
FORMAT: Lecture 3 hours
PREREQUISITE: Permission of the instructor

PHYC 6292.03: Surface Science II.
A continuation of PHYC 6291.03 covering surface reactions and catalysis; kinetic theory; lattice gas models; multilayer growth and epitaxy; adhesion and friction.
FORMAT: Lecture 3 hours
PREREQUISITE: Permission of the instructor

PHYC 6301.03: Electrodynamics I.
Topics will normally include: boundary-value methods for problems in electrostatics and magnetostatics, multipolar expansions for the electrostatic and magnetostatic fields, Maxwell equations, plane electromagnetic waves and wave propagation in a variety of media, reflection and transmission of electromagnetic waves at an interface, simple radiating systems, elementary Mie scattering theory.
FORMAT: Lecture 3 hours
PREREQUISITE: PHYC 4110.03, or permission of the instructor

PHYC 6400.03: Medical Imaging Physics.
This class introduces the physics behind a variety of medical imaging methodologies such as x-ray computed tomography (CT), magnetic resonance imaging (MRI), and radionuclide imaging. Various topics such as the fundamental physics, hardware, specialized techniques, image quality and safety will be covered.
INSTRUCTOR(S): S. Beyea
FORMAT: Lecture
PREREQUISITE: PHYC 3210, PHYC 3640, PHYC 4100, or permission of the instructor

PHYC 6421.03: Radiological Physics.
The material in this course is designed to teach a graduate in physics (or engineering, with strong physics and math) the basics of radiological physics and dosimetry. Quantities and units are introduced early so that radioactive decay and radiation interactions can then be discussed, with emphasis on energy transfer and dose deposition. Exponential attenuation under both narrow and broad-beam conditions must be understood before a student can go on a shielding design in a health physics course.
FORMAT: Lecture 3 hours

PHYC 6422.03: Radiation Therapy Physics.
The course covers ionizing radiation generation and use in radiation therapy to cause controlled biological effects in cancer patients: External Beam Radiation Therapy; Brachytherapy; Treatment, Planning; Radiation Therapy Devices; Special Techniques in Radiotherapy; Radiation Therapy with Neutrons, Protons, and Heavy Ions.
FORMAT: Lecture 3 hours
PREREQUISITE: PHYC 6421.03

PHYC 6430.03: Radiobiology and Health Physics.
Radiobiology topics include: basic physical and chemical mechanisms, cellular radiation biology, mechanisms of cancer induction, the effects of radiation on normal tissues and malignant cells, and competing treatment modalities. Radiation protection and health physics topics include: risk versus benefit, radiation shielding properties and design, and radiation monitoring of personnel.
INSTRUCTOR(S): J. Schella
FORMAT: Lecture
PREREQUISITE: Permission of instructor

PHYC 6440.03: Medical Resonance Imaging (MRI) Physics.
The physics principles involved with Magnetic Resonance Imaging (MRI) will be introduced. Topics such as elementary NMR signal formation and detection, nuclear interactions that produce image contrast/artifacts, introductory spin manipulation, MRI hardware, and advanced techniques in signal excitation, manipulation and reception will be discussed.
INSTRUCTOR(S): C. Bowen

PHYC 6450.03: Computational Methods in Medical Physics.
This course offers an introduction to established and emerging computational methods in radiation therapy physics, with emphasis on modeling of radiation dose deposition. Topics include empirical, analytic and Monte Carlo methods for dose calculation, as well as image co-registration and treatment planning. Weekly lecture are followed by practical laboratory assignments.
INSTRUCTOR(S): J. Robar
FORMAT: Lecture/laboratory
PREREQUISITE: Permission of instructor

PHYC 6576.03: Topics in Atmospheric Physics.
This course will focus on current research topics in atmospheric science. Fundamental theories of atmospheric science will be applied to selected topics.
FORMAT: Readings + seminar/discussions
PREREQUISITE: Permission of Instructor

PHYC 6580.03: Cloud Physics.
A detailed examination of the behaviour of condensate water in the atmosphere. Topics include nucleation, hydrodynamics of cloud and precipitation particles, ice physics, mechanisms of precipitation formation, electrical and radiative properties. Cloud dynamics will include effects of latent heating feedback, thunderstorm structure, precipitation efficiency, mixed-phased storms and cloud models.
FORMAT: Lecture 3 hours
PREREQUISITE: Permission of the instructor
CROSS-LISTING: OCEA 5580.03

PHYC 6585.03: Advanced Remote Sensing.
Topics involving the remote sensing of the atmosphere and surface using space and ground-based instrumentation and radiative transfer theory will be covered.
FORMAT: Lecture
PREREQUISITE: Permission of Instructor

PHYC 6600.03: Topics in Physics.
Topics selected will depend on the current interests of the instructor and the students.
FORMAT: Lecture 2 hours
PREREQUISITE: Permission of the instructor

PHYC 6601.03: Topics in Physics.
Topics selected will depend on the current interests of the instructor and the students.
FORMAT: Lecture 2 hours
PREREQUISITE: Permission of the instructor

PHYC 6602.03: Topics in Physics.
Topics selected will depend on the current interests of the instructor and the students.
FORMAT: Lecture 2 hours
PREREQUISITE: Permission of the instructor

PHYC 9000.00: MSc Thesis.

PHYC 9520.00: Prelim Doctoral Exam.

PHYC 9530.00: PhD Thesis.
Physiology and Biophysics

Location: Sir Charles Tupper Building, Third Floor
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-3517
Fax: (902) 494-1685

Head of Department
Morgunov, N.

Graduate Coordinator
Cowley, E.

Professors
Barnes, S.A., PhD (Berkeley). Retinal neurobiology; ion channel function in synaptidec therapy; antisense
Brown, R.E., BSc (Victoria), MA, PhD (Dal), major appointment in Department of Psychology. Olfaction; hormones, parental behaviours; learning and memory; developmental psychobiology; psychopharmacology
Chauhan, B., PhD (Wales), Major appointment, Department of Ophthalmology. Experimental models of optic nerve and retinal damage, visual function in health and disease, structural and functional assessment of glaucoma, risk factors for the progression of glaucoma.
Croll, R.P., BSc (Tufts), PhD (McGill). Physiology and functional anatomy of invertebrate nervous systems; analyses of motor program generation; regeneration, development, and evolution of identified neurons
Fine, A., AB (Harvard), VMD, PhD (Penn). Neural plasticity; learning and memory, development and regeneration; optical monitoring of neural activity and plasticity; neural transplantation
French, A.S., MSc, PhD (Essex). Sensory transduction and adaptation; epithelial ion transport; ion channel biophysics
Henzler, D., MD (Hannover), PhD (Aachen, Germany). Mechanisms of ventilation associated lung injury; activation of inflammation during ventilation; modes of ventilation, hemodynamics and gas exchange in active lung injury
Linsdell, P., BSc (London), PhD (Leicester). Ion channel biophysics; chloride channel structure and function; epithelial transport; cystic fibrosis
McDonald, T.F., BSc (Alta), PhD (Dal), DIC (Imperial College). Heart physiology (membrane channels, excitability, coupling, arrhythmia, conduction, contractility); metabolism; cardiac drugs; volume regulation
Meinertzehagen, I.A., BSc (Aberdeen), PhD (St. Andrews), major appointment, Dept. of Psychology. Neurobiology of simple nervous systems, particularly the visual system in Drosophila: neural development and plasticity
Murphy, F.R., MSc, PhD (Dal). GFG; growth factors; gliomas; lymphomas; gene therapy; mechanosensation
Pelzer, D.J., MD (Heidelberg), DSc (Homburg). Channel function; pharmacology (cardiovascular drugs) and modulation (transmitters, second messengers, G-proteins) of Ca2+ Channels; intracellular Ca2+ imaging
Torkkell, F.H., BSc, MSc, LeSc (Oulu), PhD (Alta). Mechanosensitive, voltage- and ligand-gated ion channels in mechanosensory neurons, central control of mechanosensation
Wang, J., BS (Nanjing Medical College), MA (Nanjing Railway Medical College), MA, PhD (SUNY). Major appointment in School of Human Communication Disorders. Central auditory and cochlear physiology / pathology

Associate Professors
Chappe, V., MSc, PhD (Marseille, France). Structure, function, recycling and regulation of the CFTR chloride channel; Cystic Fibrosis causing mutations; second messengers; protein kinases; protein interactions; receptors and signalling pathways
Cowley, E.A., BSc (London), PhD (Leicester). Oxidative stress in lung disease: Role of K+ channels in transepithelial secretion
Murphy, M.G., MSc, PhD (Dal). Polyunsaturated fatty-acid modulation of neuroreceptor function in cultured neural cells; pathophysiology of Reye’s syndrome; potentiation of viral virulence by environmental chemicals
Tremblay, F., BSc (Montréal), major appointment, Department of Ophthalmology. Neurobiology of vertebrate retina, neuroprotection

Assistant Professors
Krueger, S., PhD (Zurich). Synaptic physiology; development and plasticity of synapses in the central nervous system; regulation of neurotransmitter release
Rose, R. A., PhD (Calgary). Cardiac electrophysiology; cardiac arrhythmias; ion channel function in isolated heart cells; pacemaker and cardiac conduction system

Information on research interests in the Department and openings for graduate and post-PhD or post-MD study should be requested from the Graduate Coordinator of the Department.

I. Admission Requirements

General requirements for admission to the Faculty of Graduate Studies are given in the Faculty Regulations section of this calendar. In addition, foreign applicants must submit the results of the Graduate Record Examination. A paper-based TOEFL score of at least 600 (computer-based TOEFL score of at least 250) is required of applicants whose native language is not English (see Faculty of Graduate Studies regulations).

II. General Regulations

The Department accepts applicants with degrees in physiology, biology, (bio)physics, chemistry and related biomedical sciences. Applicants with an average GPA of ≥3.7 over the last two years of their undergraduate program or over their entire undergraduate career will be considered for admission. Entering graduate students are expected to acquire a firm understanding of the basic principles of physiology at the systems, cellular and molecular levels that will provide a solid foundation for career development. Students who have not completed advanced undergraduate or graduate level classes in these subjects may be required to take appropriate classes from the listings below or from the graduate listings of other Departments. Advanced knowledge within a specialty is developed by formal classes and/or guided study via directed reading classes arranged for each student through consultation with a supervisory committee. Thesis supervisory committees consisting of the research supervisor and at least two members of the Faculty of Graduate Studies knowledgeable in the field are appointed to guide course selection and to oversee the research of graduate candidates. MSc. students may elect to transfer to the Ph.D. program after completion of the first year of study, pending approval of the supervisory committee. Entering Ph.D. candidates must have demonstrated the ability to carry out research of high quality. A Comprehensive Examination in areas relevant to the general field of the thesis research (see Faculty of Graduate Studies regulations and below) is required in the Ph.D. program. All graduate students participate in the Physiology seminar series (PHYL 5517.03). There may also be opportunities to give lectures and to supervise laboratory components of non-medical undergraduate courses.
III. Degree Programs

A. Master of Science (MSc)

For the minimum time required to complete this program, see the Faculty of Graduate Studies regulations. However, students should expect to spend two years working towards the MSc Degree.

Students must complete enough graduate level classes to equal a total of 2 full credits plus a research thesis. A thesis, reporting original research must be submitted and defended orally. A detailed description of examination procedures and possible outcomes is available from the Faculty of Graduate Studies.

Physiology 5517.03 is a mandatory component of the M.Sc. program.

B. Doctor of Philosophy (PhD)

For the minimum time required to complete this program, see the Faculty of Graduate Studies regulations. Students should expect to spend a minimum of four years working towards the Ph.D. degree.

A comprehensive examination in subjects relevant to the general field of research is required. The comprehensive examination consists of (1) a written paper, (2) an oral synopsis of the paper, and (3) oral examination of the student on matters related to the topic of the paper. The comprehensive examination must be completed at least one year before defending the thesis. Students must satisfy the examining committee in all 3 areas in order to pass the examination. The topic cannot be changed without full agreement of both committees.

A thesis, reporting original research must be submitted and defended orally. The Ph.D. thesis examination will follow the rules and regulations of the Faculty of Graduate Studies.

Physiology 5517.03 is a mandatory component of the Ph.D. program.

C. Doctor of Philosophy/Master of Science (MSc/PhD) in Physiology and Biophysics/Neuroscience

Physiology and Biophysics also offers a MSc and PhD in Physiology and Biophysics/Neuroscience through the Interdisciplinary Neuroscience Program. Please see section on Interdisciplinary and joint programs, page 182.

IV. Teaching Requirements

Teaching undergraduate physiology, in laboratories, tutorials, or reviews is considered an important part of graduate training. All students will be expected to perform a minimum amount of undergraduate teaching, regardless of the source of their financial support.

V. Class Descriptions

Most classes normally require a minimum enrolment of 4 students. If less students are interested, it is left to the discretion of the instructor to offer the class in a different format or not offer the class for that year.

Neuroscience

The following classes are offered through the interdisciplinary neuroscience program:

NESC 6100X/Y.06: Principles of Neuroscience.

The first term will focus on cellular and molecular neurobiology and will cover topics such as membrane potentials, synaptic transmission, second messengers, trophic factors, cell differentiation and neurodegeneration. The second term will focus on systems and behavioural neurobiology and will cover topics such as visual and somatosensory systems, motor programme generation, autonomic and neuroendocrine functions, motivation, learning, circadian rhythmicity and sleep/wake cycles and cognitive neuroscience. Evaluation will be based on quizzes, several oral presentations prepared throughout the year, and grant proposals.

NOTE: Students taking this class must register in both X and Y in consecutive terms; credit will only be given if both are completed consecutively.

INSTRUCTOR(S): K. Semba, V. Rafuse, H. Schellinck

NESC 6101.03: Principles of Neuroscience: Cellular and Molecular Neuroscience.

NESC 6102.03: Principles of Neuroscience: Systems and Behavioral Neuroscience.

Neuroscience 6101.03 and 6102.03 are Neuroscience 6100X/Y.06 divided into terms A and B for suitable incorporation into non-Neuroscience programs. Please see class description of NESC 6100X/Y.06.

Physiology

PHYL 5000.03: Scientific Writing and Presentation Skills.

This class provides training in the written and oral presentation of scientific data. The first part of the course will focus on the composition of a fellowship application and a research publication. In the second part, students will practice giving scientific presentations in various informal and formal settings.

INSTRUCTOR(S): Y. Anini, V. Chappe, S. Krueger

PHYL 5323.03: Human Physiology: The Mechanisms of Body Functions.

A survey of the physiology of human organ systems including the nervous, cardiovascular, respiratory, renal, gastrointestinal and endocrine systems. Some emphasis will be placed on engineering principles, including biomechanics, bioelectricity, dynamic systems and control theory, where appropriate.

DIRECTOR: A. S. French
FORMAT: Lecture and group discussion
PREREQUISITE: Approval of the class director
CROSS-LISTING: BMING 5010.03

PHYL 5494.03: Chemical Neurobiology.

The goal of this class is to acquaint the student with contemporary concepts of neurotransmission and neuromodulation. Topics include classical neurotransmitters (catecholamines, acetylcholine, amino acids), neuropeptides (especially opioids), gene expression, and anatomical tracing methods.

DIRECTOR(S): K. Semba
FORMAT: Lecture
PREREQUISITE: PHYL 2030.03; fourth year honours; a graduate program in another department
CROSS-LISTING: ANAT/NESC 5070.03, NESC/PSYO 4070.03

PHYL 5504.03: Advanced Topics in Respiration.

This class is directed to students interested in increasing their understanding of aspects of pulmonary biology and pathology. Examples of typical topics which will be examined in depth include epithelial transport, airway smooth muscle, pulmonary function testing, gas exchange, and the effects of exercise on the respiratory system.

INSTRUCTOR(S): Individual faculty members in liaison with E. Cowley
FORMAT: Lecture supplemented with tutorials
PREREQUISITE: PHYS 2030 or equivalent plus permission of the course coordinator

PHYL 5508.03/5509.03/5510.03: Directed Readings in Physiology and Biophysics.

These classes allow the Department to provide a more specialized instruction on specific topics to graduate students with particular interests. Class format is variable and may include seminars, lectures, literature searching, evaluation of papers, etc. There is usually a high degree of one-on-one interaction. The classes are organized on a year-to-year basis in accordance with student interest and faculty expertise. Since different subjects may be covered each year, each class in the series has a separate number.

DIRECTOR(S): Individual faculty members in liaison with E. Cowley (Graduate Coordinator)
PREREQUISITE: Permission of the Director

PHYL 5513.03: Endocrine Physiology.

Offered every second year, or on demand.

This class provides an in-depth survey of Endocrinology with emphasis on recent developments. This class focuses on modern technologies involved in the study of the physiology and molecular endocrinology of a
PHYL 5514.03: Reproductive Physiology.
Offered every second year, next offered in 2013/2014. This is a lecture/seminar class devoted to a modern treatment of human and animal reproductive physiology. Topics include: sexual differentiation, sexual maturation, menstrual cycle, male reproduction and the physiology of pregnancy, birth and lactation.
DIRECTOR(S): TBA
PREREQUISITE: PHYL 2030X/Y.06 completed or concomitant, or equivalent, or permission of director

PHYL 5517.03: Physiology and Biophysics Graduate Seminar.
A mandatory class that all graduate students must complete in order to graduate. Satisfactory performance in the class components is required throughout the degree programme in order for the student to be permitted to register for the course in their final year. The main objectives of the class are to assimilate and evaluate scientific information presented by others. There may also be opportunities to give lectures to non-medical undergraduate students and to supervise the laboratory components of non-medical undergraduate courses as Teaching Assistants. There are five components to the class:
1. The Physiology and Biophysics Departmental Seminar Series. There are several seminars per year and attendance is mandatory for all graduate students. Students are often given the opportunity to meet informally with guest speakers. Graduate students are also expected to attend relevant seminars in other Faculty of Medicine and University Departments.
2. Graduate Student Research Day of the Department of Physiology and Biophysics. Students must present their work, either orally or in poster format at the Annual Graduate Student Research Day.
3. Graduate Student Research Day of the Faculty of Medicine. M.Sc. students are required to present a poster at the annual Graduate Student Research Day of the Faculty of Medicine in their second year of study (and annually thereafter for as long as they are in the programme). Ph.D. students must participate in the Graduate Student Research Day of the Faculty of Medicine in their second year of study and yearly thereafter. If a student for valid reasons cannot meet the date of Graduate Student Research Day of the Faculty of Medicine, presentation of a poster at a national or international conference is considered as equivalent.
4. Departmental Seminar. Students must present at least one Departmental Seminar over the course of their programme. Each student seminar is monitored by a faculty committee selected by the Graduate Education Committee to ensure that the students receive oral and written feedback on their presentation.
5. Participation as Teaching Assistants in the laboratory components of non-medical undergraduate Physiology courses is optional. In addition, there may be opportunities for one-on-one tutoring of undergraduate students.
DIRECTOR(S): E. Cowley

PHYL 5519.03: Molecular Physiology of Ion Channels.
This class focuses on the molecular properties of ion channels, and includes an overview of the techniques used to study ion channel structure and function, ion permeation and selectivity, channel gating and modulation, the mechanisms by which channels are affected by drugs and toxins, and genetic diseases causing channel dysfunction.
DIRECTOR(S): P. Linsdell
FORMAT: Lectures/student presentations
PREREQUISITE: PHYL 3320.03 or 4327.03 or equivalent plus permission of the class director

PHYL 5521.03: Molecular Physiology.
Offered every second year, next offered in 2013/2014.
Physiotherapy

Location: Forrest Building, 4th Floor
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-2524
Fax: (902) 494-1941
Website: www.physiotherapy.dal.ca
Email: physiotherapy@dal.ca
Blog: blogs.dal.ca/ptmatters

Director
Rennie, S., BPT, MSc, PhD (Alberta)

Graduate Coordinator
Fenety, A., BSc (UNB), DPT (Manitoba), MSc (Alta), PhD (Dal)

Advisors
Kozev, C., (MSc Rehab Research)
Wainwright, G., BSR (UBC), MA (Dal) (Clinical Education Co-ordinator)

Professor Emeritus
Walker, J., Cert. Phys. Ther. (N.Z.), DipTP, BPT, MA (Man), PhD (McMaster)

Professors
Kelm, C., BSc (Dal), Dip (PT), MSc (Physiol) (Sask)
Kozev, C., BSc (UNB), MSc (Waterloo), PhD (Dal)
Tumbull, G., MSc, DipTP, BPT (Man), MA (Dal), PhD (Rhodes)

Associate Professors
Blanchard, C., BA (UPEI), MSc, PhD (Alberta)
Curwin, S., Dip TP, BSc PT, MSc (Dal), PhD (USC)
Harman, K., BScPT (Toronto), MSc (Ottawa), PhD (Carleton)
MacKay-Lyons, M., BScPT (Toronto), MScPT (USC), PhD (Dal)
Rennie, S., BPT, MSc, PhD (Dal)

Assistant Professors
Boe, S., BPhEd (Brock), MPT (Western), PhD (Western)
Dechman, G., BScPT (Queens), PhD (McGill)
Earl, M., BScPT (UWO), BSc, MSc, PhD (Waterloo)
Fenety, A., BSc (UNB), DPT (Manitoba), MSc (Alta), PhD (Dal)
Keats, M., BA (Calgary), MSc (Alta), PhD (Calgary)
King, C., BSc (PT) (Dal), MScPT (Queens)

Adjunct Professors
MacDonald, E. A., MD, FRCP C
Makrides, L., MCSP, BPT (Sask), MSc (Ottawa), PhD (McMaster)
McPhee, J., BSc, MSV, BSc (PT) (Dal), PhD (Pharm) (Dal)
Ploughman, M., BSc PT (Dal), MSc, PhD (MUN)
Walker, J., Cert. Phys. Ther. (N.Z.), DipTP, BPT, MA (Man), PhD (McMaster)

Lecturer
Creaser, G., BScPT (Dal), MEd (Mt. St. Vincent)

Instructors
Kelly, B., BSc, PT, MSc (Dal)
Stapleton, C.B., BSc (UCCB), MScPT (Toronto)
Walker, N., BSc (PT) Dal, MSc (Queens)

Provincial Clinical Coordinators
Rowan, M., New Brunswick
Caldwell, B., Prince Edward Island
Furlong, K., Newfoundland and Labrador
Roussel, M., New Brunswick Government Health Advisor

The Master of Science (Physiotherapy) degree provides the professional education required to obtain a license to practice physiotherapy. It differs from the Master of Science - Rehabilitation Research in Physiotherapy which prepares practitioners with advanced research skills and requires the completion and defense of a thesis. The profession of Physiotherapy (or Physical Therapy) offers a varied, interesting and worthwhile career in a variety of settings. Upon graduation, traditionally most physiotherapists have worked in hospital-based departments rotating through various areas of interest prior to becoming more deeply involved in any specific area. Increasingly, opportunities are available in rehabilitation centres, extended care units, special schools, or with local government agencies, industrial health units, sports clubs and private clinics.

A. Master of Science (Physiotherapy)

The MSc (Physiotherapy) entry to practice program is full-time and offered over a continuous 25-month period. The curriculum prepares students with the professional education and experience necessary to apply for the national licensing examination. The School of Physiotherapy at Dalhousie is the only school serving Atlantic Canada; as such, a provincial quota system is in place with a specified number of seats allocated annually for residents of New Brunswick, Prince Edward Island, Newfoundland and Nova Scotia. A small number of seats are open to non-residents. Therefore, admission is offered on a competitive basis and enrolment is limited.

I. Admission Requirements

- Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies.
- A four-year undergraduate degree or equivalent in any field of study from Dalhousie University or from a recognized academic institution with a minimum grade point average of 3.0 or letter grade of B in the last 60 undergraduate credit hours for Atlantic Canada applicants and a GPA of 3.4 or letter grade of B+ for applicants outside Atlantic Canada. Degrees that have a focus in Neuroscience, Psychology, Kinesiology, Human Movement Science, Exercise Science, Human Physiology, Health Promotion, Ergonomics and Anatomy are favorable backgrounds for the study of Physiotherapy.
- The following courses or their equivalents are prerequisites for admission:
 - Physics (6 credit hours) or Physiology (3 credit hours) and Introduction to Biomechanics (3 credit hours - equivalent to KINE 2465 or PHYC 2610)
 - Biology (3 credit hours) Animal or Cell Biology
 - Psychology (6 credit hours)
 - Statistics (3 credit hours)
 - Human Physiology (6 credit hours, PHYH 2030.06 or its equivalent is the preferred prerequisite. In lieu of PHYH 2030.06, a combination of nine credit hours of human and exercise physiology may be accepted).
 - Human Anatomy (3 credit hours, equivalent to ANAT 1010.03)
 - Languages and Humanities and/or Social Sciences (6 credit hours, e.g. Classics, Contemporary Studies, Theatre, Dance, Music, Languages, Philosophy can include a combination of two half credits).
 - 40 hours of community volunteer experience over the last two years
 - Immunization - In order to satisfy the requirements for the clinical internship components of the program, students must provide proof of immunization to the Coordinator of Clinical Education for: Diphtheria-Tetanus, Polio, Measles (Rubella), Mumps and Varicella. Before students can enter the clinical setting, they must provide verification of a Tuberculosis skin test and serology stating immunization status of Measles, Rubella, Varicella and Hepatitis B.
 - Affirmative Action - The School of Physiotherapy is committed to increasing the admission of and number of graduates from undergraduate groups; Aboriginal peoples, African Canadians and Persons with (dis)Abilities. Admission prerequisites are required for all applicants; however, applicants who apply under the Affirmative Action Policy are considered on the basis of their qualifications for graduate study in physiotherapy rather than in relation to other applicants. The School of Physiotherapy encourages applicants who

Physiotherapy 251
wish to apply under this policy to indicate so on the Supplementary Application Form.

- Applicants who meet the above minimum requirements are eligible for interview consideration. The interview score is based on communication and problem-solving analysis (eligibility for interview is based on the GPA). Fulfillment of the minimum requirements does not guarantee an interview.

Deadline for application is January 31.

II. Physiotherapy Registration
Physiotherapists educated in Canada must be registered with the appropriate regulatory body. The School itself has no jurisdiction in matters related to regulation, and Dalhousie University cannot accept responsibility for changes in regulatory regulations which may occur from time to time.

The degree program at Dalhousie University is designed to fulfill the present registration requirements by the time students graduate. A Physiotherapy Competency Examination was implemented in 1993. Successful completion of the national competency exam is required for registration in all provinces except Quebec. Graduates are strongly advised to seek further information and clarification from the appropriate provincial College of Physiotherapists.

III. Association Membership
Information regarding membership in various Physiotherapy Associations can be obtained from the following sources: The Canadian Physiotherapy Association (955 Green Valley Crescent, Suite 270, Ottawa, Ontario, K2C 3V4); The Chartered Society of Physiotherapy (14 Bedford Row, London, WC1R 4ED, England); The American Physical Therapy Association (1111 North Fairfax St., Alexandria, Virginia, 22314, U.S.A.).

IV. Accreditation
The MSc (Physiotherapy) program is designed to develop an educational qualification for entry to the physiotherapy profession. Physiotherapy programs are accredited by the Physiotherapy Education Accreditation Canada (PEAC). PEAC is an incorporated body under the Canada Corporations Act and is the accrediting agency for physiotherapy education in Canada. The Dalhousie University, School of Physiotherapy, MSc (Physiotherapy) program is accredited by PEAC.

V. Practicum/Fieldwork Placements Outside Halifax
Students enrolled in entry-to-practice graduate programs of study in the Faculty of Health Professions are advised that they may have to do some or all of their required clinical education/fieldwork at sites outside Halifax, and hence may have to incur additional personal expenses for travel and temporary accommodation.

In some situations, sites may require a payment to the site for support of clinical education/fieldwork supervision, and some sites may require separate disability insurance in lieu of eligibility for Worker Compensation coverage. Such costs are the responsibility of the student.

VI. Interprofessional Health Education
Students are required to maintain enrolment in IPHE 5900 for the duration of their studies. Successful completion of this course is a requirement for graduation, and will be recognized further with the awarding of a special Certificate in Interprofessional Collaboration to be presented by the Faculty of Health Professions. Students are asked to consult with their individual school/college to determine the specific guidelines and expectations regarding the required portfolio.

VII. Class Descriptions

PHYT 5101.01: Introduction to the Physiotherapy Profession (Module 1).
This introductory module will provide the student with an orientation to the entire curriculum by: discussing expectations, evaluation, structure and process; helping to familiarize the student with the health care context of the practice of physiotherapy; introduce students to the profession of physiotherapy through discussion and site visits; instructing and providing opportunity to practice interpersonal skills and professional behaviours that will continue to develop throughout the two years and that will prepare graduates to be professionals. Subsequent modules will deepen students understanding and apply in practice many of the concepts presented in this orientation module.

FORMAT: Lecture/lab/tutorials/seminars

PHYT 5102.09: Scientific Inquiry (Module 2).
Students will gain an appreciation of the process associated with evidence-based and best practice interventions. Students will be provided with critical appraisal, evaluative, and research skills integrated with, and embedded within, all subsequent course work and clinical experiences. This framework confirms our philosophy that critical appraisal and best practice is core to physiotherapy practice.

FORMAT: Lecture/lab/discussion/seminars

PHYT 5103.03: Movement and Exercise Science (Module 3).
The purpose of this module is to provide students with an understanding of the theories and principles associated with the study of human movement and exercise science so they can apply these to solve clinical problems encountered in physiotherapy practice. Understanding these concepts as they apply to normal movement and exercise will precede a discussion of clinical problems. The movement and exercise science module will provide the foundation for applying anatomy, biomechanics, and exercise physiology to evaluate motion and exercise therapy.

FORMAT: Lecture/lab

PHYT 5104.06: Cardiorespiratory Physiotherapy and Health Promotion (Module 4).
This module provides students with knowledge, skills and behavioural competencies, including clinical reasoning skills, to practice effectively in the cardiorespiratory area of physiotherapy and to consistently integrate evidence based/best practice cardiorespiratory PT into holistic patient care. Overall objectives are also consistent with those outlined for Clinical Practice for cardiorespiratory clinical placements.

FORMAT: Lecture/lab

PHYT 5105.12: Musculoskeletal Physiotherapy (Module 5).
The purpose of this module is to develop the ability to use prospective reasoning to formulate and implement a three phase approach to the management of common musculoskeletal (MSK) dysfunctions: assessment, evaluation, and intervention. This module includes most age groups, and includes MSK dysfunctions related to home, work, leisure, and sport.

FORMAT: Lecture/lab

PREREQUISITE: Successful completion of year 1 Fall Term courses.

PHYT 5202X/Y.03: Scientific Inquiry I.
PHYT 5202.03: Scientific Inquiry 1
Students will gain an appreciation of the process associated with evidence-based and best practice interventions. Students will be provided with critical appraisal, evaluative, and research skills integrated with, and embedded within, all subsequent course work and clinical experiences. This framework confirms our philosophy that critical appraisal and best practice is core to physiotherapy practice.

FORMAT: Lectures, lab/workshops, small group discussions & seminars, self directed learning.

PHYT 5460.03: Advanced Exercise Physiology.
The course consists of lectures, tutorials, student presentations, and class discussion periods. Approximately one-third of the content concern cellular and systems exercise physiology and one-third exercise in individuals with altered physiological state, injuries, and maladies.

FORMAT: Lecture/tutorial

PHYT 5501.03: Clinical Placement (Cardiorespiratory).
The clinical component of the program provides for the integration and application of learning in current academic studies to the clinical environment leading to the development of clinical competence in
Cardiorespiratory practice. Each student is required to complete 6 weeks of full time clinical practice in the cardiorespiratory practice area to gain an understanding of the scope and role of cardiorespiratory physiotherapy practice in tertiary, community and primary health care environments.

FORMAT: Students will experience supervised clinical practice with the addition of lectures, labs, small-case studies and self-directed learning

PREREQUISITE: ANAT 5217, PHYT 5460, PHYT 5104

PHYT 5502.03: Clinical Placement (Musculoskeletal).
The clinical component of the program provides for the integration and application of learning in current academic studies to the clinical environment leading to the development of clinical competence in musculoskeletal practice. Each student is required to complete 6 weeks of full time clinical practice with exposure to a variety of practice areas in physiotherapy. It is expected that the student will gain an understanding of the scope and role of musculoskeletal physiotherapy practice in tertiary, community and primary health care environments.

FORMAT: Students will experience supervised clinical practice with the addition of lectures, labs, small-case studies and self-directed learning

PREREQUISITE: PHYT 5105, PHYT 5103

PHYT 6106.03: Professional, Ethical, and Management Issues in Physiotherapy (Module 6).
This module builds on professional and communication objectives embedded throughout the program. Emphasis is placed on professional behaviours based on the current ethical and legal framework for physiotherapy and the role physiotherapy plays as an integral component of Canadian healthcare. Students will engage in dialogue and debate on issues of healthcare management, reform, and the business of physiotherapy.

FORMAT: Lecture/seminar, small group discussions, and student debates

PHYT 6107.06: Neurological Physiotherapy Practice for the Entry-Level Clinician (Module 7).
This academic module gives students the opportunity to acquire knowledge and develop the competencies and professional behaviors in preparation for physiotherapy practice for individuals with neurologic disorders. Neurophysiological concepts and neurotherapeutic approaches to assessment and management of conditions across the lifespan and across the continuum of care are introduced in an integrated manner. Students are required to draw on their knowledge of anatomy, neuroanatomy, physiology, exercise physiology, and therapeutic exercise as they explore topics in neurological physiotherapy. Emphasis is placed on understanding theoretical principles and developing assessment and treatment skills through critical analysis of case studies, laboratory practice, clinical visits, and self-directed learning. The International Classification of Functioning, Disability and Health (ICF) and the Clinical Reasoning Model serve as theoretical frameworks to prepare students for effective practice. This academic module is followed by a 6-week clinical placement in neurological physiotherapy.

FORMAT: Lectures/seminars, small group discussions, labs, clinical visits, patient demonstrations, student presentations, clinical site visits

PREREQUISITE: Successful completion of all Year 1 courses/modules

CO-REQUISITE: PHYT 6107

PHYT 6501.03: Clinical Placement (Neurotherapeutics).
The clinical component of the program provides for the integration and application of learning in current academic studies to the clinical environment leading to the development of competence in neurotherapeutics practice. Each student is required to complete 6 weeks of full-time clinical practice with exposure to a variety of practice areas in physiotherapy. It is expected that the student will gain an understanding of the scope and role of neurotherapeutic physiotherapy practice in tertiary, community and primary health care environments.

FORMAT: Students will experience supervised clinical practice with the addition of lectures, labs, small group-case studies and self-directed learning

PREREQUISITE: PHYT 6107, PHYT 6140

PHYT 6502.03: Clinical Placement (Integrated Practice).
The clinical component of the program provides for the integration and application of learning in current academic studies to the clinical environment leading to the development of clinical competence. The student will gain understanding of the theoretical and practical application of physiotherapy in complex conditions in all practice areas. This builds upon the previous placements in cardiorespiratory, musculoskeletal and neurotherapeutics, and allows the student to assess and treat patients with multiple problems in co-morbidities. This will include the areas of geriatrics, paediatrics, private practice, industry, community practice, innovative practice and/or any area that enhances previous clinical and academic experience. Examples of placements are:

- Geriatrics (Assessment, long term care or day hospital)
- Home Care or Community Care
- Regional Hospital for a mixture of In and Out patient care
- Paediatrics
- Private Practice

FORMAT: Students will experience supervised clinical practice with the addition of lectures, labs, small group-case studies and self-directed learning

PREREQUISITE: PHYT 6108

PHYT 6503.03: Senior Clinical Placement.
The clinical component of the program provides for the integration and application of learning in current academic studies to the clinical environment leading to the development of clinical competence. The purpose of the placement is to provide the student with an opportunity to learn consultation skills, to engage in programme development and evaluation, and to educate others about the role of physiotherapy. Through working independently and advocating for their professional role, students learn skills that will serve them well as they enter the profession.

Examples of placements/liaisons:
- Injury Prevention
- Chronic disease management
- Primary health care
- Workers' Compensation Board

FORMAT: Students will experience supervised clinical practice with the addition of lectures, labs, small group-case studies and self-directed learning.

PREREQUISITE: PHYT 6108

B. Master of Science (Rehabilitation Research - Physiotherapy)

VIII. Introduction
The Master of Science (Rehabilitation Research - Physiotherapy) is a thesis-based program designed to provide graduates with:
1. The ability to design and implement research in diverse areas of Physiotherapy
2. Knowledge necessary to integrate evidence-based assessment and treatment in Physiotherapy
3. Valuable teaching experience in the MSc (Physiotherapy) program.
The Master of Science (Rehabilitation Research-Physiotherapy) does not prepare graduates to take the physiotherapy licensure exams; applicants who want to study to become physiotherapists need to apply to the MSc (Physiotherapy) program.

Individuals seeking enrichment for their professional development may also apply for admission to single graduate level courses, through the Special Student-Graduate Studies category as detailed in Section 4.3.8 of this calendar.

IX. Admission Requirements
Candiates must satisfy the general requirements for admission to the Faculty of Graduate Studies. In addition, applicants must hold a university degree in Physiotherapy, or in a related area of study.

X. Application
A. Applicants must
a. Complete the application form for admission to the Faculty of Graduate Studies
b. Include a one page statement of their experience, their goals and objectives, and the area of physiotherapy research to be studied.
c. Meet the English language competency requirements as outlined by the Faculty of Graduate Studies.
d. Include two academic references. A work reference from someone who may comment objectively on your goals may be included in addition to the two required academic references.

In addition applicants are strongly advised to:
a. Include a copy of a recent paper authored in the area in which the applicant is planning to pursue studies (if available)
b. Submit a recent GRE score
c. Contact potential supervisors to discuss their research interests prior to submitting their application.

B. Scholarship Deadlines
Applicants who wish to be considered for scholarships are strongly urged to have their applications completed by January 1 for University Scholarships. For School of Physiotherapy Scholarships: March 1.

A limited amount of money is available from the School of Physiotherapy and will be distributed on a competitive basis. Applicants are encouraged to seek external funding. Further information for sources of funding may be obtained from the Graduate Studies office. In order to qualify for scholarship consideration a student is expected to hold a first-class honours degree in an appropriate field and to enter a full-time graduate program.

C. Application Inquiries
For more information regarding admission and program requirements, please write to the Graduate Coordinator, School of Physiotherapy, Dalhouse University, Halifax, NS, B3H 3J5 or email physiotherapy@dal.ca

XI. Program Requirements
A. Program Requirements
Students registered in the program will be expected to obtain a minimum of five (5) credits as follows: Thesis - 2 credits, Class work - 6 half credits.

B. Class Work
Two half-credits are obtained via required courses. The other four half-credit elective classes will be selected based on the individual program of study approved by the Supervisory Committee. Graduate students are also expected to attend and participate in Physiotherapy Research Seminars.

C. Residency
For full-time students, it is expected that upon completion of the class work an additional year will be required to complete the thesis. Part of the residency period may, with permission, include time off campus. There are options to complete the program on a part-time basis.

XII. Class Descriptions
Required Courses:
- A half credit class in Statistical Methods and /or Research Design
- A half credit class in instrumentation measurement methodology
 (i.e. PHYT 5002 or Equivalent)
- Thesis (PHYT 9000)

PHYT 5002.03: Instrumentation and Measurement.
This class is aimed at providing the student with the theoretical basis and practical experience associated with measurement techniques used in Physiotherapy Research. The content of the class will focus on the fundamentals of instrumentation and measurement of biomechanical and physiological measures. The objective of this class is to gain the necessary knowledge and skills for data acquisition, processing and interpretation of electrophysiological, kinematic and kinetic data.

PHYT 5010.03: Special Topics in Musculoskeletal II.
This class is designed to provide in depth study of the evidence guiding physiotherapy assessments and interventions for the prevention and treatment of designated musculoskeletal impairments. Current theories and practices will be examined using examples such as disorders that are associated with the electronic workplace, arthritic conditions, or low back pain.

PHYT 5030.03: Special Topics in Neurology I.
In this class, students will conduct a critical analysis of the evidence supporting physiotherapy management of people with functional disabilities arising from diseases or conditions that affect neurological control of movement. The class will emphasize topics such as the sensory-motor and neuromuscular control processes that affect gait, balance and functional abilities of a variety of populations (e.g., aging adults, and people with functional impairments due to Parkinson’s, cerebrovascular accident, or arthritic conditions).

PHYT 5050.03: Special Topics in Cardiac Rehabilitation III.
Students will conduct an advanced analysis of the theories and tenets underlying physiotherapy management of cardiovascular disorders. Scientific evidence will be applied to support assessment and intervention strategies to address cardio-respiratory function or cardiovascular fitness. Examples will be based on topics such as health-promotion, cardiac rehabilitation, and cardiovascular function following cerebral stroke.

PHYT 5070.03: Directed Study.
Individual students work with a designated faculty member to conduct an in-depth examination of a topic that is chosen to address a specific educational need. The content, resources, and evaluation methods are customized to address a specific learning issue that relates to the student’s research area.

PHYT 5080.03: Directed Study.
Individual students work with a designated faculty member to conduct an in-depth examination of a topic that is chosen to address a specific educational need. The content, resources, and evaluation methods are customized to address a specific learning issue that relates to the student’s research area.

PHYT 5090.03: Foundations Seminar.
This class explores physiotherapy practice and the physiotherapy profession. Through an understanding of the history and background of the profession and an up-to-date view of current practice, students will form opinions regarding the direction the profession is taking, and vehicles for change that are available. Various aspects of current and past physiotherapy culture, practice, leadership and academia will be discussed. Students will have the opportunity to present their own perspectives and issues.

PHYT 5300.03: Skeletal Muscle Function through Surface Electromyography.
Electromyography provides an extracellular view of the processes associated with skeletal muscle activation, and thus an important link to physiology when studying human movement. The objective of this class is to provide the student with the theoretical foundation for EMG studies, practical experience in acquiring EMG data and with an opportunity to
critically evaluate the current literature that uses surface EMG to study muscle function on topics such as pathological gait, dynamic stability of the spine, therapeutic exercise assessment and functional impairments. The class will consist of small group sessions, seminars and laboratory experiences.

PHYT 5572.03: Topics in Human Performance: Motor Control.
This class is intended to be a graduate level seminar which attempts to provide careful examination of published research and other written work in the area of motor control. The first portion of the class will consist of a brief review of the mechanical and physiological foundations of motor control and an illustration of some of the most useful and popular paradigms in the field. The second portion of the class will turn to classic problems and current theoretical and empirical attempts to solve them. The last portion of the class will involve presentations by members of the seminar group. The format of the presentations can vary according to individual and the topic under consideration. Some suggestions would include: 1) a literature review of a specific topic, 2) a grant proposal for a research project and 3) the results of a study conducted during the class. CROSS-LISTING: KINE 5572.03

PHYT 9000.00: Thesis.

Planning

Location: 5410 Spring Garden Road
Halifax, NS
Mail: School of Planning
Faculty of Architecture and Planning
Dalhousie University
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-3260
Fax: (902) 423-6672
Email: planning.office@dal.ca
Website: http://www.dal.ca/planning

Professors
Grant, J., BA (UWO), MA (McMaster), MA, PhD (Waterloo), FCIP, LPP
Palermo, F., BArch (Toronto), MArchUD (Harvard), FCIP, FRAIC, LPP

Associate Professors
Manuel, P., BA (Carleton), MSc (McGill), PhD (Dal), MCIP, LPP
Rapaport, E., BSc (Wisconsin), MSc, PhD (RIT Stockholm), MCIP, LPP
Zuck, J., BA (Hiram), BDEP (NSCAD), MLA (U Pennsylvania), MCIP, LPP, FCSLA

Assistant Professor
Habib, M.A., BURP, MURP, (Bangladesh), MSc, PhD (Toronto)

Adjunct Professors
Alström-Rapaport, C., BSc, MSc (Wisconsin), PhD (Uppsala)
Busby, P., BA (Dal), MURP (TUNS)
Epstein, H., BA (Carleton), LLB (Dal)
Perrot, K., BA (Guelph), MPlan (Dal)
Ruffman, A., BSc (Toronto), MSc (Dalhousie)
Spencer, V., BES (Waterloo)
Wishart, B., BA (STU), BEd (Lakehead), MURP (Queen’s), MPA (Dal), MCIP, LPP
Zwicker, B., BA (Dal), MUrb.Reg. Plan (Toronto), MCIP, LPP

Cross-appointed Faculty
Beazley, K., major appointment in Resource and Environmental Studies
Boxall, J., major appointment as Map and Geospatial Information Librarian, Killam Library
Rainham, D., major appointment in Environmental Science, Faculty of Science
Wright, T., major appointment in College of Sustainability

Departmental Secretary
Madden, C.

I. Introduction
The School of Planning provides a professional planning education at the graduate level. The program is recognized by the Canadian Institute of Planners. Many graduates of the program will become professional planners working for private firms, for government, or in non-governmental organizations. Others will find that the education provides a solid foundation for careers in related spheres such as international development, environmental protection, or urban design. Planning provides knowledge, a skill set and a way of thinking with broad application.

Planners are involved in a variety of activities that shape the future of communities, the quality of the environment, and the character of daily life. In their work for government, planners engage and motivate the public, help to develop a wide range of policies affecting the character and potential of communities, and act as guardians of the environment and of
our built heritage. Working as consultants in the private sector, planners undertake a wide variety of tasks ranging from physical design and transportation planning, to creating strategies for sustainable or “smart” development. Planners work throughout the world, from the heart of Canada’s towns and cities to the fields and villages of the Third World.

The School of Planning encourages initiative, resourcefulness, and creative questioning of received doctrine. The curriculum of the School emphasizes: (a) specialized knowledge of theory and practice of planning including a sound appreciation of the environmental, social, and economic processes that shape the form and character of communities; (b) up-to-date skills; (c) a sound appreciation of the environmental, social, and economic processes that shape the form and character of communities; (d) the active contribution of students in confronting and resolving contemporary planning problems in local communities; and (e) the development of personal capabilities suited to the leadership roles that planners assume.

Through environmental and community-centered learning, teaching, research and practice, faculty members and students in the School engage in the planning and design of settlements in a variety of scales and contexts. Central to the graduate planning program are studio courses (where learning is gained through real projects based in the community). Studio course content is delivered in a way that meets academic objectives within the practice of dealing with community planning issues. Thus the studio integrates theory and practice. Students also have opportunities to participate in field trips within the region and to international cities to learn about planning outside of Halifax.

The Planning School also offers professional planners the opportunity to extend their education through focused research in the Master of Planning Studies (MPS) program.

II. Degree Programs

A. Master of Planning (MPlan)

The Masters program is a 20-month program with a work term in the summer (third) semester. The program may also be completed through part-time study over a longer period of time (maximum 7 years). The program consists of 42 credit hours of required course work, and 15 credit hours of elective course work. The work term is a non-credit academic requirement.

Because of the interactive nature of the core studio and class curriculum, students must be present on campus during the terms they register for required courses, except for the work term.

The required classes provide the fundamental elements of a planning education. They cover planning theory, history, practice, law, and methods, and provide community-based project experience that allows students to understand the institutional, social, and environmental contexts within which planners work. Classes allow students to develop planning skills and knowledge and to apply them to real community problems.

In the second year of the MPlan program, all students take on two major research-based projects: one individual and one team project.

The elective classes enable students to pursue individual interests and areas of specialized knowledge relevant to their studies in planning. Classes offered within the School focus on community design, urban design, environmental planning, land use planning, urban and environmental history, economics, housing, and land development. Students must take at least half of their elective credits from offerings within the School of Planning.

Electives may be taken in other Dalhousie departments, or at other universities in Halifax, with the permission of the School. In some cases, elective credit may be given for suitable courses taken at other universities in Canada or abroad. Students wishing to take courses outside the School need permission of the Graduate Coordinator.

Work Term

The program includes a work term (during the summer after the first academic year) that provides students with practical experience in planning. The Career Co-ordinator for the Faculty of Architecture and Planning assists students in their search for suitable work term placements; students should note, however, that they are responsible for securing appropriate placements. In recent years, planning students have been employed throughout Atlantic Canada and most other Canadian provinces, and some have chosen to work abroad (e.g., in the United States, Gambia, England). Students are encouraged to begin their search for work-term placements early in their first year of study in the program, and to be prepared to travel outside of the Halifax area to obtain work experience.

Professional Registration

On completion of the MPlan degree, and after obtaining professional work experience, graduates are eligible for full membership in the Canadian Institute of Planners (CIP). In some provinces, candidates for membership may have to write an exam to qualify. A foreign applicant is advised to contact his/her national accreditation organization about requirements for professional registration (many professional organizations have transfer agreements with CIP to facilitate exchange).

B. Master of Engineering/Master of Planning (MEng/MPlan) and Master of Applied Science/Master of Planning (MASc/MPlan)

Admission to the MEng/MPlan and MASc/MPlan programs are suspended. The program will continue to be delivered to any current students until all students have graduated, or the time allowed for program completion has elapsed, or all students have left the program.

C. Master of Planning Studies

The MPS program is a research focused post professional degree intended for applicants who through previous education and/or work experience are eligible for membership in the professional planners' institute. The program is designed to be completed in one year of full-time study, or up to five years of part-time study. Students must complete at least one winter semester in full-time study at Dalhousie University.

The program will appeal to candidates with a solid grounding in the fundamentals of planning who have earned an undergraduate degree and wish to pursue graduate studies. The Master of Planning Studies has research as its focus. It welcomes candidates with questions they want to explore in an academic setting under the supervision of a Dalhousie faculty member.

The curriculum includes mandatory and elective courses and a thesis. Students must demonstrate proficiency in research methods appropriate for the thesis or complete an approved methods course. Two additional mandatory courses provide a context for exploring current ideas, issues and ethics and an opportunity to develop the thesis proposal. Elective courses are based on individual interest and support the thesis research focus.

III. Admission Requirements

A. Minimum Academic Requirements

Each September, the School admits approximately twenty to twenty-five students. The School seeks students with high scholastic standing and demonstrated academic interests or community experience pertinent to planning. All candidates must meet the Admissions Regulations of the Faculty of Graduate Studies (3.0 minimum average GPA in a four year undergraduate degree).

Master of Planning

Admission to the MPlan program requires an undergraduate degree with high scholastic standing. In special circumstances where mature applicants are involved, applications supported by significant career experience may be considered.
Master of Planning Studies

Admission to the MPS program normally requires either a four-year undergraduate degree from a professional planning program, or a four-year degree in any subject with four years of planning work experience that makes them eligible for membership in the professional planners’ institute.

Entrance will be limited according to the School’s ability to offer appropriate faculty supervision. Only those candidates with research interests compatible with those of faculty members will be eligible for admission. Enrolment may begin in either January or September.

B. Inquiries

Please contact the School of Planning or go to the School website for an application package and additional information about graduate programs in planning. (The School’s telephone number, email address and website are shown at the beginning of this calendar section.) Please contact the Dalhousie University Office of the Registrar for information on admission status or registration.

C. Application Deadlines

While there is no cutoff date for the consideration of applications, candidates for MPlan should normally submit their application by February 1. Admission is very competitive and some scholarships are only available to candidates whose application has been received by the beginning of February.

Students begin their courses in September. Only in exceptional circumstances are students permitted to enter the MPlan program at other times.

For MPS, applications may be considered at any time but are expected to take at least two months to process. Enrolment may begin in either January or September.

International applicants must ensure that their complete application has arrived by February 1, to allow sufficient time for visa processing.

D. Transfer Students

Applicants who have completed part of another graduate planning program will be considered for transfer credit by the Admissions Committee. A transfer student must complete a minimum of 30 credit hours of classes including the planning project within the MPlan program to qualify for the degree.

E. English Language Competency

Applicants whose native language is not English must meet the Faculty of Graduate Studies requirements for English Language Competency (see FGS calendar section 2.4). Students admitted to the program may be required to take further training in English in Canada, in the summer preceding the start of the program.

IV. Academic Regulations

In addition to the Faculty of Graduate Studies regulations, the following policies apply to the School of Planning.

Readmission

A student who wishes to be readmitted to the program after withdrawing or failing to register for three consecutive terms, must reapply as though he/she were a new applicant to the program.

Transfer credits

A student who wishes the School to consider transfer credits must apply no later than October 1 of the year the student enters the program. Graduate level credits earned outside of a completed degree program may be accepted as electives if (a) the School accepts them as electives relevant to a planning education, and (b) the student earned a grade of B or better.

V. Planning Classes

Students in the MPlan program take 60 credit hours, or equivalent, and complete a work term. The sessional distribution of classes throughout the two years of the planning program is outlined below.

Full-time students normally register for 12 to 18 credit hours per semester. Class credit hours are shown after the decimal place in the class number: e.g., “.03” means 3 credit hours; in a one-semester lecture class, the number of credit hours is roughly equal to the weekly contact hours, and there is an expectation of about double that time of work outside class hours. Note that studio classes are 6 credit hours, though only one semester long.

Required courses: 45 credit hours (11 classes)

- PLAN 5000.06: Planning Studio 1
- PLAN 5101.03: History and Philosophy of Planning
- PLAN 5102.03: Planning Practice
- PLAN 5104.03: Planning Law
- PLAN 5201.00: Work Term (non-credit)
- PLAN 5303.03: Planning Methods A
- PLAN 5304.03: Planning Methods B
- PLAN 5500.06: Planning Studio 2
- PLAN 6000.09: Planning Project and Seminar
- PLAN 6500.06: Integrated Team Project
- PLAN 6505.03: Seminar on Theories, Ideas, and Debates in Planning

Elective credits: 15 credit hours (five half classes, or equivalent).

Students select 15 credit hours of electives over the course of their studies.

Program of Study for Master of Planning

Year 1 - Term 1 (Fall)

- PLAN 5000.06: Planning Studio 1
- PLAN 5101.03: History and Philosophy of Planning
- PLAN 5102.03: Planning Practice
- PLAN 5303.03: Planning Methods A
- electives

Year 1 - Term 2 (Winter)

- PLAN 5104.03: Planning Law
- PLAN 5304.03: Planning Methods B
- PLAN 5500.06: Planning Studio 2
- electives

Year 1 - Term 3 (Summer)

- PLAN 5201.00: Work Term

Year 2 - Term 4 (Fall)

- PLAN 6000.09: Planning Project and Seminar
- electives

Year 2 - Term 5 (Winter)

- PLAN 6500.06: Integrated Team Project
- PLAN 6505.03: Seminar: Theories, Ideas, and Debates in Planning
- electives

Planning Electives

- PLAN 5005.03: Cities and the Environment in History
- PLAN 5102.03: Reading the City
- PLAN 5015.03: Site Infrastructure
- PLAN 5020.03: Landscape Design
- PLAN 5025.03: Representation in Design
- PLAN 5040.03: Reading the Suburbs
- PLAN 5050.03: Topics in Community Design
- PLAN 6101.03: History and Theory of Urban Design
- PLAN 6102.03: Urban Economics
- PLAN 6103.03: Urban Ecology
- PLAN 6105.03: Land Development Economics
- PLAN 6106.03: Transportation Planning
- PLAN 6107.03: Regional Planning
- PLAN 6108.03: History and Theory of Landscape Architecture

Planning 257
• PLAN 6111.03: Housing Theory
• PLAN 6150.03: Topics in Planning
• PLAN 6201.03: Directed Studies
• PLAN 6202.03: Directed Studies 2
• PLAN 6205.03: Field Trip: Maritimes
• PLAN 6250.03: Field Trip: International
• PLAN 6303.03: Advanced Research Theory & Methods for Planning
• PLAN 6304.03: Planning Methods A B
• PLAN 6401.03: Site Infrastructure
• PLAN 6600.06: Special Project Studio: Environmental Planning
• PLAN 6602.06: Special Project Studio: Urban Design
Note: Some senior undergraduate courses may be taken with the permission of the Graduate Coordinator.

Graduate courses are at the 5000 level and above. When classes are cross-listed, student must enroll in the graduate course. All such classes need the approval of the Graduate Coordinator, and if the class is at another university, a Letter of Permission must be completed before enrolling in the class. Undergraduate courses: up to two senior level (3000, 4000) undergraduate classes may be included in the program if comparable graduate classes are not available. Students need the permission of the Graduate Coordinator.

Directed Studies: no more than two Directed Studies classes may be included in the program.

VIII. Class Descriptions

Class Numbers
Graduate courses are at the 5000 level and above. When classes are cross-listed with senior undergraduate classes, graduate students must enroll under the graduate number, and in such classes, the assignments and expectations are modified appropriately for graduate work.

PLAN 5000.06: Planning Studio 1.
The studio introduces land planning and development. The class investigates fundamental aspects of planning in community and environmental context in the urban region. Specific community projects are used to explore the procedural, physical, social and polemical context for decision making; to apply skills in information gathering, analysis, and synthesis; to develop communication techniques. The class will concentrate on documenting the existing situation, formulating strategies for intervention, developing concepts and plans, and assessing the consequences of proposed changes.
INSTRUCTOR(S): Guppy, S. and M.A. Habib
FORMAT: Studio/seminar (6 hours)
RESTRICTION: Master of Planning students or permission of instructor

PLAN 5005.03: Cities and the Environment in History.
The contemporary landscape reflects a long history of human activities on the land, and design and planning interventions through time. Civilizations rise and fall, often because of their degradation of the ecosystems that support them. This course examines the relationship of cities with the environment to enhance our understanding of landscape change, urban form and patterns in human settlements through the ages.
INSTRUCTOR(S): J. Grant
FORMAT: Lecture/seminar, 3 hours
CROSS-LISTING: PLAN 3005.03

PLAN 5012.03: Reading the City.
Any city reflects the history of its topography, cultural traditions, and design interventions. This course introduces the principles, theories, and methods of urban form analysis in the local urban context. Students explore the local urban environment to interpret what the city means, and how it comes to take the shape it does.
INSTRUCTOR(S): S. Guppy or P. Busby
FORMAT: Lecture/Seminar, 3 hours
CROSS-LISTING: PLAN 3012.03

PLAN 5015.03: Site Infrastructure.
The course examines the role of infrastructure in community design and site planning. Students are introduced to principles of grading, access, service provision, and cost estimating. Key exercises allow students to apply theory to practical projects.
INSTRUCTOR(S): J. Zuck or E. Rapaport
FORMAT: Lecture/lab/3 or 4 hours
CROSS-LISTING: PLAN 3015.03

PLAN 5020.03: Landscape Design.
The course introduces principles and methods of site design. It pays special attention to social, natural, and technical components as factors in adapting sites for human use. Practical projects allow students to develop deeper insight into the challenges and opportunities of landscape design.
INSTRUCTOR(S): J. Zuck
FORMAT: Lecture/lab/3 or 4 hours
CROSS-LISTING: PLAN 3020.03

PLAN 5025.03: Representation in Design.
The course explores techniques of representation in community design work. It examines design drawing conventions such as orthographic, paraline, and perspective projections. It helps students develop their awareness of design approaches and their skills in design presentation.
INSTRUCTOR(S): Staff
FORMAT: Lecture/lab, 3 hours
CROSS-LISTING: PLAN 3025.03

PLAN 5040.03: Reading the Suburbs.
An increasing proportion of Canadians live in the suburbs. This course explores issues related to planning and designing the suburbs, and develops techniques for analyzing and developing community form in the suburban environment.
INSTRUCTOR(S): J. Grant
FORMAT: Lecture 3 hours
CROSS-LISTING: PLAN 3040.03

PLAN 5050.03: Topics in Community Design.
This course provides opportunities to examine selected topical issues in community design.
PLAN 5011.03: Planning Practice.
The class explores the role of the planner and the planning process through lectures, seminars and case studies. The focus is on understanding the institutional framework for planning, including social, political, and economic dimensions; examining approaches to community involvement, negotiation, and policy formulation; and developing effective communication skills. It will consider significant current issues facing planners (including ethical questions).
INSTRUCTOR(S): B. Wishart
FORMAT: Lecture/seminar, 2 hours
RESTRICTION: Master of Planning students, or permission of instructor

PLAN 5012.03: Planning Law.
The course introduces the legislation, case law, and government authority applicable to planning and development control. Zoning and subdivision controls, development control, expropriation, planning appeals and the process of establishing and implementing plans will be examined. Attention is paid to the roles of all the primary players in planning: private citizens, special interest groups, corporations and municipal, provincial and federal government departments.
INSTRUCTOR(S): H. Epstein
FORMAT: Lecture/seminar, 3 hours
RESTRICTION: Master of Planning students, or permission of instructor

PLAN 5014.03: Planning Law.
The course introduces the legislation, case law, and government authority applicable to planning and development control. Zoning and subdivision controls, development control, expropriation, planning appeals and the process of establishing and implementing plans will be examined. Attention is paid to the roles of all the primary players in planning: private citizens, special interest groups, corporations and municipal, provincial and federal government departments.
INSTRUCTOR(S): H. Epstein
FORMAT: Lecture/seminar, 3 hours
RESTRICTION: Master of Planning students, or permission of instructor

PLAN 5010.00: Work Term.
The work term provides an opportunity for student to integrate practical work experience within the educational environment. A student must complete a work term of not fewer than 500 hours over not fewer than 12 weeks in an employment placement approved by the School of Planning. The student maintains a work journal during the work term, and prepares a synthesis paper at the end of the work term reflecting on the lessons learned during the work term. The student makes a presentation within the School upon completion of the work term.
RESTRICTION: Master of Planning students

PLAN 5020.00: Land Development Economics.
The class covers additional methods used in planning. This may include economic multipliers, spatial location analysis, research design, and other appropriate techniques.
INSTRUCTOR(S): E. Rapaport
FORMAT: Lecture/seminar, 3 hours
RESTRICTION: Master of Planning students or permission of instructor

PLAN 5052.03: Topics in Community Design 3.
This course provides opportunities to examine selected topical issues in community design.
FORMAT: Lecture/seminar
CROSS-LISTING: PLAN 3052.03

PLAN 5053.03: Topics in Community Design 4.
This course provides opportunities to examine selected topical issues in community design.
FORMAT: Lecture/seminar
CROSS-LISTING: PLAN 3053.03

PLAN 5101.03: History and Philosophy of Planning.
The class offers an intensive examination of traditions, ideas, and philosophies that provide an underpinning to contemporary planning. The class traces the historic development of modern planning (since the late 19th century), and examines the philosophical foundations of the planning profession.
INSTRUCTOR(S): J. Grant
FORMAT: Lecture/seminar, 3 hours
RESTRICTION: Master of Planning students, or permission of instructor

PLAN 5102.03: Planning Practice.
The class explores the role of the planner and the planning process through lectures, seminars and case studies. The focus is on understanding the institutional framework for planning, including social, political, and economic dimensions; examining approaches to community involvement, negotiation, and policy formulation; and developing effective communication skills. It will consider significant current issues facing planners (including ethical questions).
INSTRUCTOR(S): B. Wishart
FORMAT: Lecture/seminar, 2 hours
RESTRICTION: Master of Planning students, or permission of instructor

PLAN 5104.03: Planning Law.
The course introduces the legislation, case law, and government authority applicable to planning and development control. Zoning and subdivision controls, development control, expropriation, planning appeals and the process of establishing and implementing plans will be examined. Attention is paid to the roles of all the primary players in planning: private citizens, special interest groups, corporations and municipal, provincial and federal government departments.
INSTRUCTOR(S): H. Epstein
FORMAT: Lecture/seminar, 3 hours
RESTRICTION: Master of Planning students, or permission of instructor

PLAN 5201.00: Work Term.
The work term provides an opportunity for student to integrate practical work experience within the educational environment. A student must complete a work term of not fewer than 500 hours over not fewer than 12 weeks in an employment placement approved by the School of Planning. The student maintains a work journal during the work term, and prepares a synthesis paper at the end of the work term reflecting on the lessons learned during the work term. The student makes a presentation within the School upon completion of the work term.
RESTRICTION: Master of Planning students

PLAN 5301.03: Planning Methods A.
The class introduces methods used in planning. This may include spatial analysis, population forecasting, survey methods, computer tools, and other appropriate techniques.
INSTRUCTOR(S): E. Rapaport
FORMAT: Lecture/seminar, 3 hours
RESTRICTION: Master of Planning students or permission of instructor

PLAN 5302.03: Planning Methods B.
The class covers additional methods used in planning. This may include economic multipliers, spatial location analysis, research design, and other appropriate techniques.
INSTRUCTOR(S): P. Manuel or M.A. Habib
FORMAT: Lecture/seminar/2 hours
RESTRICTION: Master of Planning students or permission of instructor

PLAN 5500.06: Planning Studio 2.
The studio continues the lessons of Studio 1. The studio adopts an environmental perspective in approaching planning issues and challenges. The class will concentrate on techniques of evaluating the suitability of land for proposed land uses, and methods of assessing the impacts of proposed planning policies and developments on landscapes.
INSTRUCTOR(S): J. Zuck or E. Rapaport
FORMAT: Studio/seminar, 6 hours
PREREQUISITE: PLAN 5000
RESTRICTION: Master of Planning students or permission of instructor

PLAN 6000.09: Planning Project and Seminar.
Each student completes an independent planning project under the guidance of a project advisor, and participates in the weekly planning project seminar with the seminar leader. The class provides an opportunity for independent research and analysis in a community-based planning project context. The seminar provides an opportunity for reflection on the connections between theory and practice, and sets challenges and deadlines for project completion. Students present their work at several points during the term. Assessment is based on the project (75%) and seminar participation (25%).
INSTRUCTOR(S): J. Grant or P. Manuel
FORMAT: Studio/seminar, 2 hours
PREREQUISITE: PLAN 5500.06, 5302.15

PLAN 6101.03: History and Theory of Urban Design.
The course introduces the history and theory of urban design as a distinct area of professional knowledge and skill within the spectrum of planning and design concerns and specialities.
INSTRUCTOR(S): F. Palermo
FORMAT: Lecture/seminar, 3 hours
CROSS-LISTING: PLAN 4101.03
RESTRICTION: Honours or graduate students in the Faculty of Architecture and Planning, or permission of instructor

PLAN 6102.03: Urban Economics.
The course applies economic principles to urban growth and structure, urban social and economic problems, and provision of services and government activities. The emphasis is on the use of micro economics and welfare economics to explain and analyze urban processes and patterns of behaviour.
FORMAT: Lecture/seminar, 2 hours
RESTRICTION: Graduate students in the Faculty of Architecture and Planning, or permission of instructor

PLAN 6103.03: Urban Ecology.
More than three-quarters of Canadians, and more than half the world’s population, now live in urban settings. This course treats the urban system as habitat made by and for people, and takes an ecological approach to the flows of energy and materials which make urban life possible. Students study their own behaviour and surroundings, comparing their observations with data from Canada, North America, and the rest of the world. This leads to discussions about the health and sustainability of urban communities.
FORMAT: Lecture/seminar, 3 hours
CROSS-LISTING: PLAN 3010.03

PLAN 6105.03: Land Development Economics.
The course applies basic techniques for analyzing the financial feasibility of land development projects. Case studies focus particular attention on methods of financing and organizing real-estate development within the planning framework.
INSTRUCTOR(S): M. Hanusiak
FORMAT: Lecture/seminar, 2 hours
CROSS-LISTING: PLAN 4105.03
RESTRICTION: Graduate students in the Faculty of Architecture and Planning, or permission of instructor
PLAN 6106.03: Transportation Planning.
This class analyses transportation trends, the transport needs associated with different activities, and the impact of transport facilities on land development. It offers a critical analysis of the interplay between land uses and transportation. Technology, the costs of supplying transport facilities, and the demand outlook for different modes are examined. The emphasis is on urban transportation, mobility demands and the supply of efficient and environmentally sound transport facilities.

INSTRUCTOR(S): M. Habib
FORMAT: Lecture/seminar, 3 hours
CROSS-LISTING: PLAN 4107.09
RESTRICTION: Graduate students in the Faculty of Architecture and Planning, or permission of instructor

PLAN 6107.03: Regional Planning.
The class critically examines policies, theories, aims and achievements of regional planning. The course discusses (i) economics, development theories, and regional development policies; (ii) international comparisons of regional development policies and experience; and (iii) Canadian regional development experience with particular reference to government initiatives in the Atlantic region.

FORMAT: Seminar
CROSS-LISTING: PLAN 4107.09

PLAN 6108.03: History and Theory of Landscape Architecture.
The class deals with changing landscapes and perceptions of the natural world during the past 250 years. It discusses the effects of technology and resource use on the design of landscapes as small as a private garden and as large as a bio-region, and examines the changing role of landscape architects, their writings, and their collaboration with architects and planners.

INSTRUCTOR(S): J.G. Wanzel
FORMAT: Lecture/seminar, 3 hours
CROSS-LISTING: PLAN 4108.03
RESTRICTION: Graduate students in the Faculty of Architecture and Planning, or permission of instructor

PLAN 6111.03: Housing Theory.
An introduction to the history and theory of contemporary practice in housing design and production. The focus is on the quality of housing and the residential environment. A comparative analysis of significant past and current examples is used to provide insight into the way houses and neighborhoods are designed. This understanding is placed in the context of differing economic, political and housing market situations.

INSTRUCTOR(S): J.G. Wanzel
FORMAT: Lecture/seminar, 3 hours
CROSS-LISTING: ARCH 5102.03, PLAN 4111.03
RESTRICTION: Graduate students in the Faculty of Architecture and Planning, or permission of instructor

PLAN 6150.03: Topics in Planning.
6151.03, 6152.03, 6153.03
This course provides opportunities to examine selected topical issues in planning in a seminar discussion.

INSTRUCTOR(S): Faculty
FORMAT: Seminar, 2 or 3 hours
CROSS-LISTING: PLAN 4150.03
RESTRICTION: Graduate students in the Faculty of Architecture and Planning, or permission of instructor

PLAN 6201.03: Directed Studies.
A student wishing to pursue an advanced aspect of planning study for which no suitable class is offered may request a second Directed Study. The class is taken under a School of Planning faculty member.

RESTRICTION: Master of Planning students or permission of Director of School of Planning

PLAN 6202.03: Directed Studies 2.
A student wishing to pursue an advanced aspect of planning study for which no suitable class is offered may request a second Directed Study. The class is taken under a School of Planning faculty member. No further directed studies are permitted.

PREREQUISITE: PLAN 6201.03
RESTRICTION: Master of Planning students, permission of Director of School of Planning

PLAN 6250.015: Field Trip: Maritimes 1.
This intensive course involves a field trip within the Maritimes region to explore the current and historic state of planning in the region.

RESTRICTION: Master of Planning students

PLAN 6251.015: Field Trip: Maritimes 2.
This intensive course involves a field trip within the Maritimes region to explore the current and historic state of planning in the region.

RESTRICTION: Master of Planning Students

PLAN 6252.015: Field Trip: Maritimes 3.
This intensive course involves a field trip within the Maritimes region to explore the current and historic state of planning in the region.

RESTRICTION: Master of Planning Students

PLAN 6253.015: Field Trip: Maritimes 4.
This intensive course involves a field trip within the Maritimes region to explore the current and historic state of planning in the region.

RESTRICTION: Master of Planning Students

PLAN 6255.015: Field trip: International 1.
This intensive course involves a field trip to an international city to explore the current and historic state of planning in the city.

RESTRICTION: Master of Planning students or permission from the Director of School of Planning

PLAN 6256.015: Field Trip: International 2.
This intensive course involves a field trip to an international city to explore the current and historic state of planning in the city.

RESTRICTION: Master of Planning Students, or permission from the Director of School of Planning

PLAN 6257.015: Field Trip: International 3.
This intensive course involves a field trip to an international city to explore the current and historic state of planning in the city.

RESTRICTION: Master of Planning Students, or permission from the Director of School of Planning

PLAN 6258.015: Field Trip: International 4.
This intensive course involves a field trip to an international city to explore the current and historic state of planning in the city.

RESTRICTION: Master of Planning Students

PLAN 6304.015: 6305/6306/6307/6308/6309: Mid-Term Conference Module.
In the winter term the School offers an intensive conference module. The module is usually an intensive professional development workshop on an important contemporary planning theme. It brings together students, professional practitioners and high-calibre resource personnel. Students help to organize and run the conference, and complete assignments around the conference theme.

RESTRICTION: Graduate students in the Faculty of Architecture and Planning, or permission of instructor

PLAN 6500.06: Integrative Team Project.
In the final semester, students form small consulting teams to undertake complex planning projects for community, government or corporate clients. Projects and clients are selected by students and represent their wide range of interests. A common thread is the process to develop, document and communicate strategies and methods of implementation.

INSTRUCTOR(S): V. Spencer
FORMAT: Studio
PREREQUISITE: PLAN 6000.09

PLAN 6505.03: Seminar: Theories, Ideas, and Debates in Planning.
The final capstone course provides a venue for debate and discussion about theory, ethics, ideas, and contemporary issues in planning. It considers the relationship between theory and practice, and allows students to reflect on the profession they are about to join.

FORMAT: Lecture/seminar
PREREQUISITE: PLAN 5500.03
RESTRICTION: Restricted to graduate students in the Faculty of Architecture and Planning or permission of the instructor.
PLAN 6600.06: Special Project Studio.
The studio provides an opportunity for in-depth examination of a community-based urban design project.
FORMAT: Lecture/lab/studio
RESTRICTION: Graduate students in the Faculty of Architecture and Planning, or permission of instructor

PLAN 6601.06: Special Project Studio: Environmental Planning.
The studio provides an opportunity for in-depth examination of a community-based environmental planning project.
Note: Graduate students registering for this course need appropriate background in landscape analysis and environment planning.
INSTRUCTOR(S): J. Zuck or P. Manuel or E. Rapaport
FORMAT: Lecture/lab/studio
PREREQUISITE: PLAN 5500.06 and permission of instructor
CROSS-LISTING: PLAN 4001.06
RESTRICTION: Graduate students

PLAN 6602.06: Special Project Studio: Urban Design.
The studio provides an opportunity for in-depth examination of a community-based urban design project.
INSTRUCTOR(S): F. Palermo or J. Zuck
FORMAT: Lecture/lab/studio
PREREQUISITE: PLAN 5500.06
CROSS-LISTING: PLAN 4002.06
RESTRICTION: Graduate students in the Faculty of Architecture and Planning, or permission of instructor

PLAN 8000.06: MPS Thesis Proposal.
Under the supervision of the thesis supervisor and thesis committee, a student in the Master of Planning Studies programme prepares a thesis proposal that outlines the research question, background literature review and synthesis, approach, methods (of data collection and analysis), ethical implications, and schedule of work. The student gives a public presentation of the thesis proposal, and an oral defence before the thesis committee.
FORMAT: Self-directed project
PREREQUISITE: Admission to Master of Planning Studies programme

PLAN 9000.15: Master of Planning Studies Thesis.
Under the supervision of the thesis supervisor and thesis committee, a student in the Master of Planning Studies programme prepares a thesis that investigates an original and significant question in planning research. The student gives a public presentation of the thesis research, and an oral defence before the thesis committee.
FORMAT: Thesis research and writing continues
PREREQUISITE: Plan 9000 graded as IP
RESTRICTION: Limited to students in the Master of Planning Studies programme who have earned IP in Plan 9000.15

PLAN 9010.00: MPS Thesis Continuation.
When a thesis committee grades the course Plan 9010.00 each fall and winter semester until the thesis is successfully defended and completed.
FORMAT: Thesis research and writing continues
PREREQUISITE: Plan 9000 graded as IP
RESTRICTION: Limited to students in the Master of Planning Studies programme

Political Science

Location: Arts & Administration Building
Third Floor, Room 301
6299 South Street
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-2396
Fax: (902) 494-3825
Email: pscience@dal.ca
Website: http://politicalscience.dal.ca

Chairperson of Department
Finbow, R.G.

Graduate Co-ordinator
Harvey, F.

Professors Emeriti
Boardman, R., BSc, PhD, DSc (London). International organization, European Politics, Environment
Braybrooke, D., BA (Harvard), MA, PhD (Cornell), FRSC
Cameron, D.M., BA (Queen's), MA, MPhil, PhD (Toronto). Canadian federalism and intergovernmental relations; Canadian public policy; city government
Eayrs, J.G., BA (Toronto), AM, PhD (Col), FRSC
Stairs, D., BA (Dal), MA (Oxon), PhD (Toronto), FRSC, OC. Canadian foreign policy; foreign policy process
Winham, G.R., BA (Bowdoin), Dip Int Law (Manchester), PhD (N Car), FRSC, Eric Dennis Memorial Professor of Government and Political Science. International relations and diplomatic practice; international political economy; U.S. Foreign policy; Canada-U.S. relations

Professors
Black, D., BA (Trent), MA, PhD (Dal). Canadian & comparative foreign policy; Southern Africa; North-South relations
Fierbeck, K., BA (Alta), MA (York), PhD (Cantab). Political theory, Modern and Post-modern; Distributive justice
Finbow, R.G., BA (Dal), MA (York), MSc, PhD (London). Comparative politics (Western democracies [Latin America]); Comparative theory; Canadian regionalism
Harvey, F., BA, MA, PhD (McGill). Theories of international relations; International conflict and crises; comparative foreign policy; American foreign policy; Canada –U.S relations.
Laursen, F., Cand. Scient.Pol(Aarhus Univ), PhD, (Penn). International Politics, European Studies

Associate Professors
Arthur, P., BA (Ghana), MSc (LSE), MA (WLU), PhD (Queen’s). Comparative Politics (African Politics), Development, Foreign Policy
Brow, B., BA (UBC), MA (York), PhD (Cornell). International Relations; International Diplomacy and Institutions; International Political Economy; Foreign Policy; Canada-US Relations
Carbert, L., BA (Alta), MA, PhD (York). Political theory; Political behaviour; Women and Politics
Denike, M., BA (Simon Fraser), MA (UBC), LLM (Queens), PhD (York), Western political theory; Human right; Philosophies of law; Feminist; Queer Theory
Good, K., BA, MA (Man), PhD (Toronto). Urban and suburban governance in Canada, Canadian federalism and multi-level governance, Canadian public policy, race relations in Canada
Turnbull, L., BA, MA (Dal), PhD, (Dal). Canadian Politics with specific focus on ethics, parliament, and citizen engagement
Assistant Professors
Hayden, A., BA (McGill), MES (York), PhD (Boston College), Environmental and Climate Politics; Politics of Consumption, Political Economy
Zaiotti, R., BA (Bologna), MA (Oxford), PhD (Toronto), European Union; Internationa Relations Theory; International Security; Border control and Immigration Policy; Transatlantic relations

Adjunct Professors
Bakvis, H., University of Victoria
Bickerton, J., St. Francis Xavier University
Biro, A., Acadia University
Cameron, D., Dalhousie University
Davis, J., Dalhousie University
Dodd, S., University of King’s College
Heard, A., Simon Fraser
Kow, S., University of King’s College
Robertson N., University of King's College
Shaw T., Royal Roads University
Smith H., University of Northern British Columbia
Smith, J., Dalhousie University
Stairs, D., Dalhousie University

I. Admission Requirements
Applicants must satisfy the minimum requirements set by the Faculty of Graduate Studies.

Successful applicants for the MA program will have an Honours BA in Political Science, or its equivalent, with first-class standing (GPA of 3.70 or higher).

Admission decisions are based on academic transcripts, letters of reference, a sample of written work, statement of research interest submitted by the applicant, and the capacity of the Department to supervise a thesis in the applicant’s proposed field of research.

Successful applicants for the PhD program will have an MA in Political Science with first-class standing (GPA of 3.70 or higher). Admission decisions are based on the same considerations as apply to the MA program, but PhD students are admitted only when a faculty member is prepared to supervise the applicant’s program, including the proposed thesis topic.

Applicants who do not meet all of the above requirements, but who have superior academic qualifications, may be considered for admission to the MA or PhD programs, but may be required to satisfy additional requirements within the program. All such requirements will be specified at the time of admission.

Applicants whose native language is not English must demonstrate a minimum of 600 for the written TOEFL/100 for the internet based test, or the equivalent score on a comparable test.

II. Degree Programs
A. Master of Arts (MA)
The MA is a one-year (12 month) program consisting of three full-credit classes (or the equivalent in half-credit classes) and a thesis. A candidate for the degree Master of Arts in Political Science will require at least twelve months of full-time study to complete all degree requirements. Classes include at least two of the core graduate seminars, other graduate classes (including directed reading classes and graduate classes in other departments), and not more than one credit of classes cross-listed as undergraduate/graduate (3000/5000).

B. Doctor of Philosophy (PhD)
The PhD program requires two years of full-time residency, and is expected to be completed in four years. The two principal requirements consist of comprehensive examinations in two fields (a major and minor field) and an original thesis. Class work will be required as appropriate to prepare the student for her or his comprehensive examinations. These examinations will include both written and oral components. Before proceeding to the thesis, a student must present and defend a thesis proposal. Also, reading competence in a second language, usually French, must be demonstrated before the student begins work on the thesis. The thesis is written under the direction of a committee comprising the supervisor and two other members, and may include qualified faculty members from other departments and other universities. The completed thesis is subject to a public, oral defence.

III. Class Descriptions
Classes offered by the Department are organized into four fields, as follows:

• Canadian Politics
• Comparative Politics
• Political Theory
• International Relations and Foreign Policy

Each field (with the exception of Political Theory) contains classes offered as core graduate seminars, and classes cross-listed at the upper undergraduate/graduate level. The latter usually contain a majority of 4th year undergraduate students, and graduate students will be required to satisfy appropriately higher standards. In addition, directed reading classes may be arranged on an individual or small group basis with appropriate faculty members. This will often be particularly appropriate in areas closely related to a student’s thesis research, in conjunction with the thesis supervisor.

Not all classes are offered every year. A more accurate timetable will be available in the spring of each year.

A. Canadian Government and Politics

Core Graduate Seminar:
POLI 5204X/Y.06: Advanced Seminar in Canadian Politics.

This senior seminar will take an in-depth and critical look at the major issues and institutions in Canadian politics and government. Topics include: the concentration of power; parliamentary governance; constitutional politics; party and electoral systems; and, the role of the mass media and pressure groups.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

FORMAT: Seminar, 3 hours

Cross-listed Classes:

POLI 5240.03: Introduction to Public Policy.

A comprehensive examination of the three critical questions. This class provides a general introduction to the field of policy management, for graduate and honours undergraduate students. Using British ‘best practice’ ideas of professional policy making and Canadian statements of generic policy competencies, it seeks to improve the policy capacity of participants. It does this first by increasing their knowledge of public policy structures, processes, and outputs, and secondly, by giving them knowledge that they can use in policy advocacy both inside and outside government. The first section of the class examines policy definitions and professional policy making approaches in the 21st century. The second section considers the role of the state in the 21st century, and the policy competencies that analysts must have if that role is to be carried out effectively. Section three explores vertical, horizontal and external policy relationships, both as determinants of policy and as practical matters of management. Section four explores, and helps participants to gain proficiency in, the most recent processes of strategic policy design and implementation. This blend of theory and practice will increase the policy knowledge of all participants, and equip those who are in professional programs, including the various public services, to contribute more effectively in policy processes in the future.

CROSS-LISTED: POLI 4240.03/PUAD 5120.03

FORMAT: Seminar, 3 hours

POLI 5241.03: Introduction to Policy Analysis.

This class examines four aspects of policy analysis: 1) the role of the analyst in modern government; 2) the analyst’s working environment; 3) techniques used in carrying out research and preparing position papers; 4)
and the analyst’s responsibilities to government and to the public in determining what information should reach decision-makers. Approved with Canadian Studies.

FORMAT: Seminar, 3 hours
CROSS-LISTING: PUAD 5121.03

POLI 5242.03 Politics of Reason, Passion, and Biology.
This is a class about how people behave politically. Is political behavior driven by reason, passion, biology, or some combination of the three? Does reason or passion drive politicians and citizens to act as they do? Or does the dichotomy between the mind and the heart disguise a more fundamental biological basis to political behavior? Do these approaches leave any room for citizens to exercise their own judgment, or is autonomy lost altogether? Normative questions of justice, equality, and freedom are deeply embedded within each approach and must be confronted as they apply in practice. Although this material is inherently global and comparative, we principally want to investigate how it applies to Canada.

FORMAT: Seminar
Cross-listing: POLI 4242

POLI 5250.03: Canadian Public Administration.
This class examines the organization and management of the executive-bureaucratic structures of government for the formation and management of public policy and public services. It considers the design and operation of the cabinet system and ministerial portfolios; relations between ministers and the career public service; policy and budgetary processes; and the structural designs of departments, agencies, crown corporations and regulatory commissions. A major focus will be the effects of the new public management on public administration, as governments in Canada, as elsewhere, seek to cope with budgetary restraints, increased demands for quality services and public participation, and greater effectiveness in securing results.

FORMAT: Lecture and discussion 2 hours
CROSS-LISTING: POLI 4250.03

Comparative Politics
Core Graduate Seminars:

POLI 5301.03: Comparative Theory.
This class examines two levels of theory utilized in the study of politics in different nations: 1) the major paradigms or approaches to comparative political analysis, characterized by rationalist, structuralist and culturalist approaches to methodology and knowledge, and differentiated by “orthodox” and “radical” and post-modern worldviews; and 2) selected theoretical tools used to analyze themes like the political system, the nature of the state, institutions, group and class politics, social, corporatism and elitism, political culture and ideology, democratic and revolutionary regime change, political development and economic dependency, social movements and feminism, etc. The list of topics is subject to revision depending on the students’ backgrounds and interests.

FORMAT: Seminar, 3 hours

POLI 5340.03: Approaches to Development.
A survey of theories of and policies about dependence, underdevelopment and peripheral social formations. Particular emphasis on modernization, materialist, and alternative modes of analysis, and on orthodox and radical strategies of development. Topics treated include social contradictions (e.g. class, race and ethnicity), debt, structural adjustment, human development, human security, gender, technology, civil society, informal sectors, democratization and ecology.

FORMAT: Seminar, 3 hours

Cross-listed Classes:

POLI 5302.03: Comparative Development Administration.
Some analytical and normative issues of public administration in developing countries are examined including the scope of development administration as a sub-field of public administration; public sector organization and management including public services, public enterprises, decentralization and rural development, financial systems, human resources management, aspects of state economic management with Japanese and South Korean case studies; and institutional aspects of aid administration with CIDA and World Bank cases.

FORMAT: Seminar, 3 hours
CROSS-LISTING: POLI 4302.03

POLI 5303.03: Human Rights and Politics.
This class will examine the evolving place of human rights in politics, both comparative and international. We begin by examining the historic emergence of human rights as an issue in world politics, principally since the Second World War and their conceptual foundations. We then focus on a number of specific topics and controversies concerning human rights in world politics, including: the sources of and struggle to end human rights abusive regimes; the multilateral politics of human rights; human rights in national foreign policies; the rights of indigenous peoples; genocide; humanitarian intervention, and the responsibility to protect; the relationship between globalization and human rights; and the ‘Global War on Terrorism’ and human rights. Finally we look at the role of human rights in domestic politics, focusing on the issues of women’s rights and sexual orientation.

FORMAT: Seminar, 3 hours
CROSS-LISTING: POLI 4303.03

POLI 5322.03: The EU as a Global Actor.
The aim is to enable the student to analyze and understand the international roles played by the EU in both economic and political areas. Why has the EU been better able to speak with one voice in economic areas than political areas? To what extent can the member states control the foreign policies of the EU? The introductory part will include an overview of the EU governance systems in the area of external economic relations (first pillar) and the Common Foreign and Security Policy (the second pillar) and analyses of the main achievements in both areas. Specific topics to be selected for analyses during the second part will include the EU and the WTO, the EU and the US, the EU and East Asia, and the EU and developing countries. Finally, in the third part of the course students study recent efforts to develop a European Security and Defense Policy.

FORMAT: Seminar, 3 hours
CROSS-LISTING: POLI 4322.03

POLI 5323.03: Treaty Reforms in the EU.

FORMAT: Seminar, 3 hours
CROSS-LISTING: POLI 4323.03

POLI 5325.06: European Politics.
The comparative study of politics in European countries gives a useful perspective on Canadian politics. Focusing primarily on western Europe, this class examines party politics, government institutions, contemporary public policy issues, and related topics in selected European states. Discussion of the politics of the European Union is an integral part of the class.

FORMAT: Seminar, 3 hours
CROSS-LISTING: POLI 4325.06

POLI 5345.03: Politics of Southern Africa.
This class focuses on political change in the Southern African region since the end of colonialism. It compares the experience of the various countries in the region to development and security pressures related to the legacies of colonialism, persistent economic problems and recent structural adjustments, environmental degradations and threats, ethnic, class and gender cleavages, strategic and social problems related to first apartheid and later post-apartheid transitions, issues of governance and regional conflict as well as more positive trends that towards abatements in civil wars and a surge of democratization. As well as country comparisons, the class will look at the region as a political unit, exploring the opportunities for and constraints against formal regional cooperation on economy or
security as well as informal processes that constitute the basis of “new” regionalism forces.
FORMAT: Seminar, 3 hours
CROSS-LISTING: POLI 4345.03

B. Political Theory and Methodology

Core Graduate Seminar:

POLI 5403.03: Human Rights: Philosophical Issues.
An examination of the historical and conceptual development of human rights, this class looks specifically at normative and political issues involved in the emergence of human rights from the 13th century to the present. It covers the shift from natural law to natural right, the emergence of states’ rights to sovereign governance, and the development of specific classes of rights (including freedom of conscience, property rights, women’s rights, cultural rights, animal rights, and socioeconomic rights).
FORMAT: Seminar
CROSS-LISTING: POLI 4403.03, PHIL 3470.03

POLI 5479.03: Classical Liberalism and Democracy.
Liberalism takes a variety of forms and includes many topics including the rule of law, limited government, the free exchange of goods, entitlement to property, the self, and individual rights. Its philosophical and political assumptions provide the intellectual context within which its account of the individual, its vision of the community and its preferred allocation of resources will be assessed.
FORMAT: Seminar 3 hours
CROSS-LISTING: PHIL 4470.03/5470.03, POLI 4479.03, ECON 4446.03 / 5446.03

POLI 5481.03 Theories of Violence, Persecution and Genocide
This class will provide an overview of contemporary theoretical approaches to systemic violence, particularly against racial, ethnic and sexuality minorities. Through a selection of historical and contemporary case studies, it will assess different accounts and explanatory frameworks for understanding the instigation and exacerbation of persecution and genocide. Attending to the role of the state and state policies in the history of violence, it will examine the discourses and practices that have both fuelled and justified the colonization of native peoples, enslavement of racial groups, the holocaust, and ethnic cleansing in 20th century genocides. We will also consider the recent attempts of the international community to prevent, deter and curb genocidal outbreaks, and the theoretical assumptions about human behaviour that underpin them.
FORMAT: Seminar
Cross-listing: POLI 4481

C. International Relations & Foreign Policy

Core Graduate Seminar:

POLI 5520X/Y.06: Theories of International Relations.
A survey of the discipline of international relations. Topics include the role of theory, structure and operation of the international system, balance of power, international economics and problems of dependence, war and problems of international security, international organization and the nation-state.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
FORMAT: Seminar, 3 hours
Cross-listing Classes:

POLI 5512.03: The Politics of North America.
North America has become increasingly integrated over the last thirty years—economically, demographically, and even politically. This course will review the history of regional integration in North America, and consider a number of contemporary policy controversies. It bridges sub-disciplinary boundaries by looking at both domestic policy-making (Comparative Politics) and at bargaining between the three countries (International Relations).
FORMAT: Seminar
PREREQUISITE: Any previous political science class
CROSS-LISTING: POLI 4512.03

POLI 5565.03 Contemporary Security Studies
The class examines developments in the theory and practice of international security since the end of the Cold War. The first part reviews the concept of security and the main theoretical approaches that inform the contemporary security debate. The second part analyses some of the key contemporary issues in world politics and their relation with international security.
FORMAT: Lecture and Seminar
CROSS-LISTING: POLI 3565.03

POLI 5569.03: Canadian Foreign Policy.
This advanced seminar course is concerned with the ‘structure-agent’ problem as it applies to Canadian foreign policy. In other words, what are the structures (both material and normative) that shape and constrain the pursuit of Canadian foreign policy; what room for maneuver and initiative is there; and who are the key actors, or ‘agents’ who shape and implement Canada’s global role? The course discusses these questions through four sections: theoretical and analytical approaches to the study of Canadian foreign policy; the external context; the domestic context; and key themes and issues in Canadian foreign policy.
FORMAT: Seminar
PREREQUISITE: Class in international relations, Canadian politics, or Canadian history, or with instructor’s permission
CROSS-LISTING: POLI 4569.03
EXCLUSION: POLI 5570.06

POLI 5571X/Y.06: Strategy and Canadian Defence Policy.
This seminar examines the substance, processes, recurring themes, and major international and domestic determinants of post-World War II Canadian defence policies. It explores several major policy ‘milestones’ (e.g. Canadian Forces’ role in the Persian Gulf conflict), and various persistent themes (the “Commitment-capability gap”; efforts to “democratize” defence policy reviews) and current issues (e.g. the implications of recent human rights challenges to traditional military professionalism; Canada’s role in the Afghanistan conflict) of Canadian defence.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
FORMAT: Seminar
CROSS-LISTING: POLI 3571.X./Y.06

POLI 5575.03: Nuclear Weapons and Arms Control in World Politics.
The seminar examines the technological, doctrinal, and political aspects of the nuclear weapons “problem” and the arms control “solution”. It also assesses the fate of contemporary nuclear arms control efforts.
FORMAT: Seminar
CROSS-LISTING: POLI 4575.03

POLI 5581.03: International Diplomacy: Institutions and Practices.
This class looks at the way states decide which diplomatic strategies to pursue, and why these succeed or fail. Among the themes considered are the evolution of diplomacy as an international institution, national power and bargaining leverage, and the effects of domestic politics, psychology, and culture on international negotiation. Specific historical cases which may be reviewed in any given year include: the Peloponnesian War, the Munich Crisis, the Cuban Missile Crisis, the negotiation of the Canada-US Free Trade Agreement and NAFTA, and the Kyoto Protocol. Students participate in a negotiation-simulation exercise and write a paper on a particular case.
FORMAT: Seminar, 3 hours
PREREQUISITE: POLI 2520, POLI 2530 or other international relations course
EXCLUSION: POLI 4581.03

POLI 5587.03: International Political Economy.
This course is composed of two overlapping constituent themes. The first theme is that of competing explanations of international political economic behaviour - behaviour affected by that diffuse political authority characteristic of the international system, the second, that of examining the basic issues in international political economy - the fundamental questions as to why international trade, international finance, unequal economic
sessions will roughly be constituted by 50 percent lecture and 50 percent
the global “division of labour” constitute the major foci). The course
issues such as economic development, the multinational enterprise, and
CROSS-LISTING: POLI 4587.03
FORMAT: Seminar, 3 hours
organized student contributions for seminar discussion and debate.
CROSS-LISTING: POLI 4590
FORMAT: Lecture/seminar
and submit a term paper.
Requirements necessary to govern oceans equitably and in a sustainable
Peace, the Economics of the Common Heritage and Institutional
developments from UNCLOS/UNCED to Integrated Ocean and Coastal
POLI 5595.03: Politics of the Sea II.
This class examines Ocean Governance in the context of global
developments from UNCLOS/UNCED to Integrated Ocean and Coastal
Management with a particular focus on issues of Oceans and Zones of
POLI 5656.03: Oil, Natural Gas and Government: The
Political Economy of Regulation.
Given that oil and natural gas activities are vital both for internal
Canadian energy consumption and for an increasing fraction of Canadian
energy exports to the United States, the joint management of these
activities by the private and public sectors is of considerable importance.
This course is designed to give students interested in issues related to oil
and natural gas, natural resource exploitation, and public policy and
administration, an understanding of how oil and gas activities are
manager.
FORMAT: Seminar, 3 hours
E. Directed Reading Classes
Graduate students taking directed reading classes register under one of
the following designations, depending on whether the class extends for
the first term, the second term, or the full academic year:
POLI 5601.06: Readings in Political Science.
POLI 5602.03: Readings in Political Science.
POLI 5603.03: Readings in Political Science.
F. Thesis
Students register for the thesis under the appropriate designation, as
follows:
POLI 9000.00: MA Thesis.
POLI 9530.00: PhD Thesis.

Process Engineering and
Applied Science

- Biological Engineering
- Chemical Engineering
- Food Science
- Materials Engineering

Department Head
Pegg, M.J., BSc (Leeds), PEng. Combustion, safety and loss
prevention

Graduate Coordinator
Kipouros, G.J., DiplEng (N.T.U. Athens), MASc, PhD (Toronto), PEng.
Metal matrix composites, electrolysis in molten salt, rare earth
magnetic materials, light, refractory and rare earth metals,
electrochemistry, corrosion, powder metallurgy, steelmaking

Graduate Secretary
Location: F Building Rm 201
1360 Barrington St.
Halifax, NS B3J 1Z1
Telephone: (902)494-4597
Fax: (902)420-7639
Email: peasgrad@dal.ca
Website: http://engineering.dal.ca/DEPARTMENTS/PEAS-
Graduate_Progra.php

Professors Emeriti
Ackman, R.G., BA (Toronto), MSc (Dal), DIC (Imperial Coll), PhD
(London), LLD (Hon) (Dal). Head of the Marine Oils Group at CIFT.
Edible fats and oils, particularly fish oils, omega-3 fatty acids & the
uptake of hydrocarbon pollutants into fish tissue
Caley, W.F., BSc (Eng), MSc (Eng) (Queen’s), PhD (Toronto), PEng.
Ceramic and metal matrix composites, pyrometallurgy, slag/refractory
reactions in steelmaking, nickel and aluminum powder metallurgy
Chen, B.H., BSc (Nat. Taiwan), MEng, PhD (McGill), PEng
Hancock, H.A., BASc, MASc, PhD (Toronto), PEng
McMillan, A.F., BSc, MSc (Queens), PhD (MIT), PEng

Professors
Amyotte, P.R., BEng (RMC), MSc (Eng) (Queens), PhD (TUNS), PEng.
Industrial safety and loss management, dust explosions
Ben-Abdallah, N., BSc, MASc, PhD, PEng. Thermal energy storage,
desiccant dehumidification, HVAC/indoor air quality, solar energy
Bishop, D.P., PhD (TUNS), MASc (TUNS). Aluminum powder metallurgy,
alloy development, metal matrix composites, powder forging,
mechanical testing, structure automotive components
Ghaly, A.E., BSc (Alexandria), MSc (Alexandria), PhD (McGill), PEng.
Environmental Biotechnology, Industrial ecology, bioremediation,
phytoremediation, fermentation technology, energy conversion
Gill, T.A., BSc, MSc (Guelph), PhD (UBC). Food proteins and enzymes,
seafood quality, safety, preservation, antimicrobial peptides and
marine toxins
Kipouros, G.J., DiplEng (N.T.U. Athens), MASc, PhD (Toronto), PEng.
Metal matrix composites, electrolysis in molten salt, rare earth
magnetic materials, light, refractory and rare earth metals,
electrochemistry, corrosion, powder metallurgy
Paulson, A.T., BSc(Agr), MSc,PhD (UBC). Food chemistry, physico-
chemical properties, polymers, emulsions and gels, dielectric methods,
thermal processing, packaging & HACCP
Associate Professors
Brooks, S., B.Tech (Massey), PhD (Cambridge), Peng Bioprocess Engineering, Biochemical Engineering, Biotechnology, Drug Delivery, Pharmaceutical Processing, food engineering, Waste Utilization
Budge, S., BSc (Acadia), PhD (Memorial). Marine lipids, trophic studies, fish nutrition, lipid oxidation
Farhat, Z., BASc, MASc, PhD (Windsor). Tribology, nanocrystalline and composite coatings, wear testing, coating tools, fuel cell materials
Ghanem, A., BSc (UNB), PhD (Cornell), PEng. Tissue engineering, drug delivery, bioprocessing, toxicology
Jamieson, R.C., BEng, MASc (TUNS), PhD, PEng (Guelph). Contaminant fate and transport, watershed assessment, water quality modeling, ecological engineering
Kuzak, S., BEng, MEng (McGill), PhD (Dalhousie), PEng.

Assistant Professors
Donaldson, A., BASc, PhD (Ottawa). Multifluid process design, multiphase flow, computational fluid dynamics, oscillating reactor technology

Gibson, M., BA (Sheffield Hallam), MSc, PhD (Strathclyde). Ambient indoor and occupational air pollution monitoring, modeling and exposure assessment. Source-receptor modeling, aerosol characterization, trace reactive gas analysis.

Healsig, J., BSc, PhD (Ottawa). Multiphase CFD, process intensification, multiphase contaminants, hybrid separation processes, biofuels.

Jarjoura, G., BEng (TUNS), MASc, PhD (Dalhousie). Material degradation, impedance spectroscopy, hydrogen absorbing materials

Adjunct Professors
Al Taweel, A.M., BSc (Alexandria), MSc, PhD (Colorado), PEng, Mixing and separation, multi-phase CFD pollution prevention.

Hopkinson, C., BSc, MES, PhD Environmental Risk Assessment, Geomatics, Water Resource Management, hydrology

Madani, A., BSc, MSc, PhD, Nova Scotia Agricultural College. Water quality, water table management, subsurface drainage systems, irrigation scheduling.

Pink, D.A.H., BSc (Hons SFx), PhD (UBC). Physics. Mathematical Modeling and computational physics of soft matter. Biofilms in flowing liquids. Bacterial cell walls interacting with cationic antimicrobial peptides (CAPs) and nanoparticle (NPs). Forins in lipopoly saccharide membranes and what determines transport through them. Stelth vehicles for CAP delivery

Adjunct Associate Professors
Kalmokoff, M., BSc (Guelph), MSc (Saskatchewan), PhD (Queen’s). Food microbiology, biofilms, bacteriocins, biostasis, bacterial stress responses, food preservation, food biotechnology, HACCP

Watts, K.C., BSA, MSc, PhD, PEng. Biodiesel fuel, aquacultural engineering, agricultural machinery design, blood flow modeling

Yemenidjian, N.B., BEng, PhD (Concordia), PEng. Electronic materials, hard materials, ceramics & glasses

Gordon, R., BSc, MSc (McGill), PhD (Guelph), PEng, PAg

Lake, J., BSc, PhD (Dal)

Price, G., BSc (UBC), MSc, PhD (Guelph)

Biological Engineering Program
Graduate Secretary
Telephone: (902) 494-4597
Fax: (902) 420-7639
Email: peasgrad@dal.ca
Website: http://engineering.dal.ca/DEPARTMENTS/PEAS-Graduate_Progra.php

I. Introduction
Biological Engineering applies natural science and engineering principles to the biological world. As such, Biological Engineering addresses a wide range of problems relating to the environment, food and other biomaterial production and processing, renewable energy and reusable resources. Emphasis is placed on optimizing design performance in dealing with biological materials and systems while preserving sustainability and protection of the environment.

The Biological Engineering program has focused research in Environmental Engineering and Biosystems Engineering. Research projects therefore encompass both specific environmental concerns and the sustainable utilization of natural resources. The Department has co-operative projects with faculty members in other Universities both locally and internationally. Opportunities exist to participate in these research projects, which provide wider experience and, in which a specific component leads to a Master’s or Doctorate degree. See section on Engineering for details of Master’s and Doctoral programs.

*Not all classes are offered every year. Please consult the current timetable for this year’s offerings.

II. Class Descriptions

BIOE 6000.03: Small Watershed Hydrology.
Following an overview of the nature of hydrologic data and models, emphasis is placed on deterministic mathematical modelling of component processes and the synthesis of complete hydrographs. Components examined include precipitation, infiltration, evapotranspiration, surface and subsurface flow. The structure and application of selected current models are presented.
PREREQUISITE: A first class in engineering hydrology and microcomputer experience.

BIOE 6010.03: Non-Point Source Pollution Control.
Course content initially deals with variants of the empirical USLE approach to soil erosion estimation and control on land surfaces through application of the RUSLE model. Theoretical and quasi-process concepts quantifying soil detachment, transport and deposition in interrill and rill runoff under rainfall and snowmelt leads to consideration of the dependent modelling of the form and movement of land applied nutrients and pesticides. Models used include COSEEM, ANSWERSPS, CREAMS and SWAT. Emphasis is placed on model application to assess measures to protect surface water, groundwater and aquatic life resources.
PREREQUISITE: At least one credit in engineering hydrology and microcomputer experience.

BIOE 6200.03: Advances in Waste Handling and Disposal.
Current methods of handling and disposal of wastes are discussed. Physical, chemical and biological properties of various types of waste materials as related to practical design problems are studied. Technological advances in holding tanks, lagoon design, pumping and agitation equipment, solid-liquid separation systems and land disposal equipment are introduced.
BIOE 6210.03: Advanced Biochemical Engineering.
This class deals with advances in microbial fermentation and enzymatic reactions in biological reactors. Topics covered include: microbial and enzyme kinetics, system parameters, reactor design and scale-up, media and air sterilization, measurements and control, and recovery of fermentation products.

BIOE 6230.03: Biological Treatments of Wastes.
The physical, chemical and biological properties of various wastes as related to the design of biological treatment processes are discussed. Fundamental microbiology and factors affecting the growth and survival of microorganisms in biological systems are studied. Engineering fundamentals of various biological processes are presented. Treatment systems such as aerobic and anaerobic lagoons, oxidation ponds, oxidizing ditches and composting are introduced.

BIOE 6240.03: Biomass Energy.
The source and amount of energy consumed in various agricultural operations will be studied. Renewable energy sources will be identified and their technical feasibility will be investigated. Technological advances in biochemical and thermochemical conversion systems will be included and the impact of these conversion systems on the environment will be studied.

BIOE 6300.03: Instrumentation for Agricultural Engineering Research.
The objective of this class is to integrate basic instrumentation and control components with a microcomputer. Primary elements which sense parameters of interest to Agricultural Engineers (e.g. humidity, temperature, pressure, flow, displacement, velocity and acceleration) are discussed with emphasis on the interfacing to a microcomputer. Topics covered in lectures and weekly laboratories include signal conditioning, digital to analog conversion, analog to digital conversion, voltage to frequency conversion, on-off control, and PID control. Students study the fundamentals through the broadboarding of a basic data acquisition and control system and by applying it to practical problems.

BIOE 6350.03: Advanced Instrumentation.
This class covers topics in microprocessor based measurement, computation, communications and control. Subject matter is covered in relation to the use of embedded microcontrollers. Development systems for both hardware and software emulation are utilized in weekly laboratory exercises and a term project. Topics covered include: assembly language programming, C programming using a "small C" environment, high speed data acquisition and data storage, computer to computer communications and interfacing of various sensor types and control hardware.

BIOE 6410.03: Advanced Food Engineering I.
The theoretical and practical aspects of food rheology and separation processes will be studied. These include: rheological characteristics of fluid and powdered foods, psychorheology, food extrusion, drying, freeze concentration, evaporation, membrane separation, and extraction. Emphasis will be place on recent research in these areas. The principles of process design will be incorporated in the design of various food processing plants.

BIOE 6420.03: Advanced Food Engineering II.
This class will deal with the concept of reaction kinetics in foods, thermal processing, and production/process of food products. The concept of reaction kinetics will be applied to problems of storage stability and thermal processing calculations. Detailed coverage will be given to topics such as aseptic packaging, microwave sterilization, food irradiation, fouling of heat transfer equipment by fluid foods. Emphasis will be given on recent research in these areas.

BIOE 6510.03: Analytical Modelling in Farm Machinery.
This class investigates existing models that relate to some aspects of the operation or use of machinery on the farm. These models describe: material flow into, through, and out of farm machinery; forces on implements as they interact with the soil, etc.; heat and mass flow in grain dryers; optimum planning models, etc.

BIOE 6610.03: Applied Solar Energy.
The class covers the following topics: solar radiation measurement and methods of estimating the availability of solar energy for flat-plate solar collectors; flat-plate solar collectors design and methods of testing their performance; energy storage procedures for solar heating systems design including computer simulations; and design of monitoring systems for the evaluation of the performance of solar heating systems and their components. Topics in any given year will depend on the interests of students.

BIOE 6700.03: Directed Studies I.
This class is available to graduate students enrolled in a MASc or MEng degree programme in Biological Engineering wishing to gain knowledge in a specific area or areas related to, but distinct from their research topic, and in which no graduate level class is offered. The student will be involved in tutorials, laboratory and individual studies. The study will be presented in a report which uses thesis style format. Only one directed studies class can be used for credit for each degree.

BIOE 7700.03: Directed Studies II.
This class is available to graduate students enrolled in a PhD programme in Biological Engineering wishing to gain knowledge in a specific area or areas related to, but distinct from their research topic, and in which no graduate level class is offered. The student will be involved in tutorials, laboratory and individual studies. The study will be presented in a report which uses thesis style format. Only one directed studies class can be used for credit for each degree.

BIOE 8500.00: MEng Project.
A Master of Engineering candidate will be required to submit a project satisfactory to the Faculties of Graduate Studies and Engineering and to make a successful oral presentation of the work.

BIOE 9000.00: MASc Thesis.
BIOE 9530.00: PhD Thesis.

PEAS 6710.00: Graduate Research Symposium I.
All students enrolled in the MASc, MEng and MS degree programs are required to participate in this course. The course is designed to provide students with the opportunity and experience of interacting with their peers, faculty and profession. There will be an annual research symposium which will include guest speakers and/or panel discussion on topical issues presented by scholars from industry, government and academia and oral and poster presentations by students. One 30 minute oral presentation and one poster presentation must be given by the students at the department symposia during the student tenure. Students will be evaluated on quality of handouts, organization and preparation of material, presentation skills, technical content, knowledge of the subject, critical judgment of reference material and ability to answer questions. Students must attend the Graduate Research Methods course before enrolling in this course. Graded pass/fail.

NOTE: This course is to replace Graduate Seminar I in all programs.

INSTRUCTOR(S): G. J. Kipouros

FORMAT: Symposium

PREREQUISITE: PEAS 6700.03

PEAS 7710.00: Graduate Research Symposium II.
All students enrolled in the Ph.D degree program are required to participate in this course. The course is designed to provide students with the opportunity and experience of interacting with their peers, faculty and profession. There will be an annual research symposium which will include guest speakers and/or panel discussions on topical issues presented by scholars from industry, government and academia and oral and poster presentations by students. Two 30 minute oral presentations and two poster presentations must be given by the student at the department symposia during the student tenure. Students will be evaluated on quality of handouts, organization and preparation of material, presentation skills, technical content, knowledge of the subject, critical judgement of reference material and ability to answer questions.
Students must attend the Graduate Research Methods (PEAS 6700.03) before enrolling in this course. Graded pass/fail.

NOTE: This course is to replace Graduate Seminar II in all programs.

INSTRUCTOR(S): G. J. Kipouros

FORMAT: Symposium

PREREQUISITE: PEAS 6700.03

Chemical Engineering Program

Graduate Secretary

Telephone: (902) 494-4597
Fax: (902) 420-7639
Email: peasgrad@dal.ca
Website: http://engineering.dal.ca/DEPARTMENTS/PEAS-
Graduate_Progra.php

I. Introduction

The Chemical Engineering program prepares students for careers in the chemical and process industries and in a variety of related fields. These encompass, among others, the traditional areas of environmental control, plastics and polymers, pulp and paper, instrumentation and process control, petrochemicals, petroleum and natural gas processing, and energy conversion and utilization, as well as the growing fields of biotechnology, food processing, composite materials, corrosion and protective coatings, and manufacture of microelectronic components.

The responsibilities assumed by Chemical Engineers include a wide range of activities such as research and development of novel products and processes, the design, development and operation of process plants, and management of technical operations and sales.

Research opportunities leading to the Master’s and Doctorate degrees are offered in a wide range of topics within the Department as well as in conjunction with other departments and a number of research centres on the campus. Detailed information regarding the graduate program can be obtained from the Department.

*Not all classes are offered every year. Please consult the current timetable for this year’s offerings.

II. Class Descriptions

CHEE 6000.03: Special Topics in Chemical Engineering I.

This class is available to graduate students (pursuing a MASc degree) wishing to gain knowledge in a specific area for which no graduate level classes are offered. The proposed class would involve a directed study for which the student(s) would be given credit. Students wishing to take the class would be assigned a suitable class advisor most familiar with the specific area of interest. Students would be required to present the work of one term (not less than 90 hours in the form of directed research, tutorials and individual study), in an organized publication format.

PREREQUISITE: Instructor’s permission

CHEE 6701.03: Loss Prevention and Risk Assessment.

Loss prevention and risk assessment techniques applicable to the process industries are covered in this class. The concepts of management control of loss and inherently safer plant design are introduced. Key elements of a successful fire and explosion loss control programme are identified. Risk assessment is addressed by examining the steps required to proceed from the setting of risk assessment objectives to risk monitoring. The hazard identification step is emphasized.

PREREQUISITE: Graduate students in Faculty of Engineering
EXCLUSION: CHEE 4773.03

CHEE 6707.03: Applied Thermodynamics.

An analytical study of Chemical Engineering processes from the standpoint of quantitative chemical thermodynamics will be made. The approach to the main problem of reactions and phase equilibria and the treatment of non-ideal solutions is based on Gibb’s methods and the chemical potential. Most of the student’s time spent on this class will be used solving both theoretical and numerical problems.

CHEE 6714.03: Polymer Science.

This class examines the fundamental concepts of polymer science: mechanism and kinetics of polymerization reactions, rheological and mechanical properties of polymers, correlation of physical properties with molecular structure, molecular weight distribution, solution properties of polymers, polymer chain configuration, thermodynamics of polymer solutions, amorphous and crystalline state and viscoelasticity.

CHEE 6726.03: Mass Transfer Topics.

Topics are to be selected from the following fields: diffusion in both reacting and non-reacting systems, the equation of change, mass transfer with laminar or turbulent flow, unsteady-state diffusion, and mass transfer in packed beds.

CHEE 6730.03: Kinetics and Catalyses.

A general study of the current ideas of homogeneous and heterogeneous catalyses of chemical reactions will be made. In the field of homogeneous catalyses reactions: acid base catalyses, ion catalyses, enzyme catalyses, chain reactions and polymerization will be considered. In the field of heterogeneous catalyses, a study of the rates and extent of chemisorption will be made leading to an examination of the rate determining steps for gaseous reactions. Studies of some important industrial reactions will be made.

CHEE 6732.03: Transport Phenomena.

Mechanisms of transport processes, differential balances, equations of change for isothermal and non-isothermal systems, use of the equations of change to set up flow problems of interest to Chemical Engineers, interphase transport in isothermal systems, analogies.

CHEE 6734.03: Chemical Reactor Design.

The effect of non-ideal flow on the design of tubular, packed bed and continuous-stirred tank reactors, combined mass and energy transfer in chemical reactor analysis and design. Design of heterogeneous catalytic and non-catalytic reactors will be investigated using industrial case studies.

CHEE 6736.03: Computer Application in Chemical Engineering.

Mathematical modeling of steady and unsteady chemical process operations and the use of digital computers for the design and simulation of individual processing units. Synthesis of units into a combined processing plant. (It is recommended that students take ENGM 6653.03 – Numerical Analysis I prior to this class).

CHEE 6737.03: Chemical Process Control.

Dynamics modeling of chemical processes. Analysis and simulation of analog and digital control systems.

CHEE 6742.03: Chemical Process Optimization.

The class deals with the study and application of optimization techniques to chemical engineering problems. Topics include: problem formulation, analytical and numerical techniques for optimization, linear programming, non-linear programming and dynamic programming. Application areas include: heat transfer and energy conservation, separation processes, fluid flow systems, chemical reactors, and process plants.

FORMAT: Lecture 2 hours, lab 3 hours

CHEE 6743.03: Process Synthesis.

This class aims at developing abilities in the design and modification process plants (e.g. chemical, biochemical, utilities, pulp and paper, petroleum, petrochemical, metals, and food processing) in order to render them more cost effective, energy-efficient and environmentally friendly. Systematic procedures are used for the analysis of processing stages and their integration into efficient plants. Heavy emphasis is placed on the use of computer-aided techniques for evaluating the interaction between processing requirements, utility needs and associated capital and operating costs.

FORMAT: Lecture 2 hours, lab 3 hours

CHEE 6744.03: Radiative Heat Transfer.

The principles of thermal radiation are explained and the concepts of view factors and exchange areas are introduced by examining direct radiative transfer. Radiative exchange within enclosures, containing either non-
absorbing or absorbing media are examined. Various radiative heat transfer applications are discussed in detail. These include: electric furnaces, fuel-fired furnaces and solar radiation. The methods of measurements of radiation and temperature are studied.

FORMAT: Lecture 2 hours, lab 3 hours
PREQUISITE: Background in heat transfer and mathematics

CHEE 6750.03: Combustion Phenomena.
Mathematical formulations of combustion phenomena and their physical significance will be emphasized. Application of the conservation equations for multicomponent reacting flows by means of the Schaw-Zeldovich formulation will be demonstrated. The general Rankine-Hugoniot relations will be developed to calculate properties across a shock front. Laminar and diffusion flames will be studied. Chemical reactions in boundary layers will be examined and turbulent combustion phenomena will be analyzed.

FORMAT: Lecture 1 hour, lab 3 hours

CHEE 6755.03: Colloids and Interfaces in Petroleum Engineering.
This class examines the fundamental principles in colloidal and interfacial systems, with particular emphasis on their applications in petroleum engineering. The first part of the class covers the theories of colloidal stability, interfaces, and surfactant solutions. These principles are then applied to analyze drilling-fluid design and enhanced oil recovery.

FORMAT: Lecture/tutorial
PREQUISITE: CHEE 3530 or permission of instructor

CHEE 6800.03: Chemical Engineering in Biological Systems.
This class deals with the application of chemical engineering principles (stoichiometry, kinetics, transport phenomena) to analyze biological systems such as cells, organs and organ systems. Applications include implants and medical devices, drug delivery systems, cell culture processes, diagnostics, immobilized enzymes and pharmacokinetics.

FORMAT: Lecture
PREQUISITE: CHEE 3634, CHEE 4726 or permission of instructor

CHEE 7000.03: Special Topics in Chemical Engineering II.
This class is available to Graduate Students (pursuing a PhD degree) wishing to gain knowledge in a specific area for which no graduate level class is offered. Students will be assigned a class supervisor most familiar with the specific area of interest. Students will be required to present the work of one term consisting of at least 90 hours in the form of directed research, tutorials and individual study, in an organized publication format.

PREQUISITE: Instructor's permission

CHEE 8500.00: MEng Project.
A Master of Engineering candidate will be required to submit a project satisfactory to the Faculties of Graduate Studies and Engineering and to make a successful oral presentation of the work.

CHEE 9000.00: Master’s Thesis.

CHEE 9530.00: PhD Thesis.

PEAS 6710.00: Graduate Research Symposium I.
All students enrolled in the MASc, MEng and MS degree programs are required to participate in this course. The course is designed to provide students with the opportunity and experience of interacting with their peers, faculty and profession. There will be an annual research symposium which will include guest speakers and/or panel discussions on topical issues presented by scholars from industry, government and academia and oral and poster presentations by students. Two 30 minute oral presentations and two poster presentations must be given by the student at the department symposia during the student tenure. Students will be evaluated on quality of handouts, organization and preparation of material, presentation skills, technical content, knowledge of the subject, critical judgment of reference material and ability to answer questions. Students must attend the Graduate Research Methods (PEAS 6700.03) before enrolling in this course. Graded pass/fail.

NOTE: This course is to replace Graduate Seminar I in all programs.
INSTRUCTOR(S): G. J. Kipouros

FORMAT: Symposium
PREQUISITE: PEAS 6700.03

PEAS 7710.00: Graduate Research Symposium II.
All students enrolled in the PhD degree program are required to participate in this course. The course is designed to provide students with the opportunity and experience of interacting with their peers, faculty and profession. There will be an annual research symposium which will include guest speakers and/or panel discussions on topical issues presented by scholars from industry, government and academia and oral and poster presentations by students. Two 30 minute oral presentations and two poster presentations must be given by the student at the department symposia during the student tenure. Students will be evaluated on quality of handouts, organization and preparation of material, presentation skills, technical content, knowledge of the subject, critical judgment of reference material and ability to answer questions. Students must attend the Graduate Research Methods (PEAS 6700.03) before enrolling in this course. Graded pass/fail.

NOTE: This course is to replace Graduate Seminar II in all programs.
INSTRUCTOR(S): G. J. Kipouros

FORMAT: Symposium
PREQUISITE: PEAS 6700.03

Food Science Program
Graduate Secretary
Telephone: (902) 494-4597
Fax: (902) 420-7639
Email: peasgrad@dal.ca
Website: http://engineering.dal.ca/DEPARTMENTS/PEAS-
Graduate_Progra.php

I. Introduction

Food Science programs in North America largely evolved from the dairy science programs that were common, particularly in agricultural colleges, during the early to mid portion of the 20th century. Food Science emerged as a discipline including not only dairy science, but also meat, cereal, and seafood science, the study of fruit and vegetable products, and the like. Today, Food Science is rarely viewed as commodity-based and researchers in the field are multi-disciplinary in their background and approach to problem solving. Food Science students at the undergraduate level usually have had training in basic sciences such as physics, mathematics, physical chemistry, organic chemistry, and biochemistry, biology, microbiology, etc. Food Science research at the graduate level then, is the application of principles derived from these basic sciences to complex food systems.

Food researchers are concerned about the functionality of food ingredients, the preservation of quality and delivery of nutrients through the food supply. They are interested in innovative new technologies used to process and protect foods from degradation. A great deal of activity is currently under way in university, government and industrial food research facilities to ensure the safety of the food supply and particular attention is being paid to new and emerging food borne pathogens such as E. coli 0157:H7.

Food scientists and engineers may become involved in food research, quality assurance, process, or product development within the food industry. Alternatively, they may be employed by governmental agencies such as Agriculture and Agri-Food Canada, Health Canada, Canadian Food Inspection Agency, Fisheries and Oceans or provincial agencies which serve the public and industries related to food. These are only a few examples of the many opportunities available for food science graduates.

The graduate degree programs share some facilities with the Canadian Institute of Fisheries Technology, a specialized resource centre for graduate education and research in food science and food process engineering with emphasis on seafoods. Graduate degrees are awarded in Food Science and Technology at the Master and Doctoral levels. The Program offers graduate level class work and research opportunities related to food process technology, food microbiology, edible oils, engineering design, post-mortem biochemistry of muscle foods, proteins and enzymes, food rheology, and beverage science. A wide range of food processing equipment, a pilot plant, and well-equipped laboratories offer unique opportunities for graduate training and research. Students with
degrees in food science, engineering, chemistry/biochemistry, microbiology or biology are invited to apply. Details of the academic programs are given in the section “Graduate Programs in Engineering.” Research programs and equipment are described under “Canadian Institute of Fisheries Technology” on page 299 of this calendar.

*Not all classes are offered every year. Please consult the current timetable for this year’s offerings.

II. Class Descriptions

FOSC 6324.03: Fish/Food Processing I.
This class consists of lectures, labs and pilot plant experiments emphasizing the chemistry of seafoods particularly in processing and handling. Postmortem biochemistry and spoilage due to species differences is covered in detail as well as low temperature preservation. Effects of processing on fat, protein and edibility are examined. Other topics include the effect of enzymes on food quality, seafood toxins, heavy metals, chemistry of seafood colours, and seafood safety.

FOSC 6325.03: Fish/Food Processing II.
Physical aspects of food preservation are studied. Process operations include refrigeration, freezing, thermal pasteurization and sterilization, dehydration, radiation processes and packaging.

FOSC 6328.03: Advanced Food Chemistry.
This class is designed to cover advanced topics in food chemistry with emphasis on their relationships to fundamental principles. The class consists of lectures and laboratory projects, and incorporates the following topics: water relations, carbohydrates, amino acids, peptides, proteins, lipids, additives, colloids, phytochemistry and post-harvest physiology.

FOSC 6329.03: Chemistry of Fats, Oils and Lipids.
The difference in physical and chemical properties of natural fatty acids are correlated with the physical nature of fats, oils and lipids, and the chemical combinations of fatty acids with glycerol, amino acids, fatty alcohols, sterols and other chemical materials. Methods of separation such as chromatography, solubility and crystallization are explained in terms of the molecular properties. Important industrial processes and products are included.

FOSC 6330.03: Fish/Food Process Engineering.
Emphasis is placed on sound principles in the design and operation of equipment commonly used in factories for the manufacture of food products and by-products. The main elements are thermal principles, psychometry, steam utilization, refrigeration, fans and ducts, and pumps and piping. Measures to reduce waste and pollution and especially the abatement of odour nuisance from the food processing factory are reviewed.

FOSC 6331.03: Food Proteins and Enzymes.
This class is designed to provide a comprehensive overview of the significance and function of proteins as structural and biochemical entities within food systems. The first component of this class centers on the identification of proteins, their structure and function. Protein systems in food, the physico-chemical and degradative interaction of proteins with other food components and their overall impact on nutritive properties. The second component focuses on the fundamental properties of enzymes in food systems. In addition, mechanisms and roles of enzymes in food processing operations, and the utilization of enzymes in the food industry, are presented.

FOSC 6333.03: Industrial Rheology.
This class deals with rheological principles of fluid materials employed in the food, mineral and chemical process industries. Rheometric techniques including co-axial, cone and plate, capillary and in-line rheometers are examined. The behaviour of flocculent and non-flocculent suspensions is discussed in light of present rheological theories. The viscoelastic properties of selected colloidal, polymer and biological systems will also be examined.

FOSC 6334.03: Food Microbiology.
This class is intended for students with an interest in aspects of the microbiological quality and safety of the food supply. Topics include the occurrence and significance of food borne pathogens and spoilage organisms, the control of microorganisms in foods and the industrial use of microorganisms for the manufacture of foods, beverages and food ingredients. Material will be covered from both a theoretical and practical perspective.

FOSC 6336.03: Advanced Food Hygiene and Public Health.
This class deals with aspects of food hygiene, sanitation technology, water and environmental microbiology, water treatment microbiology and epidemiology of food and waterborne pathogens. The laws and regulations governing food production in Canada at provincial and federal levels will be discussed. Current issues in public health in relation to the safety of our water and food supply will be covered. Lecture and laboratory periods will explore these topics from a theoretical and practical perspective.

FOSC 6351.03: Directed Studies I.
This class allows students pursuing an MSc degree to gain knowledge in a specific area in which no graduate level class is offered. The class involves a directed research or design project for which the student will be given credit. Students are assigned a suitable area of interest and are required to present the work of one term (not less than 90 hours in the form of directed research, tutorials and individual study), in a written report.

FOSC 6381.03: Advanced Brewing Science.
This course will examine the unit operations employed during the production of malt and beer. Brewing, fermentation and packaging aspects of beer production as well as brewing quality assurance, colloidal stability and haze development will be discussed.

INSTRUCTOR(S): Speers, R.A.
FORMAT: Lecture/tutorial and lab
CROSS-LISTING: FOSC 4081.03

FOSC 7351.03: Directed Studies II.
This class allows students pursuing a PhD degree to gain knowledge in a specific area in which no graduate level class is offered. The class involves a directed research or design project for which the student will be given credit. Students are assigned a suitable area of interest and are required to present the work of one term (not less than 90 hours in the form of directed research, tutorials and individual study) in a written report.

FOSC 9000.00: Master’s Thesis.

FOSC 9530.00: PhD Thesis.

PEAS 6710.00: Graduate Research Symposium I.
All students enrolled in the MSc, MEng and MS degree programs are required to participate in this course. The course is designed to provide students with the opportunity and experience of interacting with their peers, faculty and profession. There will be an annual research symposium which will include guest speakers and/or panel discussion on topical issues presented by scholars from industry, government and academia and oral and poster presentations by students. One 30 minute oral presentation and one poster presentation must be given by the students at the department symposia during the student tenure. Students will be evaluated on quality of handouts, organization and preparation of material, presentation skills, technical content, knowledge of the subject, critical judgment of reference material and ability to answer questions.

Students must attend the Graduate Research Methods (PEAS 6700.03) before enrolling in this course. Graded pass/fail.

NOTE: This course is to replace Graduate Seminar 1 in all programs.

INSTRUCTOR(S): G. J. Kipouros

FORMAT: Symposium

FOSC 6330.03: Directed Studies II.

All students enrolled in the PhD degree program are required to participate in this course. The course is designed to provide students with the opportunity and experience of interacting with their peers, faculty and profession. There will be an annual research symposium which will include guest speakers and/or panel discussions on topical issues presented by scholars from industry, government and academia and oral and poster presentations by students. Two 30 minute oral presentations and two poster presentations must be given by the student at the department symposia during the student tenure. Students will be...
evaluated on quality of handouts, organization and preparation of material, presentation skills, technical content, knowledge of the subject, critical judgment, reference material and ability to answer questions. Students must attend the Graduate Research Methods (PEAS 6700.03) before enrolling in this course. Graded pass/fail.

NOTE: This course is to replace Graduate Seminar II in all programs.

INSTRUCTOR(S): G. J. Kipouros

PREREQUISITE: PEAS 6700.03

Materials Engineering Program

Graduate Secretary
Telephone: (902) 494-4597
Fax: (902) 420-7639
Email: peasgrad@dal.ca
Website: http://engineering.dal.ca/DEPARTMENTS/PEAS-Graduate_Progra.php

I. Introduction

Students that complete graduate-level degrees in Materials Engineering readily find challenging, rewarding, and lucrative employment in industry, academe and government organizations. This is undermined by the strong research record of the Materials Engineering faculty wherein a mix of fundamental research coupled with work of direct commercial relevance is conducted in collaboration with industry. The Program offers opportunities for study in fields ranging from materials production (extraction from ores) to the design, development, and processing of advanced materials from these basic building blocks. Topics of current research include powder metallurgy processing of light metals, intermetallics, and cermet materials, corrosion, electronic materials development, synthesis of intermetallic compounds, ceramic processes and properties, as well as composite materials synthesis. These research projects are funded by national and international granting agencies, industry, and government organizations.

The program presents an outstanding environment for students to conduct graduate level studies given the inherent diversity of scientific expertise, specialized infrastructure, modern materials characterization tools, and established links with large multi-national industrial partners that exist. To this end, the program ultimately enables researchers to develop new materials or processing technologies in a forum known to closely replicate industrial practice, characterize the material attributes of the synthesized products in great detail, and then apply the knowledge learned in actual manufacturing scenarios.

The program houses modern, well-equipped laboratories for materials extraction, synthesis and characterization. Facilities include state-of-the-art equipment such as an analytical cold field emission scanning electron microscope, a focused ion beam milling system, a 50-ton high temperature controlled-atmosphere hot press, powder-presses, controlled-atmosphere muffle, tube, and induction furnaces, as well as an array of thermal analysis tools, piezoelectric characterization facilities and systems for X-ray diffraction and image formation. Replica methods, extraction and thin film techniques and applications of transmission electron microscopy to the study of metallic and non-metallic solids will be discussed. Laboratory work will provide students with a working knowledge of the transmission electron microscope.

II. Class Descriptions

MATL 6010.03: Introduction to Transmission Electron Microscopy.
This class will deal with transmission electron microscopy including the basic principles and methods of operation of the electron microscope, the elements of electron optical, the kinematical theory of electron diffraction and image formation. Replica methods, extraction and thin film techniques and applications of transmission electron microscopy to the study of metallic and non-metallic solids will be discussed. Laboratory work will provide students with a working knowledge of the transmission electron microscope.

MATL 6011.03: Introduction to the SEM and Microprobe.
This class will deal with scanning electron microscopy and with electron microprobe analysis. The electron optics of the scanning electron microscope and of the electron beam microprobe will be discussed. Electron/ specimen interactions will be studied including the excitation and absorption of X-rays. Correction techniques necessary for quantitative microanalysis and applications of the microprobe to the solution of materials problems will be discussed. Laboratory work will give students a working familiarity with the scanning electron microscope. A laboratory fee is applicable to this class.

MATL 6014.03: Welding Metallurgy.
This class will cover the effect of mass and heat flow, for the various joining processes, on the metallurgical properties of the parent and weld metal. The processes will include brazing, soldering, solid phase welding and fusion welding for the major classifications of metals such as carbon and alloy steels and non-ferrous metals. This class will include laboratory periods designed to reinforce the lecture material.

MATL 6015.03: High Temperature Metallurgical Operations Part I.
The class will consist of a review of metallurgical thermodynamics, with reference to various metallurgical operations. It will also include reference to slag theory, as well as experimental techniques used in high temperature metallurgical research.

MATL 6016.03: High Temperature Metallurgical Operations Part II.
The class will consist of a survey of the factors which affect the kinetics of high temperature heterogeneous processes and their effect on the rate of various pyrometallurgical operations.

MATL 6017.03: Hydrometallurgical Operations.
New developments in the leaching, solution purification, and recovery of metals will be studied as they apply to the extraction of metals from various feed materials by hydrometallurgical processes.

MATL 6018.03: Structural Physical Metallurgy.
An advanced study of certain topics such as solidification, imperfections in crystals, recovery, recrystallization and grain growth, and solid state transformations. The class content will be adapted to the interest of the student as far as possible. Weekly seminars will be held.

MATL 6019.03: Selected Topics in Extractive Metallurgy.
This class is given by a visiting professor. The topic of the lectures is in the field of specialization of the lecturer.

MATL 6020.03: Selected Topics in Physical Metallurgy.
This class is given by a visiting professor. The topics of the lectures is in the field of specialization of the lecturer.

MATL 6021.03: Selected Topics in Mineral Processing.
This class is given by a visiting professor. The topic of the lectures is in the field of specialization of the lecturer.
MATL 6022.03: Directed Studies in Metallurgical Engineering.
This class is available to graduate students enrolled in a Masters programme in Metallurgical Engineering wishing to gain knowledge in a specific area for which no graduate level class is offered. Students are assigned an advisor and are required to present a formal report at the end of the class.
A maximum of one Directed Studies class may be taken for credit in a Masters degree programme.

MATL 6030.03: Fracture of Metallic Materials.
This class will cover the failure of metals under ductile and brittle fracture, creep rupture and fatigue conditions. Fracture mechanics concepts will be used to quantify fracture parameters in the presence of pre-existing flaws or propagating cracks. The interaction between the various failure mechanisms, including high temperature oxidation and sulphidation, will also be discussed.
PREREQUISITE: MATL 3500.03 or MATL 3620.03 or equivalent

MATL 6040.03: Advanced Process Metallurgy.
Chemical and electrochemical processes for the extraction and refining of materials are examined in terms of chemical thermodynamics and kinetics. Selected topics will be discussed related to the behaviour of metallic, ceramic, glass and metal slag systems at high temperatures. The thermodynamic and transport properties will be discussed for a number of systems such as alloys, oxides, carbides and silicides.

MATL 6805.03: Electrochemical Processing of Materials.
The class discusses principles of electrochemistry and electrochemical engineering as they apply to the design of processes for the production of materials. The theory and application of various electrochemical techniques such as electroplating, electroforming, electromachining, electrorefining, and fused-salt electrolysis are included. A brief overview on the development of electrochemical sensors and devices using solid state electrolytes is presented. Surface modification by electrochemical means is also discussed.
CROSS-LISTING: MATL 4805.03

MATL 6806.03: Particulates in Material Eng.
The class covers the preparation, characterization, physical and chemical properties and processing of powders in materials processing including agglomeration, gas-solid reactions, sintering and hot pressing.
CROSS-LISTING: MATL 4806.03

MATL 7022.03: Directed Studies in Metallurgical Engineering.
This class is available to graduate students enrolled in a PhD Programme in Metallurgical Engineering wishing to gain knowledge in a specific area for which no graduate level class is offered. Students are assigned an advisor and are required to present a formal report at the end of the class.
A maximum of two Directed Studies classes may be taken for credit in a PhD Programme.

MATL 8500.00: MEng Project.
A master of Engineering candidate will be required to submit a project satisfactory to the Faculties of Graduate Studies and Engineering and to make a successful oral presentation of the work.

MATL 9000.00: Master's Thesis/Project.

MATL 9530.00: PhD Thesis.

PEAS 6710.00: Graduate Research Symposium I.
All students enrolled in the MASc, MEng and MS degree programs are required to participate in this course. The course is designed to provide students with the opportunity and experience of interacting with their peers, faculty and profession. There will be an annual research symposium which will include guest speakers and/or panel discussions on topical issues presented by scholars from industry, government and academia and oral and poster presentations by students. Two 30 minute oral presentations and two poster presentations must be given by the student at the department symposia during the student tenure. Students will be evaluated on quality of handouts, organization and preparation of material, presentation skills, technical content, knowledge of the subject, critical judgment of reference material and ability to answer questions. Students must attend the Graduate Research Methods (PEAS 6700.03) before enrolling in this course. Graded pass/fail.
NOTE: This course is to replace Graduate Seminar I in all programs.
INSTRUCTOR(S): G. J. Kipourous
FORMAT: Symposium
PREREQUISITE: PEAS 6700.03

PEAS 7710.00: Graduate Research Symposium II.
All students enrolled in the Ph.D degree program are required to participate in this course. The course is designed to provide students with the opportunity and experience of interacting with their peers, faculty and profession. There will be an annual research symposium which will include guest speakers and/or panel discussions on topical issues presented by scholars from industry, government and academia and oral and poster presentations by students. Two 30 minute oral presentations and two poster presentations must be given by the student at the department symposia during the student tenure. Students will be evaluated on quality of handouts, organization and preparation of material, presentation skills, technical content, knowledge of the subject, critical judgement of reference material and ability to answer questions. Students must attend the Graduate Research Methods (PEAS 6700.03) before enrolling in this course. Graded pass/fail.
NOTE: This course is to replace Graduate Seminar II in all programs.
INSTRUCTOR(S): G. J. Kipourous
FORMAT: Symposium
PREREQUISITE: PEAS 6700.03
Admission to the Prosthodontics program is suspended. The program will continue to be delivered to any current students until all students have graduated, or the time allowed for program completion has elapsed, or all students have left the program.

Psychology

Location: Life Sciences Centre
1355 Oxford Street
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-3417
Fax: (902) 494-6585
Website: http://Psychology.dal.ca/

Chairperson of Department
Klein, R.M.

Graduate Coordinator
Taylor-Helmick, T.L.

Professors Emeriti
LoLordo, V.M., AB (Brown), PhD (Penn). Learning, animal behaviour
Mitchell, D.E., BSc, MASc (Melb), PhD (Berkeley). Visual system
development, visual perception

Professors
Adamo, S., BSc (Toronto), PhD (McGill), Faculty of Science Killam
Professor in Psychology. Insect behavioural neuroscience, cephalopod
behaviour, invertebrate behavioural physiology
Brown, R.E., BSc (Victoria), MA, PhD (Dalhousie), University Research
Professor. Behavioural endocrinology, developmental psychobiology,
drugs and behaviour, behaviour of transgenic and mutant mice
Bryson, S.E., BA (Guelph), PhD (McGill), Major appointment in Pediatrics,
Joan & Jack Craig Chair in Autism Research. Autism and related
developmental disorders, developmental neuropsychology,
development of attention, emotion and cognition
Chambers, C.T., BSc (Dalhousie), MA, PhD (UBC), Canada Research Chair
in Pain and Child Health, Joint appointment in Pediatrics. Pediatric
(child health) psychology with a focus on pediatric pain, including
family influences, developmental issues related to pain measurement,
and sleep disturbances and pain.
Finley, G.A., BSc, MD (Dalhousie), FRCPC, Major appointment in
Anaesthesia. Pediatric pain (measurement and management), audible
alarm signals, perioperative anxiety, awareness and memory
Kay-Raining Bird, E., BA (Queen’s), MSc (Columbia), PhD (Wisconsin-
Madison), Major appointment in the School of Human Communication
Disorders. Child language development and disorders, Down
syndrome, autism, language assessment and intervention, literacy
Kieffe, M., BA (Memorial), MSc, PhD (Alberta), Major appointment in the
School of Human Communication Disorders. Speech perception,
psychoacoustics, speech production, stuttering
Klein, R.M., BA (SUNY), MA, PhD (Oregon), University Research
Professor. Attention and its disorders, cognitive neuroscience, applied
cognitive psychology
McGrath, P., BA, MA (Sask), PhD (Queen’s), Canada Research Chair in
Pediatric Pain. Pediatric pain, distance treatment of mental health
problems, and chronic illness
McMullen, P., BSc, MSc (Toronto), PhD (Waterloo). Visual cognition,
cognitive neuropsychology
Meinertzhagen, I.A., BSc (Aberdeen), PhD, DSc (St. Andrews), University
Research Professor. Structure and development of simple nervous
systems
Moore, C.L., BA, PhD (Cantab), Faculty of Science Killam Professor in
Psychology. The development of commonsense psychology and the
understanding of intentionality
Phillips, D.P., BSc, PhD (Monash). Auditory perception and
psychophysics, auditory neuroscience
Associate Professors
Abbass, A., BSc (Ottawa), MD (Dalhousie), FRCP (Toronto), Major appointment in Psychiatry. Emotion physiology, short-term dynamic psychotherapy, psychotherapy integration, anxiety, depression, somatization
Barrett, S.P., BA (SFIX), PhD (McGill). Addiction, polysubstance use, alcohol, tobacco, gambling, psychiatric comorbiditiy, human psychopharmacology
Corkum, P., BSc (Dalhousie), MA, PhD (OISE at Toronto), Clinical PhD Program Director of Training. Sleep and childhood psychopathology; attention, behaviour and academic disorders in children; psychosocial interventions; school psychology
Deacon, H., BSc (UPEI), PhD (Oxon). Developmental psychology, literacy development
Duffy, K., BA (St. Thomas), PhD (McMaster). Function, organization, and development of the mammalian visual system; impact of sensory experiences on neural network development and plasticity
Earhard, B., BA, MA, PhD (Toronto). Analytic operations in perception
Esken, G.A., BA, PhD (Berkeley), Major appointment in Psychiatry. Clinical and cognitive neuropsychology, cognitive rehabilitation, disorders of attention, memory and executive function, sleep disorders, aging, stroke, dementia, cognition and emotion, functional brain imaging
Good, K., BSc (UNB), MSc, PhD (UBC), Major appointment in Psychiatry. Olfactory and cognitive function in patients with psychotic disorders, and olfactory IMRI
Ingles, J., BA (Queen’s), PhD (Dalhousie), Major appointment in the School of Human Communication Disorders. Neuropsychology, aphasia, dyslexia, cognitive rehabilitation, stroke, dementia
Jacques, S., BA (McGill), MA, PhD (Toronto). Socio-emotional and socio-cognitive development, cognitive development
Johnson, S., BA (Kalamazoo), MSc, PhD (Victoria). Clinical PhD Program Associate Director of Training. Clinical and cognitive neuropsychology, social cognition, neurodevelopmental and neurodegenerative disorders
McGlone, J., BA, MA, PhD (Western). Clinical neuropsychology, epilepsy, outcomes of temporal lobe resection on memory complaints and emotional intelligence, dichotic listening used for speech lateralization, sex differences in brain organization
Neuman, A.J., BA (Winnipeg), MSc, PhD (Oregon). Neuroplasticity and language processing; neural bases of signed vs. spoken language; effects of deafness on brain development; gesture; second language acquisition; Aboriginal languages; neuroimaging with IMRI and ERP; clinical applications of cognitive neuroimaging
Perrot, T.S., BSc, PhD (Western). Molecular mechanisms of sexual differentiation of rat brain; developmental programming of adult stress responding; sex and sex steroid modulation of adult stress responding
Robinson, L., BSc (Victoria), MA, PhD (Simon Fraser), Major appointment in the School of Health and Human Performance. Psychosocial issues in cancer, relationships, internet-mediated health promotion, health promotion, community-based research
Smith, J., BA (Dalhousie), MSc (Brown), PhD (Dalhousie), Major appointment in Pediatrics. Developmental disabilities, autism, perceptual and cognitive development
Assistant Professors
Aiken, S., BA, MSc, PhD (Toronto), Major appointment in the School of Human Communication Disorders. Auditory electrophysiology, brainstem and cortical responses to speech, psychoacoustics, otophonic emissions, speech perception, hearing aid signal processing
Boe, S., BPHEd (Brock), PhD, MPT (Western), Major appointment in the School of Physiotherapy. Central and peripheral nervous system adaptations and functional outcomes in neurorehabilitation, cortical contributions to balance control, electrophysiology, functional neuroimaging
Chorney, J., BSc (Dalhousie), MA, PhD (West Virginia), Major appointment in Anesthesiology. Perioperative care, psychological management of pain
Crowder, N.A., BSc, PhD (Albera). Using visual neurophysiology and psychophysics to investigate the following topics: adaptation and plasticity of visual information processing in the cortex, contrast coding, motion detection, speed discrimination
Esser, M.J., BSc (Toronto), MSc, PhD, MD (Dalhousie), Major appointment in Pediatrics. Fetal programming, childhood epilepsy, neurodevelopment, magnetoencephalography
Krigolson, O.E., BEd (Victoria), MSc (Indiana), PhD (Victoria). Learning, reinforcement learning, cognitive control, neuroimaging, computational neuroscience, motor control
Phillmore, L., BA (Western), MA, PhD (Queen’s). Songbirds, animal behaviour and learning, seasonality, neural basis of song perception, neurogenesis
Sherry, S.B., BA (York), MA (UBC), PhD (Saskatchewan). Personality and psychopathology (e.g., suicide, eating disorders, and depression), perfectionism, hypochondriasis
Westwood, D.A., BSc, MA, PhD (Waterloo), Major appointment in the School of Health and Human Performance. Cognitive neuroscience, sensory control of skilled action, functional neuroimaging
Senior Instructors
Gadbois, S., BSc, MAPs (Univ. de Moncton), PhD (Dalhousie). Olfactory detection, discrimination, searching and tracking in dogs; wildlife conservation dogs; behaviour of wild canids (wolves, coyotes, and red foxes)
Juckes, T., BA, MA (Natal), PhD (Dalhousie). Sociopsychology, history of psychology, social influence, scientific writing, cognitive development
Schellinck, H., BSc, MSc, PhD (Dalhousie). Olfactory learning in animal models of neurodegenerative disease; phenominal mechanisms in rodents
Stamp, J., BSc (Dalhousie), PhD (Cambridge). Stress, addiction, steroid hormones and behaviour
Adjunct Professors
Backman, J., BA (Dalhousie), MA, PhD (Carleton), Private Practice. Learning disabilities, neuropsychology and reading
Barresi, J., BSc (Brown), MA (S. Calif.), MS, PhD (Wisconsin), Psychology/ Dalhousie. Personology, social cognition, philosophical psychology, history of psychology
Callaghan, T.C., BA, MA (UNB), PhD (Brown), Psychology/St. Francis Xavier Univ. Developmental psychology, symbolic development, culture and social cognitive development
Chipman, K., BA (UPEI), MA, PhD (Western), Neuropsychology Service/ Nova Scotia Hospital. Neuropsychology, cognitive rehabilitation, functional outcomes, aging, mild cognitive impairment (MCI), dementia and neurodegenerative disorders, schizophrenia, affective disorders, family/caregiver support
Church, E., BA (St. John’s), MA, PhD (Toronto), School Psychology/ Mount Saint Vincent Univ. Stepfamilies, parenting, self-help, rural mental health, interprofessional collaboration.

Cohen, A.J., BA (McGill), MA, PhD (Queen’s), Psychology/ UPEI. Music cognition, audio-visual integration, film music perception, auditory spatial cognition, voice emotion.

D’Arcy, R.C.N., BSc (Victoria), MSc, PhD (Dalhousie), Institute for Biodiagnostics (Atlantic)/National Research Council Canada. Functional brain imaging, magnetic resonance imaging (MRI, fMRI), magneto- electro-encephalography (M/EEG), diagnostic imaging, neurology, and neuurosurgery.

Ebert, P., BSc (Toronto), PhD (Victoria), Seniors Memory Clinic/ Ontario Shores Centre for Mental Health Sciences. Neuropsychology, cognitive rehabilitation neuroscience, neuroimaging, aging, dementia, and neurogenerative disorders: assessment, intervention (memory, attention, executive functions, language), treatment effectiveness, health policy, knowledge translation.

Elsworth, C., BA (St. John’s), MA, PhD (Toronto), School Psychology/ IWK Health Centre. Neurodevelopmental disorders (infants and preschoolers), early identification, parent education and support.

Fisk, J., BSc, MA, PhD (Western), Psychology/ QEII Health Sciences Centre. Neuropsychology, cognitive neuroscience and neuroimaging; aging, multiple sclerosis, dementia and neurodegenerative disorders: assessment, diagnosis, epidemiology, risk factors, health-related quality of life, treatment effectiveness, health policy.

Frankland, B.W., BSc (McMaster), MSc, PhD (Dalhousie), Computational modelling, statistics, cognition.

Gilin Oore, D., BSc (Northern Michigan), MA, PhD (Missouri-St. Louis), Psychology/Saint Mary’s Univ. Managerial decision making, conflict escalation and resolution, interpersonal and organizational change.

Haut, P., PhD (Johann Wolfgang Goethe Univ., Frankfurt), Psychology/St. Francis Xavier Univ. Early development of action understanding, infant action control, infant understanding of actions performed by others.

Ivanoff, J., BSc, MA (Guelph), PhD (Dalhousie), Psychology/Saint Mary’s Univ. Attention, decision-making, executive control, response preparation, cognitive neuroscience, functional magnetic resonance imaging, event-related potentials.

LoLordo, V.M., AB (Brown), PhD (Penn), Psychology/Dalhousie. Learning, anxiety, behaviour.

MacDonald, G.W., BA (StFX), MA, PhD (Windsor), Private Practice. Learning disabilities, developmental reading disorders, pediatric and adult neuropsychology.

Marchand, Y., MCS (Univ. of Paris), PhD (Compiegne), Computational modelling of reading, dyslexia, speech technology, event-related brain potentials.

McLeod, P., BA (Mcgill), MSc (Memorial), PhD (Dalhousie), Psychology/ Acadia. Risk assessment, communication and medical decision making, student sexual and emotional health, stress.

McWilliams, L., BA, MA (Regina), PhD (Manitoba), Psychology/ Acadia Univ. Adult attachment theory and chronic pain, psychopathology and health, and psychometrics.

Mitchell, D.E., BSc, MA Sc (Melb), PhD (Berkeley), Psychology/Dalhousie. Visual system development, visual perception.

O’Neill, P., MSc, PhD (Yale), Professor Emeritus/Acadia Univ. Ethical decision making, community psychology.

Porter, S.B., BSc (Acadia), MA, PhD (UBC), Psychology/ UBC-Okanagan. Criminal behaviour, psychopathy, forensic aspects of memory, credibility assessment, and malingering/deception.

Rodger, R.S., MA (Edin), PhD (Queen’s, Belfast). Statistical methodology; especially the evaluation of multiple, null contrasts against their alternatives (parametric and non-parametric), using decision-based error and detection rates.

Saint-Aubin, J., BA (Sherbrooke), MPs (Laval), Ecole de psychologie/ Université de Moncton. Missing-letter effect, working memory, eye movements, shared book reading.

Santor, D., BA (Western), PhD (McGill), School of Psychology/ Univ. of Ottawa. Depression, vulnerability factors, psychometrics, adolescent mental health.

Smith, S.M., BA (Bishop’s), MA, PhD (Queen’s), Psychology/ Saint Mary’s Univ. Attitudes and persuasion, attitude change, behaviour change, health promotion, psychology and law, eyewitness identification, confession evidence, media and persuasion, media and the legal system.

Song, C., BSc (East China Normal Univ), MD in Chinese Medicine (Hu Nan Medical Univ.), MSc (East China Normal Univ. and Chinese Acad. of Science), PhD (National Univ. of Ireland), Psychiatry/Guangxi Medical University. Neurodegeneration, neuroinflammation, neurotrophic factors, microglia, neurons, neurotransmission, memory, lipids, natural products.

Symons, D., BSc (McMaster), MA, PhD (Western), Psychology/ Acadia Univ. Early social development, child-clinical and family psychology, behavioural assessment, attachment and relationships, parenting, theory of mind.

Vallis, T.M., BSc (Dalhousie), MA, PhD (Western), Psychology/ QEII Health Sciences Centre. Health psychology, diabetes, gastroenterology, cardiovascular risk reduction, obesity, motivational readiness to change, cognitive therapy.

Veitch Wolfe, V., BA (Auburn), MA (Southern Illinois), PhD (West Virginia), Psychology/ IWK Health Centre. Childhood trauma and maltreatment, prevention and early intervention for adolescent depression.

Watt, M., BA (StFX), PhD (Dalhousie), Psychology/St. Francis Xavier Univ. Anxiety, cognitive-behavioural interventions, health-related behaviour, forensic psychology.

Yoon, M.G., BS (Seoul), PhD (Berkeley). Development of nervous systems and language.

Adjuncts (Clinical Associate)

Adjuncts with the Clinical Associate designation are expected to be actively involved in the Clinical Psychology Program through a variety of activities such as being practicum supervisors for Clinical students, teaching courses, and leading workshops. This type of appointment is not suitable for supervision of student research.

Angelopoulos, M., PhD (Dalhousie), Psychology/ QEII Health Sciences Centre.

Aubie, C., PhD (Windor), Eating Disorders Clinic/ Early Psychoysis Program/ QEII Health Sciences Centre.

Blood, L., PhD (Houston), Youth Forensic Services/ IWK Health Centre.

Brah, R., PhD (Dalhousie), Psychology/ QEII Health Sciences Centre.

Butler, C., PhD (Queen’s), Psychology/ QEII Health Sciences Centre & Private Practice.

Carter, S.L., PhD (Windor), Psychology/ QEII Health Sciences Centre.

Chermaz, J., PhD (UCLA), Adolescent Centre for Treatment/ IWK Health Centre.

Chorney, D., PhD (West Virginia), Community Mental Health (Sackville)/ IWK Health Centre.

Clark, S., PhD (Dalhousie), Adolescent Centre for Treatment/ IWK Health Centre.

Coolican, J., PhD (Dalhousie), Autism Research Centre/ IWK Health Centre.

Connors, A., PhD (Simon Fraser), Forensic Sexual Behaviour Program/ East Coast Forensic Hospital.

Corkum, V., PhD (Dalhousie), corkum & Associates Psychological Services.

Day, V., PhD (Queen’s), Counselling and Psychological Services/ Dalhousie University.

Durdle, H., PhD (Windor), CHOICES Adolescent Treatment Program/ IWK Health Centre.

Freeman, P., PhD (Manitoba), Mental Health Services - Dartmouth/ Nova Scotia Hospital.

Gillespie, J., PhD (Western), Pediatric Health Psychology Service/ IWK Health Centre.

Gorman, M., PhD (York), Private Practice.

Gusella, J., PhD (Queen’s), Psychological Services/ IWK Health Centre.

Hang, C., EdD (Indiana Univ. of PA), Dr. Gerald S. Hahn Psychological Services.

Hendrick, J., PhD (Queen’s), Psychology/ QEII Health Sciences Centre.

Howes, J., PhD (Western Ontario), Psychology/ QEII Health Sciences Centre.
Humphreys, C., PhD (Toronto), Breakthrough Coop Inc.
Jefferson, S., PhD (UNB), Psychology/QEII Health Sciences Centre
Jerrott, S., PhD (Dalhousie), Maritime Outpatient Psychiatry/IWK Health Centre
Joyce, A.M., PhD (Dalhousie), Community Mental Health/IWK Health Centre
Kelvin, B., PhD (Calgary), East Coast Forensic Hospital
King, S., PhD (Dalhousie), Faculty of Education (School Psychology Program)/Mount Saint Vincent University
Lefebvre, C., PhD (Dalhousie), Youth Forensic Services/IWK Health Centre
Lowe-Pearce, C., PhD (Dalhousie), Clinical Neurosciences and Rehabilitation Care/IWK Health Centre
McGee, R., PhD (Western Ontario), Annapolis Valley Regional School Board
McNerney, R.J., PhD (Victoria), Psychology/IWK Health Centre
McLaughlin, E., PhD (Dalhousie), Pediatric Health Psychology/IWK Health Centre
McNeill, B., PhD (Queen’s), Inpatient Mental Health/IWK Health Centre
Mullane, J., PhD (Dalhousie), Community Mental Health Service (Halifax Branch)/IWK Health Centre
Patry, B., PhD (Victoria), Psychology/QEII Health Sciences Centre
Fencer, A., PhD (Calgary), Maritime Outpatient Psychiatry / IWK Health Centre
Poison, M., PhD (McGill), Community Mental Health Service (Halifax Branch)/IWK Health Centre
Pure, K., PhD (UNB), Dr. Kieran Pure & Associates
Ross, M., PhD (Saskatchewan), Mental Health Services, Bedford-Sackville/Cobequid Community Health Centre
Scattolon, Y., PhD (UNB Fredericton), Eating Disorders Clinic/QEII Health Sciences Centre, and Private Practice
Starzomski, A., PhD (UBC), East Coast Forensic Hospital
Swaine, J., PhD (Ottawa), Dr. John Swaine & Associates
Uman, L., PhD (Dalhousie), Community Mental Health (Dartmouth Site)/IWK Health Centre
Walford, V., PhD (Ottawa), Jason Roth & Associates
Wetmore, A., MEd (Acadia), Private Practice
Wilson, A.R., PhD (Saskatchewan), NS Board of Examiners

Postdoctoral Fellows
Borycz, J.A., PhD (Jagiellonian Univ., Kraków, Poland)
Champod, A.S., PhD (McGill)
Coulombe, A., PhD (Western)
Easy, R., PhD (Dalhousie)
Edwards, T., PhD (Dalhousie)
Ishigami, Y., PhD (Dalhousie)
Jaime, M., PhD (Florida International Univ.)
Shinomiya, K., PhD (Tokyo)
Stahl Schmidt, Z., PhD (Arizona State), Killam Postdoctoral Fellow
Sternciczuk, R., PhD (Calgary)
Tremblay, A., PhD (Alberta)

Research Associates
Borycz, J., PhD (Polish Academy of Sciences, Kraków, Poland)
Fabian-Fine, R., Dr. phil. nat. (Frankfurt)
Wen, S., PhD (South China Agricultural Univ.)

I. Admission Requirements
Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies. Individuals interested in applying for a position in one of the Psychology programs must submit at least two letters of reference, official copies of all undergraduate and graduate transcripts, GRE scores (verbal, quantitative and analytic) and application fee. Students should have at least a B+ average in their last two years. A letter from the applicant indicating his/her research and career interests is strongly recommended. Applicants for admission to the Clinical program must submit an additional reference letter which focuses on their clinical experience and/or suitability for work in clinical psychology.

II. Degree Programs
The Department of Psychology offers graduate training leading to MSc and PhD degrees in Psychology, MSc and PhD degrees in Psychology/Neuroscience, and to a PhD degree in Clinical Psychology. Master’s level students in Psychology and Psychology/Neuroscience are expected to advance into the corresponding PhD programs. The Department does not have a “terminal” Master’s program nor does it offer a Master’s degree in Clinical Psychology.

A. Psychology (Experimental)
The graduate programs in Psychology emphasize training for research. They are best described as “apprenticeship” programs in which students work closely with a faculty member who has agreed to supervise the student’s research. Compared with many other graduate programs, the Department places less emphasis on class work and greater emphasis on research, scholarship and independent thinking.

1. Master of Science (MSc) in Psychology
In addition to the Master’s thesis (PSYO 9000.00), which is the major requirement of this program, the Master’s student must complete the following classes:
• PSYO 6001.03: Fundamentals of Statistics and Experimental Design
• PSYO 7501.03: Proseminar: Methods of Psychological Inquiry I
• PSYO 7502.03: Proseminar: Methods of Psychological Inquiry II
• At least one other full credit of electives

During each residency year Master’s students must register for and attend both semesters of the colloquium series (PSYO 8001.03 and 8002.03) and are required to do some teaching in the undergraduate program. The amount of teaching is presently the equivalent of no more than 10 hours/week for one term. This consists of working as a laboratory instructor, seminar leader, or teaching assistant.

2. Doctor of Philosophy (PhD) in Psychology
Students are expected to conduct research leading to empirical, methodological and/or theoretical advances in their field of study, some or all of which will be included in their dissertation and defended publicly. In addition to the dissertation (PSYO 9530.00), which is the major requirement of this program, students in the PhD program must complete the following classes (unless they were completed as part of the Master’s program):
• PSYO 6001.03: Fundamentals of Statistics and Experimental Design, and at least one other ½ credit class in the quantitative/analytic area
• PSYO 7100.03: Seminar in Teaching Effectiveness
• PSYO 7501.03: Proseminar: Methods of Psychological Inquiry I
• PSYO 7502.03: Proseminar: Methods of Psychological Inquiry II
• Plus 1 full credit of electives (with approval, this may be taken outside the department) in addition to any that were completed as part of the Master’s program.

During each year in the PhD program students are required to register for Dissertation Research (PSYO 9530.00) and are encouraged to enrol in graduate seminars. During each residency year students must register for and attend both semesters of the colloquium series (PSYO 8001.03 and 8002.03) and do some teaching in the undergraduate program (see Master’s program description). At least one year before submission of the dissertation students must also satisfy the comprehensive examination requirement. This requirement, which is administered by an examination committee of between three and five faculty members, entails completing at least three comprehensive ‘projects’ that are not directly related to the student’s dissertation research or each other.

B. Psychology/Neuroscience
The graduate programs in Psychology/Neuroscience are coordinated by the Psychology Department and an interdisciplinary Neuroscience Program Committee with representation from the Departments of Anatomy and Neurobiology, Biochemistry and Molecular Biology, Pharmacology, Physiology and Biophysics, and Psychology (see Neuroscience calendar entry). They are also designed as “apprenticeship” programs in which students work closely with a Neuroscience faculty
member who has agreed to supervise their research. Emphasis is placed on interdisciplinary research, scholarship and independent thinking rather than on class work.

1. Master of Science (MSc) in Psychology/Neuroscience

In addition to the Master's thesis (PSYO 9000.00), which is the major requirement of this program, the Master's student must complete the following classes:

- NESC 6100X/Y.06: Principles of Neuroscience
- PSYO 7501.03: Proseminar: Methods of Psychological Inquiry I
- PSYO 7502.03: Proseminar: Methods of Psychological Inquiry II
- Students are expected to take at least ½ credit of class work in the quantitative/analytical area

During each residency year Master's students must register for and attend a colloquium series offered by one of the participating departments (such as PSYO 8001.03 and 8002.03) and are required to do some teaching in the undergraduate program. The amount of teaching is presently the equivalent of no more than 10 hours/week for one term. This consists of working as a laboratory instructor, seminar leader, or teaching assistant. Master’s students must register for PSYO 9000.00 (Thesis). The Neuroscience and Psychology Graduate Program Committees, in collaboration with the student and supervisor, will assess the needs of the student and determine any other requirements beyond the minimum outlined above.

2. Doctor of Philosophy (PhD) in Psychology/Neuroscience

Students are expected to conduct research leading to empirical, methodological and/or theoretical advances in their field of study, some or all of which will be included in their dissertation and defended publicly. In addition to the dissertation (PSYO 9530.00), which is the major requirement of this program, students in the PhD program must complete the following classes (unless they were completed as part of the Master’s program):

- NESC 6100X/Y.06: Principles of Neuroscience
- PSYO 7100.03: Seminar in Teaching Effectiveness
- PSYO 7501.03: Proseminar: Methods of Psychological Inquiry I
- PSYO 7502.03: Proseminar: Methods of Psychological Inquiry II

During each year in the PhD program students are required to register for Dissertation Research (PSYO 9530.00) and are encouraged to enrol in graduate Neuroscience and/or Psychology seminars. During each residency year students must register for and attend both semesters of a colloquium series offered by one of the participating departments (such as PSYO 8011.03 and 8002.03) and do some teaching in the undergraduate program (see Master’s program description). The Neuroscience and Psychology Graduate Program Committees, in collaboration with the student and supervisor, will assess the needs of each student and determine any other requirements beyond the minimum outlined above.

At least one year before submission of their dissertation students must also satisfy the comprehensive examination requirement. This requirement, which is administered by an examination committee of between three and five faculty members, entails completing at least three comprehensive 'projects' that are not directly related to the student's dissertation research or each other.

C. Doctor of Philosophy (PhD) in Clinical Psychology

Clinical Psychology at Dalhousie is a fast-track program in which students accelerate from the MSc to the Clinical PhD program without writing a Master's thesis or obtaining a Master’s degree. Candidates for the Clinical Psychology program must have an Honours degree or equivalent in Psychology. Students accepted to study Clinical Psychology are initially registered in an MSc program and then fast-tracked to the Clinical PhD program before the end of their first year. Students accepted into the Clinical program with a Master’s degree in Psychology (or a closely-related field) are eligible for direct entry to the PhD and may be eligible for advanced standing within the program. Note that fast-tracking into the Clinical PhD requires that a student has been admitted to study Clinical Psychology.

The PhD program in Clinical Psychology is cooperatively administered by the Psychology Department and the Clinical Program Committee with representation from Acadia University, Dalhousie University, Mount Saint Vincent University, Saint Mary’s University and professional psychologists from the teaching hospitals and the community. It is a CPA accredited, structured, five-year program which follows the "scientist-practitioner" model. It considers clinical psychology as part of the science of psychology and therefore emphasizes research.

Upon admission, students are assigned to a faculty member who will supervise their thesis and other research projects. During the first four years of the Clinical PhD program, students complete required and elective classes, conduct supervised and thesis research, and gain clinical experience through field placements (PSYO 8333X/Y.06, a minimum of 600 hours are required). Students are involved in research from the outset, and are expected to conduct research leading to empirical, methodological and/or theoretical advances in their field of study, some or all of which will be included in their dissertation and defended publicly. In the fifth year, students complete a full-year clinical internship (PSYO 9100.00). The Department does not offer a Master's degree in Clinical Psychology.

The following classes are required:

- PSYO 6001.03: Fundamentals of Statistics and Experimental Design.
- PSYO 6003.03: Multivariate Statistics
- PSYO 6102.03: Child Assessment: Historical and Contemporary Perspectives and Practical Applications
- PSYO 6103.03: Adult Assessment: Historical and Contemporary Perspectives and Practical Applications
- PSYO 6104.03: Psychopathology: A Lifespan Perspective
- PSYO 6105.03: Ethics and Professional Decision-Making
- PSYO 6203.03: Interviewing: A Lifespan Perspective
- PSYO 6204.03: Cognitive, Affective and Behavioural Base of Intervention: A Lifespan Perspective
- PSYO 6208.03: Clinical Neuropsychology
- PSYO 6209.03: Research Seminar
- PSYO 6301.03: Advanced Clinical Intervention: Child
- PSYO 6302.03: Advanced Clinical Intervention: Adult
- PSYO 6303.03: Advanced Clinical Practice Skills in Supervision, Consultation and Program Evaluation
- PSYO 6304X/Y.06: Clinical Rounds and Case Conference
- PSYO 7100.03: Seminar in Teaching Effectiveness
- PSYO 7501.03: Proseminar: Methods of Psychological Inquiry I
- PSYO 7502.03: Proseminar: Methods of Psychological Inquiry II
- PSYO 8001.03: Psychology Colloquium I
- PSYO 8002.03: Psychology Colloquium II
- PSYO 8333X/Y.06: Field Placements
- At least three half credits (or equivalent) of elective seminars must also be completed.
- At least one other credit class in the quantitative/analytic area.

III. Options

Certificate in Translational NeuroTechnology (TNT)

The Certificate in Translational NeuroTechnology (TNT) is designed to add value to a range of graduate degree programs at Dalhousie. Its aim is to provide both a scientific grounding in neurotechnology and clinical neuroscience, and the professional skills needed to work in translating scientific knowledge into products that benefit people. These include skills in the process of innovation, intellectual property, business, and communication. Graduates will be suited to jobs in industrial and academic settings, designing solutions that meet real needs and commercializing or otherwise mobilizing these innovations.

Certificate Requirements

This Certificate program is open to students enrolled in a graduate program at Dalhousie University. Students may come from programs in the Faculties of Science (including Psychology, Chemistry, Biology, Computer Science, Management (MBA), Medicine (including Anatomy and Neurobiology, Physiology and Biophysics, Pharmacology, and Biochemistry), Engineering (including the School of Biomedical Engineering), and Health Professions (including Audiology, Kinesiology,

Psychology 277
INSTRUCTOR(S): O.E. Krigolson

Some knowledge of basic statistics is emphasized. The general linear model and how best to apply the hypotheses under investigation. Two of the following classes:
- PSYO 7701.03: Rehabilitative and Diagnostic Innovation in Applied Neurotechnologies (RADIANT) Seminar
- PSYO 7705.06: Summer Institute - Neurotechnology Innovation, Commercialization, and Entrepreneurship
- PSYO 7711.03: Innovating Neurotechnology I
- PSYO 7712.03: Innovating Neurotechnology II

NOTE: Not all classes are offered every year. Please consult the current seminar topics chosen, on the basis of faculty interests and student needs. Instructor approval is required for non-Clinical Psychology graduate those students enrolled in that program. Director of Training and restricted to students enrolled in a graduate program in Psychology. Those classes required for the Clinical Psychology Program are restricted to those students enrolled in that program. Director of Training and Instructor approval is required for non-Clinical Psychology graduate students to register for Clinical classes. Other classes are offered, and seminar topics chosen, on the basis of faculty interests and student needs.

IV. Class Descriptions

Required classes in Psychology are offered on a regular basis, and are restricted to students enrolled in a graduate program in Psychology. Those classes required for the Clinical Psychology Program are restricted to those students enrolled in that program. Director of Training and Instructor approval is required for non-Clinical Psychology graduate students to register for Clinical classes. Other classes are offered, and seminar topics chosen, on the basis of faculty interests and student needs.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

PSYO 5000/X/Y.06: Research Assignment.
Students become actively involved in ongoing research in the laboratory of a faculty supervisor. In addition to research training, this class aims to improve the student's oral presentations and scientific writing. A final report (e.g. in the form of a Journal article) is required.

NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

PSYO 5001.03/5002.03: Independent Study.
Students work closely with a faculty supervisor on a topic of mutual interest. Study may focus on laboratory research or library research and empirical, methodological, theoretical and/or professional issues may be covered. A final report is required.

PSYO 6001.03: Fundamentals of Statistics and Experimental Design.
This class will survey some common parametric statistical procedures in psychology, including analysis of variance and covariance. Major emphasis is placed on the general linear model and how best to apply the model as a function of the type of data, experimental design, and hypotheses under investigation. Some knowledge of basic statistics is assumed.

INSTRUCTOR(S): O.E. Krigolson

PSYO 6003.03: Multivariate Methods.
This class will cover a variety of topics in multivariate statistics, such as factor analysis, regression, multivariate analysis of variance and covariance, and discriminant function analysis. Some topics in categorical data analysis may also be covered, such as multiway frequency analysis and logic models.

INSTRUCTOR(S): O.E. Krigolson

PSYO 6051.03: Neural Basis of Perception.
This seminar class explores the correlations between 1) stimulus properties and neural responses produced by sensory stimulation and 2) the neural coding of environmental events and the behaviours that may be produced in the context of these events. These correlations will be studied within the auditory, visual and tactile modalities.

INSTRUCTOR(S): Staff

PSYO 6060.03: Biological Basis of Mental Illness.
This seminar class explores our current understanding of the physiological mechanisms that may underlie various forms of abnormal behaviour. Its subject matter includes disorders for which a physiological mechanism has been identified as well as those for which a physiological basis is currently a matter for speculation. This class is intended for graduate students with backgrounds in some aspects of neuroscience and clinical psychology.

PSYO 6071.03: Topics in Behavioural Neuroscience.
This seminar class covers contemporary, fundamental topics in physiological psychology, including methods, research and/or theory. Various topics such as brain mechanisms of reinforcement, hormones and behaviour, and biological rhythms, will be covered in different years.

INSTRUCTOR(S): R.E. Brown

FORMAT: Seminar

CROSS-LISTING: NESC 6071.03

PSYO 6081.03: Topics in Personality and Social Psychology.
Different topics in personality and social psychology (such as psychology of persons, attitude formation, group dynamics) are covered in a seminar format.

PSYO 6091.03: Topics in Child Development.
Different topics in child development (such as language acquisition, social development, meta-cognitive processes) are covered in a seminar format.

INSTRUCTOR(S): Staff

PSYO 6101.03: Computers and Instrumentation in Psychology Experiments.
This class provides an overview of the use of computers in psychological experimentation. Topics may include: real-time issues, input and display devices, platform and operating system differences, web-based experiments, and current experimental packages. Class work will include an introduction to programming and the development of a small-scale computerized experiment.

PSYO 6102.03: Child Assessment: Historical and Contemporary Perspectives and Practical Applications.
This class addresses the theoretical and applied foundations of psychological measurement as it relates to child assessment. Historical, theoretical and psychometric issues are addressed to provide the students with a sound knowledge base in issues related to test development. The second part of the class emphasizes the development of skills in assessment of cognitive abilities, personality, behaviour and emotional function of children. Students learn to administer, score and interpret performance on a variety of assessment instruments for children. Report writing skills are developed through case studies.

INSTRUCTOR(S): S. Johnson

PSYO 6103.03: Adult Assessment: Historical and Contemporary Perspectives and Practical Applications.
This class addresses the theoretical and applied foundations of psychological measurement as it relates to adult assessment. Historical, theoretical and psychometric issues are addressed to provide the students with a sound knowledge base in issues related to test development, including various forms of validity and reliability, as well as research designs in test development. The second part of the class emphasizes the development of skills in the assessment of cognitive abilities, personality, behaviour and emotional functioning of adults. Students learn to administer, score and interpret performance on a variety of assessment instruments for adults. Report writing skills are developed through case studies.

INSTRUCTOR(S): S. Barrett
PSY 6104.03: Psychopathology: A Lifespan Perspective.
This class is an overview of psychopathology from a lifespan perspective. The objective is to provide knowledge of diagnostic criteria, and evidence on etiology and treatment of the major mental health disorders. Historical, social, cultural, and contextual aspects of psychopathology are examined and current research in the field is highlighted.
INSTRUCTOR(S): P. Corkum
FORMAT: Seminar

PSY 6105.03: Ethics and Professional Decision Making.
This class covers ethical and professional issues arising in various fields of psychology, including clinical practice and research. Students will be encouraged to develop a methodology for appraising their ethical and professional behaviour through an understanding of such issues as the legal regulation of psychology, codes of ethics and professional standards, and malpractice. The class will introduce students to the concepts of quality and risk, and explore the relationship between psychology and other professions in multi-disciplinary contexts. The class will also examine the relation between psychology standards and standards established by organizations in which psychologists work, such as health facility accreditation.
INSTRUCTOR(S): Staff

PSY 6160.03: Comparative Psychology.
Different topics in comparative psychology (such as kin selection, parental behaviour, hormonal control of behaviour, olfaction and behaviour) are covered in seminar format.

PSY 6203.03: Interviewing: A Lifespan Perspective.
This class provides an introduction to clinical interviewing techniques and their application with clients across the lifespan. Students will learn how to select techniques and structure interviews to meet specific assessment and intervention goals and in keeping with the referral question and the client’s developmental status.
FORMAT: Seminar

PSY 6204.03: Cognitive, Affective and Behavioural Bases of Intervention: A Lifespan Perspective.
This class is an overview of major classes and modes of psychotherapy from a lifespan perspective. The objective is to provide knowledge of the history, development, current research findings, and practical considerations for implementing psychological interventions. Skills and knowledge for evaluating research evidence for specific treatments will be highlighted.
INSTRUCTOR(S): Staff
FORMAT: Seminar
PREREQUISITE: PSYO 6104.03

PSY 6208.03: Clinical Neuropsychology.
This class emphasizes the development of a knowledge base by surveying several aspects of clinical neuropsychology. Topics include neuroanatomy, neurological exam, investigations and diseases, models of neuropsychological assessment, dementia, epilepsy, localization of function, cognitive remediation, theories of aphasia, amnesia, and agnosia.
INSTRUCTOR(S): J. McGlone

PSY 6209.03: Research Seminar.
This class focuses on theoretical and substantive aspects of research design. Topics include reliability and validity of measurement, correlational, quasi-experimental, and experimental designs, measurement redundancy, and power analysis. Students present on selected topics, as well as present on design issues related to their dissertation.
INSTRUCTOR(S): S. Sherry

PSY 6240.03: Topics in Animal Learning.
Different topics in the field of animal learning (such as classical and operant conditioning, quasi-neural modeling of learning phenomena, etc.) are covered in a seminar format.
INSTRUCTOR(S): V.M. LoLordo

PSY 6301.03: Advanced Clinical Intervention: Child.
This class focuses on a wide range of theoretical and applied aspects of intervention. The class comprises a didactic component, as well as direct participation in evaluation, case planning and intervention. The didactic component focuses on instruction in case conceptualization, planning, and treatment evaluation. Part of the class will be conducted through a clinical service in the community. Students will be required to conduct psychological evaluations of patients and participate in treatment interventions.
INSTRUCTOR(S): C. Chambers

PSY 6302.03: Advanced Clinical Intervention: Adult.
This class is the adult equivalent of 6301.03. The emphasis is on Adult Advanced Clinical Intervention.
INSTRUCTOR(S): Staff

PSY 6303.03: Advanced Clinical Practice Skills in Supervision, Consultation & Program Evaluation.
Clinical supervision, consultation, and program development and evaluation constitute three critically important skill areas for clinical psychologists. This course will provide students with hands-on experience in supervision as well as theoretical and practical knowledge in consultation and program development and evaluation.
FORMAT: Seminar
EXCLUSION: PSYO 6401.03

PSY 6304X/Y.06: Clinical Rounds/Case Conference.
All students are expected to attend clinical rounds and presentations in various clinical settings in the community. Students are also expected to attend clinical case conferences that will be held on a monthly basis through the Fall and Winter terms. Clinical psychologists from the community and senior students are invited to present cases from their clinical practice. The aim of this class is to familiarize students with different ways of conceptualizing psychological problems, planning and initiating interventions, and evaluating outcome. Evaluation is based on student attendance and participation.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): P. Corkum

PSY 6313.03: Topics in Cognitive Psychology.
Varied topics in cognitive psychology (such as theories of attention, memory and amnesia, cognitive inhibition) are covered in a seminar format.
INSTRUCTOR(S): R. Klein, P. McMullen

PSY 6581.03: History of Psychology I.
Drawing on writings from antiquity to the early years of the 20th century, we explore the nature of historical explanation, explanation in science, knowledge and truth, life, human nature, the domains of animal and man, neuroscience, and personality.
INSTRUCTOR(S): T. Juckes
FORMAT: Seminar/lecture
PREREQUISITE: To be enrolled in a Graduate Program

PSY 6582.03: History of Psychology II.
Drawing on writings from antiquity to the early years of the 20th century, we explore the nature of learning, thinking, memory, intelligence, mental illness and treatment, the unconscious, dreams, development, and the self.
INSTRUCTOR(S): T. Juckes
FORMAT: Seminar/lecture
PREREQUISITE: To be enrolled in a Graduate Program

PSY 6803.03: Topics in Psychopathology.
Topics in psychopathology, which may vary from year to year, include: comorbidity, child psychopathology, drug abuse, schizophrenia.

PSY 6804.03: Topics in Neuropsychology.
These seminars will vary from term to term and will focus on specific aspects of neuropsychology. Topics may include: localization of function, neuropsychological assessment, neurological, psychiatric and medical neuropsychology, cognitive rehabilitation, child neuropsychology, aphasia, amnesia, agnosia and apraxia.
PSYO 6805.03: Topics in Assessments.
Different topics in assessment are covered in a seminar format.

PSYO 6806.03: Topics in Psychopharmacology.
This seminar class examines the neural and behavioural effects of drugs. The agonist and antagonist actions of drugs on receptors for neurotransmitters and the effects of drugs on neurotransmitter synthesis, storage, release and deactivation are covered. Aimed specifically at psychologists, the class focuses on the use of drugs to treat clinical disorders such as depression, schizophrenia, Alzheimer’s disease, etc.

PSYO 6807.03: Topics in Forensic Psychology.
Forensic Psychology deals with the applications of psychological principles and methods to various aspects of the criminal justice system (i.e., the courts, corrections, policing). Coverage of this broad topic will vary from a general overview of the field to specific topics of interest to the students. Whatever the topic, professional and ethical issues will be addressed and the complexities of conducting research on psycho-legal issues will be explored.

PSYO 6808.03: Topics in Therapeutic Intervention.
This seminar class will focus on specific types of intervention. Topics, which may vary from year to year, may include: crisis intervention, feminist therapy, operant interventions, family therapy, marital therapy, sex therapy, cognitive behaviour therapy, individual psychotherapy, pharmacotherapy, etc.

PSYO 6809.03: Topics in Health Psychology.
This seminar class will examine specific topics concerning the inter-relationship between physical health and psychology. Topics, which may vary from year to year, may include: pediatric psychology, pain, health in the aged, health promotion, cardiovascular disease, etc.

PSYO 6820.03: Topics in Community Psychology.
The focus of this seminar will be on the delivery of psychological services in community settings. The topics will vary from year to year depending on the needs of the class and the expertise of the instructor.

PSYO 7100.03: Seminar in Teaching Effectiveness.
Students currently engaged as Teaching Assistants in PSYO 2000.03 and NESC 2007.03 must concurrently enroll in this class, which has two components: 1) a weekly meeting in which all students meet to discuss general and specific issues related to class planning, assessment of student performance and dealing with problems; 2) actual teaching experience in class for 2 hours/week. Teaching performance is intermittently observed and feedback provided on an individual basis.
INSTRUCTOR(S): S. Gadbois, K. Duffy

PSYO 7501.03: Proseminar: Methods of Psychological Inquiry I.
With the assistance of Psychology faculty, new students are exposed to a broad range of topics in Psychology as well as a sampling of methodologies used to study human and animal behaviour and its neural underpinnings. The class may also aim to develop the student’s communication skills and research ability.
INSTRUCTOR(S): T. Taylor-Helmick (Co-ordinator)
FORMAT: Seminar

PSYO 7502.03: Proseminar: Methods of Psychological Inquiry II.
With the assistance of Psychology faculty, new students are exposed to a broad range of topics in Psychology as well as a sampling of methodologies used to study human and animal behaviour and its neural underpinnings. The class may also aim to develop the student’s communication skills and research ability.
INSTRUCTOR(S): T. Taylor-Helmick (Co-ordinator)
FORMAT: Seminar

PSYO 7701.03: Rehabilitative and Diagnostic Innovation in Applied Neurotechnologies (RADIANT) Seminar.
Seminar in commercialization and other translational activities for neuroscience and neurotechnology. Topics include: neurotechnology research and methods; clinical neuroscience; commercialization and intellectual property; ethics; research, clinical, and professional ethics; implications of neurotechnology on society; written and oral communication skills suitable to scientific and lay audiences.
INSTRUCTOR(S): A. Newman
FORMAT: Seminar
PREREQUISITE: Instructor's approval

PSYO 7705.03: Summer Institute – Neurotechnology Innovation, Commercialization, and Entrepreneurship.
Intensive three-week course in neurotechnology, clinical neuroscience, and commercialization. Topics include: neuroimaging methods; diagnosis, assessment, and treatment of nervous system-related disorders; the process of innovation; and business fundamentals. Features guest lectures by successful scientists and entrepreneurs, as well as hands-on workshops and lab exercises on business and neurotechnology topics.
INSTRUCTOR(S): A. Newman
FORMAT: Seminar
PREREQUISITE: Instructor’s Approval

PSYO 7711.03: Innovating Neurotechnology I.
Provides an overview of the process of innovation and commercialization of neurotechnologies and related technologies. Topics include: needs finding, needs screening, and product development; project, time, and personnel management; and communication to scientific, clinical and lay audiences.
INSTRUCTOR(S): A. Newman
FORMAT: Seminar
PREREQUISITE: Instructor’s Approval

PSYO 7712.03: Innovating Neurotechnology II.
Provides an overview of the process of innovation and commercialization of neurotechnologies and related technologies. Topics covered include product development; project, theme, and personnel management; finance; capital-raising; intellectual property; marketing; and communication to scientific, clinical, and lay audiences.
FORMAT: Seminar
PREREQUISITE: Instructor’s Approval

PSYO 8001.03: Psychology Colloquium I.
Students enrolled in this class are required to attend the weekly colloquium series.

PSYO 8002.03: Psychology Colloquium II.
Students enrolled in this class are required to attend the weekly colloquium series.

PSYO 8333X/Y.06: Field Placements.
Students are assigned to field placements in co-operating institutions where the student will spend one day per week (or equivalent). Placements are individually arranged to provide the student with experience in a variety of clinical environments. Field placements are coordinated and monitored by the Clinical Programme Committee. Students who are assigned to field placements will present case reports in a weekly one-hour seminar. Students must complete a minimum of 600 practicum hours before they can register for the predoctoral internship (see Practicum Guidelines).
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.
INSTRUCTOR(S): Staff

PSYO 9000.00: MSc Thesis.

PSYO 9100.00: Pre-Doctoral Internship.
A 12-month, full-time internship in an approved setting is required. Typically, the internship setting will be accredited by the Canadian Psychological Association or the American Psychological Association.
INSTRUCTOR(S): S. Stewart, Coordinator of Clinical Programme

PSYO 9530.00: PhD Thesis.
Public Administration

Location: 6100 University Avenue, 3rd Floor
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-3742
Fax: (902) 494-7023
Email: DalMPA@dal.ca
Website: http://www.spa.management.dal.ca

Director of School
Quigley, K. (Acting)

Graduate Coordinator
Wranik, D.

Professors Emeriti
Butler, P.M., BA (MUN), MA (UNB), PhD (Toronto)
McNiven, J.D., BA, MA, PhD (Mich)
Pross, A.P., BA, MA (Queen’s), PhD (Toronto)

Professors
Brown, M.P., BA (MA), MA (Dal), PhD (Toronto). Organizational analysis, political culture and public policy, forestry and environmental policy, Nova Scotia political economy
Roy, J., BA (Waterloo), MBA (Ottawa), Phd (Carleton). Electronic government, public-private partnerships, public service transformation, ethics and corporate governance and democratic engagement
Siddiq, F.K., BA, MA (Dhaka), PhD (Dal). Income and wealth distribution, economic inequality and well-being, public debt management
Traves, T., BA (Man), MA, PhD (York), President and Vice-Chancellor, Dalhousie University, jointly with History

Associate Professor
Mechoulan, S., Diplôme HEC (Paris, France), MA (Paris Jourdan Sciences Economiques), PhD (Northwestern), Health Economics, Family Economics, Law, Economics, Public Policy
Quigley, K., BA (Queen’s), MSc. (London School of Economics & Political Science, London Uk), Phd (Queen’s University, Belfast, Uk). Comparative public sector risk and crisis management, strategic management and critical infrastructure protection
Wranik, D., Health Economics, Health System Efficiency, Physician Remuneration Models, Health Service Delivery Models, Health Technologies Assessment and its use in policy making, Health Policy Design and Evaluation

Assistant Professors
Cassin, A.M., BA (Man), MA (UBC), PhD (Toronto). Public sector management, gender relations, career advancement, community economic development

Adjunct Professors
Chaytor, K. BA (Mt. St. Vincent), MA, PhD (Dal)
Durier-Copp, M., BA, MA, PhD (McGill)
Fanjoy, E., BSc (Hons) (UNB), LLB (UNB)
Fullerton, R.W., BSc (Dal), MED (Toronto), PhD (Union Institute)
Haworth, R., BSc (Durham), PhD (Cambridge)

Special Lecturers
Baltazar, R., BSc (Ateneo de Manila), MIM (Thunderbird), PhD (Dal)
Blewett, C., BA, MPA (Dal)
Crowell, T. BComm, MBA (St. Mary’s)
Davies, M. BSc., (McGill), MSc. (Glasgow), MPA (Dal)
Hennebury, B. BComm (St. Mary’s), MPA (Management) (Dal)
Kilfoil, M., BBA (St. Fx.), BA (SMU), MA (Carleton), PhD (Dal)

Tucker, D. BComm. GDPA (Carleton)

I. Degree Programs (General)

The graduate programs of the School are designed to provide the professional education essential to a career in modern public service. They are offered to students who either are preparing for initial employment or are returning to university with work experience. The School’s location in Dalhousie’s Faculty of Management allows students to develop an MPA program, consisting of eighteen half credits, that links public administration to business, the environment and the information sciences.

The programs are professional in that they equip students with both an understanding of the organization, process, and activities of government and the administrative skills required in public sector management. Each component is essential, and consequently required of all students. They are expected to achieve an expanded awareness of the public interest and a personal appreciation of the ethical standards and comptroller principles appropriate to a career in the service of the public. The professional requirements have been developed in consultation with senior officials of all levels of government (including graduates of the School).

Master of Public Administration (MPA)

Admission requirements for the MPA are those of the Faculty of Graduate Studies, and its standards must be maintained throughout the duration of the program. The quantity and quality of work expected in individual classes will reflect the high scholarly standards of graduate education.

The curriculum encompasses the essential components of financial, human resources and statistical techniques on the one hand, and economic, organizational and policy analysis on the other. Students in the first year of the MPA program are required to complete eight half credit classes in these basic fields.

Students in the second year will develop their program from the offerings in the School and may elect to take up to three half credits from classes outside the School. Elective classes proposed from outside the school must be relevant to the field of Public Administration and approved by the graduate coordinator. These include classes from other academic units at Dalhousie or other universities provided they have some public sector content.

In exceptional circumstances, students might qualify for completion of the MPA program in one year. The program, consisting of nine half credits of class work, may be considered for students who have completed, with a first-class standing, a BA, masters degree in public administration.

Admission to the one-year MPA may also be based on completion, with first-class standing, of an MA degree in these academic areas or a professional graduate-level degree in a field relevant to public administration (i.e., with public sector content). Class work in the honours degree and/or the masters program must have included at least four of the nine class credits required in the first year of the two-year MPA program.

A Dalhousie Bachelor of Management Graduate with a cumulative GPA of 3.7 (A-) or higher over the four-year duration of the program can be accepted into the one-year MPA. The Graduate Co-ordinator of the MPA program shall determine the required classes the student must take to satisfy the requirements of the one-year MPA program consisting of nine (9) half-credit courses. If the student does not have a 3.7 GPA, but has completed classes relevant to the MPA program with A- grades or higher, he/she may be given a class exemption or advanced standing on a case-by-case basis. The classes for which a class exemption or advanced standing is to be granted shall be determined by the Graduate Coordinator of the MPA program.
II. Application Procedures

Application forms are available from the Admissions Office of Dalhousie University. Applications should be submitted as early as January and not later than June 1 in the academic year in which studies are to commence.

Admission decisions are made on a continuing basis from January until the program quota is reached.

A. General Admission Requirement for GDPA and MPA

Enrollment in the School is limited. Normally, competitive applicants will have attained a good second class standing (B+ (3.3 GPA) average) in their last twenty half credits of university work.

Admission is based on an assessment of:

- All previous academic work;
- Two letters of reference;
- TOEFL (Test of English as a Foreign Language), for English as a second language students only, a minimum score of 580 is required for acceptance in the Faculty of Graduate Studies. The TOEFL score must be submitted at the time of application; In addition to the TOEFL score, English as a second language students must also submit one of the following tests; the Graduate Management Admissions Test (GMAT); the GRE or the Law Standards Admissions Test (LSAT).

In summary it is imperative that in addition to your application we receive:

- A statement of career interest (one page should be sufficient);
- A current résumé;
- At least two academic letters of reference;
- A TOEFL score and GRE/GMAT (if applicable)

Although not required except for international students, all students may submit a score from the Graduate Management Admission Test (GMAT) in support of their application.

The Dalhousie School of Public Administration GMAT Number is 0957.

 Applicants for the test should use an order form obtainable from the Registrar’s Office of the nearest University, Dalhousie University, or you may write to the address below to obtain an information bulletin and registration form for the GMAT. If the order form is lost or omitted from the materials you receive, you should write directly to:

Graduate Management Admission Test
Educational Testing Service
Box 966
Princeton, NJ, 08540, U.S.A.

For further information, contact the Administrative Secretary of the School.

B. Part-time Study

The programs offered through the School are available to students on a part-time basis. A part-time student may enrol in up to two and one-half full credit classes (five half credits) during the 12 month period, September to August.

In order to ensure that graduate students benefit from a reasonable concentration of their studies, part-time programs leading to the GDPA must be completed within four years, and part-time programs leading to the MPA must be completed within six years.

III. Degree Programs

A. Graduate Diploma in Public Administration (GDPA)

The Graduate Diploma in Public Administration is a one-year, 9 half credit, graduate program designed for public servants who hold a first degree, and for students wishing to obtain professional preparation for a career in public administration.
Class Requirements
The GDPA requires the successful completion of nine half credits:
- PUAD 5100.03: Organization Designs for Governance and Public Management
- PUAD 5120.03: Introduction to Public Policy
- PUAD 5130.03: Managerial Economics
- PUAD 5131.03: Public Economics
- PUAD 5140.03: Quantitative Methods for Public Sector Management
- PUAD 5150.03: Public Sector Accounting
- PUAD 5170.03: Public Sector Human Resources Management
- PUAD 5180.03: Research Methods and Policy Analysis
- One additional graduate level half credit elective class from the PUAD series, to be selected in consultation with the Graduate Coordinator

When a student has demonstrated competence in the area of a required class, an alternate class may be substituted if approved by the Graduate Coordinator.

B. Master of Public Administration (MPA)
The MPA is an eighteen half-credit graduate program designed for individuals prepared to undertake advanced professional study. Individual programs will vary in content to reflect each student's background and interests, while at the same time recognizing the central principles and functions of public administration.

Class Requirements
The two-year MPA will require the successful completion of eleven required half credits plus seven electives. Full-time students are required to complete all eight required courses during the first year of their program prior to being permitted registration in 6000 level courses and MGMT 5000. Deviations from the program structure might be possible in exceptional circumstances and must be approved by the Graduate Coordinator. Part-time students are expected to complete the first eight required MPA classes prior to registering in 6000 level electives and MGMT 5000. Part-time students should discuss their program of study with the Graduate Coordinator.

In the first year, students must take eight half credits which must include:
- PUAD 5100.03: Organization Designs for Governance and Public Management
- PUAD 5120.03: Introduction to Public Policy
- PUAD 5130.03: Managerial Economics
- PUAD 5131.03: Public Economics
- PUAD 5140.03: Quantitative Methods for Public Sector Management
- PUAD 5150.03: Public Sector Accounting
- PUAD 5170.03: Public Sector Human Resources Management
- PUAD 5180.03: Research Methods and Applied Research Methods
- One additional graduate level half credit elective class from the PUAD series, to be selected in consultation with the Graduate Coordinator

The remaining seven credits will be electives. Some exemptions in required courses, resulting in either program modification or a reduction of credits, may be granted to well qualified candidates upon application to the Graduate Coordinator.

The one-year MPA will require the successful completion of up to nine half credits including up to three half credits from the 5000-level classes, the Senior Seminar: Ethics, Public Service and Government (PUAD 6000.03) and five electives.

C. The JD/MPA Program
The combined JD/MPA program is a four-year program which enables students to select classes leading to degrees of Master of Public Administration and Juris Doctor. A total of thirteen half-credit Public Administration classes are required and the suggested order of the program is:

Year 1
- First year classes of the MPA program (8 half-credit required classes plus one 6000 level PUAD elective)

Year 2
- First year classes of the JD program

Year 3
- Two half credits from the MPA program
- Civil Procedure
- Constitutional Law
- Compulsory Moot
- Plus 12-14 credit hours of classes from the JD program including a major paper class

Year 4
- Required class PUAD 6100 plus one elective class from the MPA program.
- Students may choose to do one half credit elective class from outside the MPA course offerings. This course must be approved by the MPA Graduate Coordinator.
- 23-25 credit hours of classes from the JD program, which must include The Legal Profession and Professional Responsibility, and a major paper class

Candidates for the JD/MPA program must satisfy the entrance requirements of both the MPA and JD programs, and may obtain further information about the combined program by writing to the School of Public Administration and the Faculty of Law. For admission, students must apply to both the School of Public Administration and the Law School individually. Students applying for the MPA program may submit LSAT results in lieu of GMAT results.

D. MPA/MLIS Program
The combined MPA/MLIS program is a three-year program which enables students to select classes leading to degrees of Master of Public Administration and Master of Information Studies. A total of fifteen half-credit Public Administration classes are required and the suggested order of the program is:

Year 1 (8 classes)
- Concentration in Information Studies

Year 2 (9 classes)
- 8 first year required classes of the MPA program and MGMT 5000
- 4 classes in Library and Information Studies

Year 3 (10 classes)
- 2 second year required classes (PUAD 6000 & 6100) plus 4 Public Administration elective classes

Advanced Standing
Advanced Standing of up to nine half credits (one year) may be granted to students who have completed graduate level classes which are relevant to the Masters in Public Administration Program but which have not been used towards another degree. Students are advised to seek advanced standing when they apply for admission. All class exemptions or advanced standing must be approved by the Graduate Coordinator.

The Internship Program
The internship provides formal integration of practical public service experience with academic studies in the MPA program. It involves work by students for employers in the public sector on projects deemed to be significant by the employer and appropriate to the skills of career-oriented graduate students. The terms of reference are established through consultation between the student, the participating employer, and the School.

The opportunity for an internship placement is normally available to students who have successfully completed the full first year of the MPA program.

Previous work placements have been in the federal, provincial and municipal levels of government, international and non-governmental organizations and in the private sector. PUAD 6855.03: Internship/Co-op counts as one half credit course. Please Note: In addition to the course fee
there is also an administrative fee charged by the School. For further details about this fee, please consult the School.

IV. Master of Public Administration (Management)

The MPA (Management) is a fourteen half-credit graduate program designed for individuals who have significant public sector management experience and wish to continue their academic studies part time via a blended learning model. The MPA (M) emphasizes the theory, analysis and practice of public policy and management. Dalhousie professors, in collaboration with public sector specialists, authored the MPA (M) courses to address the specific concerns and realities of today’s public sector. A management team from the School of Public Administration ensures that the courses are integrated yet individually focused, and that the curriculum builds a firm academic foundation for the practice of public administration.

Class Requirements

The schedule of courses offered through the MPA (M) program provides students with flexibility and location choice. However, it is recommended that students register, early in the program, for what would be considered the core courses. They include: Accounting, Policy Formulation, Economics, Government Structures, Research Methods, Modern Comptrollership and Human Resources.

Students have up to 7 years to complete the course requirement (average time-frame is 4 years).

- MGMT 5105.03: Government Structure and Organization
- MGMT 5110.03: Strategic Management in the Public Sector
- MGMT 5125.03: Policy Formulation & Analysis
- MGMT 5135.03: Managerial Economics
- MGMT 5140.03: Public Economics
- MGMT 5146.03: Research Methods
- MGMT 5155.03: Financial and Managerial Accounting
- MGMT 5160.03: Modern Comptrollership
- MGMT 6501.03: Business and Government
- MGMT 6525.03: Program Evaluation
- MGMT 6555.03: Managing the Information Resources
- MGMT 6650.03: Human Resources Management
- MGMT 6700.03: Managing People in Diverse Organizations
- MGMT 6755.03: Intergovernmental Relations in Canada

* Highly recommended that Strategic Management in the Public Sector is taken as close to the end of the program as possible.
** Strongly recommended that students complete Managerial Economics prior to Public Economics.
*** Strongly recommended that students complete Research Methods prior to Program Evaluation.

See course descriptions starting on page 287

Advanced Standing

Advanced Standing of up to two half credits may be granted to students who have completed the government CAP and/or the Direxion programs. Students are advised to inquire about advanced standing when they apply for admission.

V. Class Descriptions

Required First Year Classes

PUAD 5100.03: Organizational Designs for Governance and Public Management.

This class examines the organizational designs of government for the purposes of governance and public management. It encompasses the basic constitutional and political designs of government; the structures and principles governing the relationship between the partisan-political and non-partisan public-service institutions of government; the organization and roles of the central executive and corporate policy and management agencies; the organization of portfolios, departments and agencies for the management of policy and operational functions; and, the structures and processes of accountability for governance and public management. The class is focused on the Canadian system of government but addresses basic questions of organizational theory and design in a comparative context.

INSTRUCTOR(S): K. Quigley

PUAD 5120.03: Introduction to Public Policy.

This class provides a general introduction to the field of policy management, for graduate and honours undergraduate students. Using British “best practice” ideas of professional policy making and Canadian statements of generic policy competencies, it seeks to improve the policy capacity of participants. It does this first by increasing their knowledge of public policy structures, processes, and outputs, and secondly, by giving them knowledge that they can use in policy advocacy both inside and outside government. The first section of the class examines policy definitions and professional policy making approaches in the 21st century. The second section considers the role of the state in the 21st century, and the policy competencies that analysts must have if that role is to be carried out effectively. Section three explores vertical, horizontal and external policy relationships, both as determinants of policy and as practical matters of management. Section four explores, and helps participants to gain proficiency in, the most recent processes of strategic policy design and implementation. This blend of theory and practice will increase the policy knowledge of all participants, and equip those who are in professional programs, including the various public services, to contribute more effectively in policy processes in the future.

INSTRUCTOR(S): P. Brown

CROSS-LISTING: POLI 4240.03, POLI 5240.03

PUAD 5130.03: Managerial Economics.

This class introduces the fundamental concepts of economics and helps to develop the analytical skills of students appropriate for practitioners in the public sector. It provides an understanding of basic microeconomic theories and principles in considerable depth, consistent with a graduate-level course in an interdisciplinary program. The course focuses on the theories of consumer and producer behaviour and their interaction in the market, of particular interest are situations of market failure and the resultant need for policy intervention.

INSTRUCTOR(S): D. Wranik

PUAD 5131.03: Public Economics.

This class introduces the basic principles of microeconomics, appropriate to a graduate-level course in an inter-disciplinary program. It is also concerned with the use and application of microeconomic theory and the relevance of this theory in economic decision-making in a market economy with a large public sector. In particular, this class places a special emphasis on the role of government in the economy and on the application of economic theory in policy analysis within the framework of the Canadian federation. Together with Managerial Economics, these two courses provide a unique blend of theoretical rigor, empirical relevance and sound policy applications.

INSTRUCTOR(S): S. Mechoulan

PREREQUISITE: Successful completion of PUAD 5130.03 or equivalent or special permission from the Graduate Coordinator or course Instructor

PUAD 5140.03: Quantitative Methods.

This class is designed to enable students to understand existing statistical analyses, as well as to conduct their own. Statistical analyses are presented with focus on application in the public sector, emphasizing the importance of statistical analysis in social research and policy making. Specific topics include descriptive and inferential statistics, measures of association for nominal and ordinal variables, analysis of variance techniques, as well as linear regression. In addition to the class, students are also offered tutorials in working with SPSS and MS Excel. Student assignments require work with large data sets.

INSTRUCTOR(S): S. Mechoulan

CROSS-LISTING: INFO 7390.03

PUAD 5150.03: Public Sector Accounting.

This class introduces students to the subject of accounting in governmental, not for profit and private sector organizations. A “user” approach is taken, but the class is presented from the standpoints of both users and authors of financial reports. No previous background in accounting is required but the class is challenging and provides a knowledge of the essential elements of accounting for professionals in the
field of public administration. For information about assignments and other class requirements please consult the instructor.

INSTRUCTOR(S): Staff

PUAD 5170.03: Public Sector Human Resources.
A major part of most public administration positions is human resource management. Therefore, it is important that public administrators understand the components of human resource management and their effect on an organization. In this class, human resource management is defined in a very broad sense, touching on all the major components of human resource management in order to give an overall concept or paradigm. The components are: 1) planning the need for public servants, 2) attracting the right people to b public servants, 3) placing the public servants in well matched jobs, 4) assisting public servants with their career development, 5) maintaining high performance with public servants and 6) evaluating public servants.

INSTRUCTOR(S): M. Cassin

PUAD 5180.03: Research Methods and Policy Analysis.
This class is designed to equip students with tools needed for the collection of quantitative and qualitative data in the context of an applied research project. Students learn how to combine qualitative analysis with quantitative techniques they acquired in PUAD 5140. Specifically, students learn to write literature reviews, to conduct personal interviews, to run focus groups, and to design survey questionnaires. All techniques discussed are applied to the analysis of public policy issues. Policy is analyzed with respect to its strengths and weaknesses from various stakeholders perspectives. Students are required to present their work in class.

INSTRUCTOR(S): D. Wranik

PREREQUISITE: Successful completion of PUAD 5140.03 or equivalent, or special permission from the Graduate Coordinator or course instructor.

Second Year Classes

Students must successfully complete all eight required classes of the first year and the MPA program prior to enrolling in 6000 level courses and MGMT 5000, or seek special permission from the Graduate Coordinator.

All second year elective course offerings are subject to resource availability.

MGMT 5000.03: Management Without Borders: A Foundation Course for Masters Students in Management.

This course places management in its broadest context and helps students from diverse disciplines understand the complex social, economic, ecological, political and technological forces shaping 21st century leadership in the public, private and non-profit sectors. Key themes explored in the course include systems thinking, responsible leadership, sustainable economic development, stakeholder theory, risk management and knowledge management. A significant portion of the course is devoted to interdisciplinary / inter-professional group work. Students from different programs are brought together to work with a Nova Scotia organization that has identified a relevant and timely project topic for the group. The project provide students with the opportunity to hone important skills in team dynamics, inter personal communication, project management, managing scope and ambiguity, information gathering, research and writing professional reports. The course is taught by leading faculty from across the Faculty of Management as well as guest speakers. Learning opportunities are delivered in a mix of formats, including lectures, tutorials, readings, multidisciplinary cases and group discussions.

INSTRUCTOR(S): P. Cunningham

FORMAT: Lecture/tutorial/group work/class participation

PUAD 6000.03: Senior Seminar: Ethics, Public Service and Governance.

Designed as a culminating and integrating exercise for the MPA programme, this class focuses upon a wide range of ethical problems in governance. Topics covered include conflict of interest, accountability, political neutrality, service to the public and codes of conduct. The class is based on case studies with a premium placed on discussion. Please consult the instructor for information on assignments and other class requirements.

NOTE: For students enrolled in the two-year MPA programme, successful completion of the first year of studies is the prerequisite for this class.

INSTRUCTOR(S): J. Roy

PUAD 6100.03: Modern Comptrollership.
This class will provide students with an opportunity to review the link between government budgeting, planning, programming and accountability. It will help students understand and connect what governments want to do with what they raise and spend money for. The course will progress from government revenue, expenditure and debt management policies through government financial reporting and ultimately accountability. These issues will be discussed in the context of what has been referred to by the federal government as “Modern Comptrollership”. Recent developments at the national, provincial and municipal levels will be used as reference material.

INSTRUCTOR(S): B. Hennebury

PUAD 6010.03: Issues in Public Administration.
This course provides a solid grounding in the legal underpinnings, the governance framework, and the concepts surrounding union-management and employee relations in the public service. This knowledge will strengthen the capacity of public servants to perform effectively whether they are employees, managers or elected union officials. The course will examine in some detail the evolution of Labour rights and Labour relations in the federal public service, up to and including the implementation of the Public Service Labour Relations Act which has been implemented as part of the newly enacted Public Service Modernization Act. While this course will draw extensively from the federal experience, it will also provide opportunities to examine provincial, municipal and private sector experiences. It will examine the roles and responsibilities of the various players within the legal framework which governs these relationships and explore the impact of the workplace of the various approaches to Labour management including the movement towards a less litigious Alternative Dispute Resolution (ADR) process as an alternative to the rights based processes and how this can affect the workplace.

INSTRUCTOR(S): D. Tucker

PUAD 6235.03: Issues in Applied Economics.
This class addresses a selection of topics in applied economics that are of considerable significance for any economy. It is designed for those students who wish to develop the ability to (a) understand and interpret different economic programmes and policies beyond the introductory level; and (b) help formulate and implement such policies. Topics covered will depend in part upon the interests of students but some will be based upon the following areas: poverty and inequality; taxation; inflation and unemployment; stabilization policies; public sector economics; international trade and the balance of payments; technological innovation and growth. Each student will be expected to specialize in a topic of his or her choice and prepare a major paper for presentation in class. There will also be short assignments and a final examination. Please see the instructor for additional information about class requirements.

INSTRUCTOR(S): S. Mechoulan

PREREQUISITE: B+ or higher in PUAD 5130 and PUAD 5131 or special permission from the Graduate Coordinator or course instructor.

PUAD 6300.03: Alternative Programme Delivery.
Alternative Methods in Programme Delivery is a graduate and honours undergraduate level seminar which allows participants to conduct and present research on the increasing resort by governments at all levels to alternative methods of programme delivery. Over the last decade and a half, governments around the world have moved from designing and delivering programmes themselves to utilizing the private sector, both profit and non-profit, for this purpose. These alternative methods have taken the form of the privatization of crown assets, public-private partnerships to address a myriad of concerns (from the design and construction of bridges and highways to the management of laundry facilities in institutions for long term care), user fees and charges, contracting out, and the adoption of business-like practices in their own operations.

This class has two purposes. The first is to allow participants to explore methodologies for assessing the viability of alternative programme delivery in particular fields, based on the best practices of the past decade.
The second is to allow participants to explore critically the use or proposed use of alternative methods of programme delivery in areas in which they have an interest. Each participant is expected to prepare a seminar paper of at least 5,000 words, to present their findings in class in a presentation not exceeding thirty minutes in length, and to respond to questions. In addition, participants are asked to prepare a critique of a paper by another participant, and to lead discussion on that paper.

INSTRUCTOR(S): P. Brown

PUAD 6450.03: Economics of Health Policy.
This class focuses on health policy themes as they relate to the current situation in the Canadian health policy arena. Themes include population health determinants, health system types, physician remuneration methods, health care delivery models, health production, demand for health care, and health system efficiency. The class is conducted in seminar style format.

INSTRUCTOR(S): D. Wranik

FORMAT: Lecture and seminar

PREREQUISITE: PUAD 5130, PUAD 5131 or equivalent courses from any Economics Department or special permission from the course instructor.

PUAD 6500.03: Business and Government.
The focus of this course is twofold: first, how government and business influence one another and secondly, why collaboration is a growing reality enjoining public sector and private sector organizations and the implications for each sector and society as a whole. The course aims to understand the fundamental difference between the public interest and the private interest and how such differences are sorted out through contemporary governance systems. While the emphasis will be on the Canadian environment, a comparative perspective will also be used in light of many issues that are increasingly transnational in scope.

INSTRUCTOR(S): J. Roy

CROSS-LISTING: BUSI 6009.03

PUAD 6505.03: Interest Groups: Function and Management.
This class will attempt a systematic examination of the function and management of interest groups in Canada and, to a lesser extent, other western countries. It will begin by considering the functions such groups perform for their supporters on the one hand and, on the other, the role they play in: 1) maintaining political systems; 2) securing and modifying public policy, and 3) implementing programs. It will explore the ways in which their structures and behavior patterns vary according to the resources of the groups themselves, the nature of their concerns and the demands of the political/bureaucratic systems in which they operate. An important feature of the class will be a discussion of the internal management of groups. This discussion will include a review of how membership is secured and retained and how group resources are obtained and applied; the role of professional staff in developing group positions and in interacting between the interest group and government officials. In conclusion, the class will examine the role of interest groups in policy processes and the relationship between that role and the prospects for democracy in western politics. Approved with Canadian Studies.

INSTRUCTOR(S): L. Turnbull

CROSS-LISTING: POLI 3228.03, POLI 5228.03

PUAD 6525.06: Practicum in Policy Analysis and Management.
The Practicum provides MPA students with an opportunity in their final academic term to gain experience in the implementation and management of public sector consultation and research. It establishes a consultative environment in which students can successfully implement pro bono economic, financial or policy analysis or programme evaluation project. Participants can also work on a large academic research project. All projects are expected to include a substantive academic research component. The Practicum research groups will meet weekly to discuss applied research projects and may include measurement and design, sampling, questionnaire design, cost-benefit analysis, computer applications for information management and analysis, report writing and presentation. Students are expected to present their research and to present on research related topics in PUAD 5180. The Practicum is a full-credit elective course in the winter term.

INSTRUCTOR(S): D. Wranik/M. Gilbert

PUAD 6555.03: Management of Information (E-Government) and Public Administration.
The main objectives are to understand that information technologies provide means for public administrators to obtain, analyze, disseminate and store information; to analyze the uses of new technologies; and to understand the opportunities and problems that information technologies present to public administrators on personal, organizational and international levels. Each class addresses separate but related issues of managing information in the public sector. Some of the classes look at the history of information technology to place present day devices into perspective. The topics for other classes relate IT to smart communities, professional development, virtual offices, digital divide, management information and unethical behavior in public offices.

INSTRUCTOR(S): J. Roy

Public administration rhetoric often indicates that governments are re-inventing themselves by using information technology. What is happening around the world with E-government? Using Canada as reference, this class reviews the development of management of information as it affects performance management, democracy, the nation state, accountability, network growth, productivity and access. Each student will be required to analyze an international country, state or province and its progression to e-government and relate that progress to activities in governments around the world. Some of the topics covered are: Introduction to E-Government Service to Citizens Administration of E-Government Social Exclusion in the Digital Age Learning and Information Technology Knowledge Networks Personal Information and Information Technology Collaborative Networks

The Dark Side of IT

EVALUATION: Each student will be required to analyze a non-Canadian country, state or province and its progression to e-government and relate that progress to activities in governments around the world. Recommendations for improvement should also be made. Each student negotiates with the professor for an appropriate country. Two papers, class participation and a final presentation based on the two papers, will determine the student's grade.

INSTRUCTOR(S): Staff

CROSS-LISTING: ECMM 6026.03

PUAD 6570.03: Equity and Diversity in the Public Sector.
This is a theoretical course on inclusion, participation and inequality in public service employment and public service delivery. It explores representativeness as an ideology and the management practices and policy initiatives which arise from this notion. The course considers the questions: What is equality? Why do we want equality? What difference does it make to have equality oriented initiatives? What is equity and diversity? What results are being achieved? What are the underlying issues of inequality difference and inclusion as they relate to Canadian democracy and global issues of equality?

INSTRUCTOR(S): M. Cassin

PUAD 6050.03: Strategic Management in the Public Sector.
This course is an in-depth examination of the management of government organizations. Its topics include management control, strategy development, innovation, risk management and leadership. The more specific course goals are as follows:

- To provide a process understanding of practices employed by government organizations to develop and implement their strategies
- To provide insights into the practicalities of performing organizational functions, including management control, innovation, strategy development and risk management
• To strengthen the ability to penetrate and critique prescriptive arguments about public management practices
• To develop skills in designing practices suited to particular circumstances of application

INSTRUCTOR(S): K. Quigley
FORMAT: Lecture

PUAD 6400.03: Local Government.
There is a renewed interest in local government resulting from population migration to urban areas, the need to invest heavily in improved and greener infrastructure that can be used to satisfy local service needs, and a trend towards a more inclusive public involvement in urban issues. This course looks at how local governments fit into the public sector framework, how provincial / national legislation empowers and limits them, and their governance and management. Services offered, and issues faced, by local governments vary with size, population density and with central government legislation. Issues facing local governments, and the central governments who determine municipal responsibilities and revenue sources, are researched, presented and discussed. While the primary focus of the course is on local government in Canada, structures and practices used in other countries to address local government issues will be included. The class is conducted in a seminar style format (class size permitting)
INSTRUCTOR(S): M. Gilbert

PUAD 6420.03: Municipal Finance.
Canadian local governments are arguably more challenged than the federal or provincial governments when raising sufficient revenue to meet their operational and infrastructure requirements. This course explores the reasons for this and puts forward potential solutions that reflect a solid understanding of the issues and sound public policy. The solutions could include greater revenue generation powers, expenditure reduction through transferring responsibilities, finding less expensive ways of providing services through internal efficiencies or outsourcing, or reorganizing municipal boundaries (territorial reform). The course begins with a focus on the fundamentals of local government finance to provide the background needed to address the broader issues. While the primary focus of the course is on Canadian municipal finance issues information on finance policies and structures of other countries will also be included. The class is conducted in a seminar style format (class size permitting).
INSTRUCTOR(S): M. Gilbert

PUAD 6520.03: Programme Evaluation Seminar.
This class is focused on the construction of different types of evaluation frameworks for a set of government programmes or initiatives. Students prepare a plan of how to evaluate their program of choice giving special attention to perspective taken and stakeholder interests, students identify relevant data sources, and data collection instruments and design a research framework that combines qualitative and Quantitative approaches. Specific research skills acquired in PUAD 5140 and PUAD 5180, are applied to a broader and large scale evaluation framework. In addition, students are exposed to competing approaches to programme evaluation, as well as ethical issues within the discipline. Student presentations and class discussion are an integral part of the class. INSTRUCTOR(S): D. Wranik
PREREQUISITE: B+ or higher grade in PUAD 5180 or special permission from Graudate Coordinator or course instructor

PUAD 6625.03: Special Topics in Human Resource Management.
This course explores current topics in human resource management and policy in the public sector. The topic emphasis varies with issues and trends in public service. The approach to human resources explores the relations of organizations, work and people in the public sector. The aim of the course is to examine topics, how they are known as well as methods of investigation and problem solving. To learn of current topics, please consult the professor.
INSTRUCTOR(S): M. Cassin

PUAD 6780.03: Comparative Development Administration.
Some analytical and normative issues of public administration in developing countries are examined including the scope of development administration as a sub-field of public administration; public sector organization and management including public services, public enterprises, decentralization and rural development, financial systems, human resources management, aspects of state economic management with Japanese and South Korean case studies; and institutional aspects of aid administration with CIDA and World Bank cases.
INSTRUCTOR(S): P. Arthur
FORMAT: Seminar 2 hours
CROSS-LISTING: POLI 3302.03/5302.03

PUAD 6800.06/6820.06: Projects.
A class designated “project” and using this class number can be developed around an area of interest that is sufficiently complex to justify a full class credit. Such a project will likely be grounded in the needs of a particular agency and an area of professional literature that represents current debate or issues in the field of public administration. It may reflect an interest held by a student, faculty member or by a government agency.

PUAD 6855.03: Internship.
The Internship integrates professional development, work experience and academic studies. It involves developing job search and interview skills for the public sector, a competitively awarded work term and evaluation. The work term has appropriate public sector management and policy work and is sponsored by public sector employers. It is normally paid. The Internship is normally a summer internship between first and second year of the program. It is open to all students who have completed the first year. More information on the Internship is available on the SPA website. Eligibility for the internship typically requires that students have a B average in the first year of the MPA program and have passed all required first year courses.
COORDINATOR: M. Cassin
NOTE: This course has an administrative fee in addition to the course tuition. Please consult the SPA for details.

PUAD 6900.06/ 6910.03/ 6920.03/ 6944.06/ 6940.03/ 6942.03: Directed Reading.
A special programme of directed reading, with appropriate written assignments, may be arranged with a faculty member where the interest in a subject is not sufficiently widespread to warrant offering a regular class. Students who wish to take any of the Project or Directed Reading Classes mentioned above must provide the School with the following before approval is granted:
1) a letter from the Professor* concerned indicating his/her willingness to supervise 2) a class outline which includes a description of the goals and objectives of the class, the grading scheme, a preliminary reading list and a schedule of the work; 3) the period in which the class is to be completed. Not all classes are offered each year. Consult the School for current year offerings. In addition to the above, classes may be selected from other schools, departments, or faculties, subject to the approval of the Graduate Co-ordinator.
NOTE: Approval must be obtained from the Graduate Coordinator before the class begins.

PUAD 6925.03: Management Information Systems.
This class is meant to provide the student with a basic knowledge of information systems and their role in business organizations. Fundamental to this basic knowledge is an understanding of the variety of information systems in business. An understanding of the use of computers in current and future information systems is stressed.
CROSS-LISTING: BUSI 5511.03

MPA (Management) Classes
These classes are intended for students registered in the MPA (Management) program. For more information on this program please contact the Centre for Advanced Management Education - 1-800-205-7510 or (902) 494-6391, Email: cfame@dal.ca.

MGMT 5105.03: Government Structure and Organization.
This class focuses on the Canadian system of government and addresses basic organizational theory and design as well as fundamental issues of public management.
FORMAT: Distance/online and 2.5 day (classroom) intensive session
MGMT 5110.03: Strategic Management in the Public Sector.
This class explores the concepts, potential and dynamics of strategic management in modern public administration. A wide variety of management instruments and techniques are analyzed.
FORMAT: Distance/online and 2.5 day (classroom) intensive session

MGMT 5125.03: Policy Formulation & Analysis.
This class covers the techniques, theory and contextual underpinnings central to effective policy management. The class explores strategic approaches to policy design and the role of the policy analyst in modern government.
FORMAT: Distance/online and 2.5 day (classroom) intensive session

MGMT 5135.03: Managerial Economics.
This class elucidates basic microeconomic theories and principles and applies these to economic decision making. The class increases understanding of the relationship between economic theory and economic policy.
FORMAT: Distance/online and 2.5 day (classroom) intensive session

MGMT 5140.03: Public Economics.
Introduces the basic principles of public finance and macroeconomics. The role of risk analysis in public sector decision-making is also explored. The class places a special emphasis on the role of government in the economy and on the application of economic theory in public policy analysis within the framework of the Canadian federation.
FORMAT: Distance/online and 2.5 day (classroom) intensive session
PREREQUISITE: MGMT 5135.03
CROSS-LISTING: PUAD 5140.03

MGMT 5146.03: Research Methods.
This class provides a practical setting for understanding the purchase, management and evaluation of research products. Applied research methods, research services and best practices are discussed in depth.
FORMAT: Distance/online and 2.5 day (classroom) intensive session

MGMT 5155.03: Financial and Managerial Accounting.
This class reviews each of the forms of accounting and financial data that public sector managers will be faced with now – and in the future. The essential concepts of financial and managerial accounting are comprehensively reviewed.
FORMAT: Distance/online and 2.5 day (classroom) intensive session

MGMT 5160.03: Modern Comptrollership.
This class focuses on the public policy and management issues of governance. It emphasizes development of the skills necessary to assess financial management approaches, develop business plans and implement performance measurement.
FORMAT: Distance/online and 2.5 day (classroom) intensive session

MGMT 6501.03: Business and Government.
This class presents the relationship between government and business in North America. It offers a practical approach to understanding the differences in how government and business operate, highlighting the techniques used by each side to influence the other.
FORMAT: Distance/online and 2.5 day (classroom) intensive session

MGMT 6525.03: Programme Evaluation.
This class examines the theory, methods and issues of this growing field. The class emphasizes the skills necessary to assess feasibility of a programme evaluation and to design it. Topics also include underlying values, alternative approaches, and implementation and utilization.
FORMAT: Distance/online and 2.5 day (classroom) intensive session

MGMT 6550.03: Human Resource Management.
This class explores the evolving practices and challenges faced by organizations seeking to excel in human resources – an essential determinant of organizational success.
FORMAT: Distance/online and 2.5 day (classroom) intensive session

MGMT 6700.03: Managing People in Diverse Organizations.
This class explores how managers can deal effectively with human problems in their organizations. Topics include motivation, leadership, communications perception and group dynamics.
FORMAT: Distance/online and 2.5 day (classroom) intensive session

MGMT 6755.03: Intergovernmental Relations in Canada.
This class focuses on a wide array of policy areas and uses case studies to demonstrate how intergovernmental issues - such as fiscal federalism and coordination of service delivery - are successfully resolved.
FORMAT: Distance/online and 2.5 day (classroom) intensive session
In line with the School’s vision and mission, the master of social work program embraces a critical and anti-oppressive, social justice approach to social work practice that includes an emphasis on critical analysis, theoretical perspectives, social policy, practice methods, research skills and professional values. The curriculum is organized into core and elective courses, elective offerings, research endeavors and possible independent studies.

Note: The MSW program is delivered onsite (Campus) and online (Distance)

Please consult our website (http://www.socialwork.dal.ca) for updates to our MSW Degree program.

Note: In order to practice social work in Nova Scotia, all persons must have a social work degree (BSW or MSW) AND be approved for practice by the Board of Examiners of the Nova Scotia Association of Social Workers. Persons applying to the Board to practice social work should contact the address below for further information:

The Registrar of the Board of Examiners
Nova Scotia Association of Social Workers
1891 Brunswick St., Suite 106
Halifax, NS B3J 2G8
Telephone: (902) 429-7298

Program Objectives
The School of Social Work adheres to the principles of adult learning in its educational approach. This approach is applicable to students with special or concurrent professional social work experience. In the course of their study, MSW students are encouraged to identify and pursue their learning goals within the parameters of the curriculum and the objectives of the program, which include the following:

- Approaches to social work that reflect critical and anti-oppressive perspectives.
- Development of an understanding of the methods for critical appraisal and systematic inquiry related to existing practice theories, models of intervention and personal practice experiences and abilities;
- Application of these means to existing and new knowledge regarding practice contexts, practice-related issues, practice theories, models of intervention and personal practice experience and abilities;
- Acquisition of new knowledge with respect to practice contexts, theories and interventions, including an area of practice of particular interest to the student;
- Integration of the new knowledge acquired into practice situations which support the development of personal and social change.

III. Admission Requirements
All applicants must satisfy the admissions requirements of the Faculty of Graduate Studies, Dalhousie University as stated in this calendar. These include an undergraduate BSW degree from an accredited university with no less than a “B” level average. Applicants who do not hold a BSW, but have a masters degree in a related field are eligible for consideration for a two part admission process that includes a qualifying year followed by direct entry into the MSW. Applicants from outside Canada whose first language is not English must submit a Test of English as a Foreign Language (TOEFL) prior to the application deadline of December 1st, with a minimum acceptable score of 580, 237 computer version. Where TOEFL is unavailable, the following tests will be accepted with the following minimum scores: MELAB, 90; IELTS, 7. See Faculty of Graduate Studies Admission Requirements.

A. Canadian Residency Requirement for Distance Study
The on-line (distance delivery) option is only available to residents of Canada as defined by Canada Customs and Revenue Agency. If you will be residing outside Canada, please check with Canada Customs to determine your residency status, complete the Residency Form and submit it with your application package.

B. MSW Program
Direct admission to the MSW program of advanced study in the theory and practice of Social Work is open to applicants with a baccalaureate...
degree in Social Work and normally at least two years of social work experience.
For such applicants, requirements include:
• A baccalaureate degree in Social Work;
• A cumulative academic GPA of 3.00 (on a 4.30 scale), or an equivalent cumulative average of at least B;
• Personal suitability for the study and practice of social work.

Applicants who do not hold a baccalaureate degree in Social Work, but
hold a master's degree in a closely related discipline and otherwise meet
the above pre-requisites, may be admitted to a two part program. In the
first qualifying year admitted students will enrol in 5 full credits of
advanced undergraduate social work classes. Upon completion of the
qualifying year with a minimum GPA of B, such students will proceed
directly into the Master of Social Work program as outlined in section IV.
No further application for admission is required.

C. Special Student Status
Special student status is not available for enrolment in graduate classes in
Social Work. Classes are normally restricted to students who have applied
and been accepted to the MSW degree programs, however, non-social
work students may be permitted to register for MSW social work with
permission of the Graduate Coordinator.

D. Selection Criteria
The number of places offered each year to graduate students is limited.
Applications for admission are reviewed once a year following the
admissions prerequisites described in the above section are the same
for all applicants. Each candidate who applies under the affirmative action
policy is, however, considered on the basis of her/his qualifications for
continuation in the program. (See Section V: Required Withdrawal on
Grounds of Unsuitability section.)

E. Statement of Scholarly Interest
The Statement of Scholarly Interest is an important component of the
MSW application. This statement explores a student's decision to pursue a
graduate level degree in Social Work.

F. Personal Suitability
Aptitude and fitness for the profession of Social Work, as determined by
the MSW Admissions Committee, is a requirement for admission as well
as for continuation in the program. (See Section V: Required Withdrawal
on Grounds of Unsuitability section.)

G. Affirmative Action Policy
The School of Social Work has an affirmative action policy for applicants
who are Acadian, Aboriginal, African Canadian, members of other racially
visible groups, persons with (dis)Abilities, and for Lesbian, Gay, Bisexual,
and Transgender People. The School is committed to admitting and
graduating the highest possible number of students who qualify under
this policy.

The admissions prerequisites described in the above section are the same
for all applicants. Each candidate who applies under the affirmative action
policy is, however, considered on the basis of her/his qualifications for
graduate study in Social Work rather than in relation to other candidates.

H. Application Procedure
Applications for admission are reviewed once a year following the
application deadline date of December 1st.
MSW application packages include instructions, application, application
fee, the three required reference forms, work/volunteer experience
summary sheets, and guidelines for the Statement of Scholarly Interest.
The cover sheet for the latter includes a place for eligible candidates to
indicate whether they wish to apply under the Affirmative Action policy.

MSW application packages are available on request from the Dalhousie
University Registrar’s Office and may be found on the School’s Website:
http://www.socialwork.dal.ca.

Incomplete or late applications cannot be considered. Each applicant is
notified by mail of the MSW Admission Committee’s final recommendation to the Dean of Graduate Studies. Acceptances are
conditional on the approval of the Dean followed by official notification from the University Registrar.

I. Scholarships, Bursaries, Teaching Assistantships and
Financial Aid
For information on prizes, bursaries, scholarships and loans available to
graduate students, consult the relevant section of this graduate calendar,
or go to http://www.socialwork.dal.ca.

IV. Curriculum Requirements-Masters of
Social Work Degree Program

A. MSW Program
The MSW Program requirements consist of either
a) a course based option: 10 half-credit (0.5) Social Work core courses
b) a thesis option: 8 half-credit (0.5) Social Work courses, a one-credit
(1.0) thesis

The MSW is available on a full-time or part-time basis to students.
Qualified BSW graduates may be admitted directly to the five-credit (30
credit hour) MSW program. These curriculum requirements cannot be
reduced by advanced placement or transfer credit in relation to any
courses taken prior to MSW registration.

Distance students admitted to the MSW program and on-campus students
who choose to complete their MSW program on a part-time basis would
normally complete the course requirements over a two or three-year
period.

Qualified students with previous master’s degrees begin the MSW
curriculum requirements following successful completion of a qualifying
year during which the complete five BSW credits (30 credit hours), with a
minimum GPA of B. The courses required by each qualifying student are
determined by the Graduate Coordinator, School of Social Work. While
individual course requirements may vary based on the student’s
background, all students in the qualifying year are required to complete
two field education courses, each one comprising 450 hours.

Class Sequencing for all Students
Students will be given a course sequence to follow based on full-time or
part-time status.

Class Sequencing for Full-Time Students
The core classes (including Field) are offered during specific times in each
term.

Full-time students who take a course-based program (non-thesis) may
expect to complete the program by July of the following year and to
graduate in October. Full-time student who elect to do a thesis should
expect to spend eight to twelve months more for completion.

Class Sequencing for Part-Time Students
To maintain the integrity of the part-time student's academic program,
core classes are taken in a prescribed sequence. The elective classes may be
taken concurrently with the core classes in any year.

Part-time students who take a course-based option (non-thesis) may
expect to spend two to three years to complete the program, graduating in
May or October. Part-time students who elect to do a thesis should expect
to spend an additional twelve to eighteen months for completion.

* Continuation as a “Thesis Only” student, for both full-time and part-time
students, requires continuous registration and payment of continuation
fees every term until all requirements are complete.
Field Education

Students should note that the 0.5 credit field education course includes a field seminar and a field placement of 450 hours in an appropriate agency normally other than the student’s place of employment. The Field education course is undertaken between January and end of June (on-campus) and between September and April (distance) concurrently with a bi-weekly field education seminar, which is online for distance students. The MSW Field Manual (which can be found at http://socialwork.dal.ca/Educational%20Programs/Field%20Education/) contains the policies and procedures which define various aspects of the Field Education Course.

Placement agencies set their own criteria for accepting MSW student placements. For example, placements in physical and mental health typically require MSW students to have at least 2 years of direct social work experience.

Confirmation of field placements requires advanced planning as there is considerable coordination required for each student placement. Incomplete and/or late submissions will not be accepted.

Electives

Students completing their MSW program on both a full-time and part-time basis may take their electives either concurrently with or following the completion of the core course SLWK 6001.

At least one elective must be taken in the School of Social Work. Any electives taken outside the School (i.e. a graduate class at Dalhousie University or another university) requires approval and completion of the letter of permission form.

Registration in elective courses is subject to availability.

V. Regulations

All students are required to be familiar with and to observe University, Faculty of Graduate Studies and School of Social Work regulations. Students should therefore request a Graduate calendar when they register.

Please refer to Faculty of Graduate Studies Section IV. Registrations Procedures and Regulations.

A. Grading Requirements

Students are governed by the grading regulations of the Faculty of Graduate Studies http://dalgrad.dal.ca/.

B. Required Academic Withdrawal

A student who fails to meet the minimum grade requirement of “B-” in a class may be withdrawn from the MSW program. Students who are withdrawn may submit a formal written request to be re-admitted.

If the student is re-admitted, the failed/ uncompleted course(s) must be repeated with a final grade of at least B-. If the failed/uncompleted course was elective, it can be replaced with another elective.

Please refer to Graduate Calendar Section 4.2.5 http://gr.cal.dal.ca/.

C. Required Withdrawal on the Grounds of Unsuitability

The School acting through its Program Committee and its Director may require a student to withdraw if judged to be unsuitable in aptitude and fitness for the profession of Social Work. Because the nature of the study and practice of Social Work places clients in a position of special trust in relation to social workers and social work, certain impairments or some types of conduct unbecoming to a member of the social work profession may be grounds for dismissal, or suspension. Aptitude and fitness for the profession of Social Work, as determined by the MSW Program Committee, are requirements for continuation in the program.

The following list of examples illustrates the criteria used to assess the unsuitability in aptitude and fitness. This list should not be considered to exclude other such behaviors:

1. conviction of criminal activity (e.g. assault, sexual assault, fraud and drug trafficking).
2. persistent substance abuse (e.g. alcoholism, drug addiction, use of illegal drugs).
3. any medical condition which affects an individual’s ability to perform as a social worker if that condition is chronic and/or recurring and affects judgments.

The MSW Committee will consider the student’s situation to determine whether he/she is fit for the study and practice of Social Work. The principles of confidentiality, natural justice and due process are observed in all Committee deliberations.

D. Sexual Harassment

The School is governed by the Sexual Harassment Policy and Procedures of Dalhousie University. For more information, see Graduate Calendar: Resources and Services - Sexual Harassment Office.

VI. Core Class Descriptions

SLWK 6001.03: Theory and Practice of Anti-Oppressive Social Work in Diverse Communities.

Note: SLWK 6001 must be the first course taken in the MSW program. The principles of cross-cultural and ethnic-specific social work practice are now widely accepted in social work education, training and practice. The more recent challenge has been to develop anti-racist and anti-oppressive theory and practice. Racism and oppressive practices are in conflict with the “caring” notion of social work as a profession. Multiple forms of oppression frame everyone’s life. Social work intervention either adds to oppression, condones it through non-action, or does something to ease or break oppression. The aim of this class is to unravel the underlying thread of multiple oppression, and the interaction of various sources and forms of oppression, and to develop practice strategies that seek to challenge and break oppression.

SLWK 6341.03: Critical Perspectives on Social Work Practice Interventions.

The class will provide students with an opportunity to examine, discuss, and debate historical and current social work theories and their application to social work methods of practice with specific populations who are served by social workers.

SLWK 6381.03: Social Policy Issues and Analysis for Practice.

This class provides students with theoretical interpretations of the current and projected status of the welfare state in advanced industrial societies, consideration of the economic political, social and demographic factors that lead to changes in social policy and their implications for social work practice.

SLWK 6415.03: SLWK Field Work Class.

The field education course provides students with opportunities to integrate learning and practice through a supervised social work experience related to specified learning goals. The course includes supervised social work practice in the field and a concurrent seminar for a total of 450 hours. The placement site is determined through consultation and agreement among the student, the Field Education Coordinator or designate and the agency. Please refer to the MSW Field Education Manual at http://socialwork.dal.ca/Educational%20Programs/Field%20Education/ for full details.

Students are responsible to stay in touch with the Field Coordinator during the coordination process and comply with various requirements of placement sites (for example: immunizations, CRC, Child Abuse Registry).

SLWK 7001.06: Social Work Practice Research.

The overall aim of the full year course is to enhance students’ understanding of the research process by presenting an overview of qualitative and quantitative research techniques used in the assessment of
social work practice. The course explores ontological and epistemological queries of “doing research” as well as considerations of ethics and power dynamics. Methods such as evaluative assessments, observational strategies, interviews, focus groups, questionnaires, and standardized scales are reviewed. The course also provides students with a guided opportunity to develop and implement a research proposal in an area of interest. Students will be required to work collaboratively to lead class discussion regarding various methodological tools and their own research design projects.

FORMAT: Lecture & Seminar

SLWK 7400.03: Integrated Approaches for Social Work Practice.

In this course, theory, policy and direct intervention (i.e. individual, family, community, and activism work) are examined as interrelated forms of social work practice. Through an integrated approach to social work practices within diverse communities, students explore politicized approaches to transformative social work. The class examines social welfare settings such as formal and informal health environments, child welfare structures, government, non-government, and not-for-profit organizations. Central concepts such as power, oppression, social justice, the welfare state, community, citizenship, nation-state and politics are examined in relation to these substantive areas and within their larger social context. Students will have opportunity to develop a critical analysis of integrated approaches to social work practices in a chosen area of interest.

FORMAT: Lecture & Seminar

SLWK 5000.00: Master’s Thesis.

The Thesis is a major research project undertaken independently but with guidance and supervision from your thesis committee. This option requires that students extend their time in the Program by at least 6 months full-time and eighteen months part-time.

VII. Elective Class Descriptions

A. Standing Electives

The following electives will be offered every two years.

SLWK 6370.03: Advanced Practice Skills.

This elective class is designed to put into practice the knowledge and skills students are developing in their field placements and work environments. Much of the learning is experiential. Students will be encouraged to think critically about the assumptions that underpin various approaches to practice. They will be given the opportunity to apply newly acquired knowledge and skills in a supportive environment, and to receive constructive feedback. This course is graded as either a pass or fail.

SLWK 6385.03: Community and Social Change Analysis.

There are tensions within the concept of community between marginalization and/or self-determination. Through case studies, the class explores these tensions as they occur in the field of community “care”, and expanding field of social work practice. The theoretical base for the class draws on a variety of perspectives such as communitarianism, eco-feminism, social ecology, managerialism, neo-liberalism, and new social movement theory.

SLWK 6500.03: Interventions with Families.

The purpose of the class is to provide students with an awareness of issues in conceptualizing families and their diversity, and opportunities to develop knowledge about, examine, and critique a range of interventions with families and their application in social work practice situations.

SLWK 7410.03: Social Work in Health Systems.

This class is to enable participants to enhance their understanding and practice abilities in diverse social work practice roles within the context of the health system through involving them in an examination and critique of theories and knowledge about health and health service delivery systems.

FORMAT: Lecture & Seminar

B. Rotating Electives

SLWK 5110.03: Africentric Perspectives in Social Work.

The course provides students with an opportunity to engage in critical dialogue, reflection and action about historical and contemporary experiences of African Nova Scotians and Africans in the Diaspora. The course also focuses on awareness of Africentric theory, and its application in social work practice with Africans and non-Africans.

CROSS-LISTING: SLWK 3110.03

SLWK 5120.03: International Social Work.

This course introduces students to various ‘worlds’ of social work practice throughout the globe. Theoretical and practice grounding regarding development issues and social welfare systems within a global context is given. There will be encouragement to develop a critical and reflective stance toward the practice of social work in a global world.

FORMAT: Lecture, discussion

SLWK 5130.03: Critical Perspectives on Aging and Practice.

The class examines the social construction of aging and its relationship to the formation of gerontological knowledge. It explores the experiences of older people in both formal and informal service delivery systems and considers the extent to which the nature of and type of services offered, meet the needs of diverse groups of older people.

FORMAT: Lecture/Seminar/Discussion

SLWK 5160.03: Aboriginal Perspectives on Service Delivery and Practice.

This course is offered to MSW students enrolled at the School of Social Work, Dalhousie University. Aboriginal Perspectives will be explored through both historical and contemporary perspectives. Students will have an opportunity to explore historical, social and political realities and perspectives from Aboriginal peoples including Aboriginal perspectives on Indigenous social work practice. Through critical reflection and analysis students will have the opportunity to rearticulate their own framework of social work practice in relation to Aboriginal perspectives on service delivery and social work practice.

SLWK 5380.03: (dis)Ability: Policy and Practice.

(is) Ability will be examined from an anti-oppressive, social constructivist, rights-based lens, focusing primarily on three areas of exploration: (dis)Ability identity – how it is constructed, perceived and utilized within and albist world; societal location of (dis)Ability – examining the historical and current day (dis)placement of people with (dis)Abilities; and, policy/practice implications, ranging from grassroots (dis)Ability organizations to government legislation.

SLWK 6363.03: Postmodern and Narrative Social Work Practice.

Rooted in social constructionism and post-modernism, narrative therapy emphasizes the idea w live storied lives. This course will integrate the theory and process of narrative practice through externalizing unhelpful stories and re-authoring preferred stories. Small groups will create and work with a case study adapted from film

SLWK 6365.03: Community Socio-Economic Development.

This class deals with the socio-economic development of communities and regions that are economically disadvantaged, as measured by high rates of poverty and underemployment. This class includes an examination of the leading theoretical frameworks that seek to explain high rates of poverty and underemployment, the policy-strategy directions that flow from each of these frameworks, and current attempts to achieve socio-economic development, including the work of community practitioners.

SLWK 6510.03: Women, Social Policy and Social Citizenship.

The course examines the shifting terrain of women’s social citizenship in Canada. An examination will be done of women’s relationship to the Canadian welfare state, the nature of the new social policy regime and the impact that recent changes are having on women and gender equality.
This course provides an opportunity to study the historical and current content of social work supervision. The relationship between social work theory and supervision methods will be examined from a critical perspective.

SLWK 6530.03: HIV/AIDS and Social Work Practice.
The course links social work practice to an examination of the biopsychosocial aspects of HIV/AIDS. Considering community and institutional responses to the epidemic, students will develop and understand the application of social work approaches and values to HIV/AIDS issues.

C. Independent Study

SLWK 5830.03: Independent Study.
This option is available to students with a specific area of interest. A student may develop an Independent Study with a faculty supervisor on the subject of research interest to both. It is essential that the student follow the School’s Independent Study Guidelines. The proposal must be approved by the Graduate Coordinator.

Sociology and Social Anthropology

Location: 6135 University Ave.
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-6593
Fax: (902) 494-2897
Email: SOSAGrad@dal.ca

Chairperson of Department
Gardiner Barber, P.

Professors Emeriti
Barkow, J.H., AB (Brooklyn), AM, PhD (Chicago). Psychological Anthropology; Medical Anthropology; Evolutionary Psychology; West Africa; Human Nature
Binkley, M., BA, MA, PhD (Toronto). Maritime Anthropology; Coastal communities; Anthropology of Tourism; Women and Work; Qualitative and Quantitative Research Methods
Butler, P.M., BA (MUN), MA (UNB), PhD (Toronto). Power; Public Opinion; Politics; Quantitative Methods; Public Opinion Polling; Canadian Society; Occupations; Telewok
Clairmont, D.H., BA, MA (McMaster), PhD (Wash). Social Problems; Public Policy; Justice; Work; Ethno-cultural Relations
Thiessen, V., BA (Man), MA, PhD (Wis). Family Sociology; Sociology of Occupation; Youth Transitions; Social Psychology; Survey Research; Social Statistics; Education; Aspirations; School-to-Work; Coastal communities; Social Stratification

Professors
Apostle, R., BA (Simon Fraser), MA, PhD (Calif, Berkeley). Economic Sociology; Research Methodologies; Sociology of Culture
Gardiner Barber, P., BA, MA (Auckland), PhD (Toronto). Culture and Political Economy; Development; Gender and Work; Globalization; Philippines; Transnationalism; Citizenship and Migration
Murphy, C.J., BA (StFX), MA (Dal), PhD (Toronto). Social Policy Research, Globalization, Policing and Security

Associate Professors
DuBois, L. BA (McGill), MA, PhD (New School-NY). History and Anthropology; Political Culture; Argentina; Latin America; Human Rights
Fitting, E., BA (U of Toronto), MA, PhD (New School). Rural development; Mexico; gender and ethnicity; commodity studies and globalization; agricultural biotechnology
Helland, C., BA, MA (Concordia), PhD (Toronto). Sociology of Religion, Communication and Information Technologies, Social Networks
Noble, B., BA, MA, PhD (Alberta). Indigenous peoples, knowledge production, postcolonial relations, translocality, politics of transaction, anthropology of technoscience, public culture, museums and media
Oakley, R., BA (Hons) (SMU), MA, PhD (Toronto). Aging and the life course; Political economy of health and illness; development critique; South Africa
Ramos, H., BA (York), PhD (McGill). Political Sociology, Social Movements, Media Studies, Race/Ethnic/Minority Relations
Whelan, E., BA (Hons) (Winnipeg), MA (Queen’s), PhD (Carleton). Sociology of knowledge; Sociology of Health and Illness; Gender; Science & Technology Studies

Assistant Professors
Gambold, L., BA (U. of Illinois), MA, PhD (UCLA). Economic Anthropology; Kinship; Development; Rural Culture; Gender; Postsocialist Societies; Russia
I. Admission Requirements

The Department of Sociology and Social Anthropology offers programs leading to the M.A. in Sociology, the M.A. in Social Anthropology, the PhD in Sociology, and Social Anthropology.

All candidates who are applying to the M.A. program in Sociology or Social Anthropology must satisfy the general requirements for admission to the Faculty of Graduate Studies. Candidates will normally be expected to hold a four-year degree in Sociology or Social Anthropology with at least an upper second class (A-) standing. It is expected that a candidate's undergraduate work will have included classes in theory and methods of the substantive area. The student is required to pass all three comprehensive exams in theory, in methods and in a substantive area. The student must have written an approved doctoral thesis proposal within three calendar years after acceptance into the program. The student will not be permitted to continue in the PhD program. During this year, or the following, the student is required to make a presentation to a departmental colloquium on a topic that normally will be related to the research proposal. The latter must also be completed and approved by the Advisory Committee by the end of the second year.

For the third (and any subsequent) years the student will register for "thesis only" credit. By the end of the third year, the student must demonstrate a working knowledge of a language other than English which is relevant to the student's studies and research. If a student does not have an approved doctoral thesis proposal within three calendar years after acceptance into the program, the student will not be permitted to continue in the program. In accordance with Faculty regulations, an oral defense of the thesis is required.

II. Degree Programs

A. Master of Arts (MA)

A full-time MA program is normally of one year's duration, its upper time limit (in accordance with Faculty of Graduate Studies regulations) being four years. A part-time option is also available, its upper time limit (once again, in accordance with Faculty of Graduate Studies regulations) being four years.

The normal program is made up of five full credits. A thesis (SOSA 9000.00 or SOSA 9001.00), worth two credits, is required if the following classes: Graduate Seminar (SOSA 5200.06) and Area Examination (SOSA 5300.06). An elective class (or two one-half credit classes) approved by the Graduate Education Committee constitute the final credit.

An examination in the student's chosen area of specialization as well as a defense of a thesis proposal are required.

B. Doctor of Philosophy (PhD)

In accordance with the Faculty of Graduate Studies regulations, the program has a two-year residency requirement. It is expected that the program will take approximately four years to complete.

The student will also complete any additional graduate classes, internal or external to the Department, that the student's Advisory Committee deems necessary.

By the end of the second academic year the student must have written three interrelated comprehensive exams in theory, in methods and in a substantive area. The student is required to pass all three comprehensive exams in order to continue in the PhD program. During this year, or the following, the student is required to make a presentation to a departmental colloquium on a topic that normally will be related to the research proposal. The latter must also be completed and approved by the Advisory Committee by the end of the second year.

For the third (and any subsequent) years the student will register for "thesis only" credit. By the end of the third year, the student must demonstrate a working knowledge of a language other than English which is relevant to the student's studies and research. If a student does not have an approved doctoral thesis proposal within three calendar years after acceptance into the program, the student will not be permitted to continue in the program. In accordance with Faculty regulations, an oral defense of the thesis is required.

III. Class Descriptions

Classes may not be offered every year. Please consult the current timetable upon registration to determine if these classes are offered.

SOSA 5001.03: Quantitative Analysis for the Social Sciences I.

This course will introduce quantitative analysis. It will engage issues of research design, the relationship between samples and populations, statistics and inference, as well as basic tests of statistical significance. The course will also introduce tabular, graphical, and bi-variate linear analysis, using computer software. It will encourage secondary data analysis of available datasets, evaluation of surveys, and develop skills through a series of class projects.

SOSA 5002.03: Quantitative Analysis for the Social Sciences II.

This course will focus on the use of quantitative methods in social science research. It will introduce students to regression techniques and concentrate on the assumptions motivating quantitative analysis. The course will also look at regression diagnostics and critically weigh options available to researchers when "normal" assumptions are broken. The class will be split into lectures and computer labs using statistical software. The labs will apply methods covered in class and explore potential secondary data resources. The class will develop these skills through a series of class projects.
FORMAT: Seminar
PREREQUISITE: SOSA 1000.06 or Equivalent
CROSS-LISTING: SOSA 4002.03

SOSA 5003.03: Contemporary Perspectives in Ethnography.
Ethnographies and critical writings which grapple with questions of theory and interpretation in a range of contexts-near and far, familiar and strange, local and global - will be examined in this class.

FORMAT: Seminar

SOSA 5004.03: Advanced Issues in Economy, Work and Development.
Each year, this “advanced issues” class focuses on a different specific topic within the general area. In past years topics have addressed the social and cultural aspects of changing livelihoods and patterns of work associated with globalization. The approach is typically comparative and considers different regional, national, and international contexts. Consult Department for the specific topic.

FORMAT: Seminar

SOSA 5005.03: Advanced Issues in Social Justice and Inequality.
Each year, this “advanced issues” class focuses on a different specific topic within the general area. In past years topics have addressed social and moral problems of social inequalities of various kinds viewed in a context of global changes. Sample topics include but are not restricted to: gender, minority and class inequalities; struggles over rights; social movements; social scenarios surrounding citizenship, migration and immigration; multiculturalism; and border and security studies. Consult Department for specific topic.

FORMAT: Seminar

SOSA 5006.03: Advanced Issues in Critical Health Studies.
Each year, this “advanced issues” class focuses on a different specific topic within the general area. In past years topics have addressed how health is socially and culturally constructed, the differential social and cultural effects of health knowledges and power relationships, and how various perspectives on health are challenged from within and beyond the health professions. Consult Department for the specific topic.

FORMAT: Seminar

SOSA 5007.03: Tourism and Development.
Tourism is now the most lucrative industry in the world. Around the globe, companies chase the tourist’s dollar offering the best deals on a wide range of destinations tailored to a variety of different experiences from sex tourism to eco-tourism. This class will explore the relationship between tourism and development. Topics under discussion will include the definitions of hosts and guests, the commodification of tourist sites and the tourist experience, and the relationship of tourism to sustainability, environmentalism, and globalization.

FORMAT: Seminar
CROSS-LISTING: SOSA 4210.03

SOSA 5011.03: Advanced Issues in Social Theory.
This seminar consists of an intensive examination of one or more selected bodies of theory, and makes links between theory and current trends in research in sociology and/or social anthropology.

FORMAT: Seminar

SOSA 5012.03: Special Topics in Sociology and Social Anthropology.
This seminar consists of an intensive examination of a selected substantive issue within Sociology and Anthropology. Since the specific topic or research problem which receives special treatment will differ from year to year, students are advised to consult the department prior to registration.

FORMAT: Seminar

SOSA 5031.03: Social Policy Research Seminar.
One of the distinctive features of the social sciences had been the use of social research as a basis for the development and reform of social policy. Though the relationship of social research to social policy has changed and evolved with changes in the politics and process of policy making, it still remains a core activity for many social scientists. Using a variety of academic and applied research sources, the seminar will examine the politics of policy research, uses of social research knowledge, policy research models and research strategies and the policy outcomes of social research. In addition to reviewing the critical literature on social policy research, students will do case study analysis of a major policy research project. The class will selectively draw on faculty, government and private sector policy researchers and policy makers to help ground discussion and research in actual policy research experience.

FORMAT: Seminar

SOSA 5060.03: Advanced Social Analysis.
This seminar begins with an exploration of the nature of arguments/theses/explanations. Included in this exploration is an examination of the criteria for relevant data/information used to assess such arguments/theses/explanations. Following this general introduction to the nature of social-scientific scholarship, the focus shifts to an overview of the main types of data collection designs used in sociology and social anthropology.

FORMAT: Seminar

SOSA 5072.03: Naturalistic Approaches to the Social Sciences.
This seminar explores the implications of a Darwinian perspective for the social sciences. The latter have long followed a species-centric, environmental-deterministic ideology that today requires reconciliation with the enormous advances in recent decades in research and theory that have occurred in evolutionary biology, psychology, ethology, behavioural ecology and primate behaviour. Specific topics may include but will not be limited to biophilia, social/cultural constructionism, morality and ethics, religion, esthetics and literature, evolutionary approaches to feminist theory, and Darwinian approaches to social problems (including ethnocentrism, racism, sexism, and crime).

FORMAT: Seminar

SOSA 5200.06: Master’s Seminar in Sociology and Social Anthropology.
This class is structured to assist students in a process of professional development, as well as to facilitate a student’s general progress through the Master’s program. The seminar will include formal presentations by each of its participants and will have as goals: (1) practice in giving and receiving criticism, (2) identifying the important literature in an area and critically assessing it, and (3) understanding the stages and purposes involved in an advanced research undertaking. The second part of the seminar will involve working towards producing a preliminary proposal for the Master’s Thesis.

FORMAT: Seminar

SOSA 5300.06: Area Examination.
The Area Examination is an examination in some designated area of Sociology or of Social Anthropology. The area itself is based on a reading list developed by the student’s Programme Committee in consultation with the student.

SOSA 5510.03: Graduate Readings in Sociology and Social Anthropology.
In a reading class, the student is assigned to a member or staff or regular meetings to discuss in a selected area. Papers and research projects are expected.

FORMAT: Individual instruction

SOSA 5520.03: Graduate Readings in Sociology and Social Anthropology.
In a reading class the student is assigned to a member or staff or regular meetings to discuss in a selected area. Papers and research projects are expected.

FORMAT: Individual instruction

SOSA 5530.06: International Development Studies Through the Shastri Summer Institute in India.
The placement would be for nine-ten weeks offered during the summer. Two weeks of briefing and debriefing both within Canada and India, with remaining weeks spent in the actual placement in India. This class is for students who wish to earn academic credit related to their work in India. Students will be chosen on the basis of their academic standing as well as...
their strong interest in South Asia. Students will be accompanied overseas by a faculty member.

SOSA 5540.03: Community-Based Co-Management.
See class description for MARA 5012.03 in the Marine Affairs section of this calendar.

SOSA 5600.03: PhD Seminar in Sociology and Social Anthropology.
This class is structured to assist students in a process of professional development and to facilitate general progress through the Doctoral program. The seminar will include formal presentations by each of its participants and will have as goals: (1) practice in giving and receiving criticism, (2) identifying the important literature in an area and critically assessing it, and (3) understanding the stages and purposes involved in an advanced research undertaking.

FORMAT: Seminar
PREREQUISITE: MA degree

SOSA 9000.00: MA Thesis - SOCI.

SOSA 9001.00: MA Thesis - SOAN.

SOSA 9530.00: PhD Thesis.

Statistics

Location: Chase Building
P.O. Box 15000
Halifax, NS B3H 4R2

Telephone: (902) 494-2572
Fax: (902) 494-5130

Website: http://www.mathstat.dal.ca/~statdir

Chair of the Department
Dilcher, K., PhD (Queens)

Director of Division
Gu, H., MSc (Peking), Phd (Hong Kong)

Graduate Coordinator
Hamilton, D.C., MA, PhD (Queen’s)

Professor Emeritus
Field, C.A., MSc, PhD (Northwestern). Robust statistics, data analysis, bioinformatics

Professors
Hamilton, D. C., MA, PhD (Queens). Linear and nonlinear regression, data analysis, statistical genetics
Smith, B., MSc (Calgary), PhD (Berkeley). Time series analysis, data analysis, statistical genetics
Susko, E.A., MSc (UBC), PhD (Waterloo). Molecular evolution, bioinformatics, mixture models, machine learning, data analysis
Thompson, K., MSc (Manchester), PhD (Liverpool). Joint appointment with Oceanography. Time series analysis, applications to oceanography

Associate Professors
Bielawski, J.P., MA (Hofstra), PhD (Texas A & M Univ), Joint appointment with Biology. Adaptive molecular evolution, Markov models of molecular evolution, genomics, bioinformatics
Dowd, M., MBA, MES, PhD (Dalhousie). Statistical inverse problems, time series, spatial analysis, stochastic dynamic models
Gu, Hong, MSc (Peking), PhD (Hong Kong). Data mining, bioinformatics
Herbinger, C. MSc (Paris), PhD (Dal). Joint appointment with Biology. Statistical genetics
Zhao, Y., MSc (Western Kentucky), PhD (British Columbia). Joint appointment with Management

Assistant Professors
Beiko, R., PhD (Ottawa), joint appointment with Computer Science
Flemming, J. (Mills), MSc (Tuns), PhD (Dal). Environmental statistics, robustness, data analysis (longitudinal, tracking)

Adjunct Professors
Astatke, T., PhD (Queen’s), NS Agricultural College
Cole, D.E.C., PhD (McGill), University of Toronto
Gupta, R.P., MSc (Agra), PhD (Delhi), Dalhousie University
Millar, M., MSc, PhD (Dalhousie), Mt. St. Vincent
Surhan, A. (Mansoura)
Yung, W. (Statcan)

Statistical Consultant
Stewart, S., MMath (Waterloo)

Please refer to the entry for the Department of Mathematics and Statistics in this calendar for a full listing of the members of the Department and information on other programs offered by the Department.
The department offers programs leading to the degrees of MSc and PhD in the following areas: statistical inference, robust statistics, data mining, bioinformatics, data analysis, multivariate analysis, linear and nonlinear regression, time series analysis, statistical genetics, environmental statistics, information theory.

I. Admission Requirements

Candidates must satisfy the general requirements for admission to the Faculty of Graduate Studies.

Candidates will normally be expected to hold a degree recognized by Dalhousie University as the equivalent of a Bachelor's degree with Honours in one of its own faculties.

GRE Aptitude and Advanced Mathematics scores are recommended for all applicants for graduate studies whose undergraduate work has been completed outside of Canada, and TOEFL scores are required for applicants whose native language is not English. Valid score reports must be received directly from the Educational Testing Service. To ensure consideration for scholarship funds, application should be made by January 31.

II. Degree Programs

A. Master of Science (MSc)

Requirements

1. At least three full-credit classes, at the graduate level to be chosen in consultation with the graduate coordinator or their supervisor. In addition, students whose preparation is deficient will be required to complete appropriate classes which will be designated by the adviser.

2. Attendance and participation in seminars.

4. Students are required to give an oral presentation of their thesis and at that time to answer questions about the thesis. This presentation will be made after the thesis is in the hands of the student's committee and will be taken into account when the committee makes its decision.

B. Doctor of Philosophy (PhD)

Requirements

NOTE: The minimum and maximum time required to complete this program are set out in Section 1.3.2 and 6.1 in the Faculty of Graduate Studies regulations.

1. At least two full-credit classes chosen in consultation with the graduate coordinator or their supervisor.

2. Comprehensive examinations which are jointly written by all incoming PhD students, on a date specified by the Graduate Coordinator, in May of the year of admission.

3. Attendance and participation in seminars.

4. Students must write and orally defend a thesis proposal within 12 months of successful completion of comprehensive examinations.

5. Preparation and defence of a satisfactory research thesis.

III. Class Descriptions

A selection of the following graduate classes will be offered subject to demand.

STAT 5001.03: AARMS Summer Course I.

This course is to be offered by and completed at an AARMS Summer School hosted at an Atlantic University. To register you must have permission from the Graduate Coordinator.

FORMAT: Lecture

STAT 5002.03: AARMS Summer Course II.

This course is to be offered by and completed at an AARMS Summer School hosted at an Atlantic University. To register you must have permission from the Graduate Coordinator.

FORMAT: Lecture

STAT 5066.03/4066.03: Advanced Statistical Theory I.

This class, together with STAT 5067.03 provides a solid basis in the theory of statistical inference. After a review of some probability and distribution theory, the Bayesian and classical theories of estimation and testing are introduced.

CROSS-LISTING: MATH 4066.03/5066.03, STAT 4066.03

STAT 5067.03: Advanced Statistical Theory II.

This course builds upon the material of Statistics 4065/5065. After a discussion of shortcomings of classical theory, the basic inferential rules are introduced and consistently applied throughout the course to solve problems of inference.

CROSS-LISTING: MATH 5067.03

STAT 5070.03/4070.03: Multivariate Distributions.

This class deals with the distribution theory of the observations on more than one variable. Topics covered include the multivariate normal distribution, the Wishart distribution, Hotelling's T^2, distributions associated with regression, canonical correlations and discriminant analysis.

FORMAT: Lecture 3 hours
PREREQUISITE: STAT 3460.03

STAT 5090.03/4090.03: Probability.

A mathematically rigorous treatment of probability theory in Euclidean space. Topics include measure and integration, probability measures, the definitions and properties of random variables and distribution functions, convergence concepts, Borel-Cantelli lemmas, laws of large numbers, characteristic functions and central limit theorems, conditional probability and expectation. Although the necessary measure theory is introduced, a previous analysis class is an asset.

FORMAT: Lecture 3 hours
PREREQUISITE: STAT 3360.03 and a third year analysis class, instructor's consent
CROSS-LISTING: MATH 4090.03/5090.03, STAT 4090.03

STAT 5100.03/4100.03: Survival Analysis.

This class is an introduction to survival analysis methods and will cover both the statistical theory behind the methods, and the application of various techniques. Topics to be discussed include survivorship and hazard functions and their relationship to lifetime distributions and densities; modes of censoring; the Kaplan-Meier estimate of the new survivor function; parametric survival time distributions; proportional hazard models and their semi-parametric estimation; accelerated life models, log rank tests, including the Mantel-Haenszel test; and goodness of fit measures.

FORMAT: Lecture 3 hours
PREREQUISITE: STAT 3340.03 and STAT 3460.03, or equivalent
CROSS-LISTING: STAT 4100.03

STAT 5300.03/4300.03: Topics in Statistics and Probability.

STAT 5350.03/4350.03: Applied Multivariate Analysis.

This class deals with the stochastic behaviour of several variables in systems where their interdependence is the object of analysis. Greater emphasis is placed on a practical application than on mathematical refinement. Topics include classification, cluster analysis, categorized data, analysis of interdependence, structural simplification by transformation or modelling and hypothesis construction and testing.

FORMAT: Lecture 3 hours
PREREQUISITE: STAT 3340.03 and MATH 2135.03 or 2040.03
CROSS-LISTING: STAT 4350.03

STAT 5360.03/4360.03: Robust Statistics.

Robust statistics are those which provide protection against violation of assumptions underlying the statistical procedure. We will develop basic concepts including sensitivity, influence and breakdown of estimates and tests. Classical procedures will be evaluated in terms of robustness and alternate techniques developed based on weighted least squares and/or median based generalizations. Starting from the location problem, we will move on to regression and to multivariate problems by means of robust covariance estimates. We will also consider robust techniques in time series. Some simple programming will be required to implement various procedures.

FORMAT: Lecture 3 hours
PREREQUISITE: STAT 3460.03 and 3340.03
CROSS-LISTING: STAT 4360.03
STAT 5370.03/4370.03: Stochastic Processes.
The theory and application of stochastic processes. Topics to be discussed include the Poisson process, renewal theory, discrete and continuous time Markov processes, and Brownian motion. Applications will be taken from the biological and physical sciences, and queuing theory.
FORMAT: Lecture 3 hours
PREREQUISITE: STAT 3360.03 or instructor’s consent
CROSS-LISTING: STAT 4370.03

STAT 5390.03/4390.03: Time Series Analysis I.
Time series analysis in both the time and frequency domain is introduced. The class is applied and students are required to develop their own computer programs in the analysis of time series drawn from real problems. Topics to be discussed include the nature of time series, stationarity, auto and cross covariance functions, the Box-Jenkins approach to model identification and fitting, power and cross spectra and the analysis of linear time-invariant relationships between pairs of series.
FORMAT: Lecture 3 hours
PREREQUISITE: STAT 3400.03, 3460.03, or instructor’s consent
CROSS-LISTING: OCEA 4210.03/5210.03, STAT 4390.03

STAT 5410.03/4410.03: Advanced Topics in Time Series Analysis.

STAT 5500.03: Topics in Advanced Statistics.

STAT 5550.03: Longitudinal Data Analysis.
This course is concerned with statistical techniques for analysis of longitudinal data, data that are collected repeatedly over a time on a number of subjects. Topics include generalized estimating equations; fixed, random and mixed effects linear models; generalized linear models; diagnostics and model checking; as well as missing data issues.
INSTRUCTOR(S): J. Flemming
FORMAT: Lecture
PREREQUISITE: STAT 4620/5620 OR permission of instructor

STAT 5570.03/4570.03: Statistical Genetics.
This course discusses the use of statistics in genetics. Following an introduction to genetics, statistical methodology related to genetic data will be covered. Such data arises in measuring population structure and distance, finding disease susceptibility loci, detecting genes related to quantitative traits, constructing phylogenetic trees, and from microarrays.
INSTRUCTOR(S): D. Hamilton
FORMAT: Lecture
PREREQUISITE: Permission of instructor
CROSS-LISTING: STAT 4570.03

STAT 5620.03/4620.03: Data Analysis.
A variety of statistical models which are useful for the analysis of real data are discussed. Topics may include: generalized linear models, such as logistic regression and Poisson regression, models for multidimensional contingency tables, ordered categories and survival data.
FORMAT: Lecture 3 hours
PREREQUISITE: STAT 3400.03, 3460.03, or instructor’s consent
CROSS-LISTING: STAT 4620.03

STAT 5630.03: Statistical Methods in Molecular Evolution.
This class will cover the common data types, models, and estimation and inferential methods in Molecular Evolution. The non-standard nature of the data and parameter space make this an unusual statistical problem. Topics include distance methods, maximum likelihood and confidence regions for trees.
PREREQUISITE: STAT 3460 or instructor’s consent

STAT 5640.03: Advanced Analysis of Complex Survey Data.
This course provides an interdisciplinary forum to address a specific research question or a methodological-statistical issue through an applied analysis of an existing Statistic Canada data set. Students will learn how to assess data quality, suitability of the data for assessing a research question, and identify and apply appropriate statistical techniques.
INSTRUCTOR(S): V. Thiessen

FORMAT: Seminar
PREREQUISITE: Completion of a senior undergraduate or graduate course in survey research and/or statistical methods, basic familiarity with general-purpose statistical software (SAS, SPSS, or STATA), consent of the course coordinator, and security clearance to gain admission to the ARDC.

STAT 5700X/Y.03: Statistical Consulting Practicum.
This class gives Statistics graduate students practical experience in Statistical Consulting. The class will address the issues of communications with the client, and the translation of their questions into statistical language. Students will carry out a minimum of 30 hours consulting.
NOTE: Credit can only be given for this class if X and Y are completed in consecutive terms and partial credit cannot be given for a single term.

STAT 5750.03: Statistical Data Mining.
This course covers statistical methodology, major software and applications in data mining. A variety of supervised learning and unsupervised learning methods will be discussed. Topics include: Linear methods for regression and classification, prototype methods, decision trees, additive models, bagging and boosting, neural networks and support vector machines.
INSTRUCTOR(S): H. Gu
FORMAT: Lecture
PREREQUISITE: Permission of instructor

STAT 5990.03: Intermediate Statistics for Health Sciences.
This class provides graduate students with a working knowledge of statistical issues and methods commonly used by researchers in the Health Professions. The statistical software package SAS is introduced and used by students throughout the course. Topics covered include a review of probability and one and two sample inferences for means and proportions. This is followed by some common experimental designs, contingency tables and odds ratios. Final topics are correlation and linear regression (simple and multiple), analysis of variance, analysis of covariance, and logistic regression. A term data analysis project is required in which students make use of both statistical methods learned in class and the SAS software package.
NOTE: Not available for graduate students in Statistics.
FORMAT: 3 hours/week Lecture and 1 hour/week SAS tutorial.
CROSS-LISTING: HPRO 5503, KINE 5503, HESA 6500, HINF 6030, LEIS 5503, NURS 5000, PHAR 5980

STAT 9500.00: Thesis Proposal.
As part of PhD requirements, within 12 months of successful completion of comprehensive exams, students must submit a written document to thesis committee members as a PhD proposal. This proposal will summarize the relevant literature related to their proposed thesis research topic. It should also outline a plan for successful completion of the project. The proposal needs to be defended orally approximately one week after submission.

STAT 9520.00: Comprehensive Examinations.
A passing grade in this course is given when a PhD student has completed the comprehensive examinations requirement of the Statistics PhD program. This course must be passed at most 16 months after the beginning of the student’s program. To pass this course, a student must pass comprehensive examinations following the procedures outlined by the department.
Centres and Institutes

A number of centres and institutes for study and research in specific fields are based at the University. These are:

Atlantic Health Promotion Research Centre
Managing Director: Sandra Crowell, MPA
Scientific Director (Acting): Lois Jackson, PhD
Other: Project Coordinators, Research Associates, Research Assistants, and students
Tel: (902) 494-2240
Fax: (902) 494-3594
Website: http://www.ahprrc.dal.ca

The Atlantic Health Promotion Research Centre (AHPRC) is a leading Canadian health promotion research centre based at Dalhousie University. AHPRC was established in 1993 to conduct interdisciplinary, collaborative population health and prevention research that informs policies and programs to improve the health of Canadians.

The centre is conducting research on health services and health systems, healthy eating and physical activity, knowledge translation, prevention of chronic illness and disability, oral health of seniors, youth obesity, aboriginal health, and harm reduction.

The AHPRC is currently supported by the Faculties of Health Professions, Medicine, and Dentistry at Dalhousie University. Support for specific research projects comes from agencies such as Canadian Institutes for Health Research, Social Sciences and Humanities Research Council of Canada, Nova Scotia Health Research Foundation, and Heart and Stroke Foundation of Canada.

Atlantic Institute of Criminology
Director: D.H. Clairmont, BA, MA, PhD

The Atlantic Institute of Criminology was established to provide a centre for research in the areas of criminology, policing, and other concerns of the justice system. Associate memberships are available to interested and qualified persons.

Atlantic Research Centre (ARC)
Director: Neale Ridgway
Phone: (902) 494-7133
Website: http://arc.medicine.dal.ca/

Established in 1967, the ARC conducts basic biomedical research in the fields of lipid metabolism and cell signalling, areas of fundamental importance to a variety of disorders including cancer, neurological, heart and infectious diseases. It also provides education and expertise in these fields to undergraduate and graduate students, other researchers, and the general public. The ARC houses state-of-the-art facilities for biochemical and molecular biological research, including a regional proteomics service facility (DalGEN, http://genomics.medicine.dal.ca/pms), and is affiliated with the IWK Cheminformatics & Drug Discovery Laboratory. The Centre’s staff hold appointments in the Departments of Pediatrics and Biochemistry & Molecular Biology in the Faculty of Medicine. Research at the ARC is supported by agencies such as the CIHR, NSERC, CFI, Heart and Stroke Foundation, National Cancer Institute, Atlantic Innovation Foundation, and the IWK Health Centre.

Brain Repair Centre
Chair: Dr. Ivar Mendez, (Professor and Head, Division of Neurosurgery, Department of Surgery and Cross-appointment in Department of Anatomy & Neurobiology, Faculty of Medicine)
Website: http://www.brainrepair.ca/

The Brain Repair Centre (BRC) is a collaboration of Dalhousie University, the Capital District Health Authority and the IWK Health Centre. The BRC is a multi-disciplinary unit focusing on research that can lead to the diagnosis, treatment, and repair of the brain to overcome the effects of neurological and psychiatric disorders such as Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, Muscular Sclerosis (MS), stroke and spinal cord injury. The BRC grew out of the clinical Neural Transplantation Program, collaboration between basic neuroscientists and clinicians interested in treating Parkinson’s disease. The success of the Neural Transplantation Program led clinical and basic neuroscientists to decide to form the Brain Repair Centre. The BRC was formed in 1999 and has focused on stem cell transplantation, Parkinson’s disease, spinal cord injury, psychotic disorders, stroke and neuroimaging as areas of innovation at Dalhousie University, Capital Health and the IWK Health Centre.

Examples of BRC achievements include:
- Attracted capital funding from private donors, institutions and the public sector to support construction and fit-up of the new Life Sciences Research Institute scheduled to open in early 2011. When the LSRI is completed, the Brain Repair Centre will become the anchor tenant of this new research and commercialization building with state-of-the-art research, equipment and facilities.
- Establishment of collaboration agreements with research teams at McLean Hospital/Harvard University; Jilin University, China; Cardiff University, Wales; and Neurodyn, Inc.
- Establishment of a $12 million magnetic resonance imaging facility with the national Research council’s Institute for Biodiagnostics (NRC-IBD).
- In 2006, the BRC was awarded $5.5 million for infrastructure from the Canadian Foundation for Innovation, the largest such award to date in Atlantic Canada. Also in 2006, BRC received a $3 million Atlantic Innovation Fund award for research, a follow-on to an earlier $3 million research award.
- Dr. David Clarke, a member of the Brain Repair Centre used a virtual model of a patient’s brain to remove a simulated brain tumour before removing the actual tumour the following morning. Developed by a partnership of the National Research Council and a team of about 50 people in 10 Centres across Canada, this was the first such surgery performed in the world.
- Medtronic Canada, Capital District Health Authority, QEI Foundation, and the Brain Repair Centre established a Canadian Centre of Excellence and Training at the Halifax Infirmary. This new $3.5 million centre provides important new clinical facilities for training and development in imaging, spinal cord and neuromodulation.
- In the neurotransplantation field, the BRC is unique in Canada and one of only four centres worldwide involved in clinical application of neural transplantation, with the “Halifax Protocol” accepted as the world gold standard.
- The BRC is an innovative collaboration that integrates its research expertise with pioneers in the fields of imaging, neurology, stem cell neurobiology, vision, molecular neurobiology, pharmacology, psychiatry, clinical trials and cognitive neuroscience.
- The BRC brings together the expanding fields of neuroimaging and stem cell technologies with application to the treatment of neurological and psychiatric disorders.
- The BRC is the Atlantic Canada presence in the Stem Cell Network, a National Centre of Excellence in stem cell research. The BRC places emphasis on moving basic science research from the bench to the clinical bedside and from the bedside back to the bench. A key objective of the BRC is to produce innovative technologies that will be commercialized.

Canadian Institute of Fisheries Technology (CIFT)
Director: A.T. Paulson, PhD
Telephone: (902) 494-3280
Fax: (902) 420-0219
Website: http://cift.engineering.dal.ca

CIFT was established in 1979 at the former Nova Scotia Technical College (later TUNS). The federal Department of Fisheries and Oceans provided much of its early specialized laboratory and seafood pilot scale processing...
equipment, and Industry Canada provided start-up funding and designated CIFIT a centre of excellence. As a government-approved laboratory for advanced technology, it also provides R&D services on a cost-recovery basis to industry and to various governmental agencies. The Institute promotes technology transfer and the development of advanced technologies aimed at more effective commercial utilization of both marine and terrestrial resources in Canada and throughout the world.

In addition, CIFIT offers unique opportunities for post-graduate training and research through the Food Science program. Major areas of emphasis are: food biochemistry and microbiology; fats, oils, nutraceuticals and other bioactives; physical properties of foods; fish/food process engineering; food safety and preservation; food rheology, food fermentation and beverage science.

Facilities
CIFIT is located in the MacDonald building of Sexton Campus at 1360 Barrington Street in downtown Halifax. The Institute’s facilities include:

- fats and oils laboratory
- food chemistry laboratory
- food development laboratory
- sensory evaluation laboratory
- food process engineering pilot plant
- low temperature storage facility
- food physical properties laboratory
- food microbiology laboratory

These areas contain specialized instrumentation and food processing equipment to enable experimental processing, laboratory analysis, and product storage evaluation. In addition to a computer-controlled cold-storage facility, the pilot plant is equipped for experimental processing including freezing, chilling, thermal processing, drying, centrifugal separation, and meat-bone separation.

The pilot plant is well equipped for thermal processing with an automated retort capable of steam, steam-air, or water immersion processing research. The specially designed cold-storage facility is computer controlled and particularly useful for the study of changes in foods as a result of frozen storage history. The pilot plant is also equipped with a custom-built computer-controlled heat pump dryer that is used in food dehydration experiments.

Specialized laboratory equipment includes: automated high performance and fast protein liquid chromatography systems, gas chromatography/mass spectroscopy system, preparative ultracentrifuge, multi-purpose refrigerated centrifuge, microtube centrifuge, analytical and preparative electrophoretic/iioelectric focusing equipment, pulsed field electrophoresis system, thermocycler, DNA gel electrophoresis, Hoefer Daltis for 2D electrophoresis, Image Master 2D elite software, capillary electrophoresis system, ultra-low temperature freezer, universal texture testing machine, various colorimeters, U.V. and visible spectrophotometer, spectroturbidimeter, electrokinetic analyzer, workstation for mathematical modelling and computer simulation, Linkham shearing stage/microscope, Nikon microscope (various attachments), controlled stress rheometer with a high temperature/pressure attachment, controlled rate rheometer, Viscomat, and a rolling ball viscometer.

Educational Opportunities
Graduate (MSc and PhD) programs are available through the Food Science and Technology program. Also post-doctoral research opportunities are offered. Graduate level class work and research opportunities relate to food science, seafood processing technology, marine oils, engineering design, packaging technology, fish post-mortem biochemistry, food microbiology, food rheology and food process science. Students with degrees in food science, engineering, chemistry/biochemistry, microbiology or biology are invited to apply.

Centre for African Studies
Director: Theresa Ulicki, PhD
Fax: (902) 494-2105
Phone: (902) 494-3814/1377

This Centre, established in 1975, advances instruction, publication, research and development education programs in African Studies. Associated faculty offer classes through the Departments of History, International Development Studies, Political Science, French, Sociology and Social Anthropology and Philosophy. The Centre organizes academic and informal seminars and public policy conferences on Africa and encourages interdisciplinary interaction at all levels on African subjects and issues. It co-operates with the International Development Studies department and with the International Research and Development office.

Centre for Comparative Genomics and Evolutionary Bioinformatics
Director: Andrew J. Roger, PhD
Coordinator: Wanda Danilchuk
Phone: (902) 494-2620
Fax: (902) 494-1355
Website: http://www.cgeb.dal.ca

The Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB) at Dalhousie University encompasses an interdisciplinary group of researchers in the Faculties of Medicine, Science and Computer Science. Although microbial genome evolution and diversity is at the heart of many of the CGEB researchers’ activities, our work spans computational biology, computer science, statistics, statistical modeling and comparative genomics, with a strong focus on method and theory. The application of DNA sequencing technologies to characterize the genomes of a wide diversity of microbes has generated vast quantities of genome sequence data. Now the intellectual challenge is to develop from this enormous resource more comprehensive and theoretically robust phylogenetic, genetic and ecological models to further our understanding of the many roles of microbes in the biological world.

CGEB researchers are united by the common goal of using this vast resource of genomic information to elucidate evolutionary patterns and processes: the pathways by which microbial organisms have diversified over the last 3.5 billion years of Earth’s history and through which they continue to shape the global environment. Only through the integration of experimental genomic approaches and sophisticated bioinformatic modeling will we be able to achieve this goal.

CGEB researchers and trainees are supported by grants from the Canadian Institutes for Health Research (CIHR), Natural Sciences and Engineering Research Council (NSERC), the Nova Scotia Health Research Foundation (NSHRF). The Centre itself is supported by funding from the Tula Foundation (http://www.tula.ca), the Faculties of Medicine, Science and Computer Science. CGEB is also supported by a large grant from the Tula Foundation (http://www.tula.ca) that provides funds for training top-notch postdoctoral and graduate trainees in the CGEB research specialities. We also have a regular seminar series that brings world renowned scientists to speak at Dalhousie University and interact with faculty members and trainees.

Centre for Environmental and Marine Geology
Director: Professor D.B. Scott

This Centre was originally founded as the Centre for Marine Geology in 1983 to promote interdisciplinary studies of various types of problems in marine Geology, capitalizing on our unique position in Canada with links to related departments such as Oceanography, Physics, Biology, the Bedford Institute of Oceanography and our hosting of the Canadian office of the Ocean Drilling Program. Since 1983 the role of the Centre has changed, reflected in the new name, which better describes the work being done now where marine geology is combined with environmental problems. We have 3 new faculty that expand our expertise into new chronological techniques and permafrost as well as strengthening our capacity in the petroleum-related environmental geology. Some of the objectives of the Centre are to: 1) continue to expand our participation in a revitalize east coast offshore energy related problems; 2) continue our climate-change work with a variety of approaches both offshore and on land; 3) expand into Arctic regions both with major oceanographic and shore-based programs; and 4) expand our capacity to help solve some of the many environmental geology problems associated with urbanization.
Centre for European Studies
Director: Finn Laursen, PhD, Canada Research Chair in European Studies
Email: euc@dal.ca

The Centre for European Studies was established in 1971 to foster international business teaching and research and enhance Canada’s global competitiveness through innovative programs and outreach services. CITT supports a wide range of learning experiences including academic exchanges, the Student Export Awareness Program, the Student Research Symposium, the International Case Competition. CITT also offers research fellowships to students interested in international business. The Centre recently partnered with Michigan State University’s Canadian Studies Program to work towards increasing global trade between the US and Canada (the world’s largest trading partners).

Centre for Foreign Policy Studies
Director: David R. Black, PhD
Established in 1971 the Centre is concerned with teaching, research, publication, policy advice and other professional activities in the various aspects of foreign policy, security studies and international politics. It is funded through the Security and Defence Forum of the Department of National Defence and other foundations, government agencies, international organizations, publication sales, and contracts.

The Centre’s work is concentrated in the areas of Canadian and comparative maritime security and oceans policy, Canadian and American foreign and security policies, and global security and international development. Its geographical specializations include Canada, North America, Europe, and the South (especially Africa, Asia, and the Caribbean). The Centre encourages activities in these areas by Faculty, Research, and Doctoral Fellows, and advances communication among local and international communities in these fields through seminars, workshops conferences and colloquia, often in collaboration with local, national, and/or international organizations. It publishes occasional papers and monographs on Maritime Security, Canadian Defence and Security, and Global Security issues.

The Centre is an integral part of the Department of Political Science. Centre faculty offer classes through the Department in foreign and defence policy, international relations and development, and maritime affairs at both undergraduate (majors & honours) and graduate (MA and PhD) levels. They also supervise masters and doctoral theses in these fields.

For further information, consult the Centre’s website: http://centreforforeignpolicystudies.dal.ca.

Centre for Innovation in Infrastructure
Director: John Newhook, PhD, P.Eng.
Assistant Director: Dean Forgeron, PhD, P.Eng.
Location: Room B233, Sexton Campus
1360 Barrington Street
PO Box 1001
Halifax, Nova Scotia B3J 2X4
Phone: (902) 494-2847
Email: forgeron@dal.ca

The Centre for Innovation in Infrastructure is an industry-oriented research centre with the Faculty of Engineering and with strong affiliations with the Department of Civil and Resource Engineering. Established in 1983 as the Nova Scotia CAD/CAM Centre, the Centre originally focussed on assisting Atlantic Canadian industry with the integration of computer added manufacturing and computer aided design technology in their operations. Since the 1990’s the Centre has continued to evolve to meet the needs of industry in other areas and to take a more active role in research and development in civil infrastructure.

Today the Centre act as a focal point for research, innovation and technology transfer in Civil Infrastructure related areas. The major funding partnerships are with the Atlantic Canadian departments of transportation, industries related to bridge and structural engineering and with companies developing new materials and products for infrastructure.

Our combined areas of expertise and research interests include:
- Structural Analysis and Design
- Structural Health monitoring
- Bridge engineering and innovations
- Soil-steel structures
- Fibre reinforced polymers
- Fibre reinforced concrete
- NDT of bridge decks and pavements
- Sustainable asphalt technology

The Centre has acquired and maintains significant testing equipment related to these research areas and contributes to the maintenance and operation of the research facilities within the Department of Civil and Resource Engineering.

Centre for Marine Vessel Development and Research (CMVDR).
Contact: Josh Leon, Dean of Engine ring
The mandate for this Centre is under review.

Centre for Water Resources Studies
Location: Office D-514
1360 Barrington St.
Telephone: (902) 494-607
Email: cwr@dal.ca

The Centre for Water Resources Studies was established in December, 1981, by a resolution of the Board of Governors (TUNS). The objectives of the Centre are to carry out applied research which contributes to the effective and sustainable protection of water resources in Atlantic Canada, nationally and internationally, and to facilitate the transfer of new knowledge to potential users. Research programs directed by the Centre address the design of cost-effective on-site wastewater systems, soil erosion processes, drinking water treatment, the use of roofwater cisterns for domestic water supply, eutrophication, watershed management and the computer modeling of hydrodynamic and hydrochemical processes.

The Centre also has a number of research advisory panels, which involve professionals from industry, government and academia in applied research related to water use and water management.

Facilities
The Centre for Water Resources Studies is located on the fifth floor of “D” Building on Sexton Campus. Laboratory and office space is available for specific graduate research topics, as well as ongoing research carried out.
by Centre personnel. Analytical equipment includes instrumentation for
determining low levels of major ions and nutrients, as well as trace
quantities of metal ions in water. The Centre has apparatus for laboratory
investigation and pilot scale testing of innovative water treatment
methods using Dissolved Air Floatation (DAF) and ozonation and has
worked with local consultants and municipalities to develop new
applications of the technologies. The Centre is a North American leader in
the development of on-site sewage disposal and has had an active research
program in this area since 1987. In conjunction with the Nova Scotia
Agricultural College, the Centre has a field laboratory investigating
sloping sand filters and septic disposal.

Educational Opportunities

The Centre co-operates with academic units in the training of
undergraduate and graduate students who have an interest in water resources. The Centre also participates in the program leading to a dual
degree in water resources engineering and planning, in conjunction with
the School of Planning into the Faculty of Architecture and Planning.

Dalhousie Institute for Society and Culture (DISC)

Director: Penny Slight

Website: http://www.dal.ca/Research

Established in 2008, the Dalhousie Institute on Society and Culture serves
as the virtual home for the many divergent research activities and
initiatives within the Faculty of Arts and Social Sciences. Its primary
function is to support research within the Faculty through various
fellowship programs, publicity and fund raising initiatives, publishing
ventures, conferences and lecture series, and cross-disciplinary exchanges.

The Institute encompasses two broad and overlapping research clusters:
Societies in Local, National, and Global Contexts, and *Cultural Representations
and Presentations.* The former cluster aims to develop new knowledge
about political, social, and economic transformations, about national and
regional identities, and about global relations, whereas the latter seeks to
investigate and preserve cultural traditions, literature, and languages, to
foster studies and theories of cultural identity, to stimulate artistic
innovation, to examine the shaping influence of beliefs and religions, and
to contribute to the cultural life and profile of the province. These two
clusters, with a flexibility and breadth unequalled in Eastern Canada, are
uniquely equipped to analyze social and cultural change.

Eco-Efficiency Centre, Faculty of Management

Phone: (902) 461-6704

Program Manager: Penny Slight

Website: http://www.dal.ca/eco-efficiency

The Eco-Efficiency Centre (EEC) was established in 1998 as a partnership
with Nova Scotia Power, Inc., and in 2005 was approved as a university
centre in the Faculty of Management. It is currently linked to business,
engineering, and resource and environmental studies programs. The EEC
has achieved a national and international profile for its work in promoting
research and action in relation to eco-efficiency and industrial ecology,
especially in its application to industrial parks.

The objectives of the Centre are to:

1. develop and sustain eco-efficiency, industrial ecology, and corporate
 sustainability research programs at Dalhousie University;
2. provide education, research and employment opportunities for
 students;
3. develop and provide information and resources related to eco-
 efficiency, industrial ecology and corporate sustainability to business
 and government;
4. develop models of environmentally sustainable industrial
development thereby improving environmental and financial
 performance of small and medium enterprises (SMEs) and larger
 corporate entities; and
5. foster sustainable business practices as models and develop local case
 studies for teaching purposes.

The research of the Centre provides small and medium-sized enterprises
(SMEs) with the tools necessary to increase the overall sustainability of
their operations by investigating and applying techniques such as
pollution prevention, life cycle analysis and eco-industrial networking. At
the same time the Centre researches the drivers and barriers to
sustainability strategies providing data that influences the development of
new government policies at all levels. The EEC provides opportunities for
students to learn, faculty to collaborate in new action research initiatives
and businesses to improve their environmental performance.

Areas of collaboration in research include:

- Environmental Studies - Life cycle analysis, energy and material
 metabolism, industrial symbiosis, ecological footprint analysis.
- Business - input/output analysis, supply chain management, reverse
 logistics, environmental accounting, eco-efficiency studies, supply chain
 management, education of personnel, and corporate sustainability.
- Engineering - process optimization, energy and material balances,
 pollution prevention, industrial symbiosis, environmentally friendly
 building materials, product and process design.
- Planning - green building design and construction, industrial park
 planning, zoning, land use standards, infrastructure design.

Information Management - geographic information systems, life cycle
and industrial metabolism database management.

Public Policy and Law - economic and industrial development policies,
regulations, economic instruments.

The continuing involvement of students and the increased focus on
graduate research and research partnerships will assist in developing the
research capacity and promote long term progress towards sustainability
in Atlantic Canada and Canada generally. Co-op students from the
Faculty of Management and Faculty of Engineering are hired regularly as
are interns from the Master of Resource and Environmental Management
and Master of Environmental Studies Programs.

Sustainability has been identified as a priority at all levels of government,
particularly the federal government and agencies such as the Atlantic
Canada Opportunities Agency and Industry Canada. The Centre has had
working relationships with the Atlantic Canada Opportunities Agency,
Natural Resources Canada’s Office of Energy Efficiency, Environment
Canada, the Nova Scotia Department of Environment, the Nova Scotia
Department of Economic and Rural Development, and the Resource
Recovery Fund Board Nova Scotia Inc.

European Union Centre of Excellence

Director: Finn Laursen, PhD

Phone: (902) 494-2980/7558

Fax: (902) 494-1909

Email: euce@dal.ca

Website: http://www.euce.dal.ca

Established in 2006, the European Union Centre of Excellence in Canada
gives Dalhousie University recognition from the European Union to carry
out projects and activities that promote greater awareness of the EU in
Canada. During the period 2006-09 there have been three other centres in
Canada with this title, located at Carleton University, the University of
Toronto, and a joint centre at Université de Montréal/McGill University.
While based in the Faculty of Arts and Social Sciences, with special
emphasis on the Department of Political Science, this centre coordinates
exchanges of faculty and students, conferences, workshops, symposia, and
other projects and activities from other faculties as well, including Law,
management, and Science.

The centre had its agreement with the European Commission renewed for
the next three years (2009-2012). This agreements include research
activities on the Arctic policies of Canada and the EU, trade negotiations
between the EU and Canada, various aspects of migration policies in
Europe, EU Copyright legislation, the EU and the economic crisis, trade
relations within the EU, public health policy in EU and Canada, merger
control in EU and Canada, etc. The agreement also foresees a major annual
conference on the following three topics: the EU’s Area of Freedom,
Security and Justice (including immigration and asylum policies), the
Lisbon Treaty and Transatlantic Relations. The budget will also allow the
centre to invite speakers from EU countries. There is further some support

302 Centres and Institutes
for teaching activities, as well as graduate students through fellowships and research assistantships.

Global Health Office

Dalhousie Faculty of Medicine
Director: Shawna O’Hearn
Location: C-241 5849 University Avenue
P.O. Box 1500
Halifax, NS B3H 4R2 Canada
Website: http://gho.medicine.dal.ca

The Global Health Office is recognized regionally, nationally and internationally for interprofessional opportunities that prepare health care professionals for lifelong learning in global health.

There are many ways for students, residents and faculty to engage with our office. We coordinate predeparture training, global health electives, summer global health experiences and a global health course. We also lead global health events including films, journal club, speaker series and conferences. We present annual awards to a student, a resident and a faculty member who demonstrate leadership in global health.

Health Law Institute

Director: Constance MacIntosh, BA, MA, LLB
Location: Dalhousie University
6061 University Avenue
P.O. Box 15000
Halifax, NS B3H 4R2
Website: http://www.dal.ca/hli

An Interdisciplinary Institute of the Faculties of Law, Medicine, Health Professions, and Dentistry, the Institute is committed to the advancement of health law and policy and the improvement of health care practice and health systems through scholarly analysis, professional education, and public service. Its objectives are:

1. To foster strong and innovative health law and policy scholarship by:
 - contributing to research in health law and policy
 - providing external consultation services on matters having a significant impact on health law or policy
2. To advance health law and policy education by:
 - designing and implementing education programs for law, medicine, health professions and dentistry students
 - providing continuing education opportunities for health professionals and legal practitioners
3. To serve the public in our areas of expertise by:
 - contributing to the societal understanding of health law and policy issues
 - providing expertise to organizations in the public sector
 - engaging in the policy-making process at local, regional, and national levels.

Institute for Research in Materials (IRM)

Director: Richard A. Dunlap, PhD
Administrative Offices: 6414 Coburg Road
P.O. Box 15000
Halifax NS B3H 4R2
Phone: (902) 494-6373
Fax: (902) 494-8016
Website: http://irm.dal.ca

Established in 2002, IRM is made up of about 100 faculty members in seven faculties (Science, Engineering, Dentistry, Medicine, Architecture and Planning and Management and Health Professions) and seventeen departments. The goals of the Institute include advancing the collective interdisciplinary research efforts in materials science and engineering at Dalhousie University, facilitating interdisciplinary teaching in materials science within the existing discipline structure, and enhancing interactions between materials researchers at Dalhousie University with relevant government laboratories and industry, especially within the region. The Institute leads collaboration within the university on interdisciplinary applications to funding agencies for major equipment and research infrastructure, and collaborates with external organizations to pursue research opportunities.

All Dalhousie University faculty members carrying out research in the area of materials are eligible to be Members of IRM. Postdoctoral fellows and graduate students associated with these research groups are invited to become Associate Members of IRM. See http://irm.dal.ca/Opportunities/Graduate_Students.php for details.

In addition to equipment operated by individual members of the Institute, IRM has established (2003) the Facilities for Materials Characterization, an $11 million suite of instruments managed by the Institute.

The equipment includes:
- High-field solid-state NMR spectrometer (managed jointly with the Nuclear Magnetic Resonance Research Resource)
- Scanning electron microscope
- Focused ion beam
- X-ray photoelectron spectrometer (XPS)
- Secondary ion mass spectrometer (SIMS)
- Sputtering system
- Ultra-high speed optical systems
- Physical properties measurement system (PTMMS)
- Scanning thermal microscope (STTM)
- Ultrasonic immersion testing equipment
- Hot press
- Grindo Sonic
- High-speed motion recorder/analyser.

These facilities are open to external users. Please contact IRM@dal.ca for details.

IRM offers an NSERC CREATE program called DREAMS (Dalhousie Research in Energy, Advanced Materials and Sustainability). Students accepted into the program carry out collaborative interdisciplinary research in world-leading laboratories with innovative new courses and direct experience working with industrial partners. DREAMS scholarships are available to graduate students in Chemistry, Physics and Mechanical Engineering. See DREAMS website for details at DREAMS.irm.dal.ca

Law and Technology Institute

Director: Robert J. Currie, BA, MA, LLB, LLM
Associate Director: Michael Deturbide, BSc, BJ, LLB, LLM
Location: Schulich School of Law
6061 University Avenue
P.O. Box 15000
Halifax, NS B3H 4R2
Website: http://law.dal.ca/lati/

The Law and Technology Institute was established at Dalhousie Law School in 2001 to provide teaching, research, and continuing education on technology law issues to students, faculty members, and the practicing Bar. The Institute participates, with the faculties of Computer Science and Management, in Dalhousie’s Master of Electronic Commerce Program, and has been involved in collaborative projects with the private sector and governments on information technology issues. Also, in conjunction with Dalhousie’s Industry Liaison and Innovation Office, the Institute offers a student placement program in intellectual property and commercialization. Its faculty members provide graduate supervision to students interested in the developing field of technology law issues, and are active in law and technology organizations, such as IT.Can, and the International Society for Law and Technology. Faculty members of the institute are writers of the English edition of IT.Can bi-weekly newsletter.
The Institute hosts an Eminent Speakers Series, which brings leading IT lawyers and academics to Dalhousie to share their expertise. The Institute is home to the Canadian Journal of Law and Technology, co-edited by Professors Deturbide and Reynolds. The CJLT is the pre-eminent technology law review in Canada.

Classes Offered:
- Law and Technology
- Internet and Media Law
- Privacy Law
- Intellectual Property Law
- Information Technology Transactions
- Entertainment Law
- Intellectual Property and Commercialization Placement
- Special Topics on Intellectual Property (IPII)
- Copyright Law
- Patent law

Students also have the opportunity to pursue specialized interests in fields such as health law and alternate dispute resolution, as they relate to law and technology.

Marine & Environmental Law Institute

Director: Aldo Chircop, JSD
Associate Director: Meinhard Doelle, BSc, LLB, LLB, JSD
Location: Schulich School of Law
6051 University Avenue
P.O. Box 15000
Halifax, NS B3H 4R2
Phone: (902) 494-1988
Fax: (902) 494-1316
Email: MELAW@dal.ca
Website: http://www.dal.ca/law/MELAW

The Institute, which is housed in the Law School, carries out research capacity-building and consultancy activities and also directs the MELP academic specialization. The current Director is Dr. Aldo Chircop. In addition to their scholarly research and publication activities, MELAW faculty, associates and staff carry out research projects and provide advisory services to agencies of the United Nations, international non-governmental organizations, and regional organizations as well as assisting government departments, private sector institutions and non-governmental organizations in Canada and overseas.

The Marine & Environmental Law Institute is also the editorial office of the Ocean Yearbook, a major international interdisciplinary annual, devoted to ocean affairs published in collaboration with the International Ocean Institute in Malta. Dalhousie law students have the chance to gain experience working as research assistants on the Institute’s research projects and workshops, and assisting with editing the Ocean Yearbook.

The Schulich School of Law also hosts two other research institutes, the Health Law Institute and the Law & Technology Institute, and offers concentrations in the fields of international law, business law and public law. In addition to the required courses in the MELP specialization, students are also encouraged to undertake research/courses in these and other fields in the JD curriculum. This allows students to engage with emerging and cross-cutting topics such as biotechnology, environment and health, ethics, indigenous rights, animal rights, international trade law and human rights.

MELAW supports student collaboration in addressing environmental issues through the Environmental Law Students Society and the East Coast Environmental Law Association, a non-governmental organization dedicated to environmental law education and advocacy. MELAW encourages interdisciplinary collaborations within the Dalhousie community including the School for Resource and Environmental Studies (SRES), the Marine Affairs Program (MAP), the International Development Studies (IDS) Program, the Centre for Foreign Policy Studies, the Ocean Tracking Network (OTN) led by the Department of Oceanography and the recently established Halifax Marine Research Institute. MELAW also promotes national collaborations, for example, through the Ocean Management Research Network (OMRN). International linkages include among others, the Global Forum on Oceans, Coasts and Islands and the IUCN Academy of Environmental Law as well as numerous sister institutions in Asia, Caribbean, Europe, South America and the United States.

Minerals Engineering Centre

Director: Georges J. Kipouros, PhD, PEng
Phone: (902)494-6100
Location: 1360 Barrington Street
G. Building, Sexton Campus
P.O. Box 15000
Halifax, NS, B3H 4R2
Phone: (902)494-3955
Fax: (902)494-2506
Website: http://minerals.engineering.dal.ca
Email: mec@dal.ca

The Minerals Engineering Centre was established from the Laboratory for the Investigation of Minerals. The Minerals Engineering Centre provides research, analytical and advisory services to industries, universities, and government bodies in Atlantic Canada, Canada and International. The Centre is located in G Building on Sexton Campus and is affiliated with the Materials Engineering program. The services offered include:

- Sample preparation of ores, soils, silts, rocks, cores, clay fraction and wood pellets
- Size analysis, including screening, sieving, and sub-sieve analysis
- Minerals separation using dense liquids
- Physical and chemical analytical methods using atomic adsorption, XRD, ICP, AA, x-ray fluorescence spectographic and wet chemical techniques
- Analysis of samples including geological, metalliferous ores, industrial minerals, coals, metals, alloys and water
- Mineral processing test work covering the whole range of investigative techniques from bench scale to pilot plant, including crushing, grinding, classification, gravity separation, dense medium separation, magnetic separation, electrostatic separation, flotation, flocculation, thickening, filtration, and drying
- Evaluation of biomass fuels.

The Minerals Engineering Centre provides opportunities for undergraduate and graduate students to learn various analytical and testing techniques applicable in their course of studies. It also offers services to faculty members to assist in their teaching and research activities.

Further information may be obtained from the Director of the Centre.

Neuroscience Institute

Director: Alan Fine, V.M.D., PhD
Contact: neuroscience.institute@dal.ca
Website: http://www.neuroscience.dal.ca

The Neuroscience Institute was founded in 1990 to promote and coordinate research in neuroscience, the modern interdisciplinary study of the brain and nervous system. It serves as an umbrella organization to foster research and training in neuroscience at Dalhousie. A major objective is to increase understanding of the functions of the nervous system in health and disease. To this end, the Institute coordinates the activities of neuroscientists in the Faculty of Medicine, the Faculty of Science, the Faculty of Computer Science and the School of Biomedical Engineering, facilitating collaboration between clinical and basic scientists in these Faculties. Some foci of current research activity include: development and plasticity of the nervous system; cognitive neuroscience; motor control; autonomic function; synaptic function; and sensory physiology. The Institute also provides a vehicle to seek new sources of funding, and encourages new initiatives in all areas of neuroscience research at Dalhousie. In addition, the Institute promotes and coordinates training programs in neuroscience currently offered through its constituent departments at both the undergraduate and graduate levels. It sponsors seminar series annually, and coordinates a variety of community outreach events.
Norman Newman Centre for Entrepreneurship
Director: Ed Leach, BComm (Dalhousie), MBA (Ivay), PhD (Nova Southeastern)
Coordinator: Scott Sheffield
Phone: (902) 494-6975
Website: http://entrepreneurship.dal.ca

The Norman Newman Centre for Entrepreneurship resides within the Faculty of Management and through its activities in the domain of entrepreneurship supports the cornerstones of the faculty - managing with integrity and inculcating within our students an acceptance of their need to make a difference. Through programs like ACE/SIFE and the Entrepreneurial Skills Program (ESP), the North American Rural Entrepreneurship initiative (NAREN), the annual Enterprise conference and business plan competition, the presentation of guest speakers and lunch and learns supports the student community in achieving their entrepreneurial aspirations. The Centre is working with other on campus units like the Industry Liaison office (ILI) to contribute to the commercialization of research and off campus with InnovaCorp (the provincial incubator for technology and technical businesses soon to be located on campus) and with the Centre for Entrepreneurship Education and Development (CEED). The Centre engages with the business community through executive briefings on germane topics, subject matter presentations on creativity and creative problem solving and inclusion of the public in the Enterprise conference. Finally the centre contributes to the community at large through their work with Shad Valley (a national month long residential program for grade 10-12 students with strengths in the sciences), support of the Sierra Leone project in support of a school in Sierra Leone and contribution to the Construct the Future Project aimed at employment opportunities in the construction trades for African Nova Scotians. Research and teaching concentrate on understanding the successful identification, evaluation and exploitation of entrepreneurial opportunities by both new and established companies.

Nuclear Magnetic Resonance Research Resource (NMR3)
Director: J.K. Rainey, BSc, MSc, PhD
Facility Coordinator: M.D. Lumsden, BSc, PhD
Solid-state Coordinator: U. Werner-Zwanziger, BSc, PhD

Established in 1982 with assistance from the Natural Sciences and Engineering Research Council, the Resource is located in the Department of Chemistry and is used by faculty, researchers and graduate students in all Maritime universities, the NRC, local industry and many Dalhousie Departments. It is concerned with applications of magnetic resonance spectroscopy to problems in chemistry, materials science, biology, biochemistry and related areas. Its current instrumentation includes Bruker AC-250 (Tecmag upgrade), Avance 300 and Avance 500 NMR spectrometers for liquids and Bruker Avance DSX 400 and Avance 700 NMR spectrometers for solids. NMR-3 users also have direct access to a Bruker Avance III 700 NMR spectrometer with cryoprobe capabilities for liquids experiments. The Avance 500 and Avance 700 NMR spectrometers were installed in 2003 with funding from NSERC, the Canadian Foundation for Innovation and the Atlantic Innovation Fund. The cryoprobes on the Avance III 700 were purchased in 2009 by Dalhousie University through an Atlantic Canada Opportunities Agency Grant. The Resource offers facilities for hands-on use by researchers and also provides NMR spectra and expertise to scientists throughout the Atlantic Region and beyond.

For more information see: http://nmr3.chemistry.dal.ca

Trace Analysis Research Centre
Director: P.D. Wentzell, BSc, PhD

The Trace Analysis Research Centre (TARC) was established in 1971 with the assistance of a grant from the National Research Council. Its mission is to train analytical chemists and, through research, to contribute to the advancement of analytical chemistry. Members of TARC from Dalhousie and associated institutions comprise a group with expertise in a wide range of chemical analysis techniques in areas such as spectroscopy, chromatography, mass spectrometry, electrochemistry, and nuclear analytical chemistry.

Vehicle Safety Research Team
Contact: Josh Leon, PHD P.Eng.
The mandate for this Centre has been completed.
Resources and Services

1. Alumni Association/Alumni Relations
The Alumni Association is comprised of over 100,000 graduates of Dalhousie University. A global network of volunteers keeps alumni informed and involved with the university. By providing many programs and services, the Association fosters a strong relationship between Dalhousie and its alumni.

Dalhousie alumni play a vital role in the health and future of the university. Many alumni return to Dalhousie regularly to hire graduating students. They also serve as advocates, ambassadors and student mentors. The financial support provided by our alumni helps ensure that Dalhousie will continue to provide exceptional post-secondary education to future generations.

The Alumni Association’s Board of Directors works with the Dalhousie Alumni Relations Office, located in the MacDonald Building (494-8801/1-800-565-9969/alumni@dal.ca). Together, the Association and Alumni Relations strive to identify opportunities for alumni involvement, and to foster an environment that invites alumni to participate fully in Dalhousie’s well-being. Visit the website at http://www.dal.ca/alumni.

2. Athletics and Recreational Services
Athletics and Recreational Services offers a wide range of programs for every Dalhousie student. An extensive program of recreational and competitive club and intramural activities offer fun, fitness and competition while 14 varsity sports provide excitement for athletes and spectators alike. For those who prefer recreational activities, there are a great number of fitness, wellness and aquatic instructional programs.

Recreation facilities on campus include: Dalplex-offering a 50,000 sq. ft. fieldhouse, international-size pool, two weight rooms, two regulation-size hardwood basketball/volleyball courts, numerous “no-fee” racquet courts, an indoor track, a bouldering wall, and family-fitness features such as the Fun Zone play area, a family change room; Dalhousie Memorial Arena, Studley Gym, and F.B. Wickwire Memorial Field (one of Canada’s largest artificial playing surfaces). The Cardio Plus Centre, the Rock Court climbing centre, personal training equipment, locker and towel rentals, and babysitting services are available for additional fees. The F.H. Sexton Memorial Gymnasium on the Sexton Campus includes a gym, weight room, squash court and other facilities. For details on fitness and recreation at Dalhousie contact Dalplex at 494-3372, F.H. Sexton Memorial Gymnasium at 494-3550, the Intramural Office at 494-2002 or visit http://www.atletics.dal.ca.

3. Black Student Advising Centre (BSAC)
The Centre is intended to foster a sense of community among ALL students, especially those who are Black/African descent on campus and to increase intercultural awareness. The BSAC hosts a lot of programs such as peer and professional mentorship and other events to help reach these objectives. Other services that are provided at BSAC are in-house tutoring and writing support. The BSAC Advisor provides confidential counseling strategies, and the effective integration of instructional technology.

The Certificate program is available online on the CLT website. For more information on programs and services.

4. Career Services Centre
The Career Services Centre assists you in:
- exploring a full range of career and work possibilities that match your career goals;
- preparing job-search documents to present yourself effectively as a candidate for employment;
- obtaining information on employment opportunities and prospective employers;
- connecting with career opportunities through campus interviews, job and volunteer listings, referrals, direct application, networking, job-search events, publications, and/or information technology; and
- developing and maintaining relationships with organizations that provide career development and employment opportunities for you.

Please refer to Career Services Centre website at http://www.dal.ca/csc for more information on programs and services.

5. Centre for Learning and Teaching
The Centre for Learning and Teaching (CLT) works in partnership with academic units, faculty members, and graduate students to enhance the practice and scholarship of learning and teaching at Dalhousie University. CLT takes an evidence-based approach to advocating for effective learning and teaching practices, curriculum planning, services to support the use of technology in education, and institutional policies and infrastructure to enhance the Dalhousie learning environment.

Programs: Workshop series, presentations, and demonstrations are scheduled to address the full spectrum of educational issues, including curriculum design, evaluation of student learning, teaching and learning strategies, and the effective integration of instructional technology.

Confidential Consultations: CLT staff members provide confidential consultation services to teaching assistants, faculty, and administrators on a wide range of learning and teaching issues.

Annual Events: On an annual basis, CLT coordinates New Academic Staff Orientation, TA Days, Teaching Dossier Workshops, and the Dalhousie Conference on University Teaching and Learning that brings together presenters from across the University and the country to explore issues related to specific themes. CLT also administers several university-wide teaching awards, including the Dalhousie Educational Leadership Award, the Alumni Award of Excellence for Teaching, and the President’s Graduate Teaching Assistant Award.

Certificate in University Teaching and Learning: The Certificate program is offered to graduate students by the CLT in collaboration with the Faculty of Graduate Studies. The purpose of the program is to assist academic departments in preparing students for their teaching responsibilities and to enhance their professional development opportunities for other careers.

Grants: The CLT administers a small number of grants to assist faculty engaged in pedagogical initiatives aimed at enhancing student learning.

Publications: The CLT newsletter, Focus on University Teaching and Learning, is published three times a year and is available online on the CLT website (http://www.learningandteaching.dal.ca). CLT’s lending library includes both print and video resources on topics related to teaching that may be borrowed by faculty, teaching assistants, and administrators.

Teaching and Learning with Technology: A division of the Centre for Learning and Teaching, Instructional Media Services (IMS), offers expertise and support to the university in the areas of classroom design, media production, presentation technology, and technical services.
- IMS supplies equipment, training, and support to students, staff, and faculty. AV Staff provide technical support for classrooms and operate equipment loan pools on Studley and Sexton campuses, as well as assist with classroom design and equipment installations across all three campuses.
- Video and Audio Production Services offers a full range of creative and production services for educational or other academic purposes.
- Technical Services repairs and services electronic equipment and provides expert advice on the design and installation of classroom technology systems. For IMS locations and contact information see http://learningandteaching.dal.ca/ims.html.
For further information, teaching resources, or a confidential consultation, you are invited to contact the Centre for Learning and Teaching, located at Suite G90, Killam Library, 6225 University Avenue (494-1622), (CTT@dal.ca), or you can visit the CLT website at: http://learningandteaching.dal.ca

6. Counselling Services
The Dalhousie Counselling Services Centre offers programs for personal, career and learning disability concerns. Counselling is provided by professionally trained counsellors and psychologists. Strict confidentiality is ensured. Counselling is available both individually and on a group basis. Topics covered by regularly offered group programs, or individual counselling, include career planning, preparing for medical school admission interviews, exam anxiety reduction, public speaking anxiety reduction, grief and loss, sleep and relaxation, overcoming procrastination, and stress management. If you are looking for information on how majors relate to careers, occupational profiles, career decision-making, how to create a career portfolio, advanced studies, or distance learning courses, the Frank G. Lawson Career Information Centre within Counselling Services houses an extensive library of resources along with Career Information Assistants to help you find the information you need. The Counselling Services offices and its Lawson Career Information Centre are located on the 4th Floor of the Student Union Building. In addition to regular office hours, it is open Tuesday and Wednesday evenings during the academic year. Enquiries can be made by dropping in or calling 494-2081. Detailed information on services and the scheduling of group programs and workshops is available on the Dalhousie Counselling Services website: http://www.counsellingservices.dal.ca.

7. DalCard
The DalCard (also referred to as the Dalhousie University ID Card) is a convenient multi-purpose card, which gives the cardholder access to various facilities and services on and off campus. The DalCard is an identification card and also serves as a debit card for retail and vending purchases on and off campus; for printing at Academic Computer Labs; printing and photocopying at the Libraries; Dalplex membership and access card; and a residence meal plan and access card - all in one! The DalCard must be presented to write an officially scheduled examination or to use the library facilities. In addition, some services such as the issuance of bursary or scholarship cheques, require the presentation of a valid DalCard.

The DalCard Office is located at 1443 Seymour Street. Students on the Sexton campus may obtain the DalCard at the Student Service Centre, B Building, 1360 Barrington Street (accessible location). See http://www.dal.ca/dalcard for more information.

8. Dalhousie Arts Centre
Designed as a multipurpose facility, the Dalhousie Arts Centre is home to four University departments: Dalhousie Arts Centre (Rebecca Cohn Auditorium), Dalhousie Art Gallery, and the two academic departments of Music and Theatre. The Arts Centre is an integral part of the cultural experience in our community and stands as the only arts complex of its kind in Nova Scotia.

Of the numerous performing arts spaces in the Dalhousie Arts Centre, the Rebecca Cohn Auditorium, is the most familiar and prestigious. The 1040 seat concert hall is the home of Symphony Nova Scotia, as well as the venue for a wide variety of performers ranging from The Royal Winnipeg Ballet to Blue Rodeo, The Chieftains, and Stomping Tom Cotter. Other performing and visual arts spaces in the Arts Centre include: The Sir James Dunn Theatre (240 seats), the David Mack Murray Studio, Studio II, The MacAloney Room, and the Art Gallery.

The Dalhousie Art Gallery offers the public access to national and international touring exhibitions and initiates many ambitious and exciting exhibition programs.

The Dalhousie Music Department presents weekly noon hour recitals in the Arts Centre. The Department also maintains a full production season including a faculty recital series and student ensemble concerts with music ranging from classical to jazz and contemporary. Further information on the Music and Theatre Departments can be found in their separate listings.

9. Dalhousie Multifaith Centre
The chaplains at Dalhousie provide confidential counselling on personal and spiritual issues and provide opportunities for prayer and worship, retreats, workshops, and social outings. The centre provides a non-threatening environment where students and staff can address the basic questions of meaning and purpose in their lives.

Chaplains currently represent the Anglican, Baha’i, Baptist, Christian Reformed, Conservative Jewish, Hindu, Lutheran, Orthodox Jewish, Shambhala Buddhist, Shia Muslim, Soto Zen Buddhist, Sunni Muslim, Roman Catholic, and United Church faith traditions. They are, however, available and receptive to all students, faculty, and staff regardless of religious background or can refer you to religious leaders of many other denominations and religions. For students who are concerned about religious groups on campus, the chaplains have developed four brochures, “Dalhousie Multifaith Centre,” “Religious Groups: What to Expect, What to Accept, and What to Avoid,” “Places of Worship At and Near Dalhousie,” and “Frequently-Asked Questions on the Dalhousie Multifaith Centre.”

In the event of an emergency, contact Dal Security at 494-6400 or the Student Union Building information desk at 494-2140 for chaplains’ telephone numbers. Feel free to drop by the office any time to introduce yourself and to find out more about the Centre and its services. Visit the website at http://www.dal.ca/dmc.

10. Dalhousie Student Union
Every Dalhousie student is automatically a member of the Dalhousie Student Union. The Student Union is recognized by an agreement with the University Administration and by an Act of the Nova Scotia legislature as the single voice of Dalhousie students. All student activities on campus are organized through the Student Union, and the Student Union is the focus of all student representation. The business of the Student Union is conducted by a Council made up of 40 members. Every student is represented by one or more representatives of their faculty, elected within their faculty in the spring. As well, a number of other constituency groups are represented on the Council because they are uniquely affected by many campus issues. Also on the Council are the student representatives elected to the Senate and Board of Governors.

One of the most important resources of the Student Union is the Student Union Building located at 6136 University Avenue between Seymour and LeMarchant Streets. The SUB, which is owned by the University and administered, managed and controlled by the Student Union and is paid for through Student Union fees, was opened in 1968 as a centre for student activity on campus. The Student Union Building provides a wide range of services for students including the Student Advocacy Service, Travel Cuts, The Grawood, Campus Copy, food services, and much more. Every student has the opportunity to take advantage of the Union’s financial, physical and organizational resources. Students have an opportunity to become involved in committees dealing with various student issues. The DSU also offers over 175 clubs, societies and organizations for students to participate in. All students are invited to satisfy their curiosity by visiting the Student Union Council offices. The Student Council office is located on the second floor of the SUB in room 222 and is open from 8:30 a.m. to 4:30 p.m. Monday through Friday, telephone number 494-1106 or email dsu@dal.ca. Check out the website at http://www.dsu.ca, or my.dsu.ca.

11. Housing/Residence Services
The University is pleased to guarantee residence in University-owned properties for all new Dalhousie undergraduate students who complete the residence application process by June 30th. It’s important that students planning to attend Dalhousie think well in advance about their accommodation needs.

Students should be aware of several important points of reference in regard to residence accommodation. Upon admission to a program of study, all students will receive university residence information. They will also be asked to pay an admission deposit. It’s important to apply to residence (online) and to pay the admission deposit promptly as the dates
these are received will determine when the Residence Application is considered. Residence applications will not be considered from individuals who have not gained admission to a program of study, or paid their admission deposit and residence application fee.

Students with disabilities are encouraged to contact the Residence Office at (902) 494-1054, or email: residence@dal.ca, for information and assistance.

The traditional style residences at Dalhousie are chiefly for undergraduate students. All students living in traditional style residences are required to purchase one of the meal plan options available.

The information below gives a description of: 1. traditional on-campus residences, 2. non-traditional on-campus residences, which includes apartment style housing owned by the university, 3. the services offered by the Off-Campus Housing office, and 4. general information. For information on residence fees, see the Fees section of the Calendar.

It is the responsibility of the individual student in all cases to make a separate online application to the university housing of her/his choice, or utilize the services provided by the Off-Campus Housing office.

1. Traditional On-Campus Residence

A. Studley (Main) Campus

i. Howe Hall
Centrally located on campus, Howe Hall provides accommodation for 700+ undergraduate students. The sprawling, grey ironstone complex is divided into six houses: Bronson, Cameron, Fountain, Henderson, Studley, and Smith. Houses are co-ed. Each house has its own distinctive identity and student government.

The houses offer both double and single rooms. Facilities include a dining room, a large common lounge, television rooms, study areas, laundry rooms, a squash court, and 24-hour front desk. Within residence rooms, ResNet (high speed Internet/wireless), local telephone service and cable TV service are provided.

ii. Shirreff Hall
Shirreff Hall provides accommodation to 440+ students. Located in a quiet corner of the campus, it is minutes from classes, the library, Dalplex and other facilities. Shirreff Hall is divided into four areas: the Annex, Newcombe House (female only), while Old Eddy & New Eddy are co-ed. Old Eddy and New Eddy have mostly single and double rooms while Newcombe and the Annex have single rooms only.

Shirreff Hall offers a dining room, an elegant library and visitors’ lounge, study areas, games room, television lounges, kitchenettes, laundry room, and 24-hour front desk. ResNet (high speed Internet/wireless), local telephone service and cable TV service are provided within each room. Students also have access to a piano.

iii. Eliza Ritchie Hall
Opened in 1987, Eliza Ritchie Hall is a co-ed residence. It provides traditional residence accommodation for 92 students in predominantly single rooms.

This three-storey building is located close to the Dalplex and to Shirreff Hall, where students normally have their meals. Facilities include study rooms, a multipurpose room, reception area, laundry facilities, leisure lounges with kitchenettes and, within each room, ResNet (high speed Internet/wireless). Local telephone service and cable TV service are also provided.

iv. Residence Houses
Dalhousie also has two residence houses, which are co-ed. Formerly single family homes, each house has kitchen, living room and washroom facilities, which are shared among the residents in the house. The character of these homes has been maintained as much as possible.

These houses have only single rooms, each with a bed, wardrobe, study desk, lamp and chair. Linen, cooking utensils and small appliances are not provided. A trained senior student acts as a Residence Assistant and liaises with the Residence Life Manager to provide administrative and resident related services. ResNet (high speed Internet), local telephone service and cable TV service are provided in each room. Meal plans are not mandatory but may be purchased for use at any dining hall on campus.

v. Risley Hall
Risley Hall is located on LeMarchant Street, behind the Student Union Building, and offers 490 single rooms, primarily to undergraduate students. Services include a dining room, laundry rooms, television lounges, and a 24-hour front desk. Each room comes equipped with ResNet (high speed Internet/wireless), local telephone service and cable TV service.

vi. Lyall House, DeMille House, Colpitt House
These properties, which were former faculty offices, have been converted into three mini-residences with a shared courtyard. There are a total of 49 single rooms in a co-ed living environment, with comfortable common space available to residents of each house. As in other traditional residences, a meal plan is required and meals can be eaten at any dining hall. Services include a shared laundry area and ResNet (high speed Internet), local telephone service and cable TV service are offered in each room.

B. Sexton Campus

i. Gerard Hall
Gerard Hall is a 12-story traditional style co-ed residence that houses 241 students in single, super single, and double rooms. It is located in the heart of downtown Halifax on the corner of Morris and Queen Streets. Gerard Hall offers laundry facilities, a big screen TV, DVD player and satellite access in the main lounge. Within residence rooms, ResNet (high speed Internet/wireless), local telephone service and cable TV service are provided. Gerard Hall residents commonly use the O’Brien Hall dining hall, only seconds away, or may use the dining halls in Howe, Risley or Shirreff Halls.

ii. O’Brien Hall
O’Brien Hall is a co-ed residence located in the heart of downtown Halifax. There are approximately 115 Dalhousie students residing in a combination of single and double rooms in O’Brien. Facilities include a dining hall and laundry facilities. Within residence rooms, ResNet (high speed Internet/wireless), local telephone service and cable TV service are provided.

2. Non-Traditional On-Campus Housing

A. Studley (Main) Campus

i. Glengary Apartments
Located on the Studley Campus on Edward Street, Glengary Apartments is a four-storey brick building offering co-ed accommodation for 40+ students.

Glengary has 12 furnished apartments. Each apartment includes a kitchen, living room and bathroom. There are also four furnished bachelor apartments, which are always in high demand. Laundry facilities are located in the basement, where there is also a limited amount of storage space. ResNet (high speed Internet/wireless), local telephone and cable TV service are provided in all apartments. Residence Assistants are available for security and administrative services and also act as a resource for students who may need advice or assistance.

B. Sexton Campus

i. Graduate House
This residence is home to 13 returning students, normally in single rooms. It is located next door to O’Brien Hall and is a short walk from Gerard Hall on Morris Street. ResNet (high speed Internet/wireless), local telephone service and cable TV service are provided in each room.

Meal plans are not mandatory but may be purchased for use at any dining hall on campus including O’Brien Hall, which is next door.
3. Living Off-Campus
Dalhousie’s Off-Campus Housing office is located in Risley Hall and offers help to students in finding off-campus accommodation.

The Off-Campus Housing office provides centralized information on available housing in the Halifax metro area including apartments, shared accommodations, rooms, condos and houses. Telephones for calling landlords and material such as maps and transit schedules are available at the office.

Off-Campus Housing has a website: http://www.dal.ca/och. The site features a wide variety of housing resources available to students.

Based on the relatively low vacancy rate in Halifax, it is advised that students start looking for off-campus housing well ahead of the academic year.

4. General Information
A non-refundable $50 fee is payable when applying for residence. If you are submitting your residence application online, you can make the payment at http://www.dal.ca/studentaccounts. Select “Payments” and follow the links to “Pay Online.” If you are submitting a paper application, the fee can be paid using cheque or Money Order (payable to Dalhousie University), Visa, MasterCard or American Express.

All new Dalhousie undergraduate students are guaranteed a place in residence if they complete the residence application process by June 30th.

For further information on living at Dalhousie, or for a hard copy of the residence application form, do not hesitate to contact:

The Residence Office
Location: 1443 Seymour St.
Dalhousie University
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-1054
Email: residence@dal.ca
Website: http://www.dal.ca/residence

Assistant Vice President, Ancillary Services
Location: 1443 Seymour St.
Dalhousie University
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-3365

Off-Campus Housing
Location: Risley Hall, Room 1024
1233 LeMarchant Street
P.O. Box 15000
Halifax, NS B3H 4R2
Telephone: (902) 494-2429
Email: och@dal.ca
Website: http://www.dal.ca/och

12. Information Technology Services (ITS)
Information Technology Services (ITS) empowers the success of students, faculty and staff through an overall focus on service, advising and consulting. The department is responsible for all centrally managed computing, networking and telecommunications facilities. University email, My.Dal, Online Learning Systems, network connections and much more are services provided by ITS. Additionally, ITS supports university instructional, research and administrative requirements.

Need help with a technical problem? Visit one of three Help Desks located on campus, make a quick call to 494-2576 or email helpdesk@dal.ca. ITS staff supports numerous computer labs across the campus. In addition, wired and wireless connections for laptops are available in many campus locations, including residences.

Personal computers and related supplies can be purchased by students and Dalhousie employees through PCPC, the campus computer store (pcpc.dal.ca).

With a range of new and emerging technologies, ITS staff will help you explore options to make the most of your experience at Dalhousie. See its.dal.ca for more information.

13. International Centre
The International Centre (IC) office is committed to welcoming, supporting and serving the needs of new and continuing international degree-seeking and exchange students at Dalhousie. Advisors are available to meet with students on a variety of matters including finances, immigration, exchange opportunities, health insurance and personal issues. Referrals are made to other resources and services on campus when necessary. The IC organizes orientation activities that assist international and exchange students in adjusting to a new culture and in achieving their educational and personal goals. A variety of social, cultural and information programs are held throughout the year. During the fall and winter terms, an International Student Advisor is also available to meet, by appointment, with students on Wednesdays and Fridays at the Student Service Centre (Sexton Campus) at 1360 Barrington Street.

Student exchange and study-abroad services are facilitated by the Study Abroad and Exchange Advisors at the IC. This branch of the office promotes student mobility by assisting departments and faculties with the establishment of student exchange agreements; managing university-wide exchange programs; advising students on international study, work and volunteer opportunities; providing pre-departure and re-entry services; administering the Study Work International Fund (SWIF) and the George Burris Study in England Bursary; and maintaining the International Opportunities Resource Library.

The IC is located at 1321 Edward Street (2nd Floor). You can email the International Centre at International.Centre@dal.ca, call (902) 494-1566, or visit http://www.dal.ca/ises.

14. Libraries
The Dalhousie University Library System is organized to accommodate the needs of the undergraduate teaching programs, graduate and faculty research projects, and professional schools. The system is made up of the following components: the Killam Memorial Library - Humanities, Social Sciences and Science, the Sir James Dunn Law Library, the Kellogg Health Sciences Library, and Sexton Design and Technology Library - Architecture, Engineering, and Planning.

As of April 1, 2009, the holdings of the Dalhousie Libraries include over 1,875,909 volumes of books, bound periodicals, documents and bound reports, 453,284 microform units, 94,886 maps and other media, 11,985 music scores and 13,213 music recordings. The libraries subscribe to 42,587 serials titles, including 41,646 electronic titles.

Dalhousie libraries participate in Novanet, a network which shares a single automated online catalogue of the holdings of the member libraries (Mount Saint Vincent University, Nova Scotia College of Art & Design University, Saint Mary’s University, Cape Breton University, University of King’s College, the Atlantic School of Theology, St. Francis Xavier University, Nova Scotia Agricultural College and Nova Scotia Community College). Users borrow from Novanet libraries upon presentation of their University ID card.

15. Mature Student Services
Applicants who are Canadian Citizens or permanent residents and 21 years of age or older, by the first day of classes, and are not eligible for admission on the basis of regular admission requirements, may apply for admission as a mature applicant. In order to be eligible, the applicant must either have no university-level study, or have attempted less than one year of transferable coursework. The student cannot have been in full-time university-level study for a minimum period of two years.

Applicants must provide a completed application for admission, high school or post-secondary transcripts, any other relevant documents (e.g. SAT scores, if available), and a letter outlining life and work experiences since last attending full-time study. Applicants will be expected to clearly outline their education goals and motivation to succeed at university study. All factors will be considered in the admission decision.
Admission under this policy is restricted to first year of undergraduate programs. Applicants must have completed grade 12 English (or equivalent) with a minimum grade of 65. Admission to some programs will require completion of other required subjects.

A student admitted on this basis may be restricted in the number of classes he/she can register in during the first year. Otherwise, these students have the same rights, privileges and responsibilities as other students within their program.

Services include pre-admission counselling and university preparation courses such as Writing Skills for Academic Study, Chemistry, Physics, Academic Math and Pre-Calculus. For more information call (902) 494-2375 or visit http://collegeofcontinueded.dal.ca.

16. Office of Human Rights, Equity & Harassment Prevention

The overall mandate of the Office of Human Rights, Equity & Harassment Prevention is to foster and support an inclusive working and learning environment where all members of the University community share responsibility for establishing and maintaining a climate of respect.

The Office is responsible for administering a number of University policies including: the Accommodation Policy; the Employment Equity Through Affirmative Action Policy; complaints based on the Statement on Prohibited Discrimination; the Personal Harassment Policy; and the Sexual Harassment Policy. The Human Rights & Equity Advisor and the Advisor, Harassment Prevention/Conflict Management also liaise with the Office of the Vice-President, Student Services, regarding the Code of Student Conduct.

Other initiatives in the Office of Human Rights, Equity & Harassment Prevention include education and training on topics such as diversity, accommodation, harassment awareness and prevention, conflict resolution and more. Workshops are offered regularly for students, faculty and staff.

The website for the Office of Human Rights, Equity & Harassment Prevention offers downloadable versions of each of the policies, information on the education and training opportunities offered, and additional resources including an annual Mosaic Calendar featuring a variety of religious and cultural holidays, and a Diversity Glossary.

Contact: Bonnie Best-Fleming, Human Rights & Equity Advisor
Gaye Wishart, Advisor, Harassment Prevention/Conflict Management
Phone: 494-6672 / 494-1137
Fax: 494-1179
Email: hrehp@dal.ca
Website: http://www.hrehp.dal.ca

17. Office of the Ombudsperson

The Dalhousie Office of the Ombudsperson offers assistance and advice to anyone experiencing problems with the Dalhousie community, including difficulties associated with finances, academics, or accommodations. This student-run office can help resolve particular grievances and attempts to ensure that existing policies are fair and equitable. Jointly funded by the University and the Dalhousie Student Union, the Ombudsperson can provide information and direction on any University-related complaint. Clients retain full control over any action taken on their behalf by the Office of the Ombudsperson, and all inquiries are strictly confidential.

The Office of the Ombudsperson is located in the Student Union Building, Room 407, 6136 University Avenue. Regular office hours are posted on the door at the beginning of each semester. The Ombudsperson can be reached by phoning (902) 494-6893 or by Email: ombudsperson@dal.ca.

Website: http://ombudsperson.dal.ca

18. Registrar’s Office

The Registrar’s Office is responsible for high school liaison, admissions, awards and financial aid, registration, maintenance of student records, scheduling and coordinating formal examinations, and convocation. Of greater significance to students, however, is the role played by members of the staff who provide information, advice, and assistance. They offer advice on admissions, academic regulations and appeals, and the selection of programs. In addition, they are prepared to help students who are not quite sure what sort of assistance they are looking for, referring them as appropriate to departments for advice about specific major and honours programs or to the office of Student Services or to specific service areas such as the Counselling Services Centre. The Registrar’s Office also mailsthers of thousands of letters and packages annually in response to requests for information and student records, from application to graduation and beyond.

Among the staff are people with expertise in financial aid and budgeting who are available for consultation.

The fact that the Registrar’s Office is in contact with every student and every department means that it is ideally placed to provide or to guide students and prospective students to the source of the advice or assistance they need.

Students can access the services of the Registrar’s Office at two locations. The main office is located in Room 135 of the Henry Hicks Academic Administration Building on the Studley Campus. Students attending classes at Sexton Campus can also access Registrar’s Office services at the Student Service Centre which is located in Building B on the Sexton Campus.

Enquiries may be directed to:

The Registrar
Dalhousie University
P.O. Box 15000
Halifax, NS
Canada B3H 4R2
Telephone: (902) 494-2450
Fax: (902) 494-1630
Email: admissions@dal.ca

19. The Student Accommodation Office (SAO)

Dalhousie University is committed to providing an accessible environment that supports our academically-qualified students with disabilities to fully participate in university life. Staff at The Student Accommodation Office (SAO) work with faculty and staff to provide access to all educational programs, learning environments and campus offerings. An Advisor facilitates an intake process to assess a student’s individual needs and, when needed, to recommend campus supports and exam accommodations to faculty. Staff at SAO, along with other Student Services units at the university, support students through a variety of academic and non-academic programs.

SAO also fosters a welcoming environment for students with disabilities through ongoing informational and educational opportunities for faculty and staff. Ongoing efforts consistent with a reasonable and practical allocation of resources are being made to continuously improve accessibility around campus, in the classroom and during exams. Early consultation is advised to ensure appropriate accommodation of your needs. We can be contacted by phone: (902) 494-2836, or by email (access@dal.ca). Please refer to our website for further information: http://www.studentaccessibility.dal.ca.

Please note that due to chemical sensitivities of persons who work and frequent this office, our environment must be scent free.

20. Student Advocacy Service

The Student Advocacy Service was established by the Dalhousie Student Union and is composed of qualified students from the University. The main purpose of the Service is to ensure that the student receives the proper information when dealing with the various administrative boards and faculties at Dalhousie. An Advocate may also be assigned to assist students with academic appeals or in a disciplinary hearing for an academic offence. Our goal is to make the often unpleasant experience of challenging or being challenged by University Administration less intimidating.
The Advocates may be contacted through:
Location: Student Advocacy Service
Room 310
Dalhouse Student Union Building
Telephone: (902) 494-2205
Email: dsas@dal.ca
Website: http://studentservices.dal.ca/services/advocacy.html

21. Student Clubs and Organizations
Extracurricular activities and organizations at Dalhousie are as varied as the students who take part in them. Organizations range from small informal groups to large well organized ones; they can be residence-based, within faculties, or university wide and interest based. Some are decades old with long traditions, others arise and disappear as students interests change. A list of clubs, societies and organizations is available every fall to new students who are encouraged to select and participate, this list can be found at www.dsu.ca/tiger_societies. If there is not a society that meets your interests, the Dalhousie Student Union encourages and will help you to make your own. For more information on DSU societies please contact the society co-ordinator at society.coordinator@dal.ca or by telephone at 494-1106 or visit www.dsu.ca – http://www.dsu.ca/.

22. Student Services
The Vice-President, Student Services (VPSS), is Dalhousie University’s chief officer of student affairs. Working with an integrated team of specialists across campus, the office of the VPSS coordinates programs and delivers services in support of students’ academic achievement, personal and professional development and community engagement.

Our efforts to enrich the Dalhousie student experience are focused in four key areas: Learning Connections; Community Connections; Wellness Connections; and Leadership and Career Connections. Within each area, professionally trained counsellors and advisors are available to assist you at every step of your journey here at Dal, providing information and resources that are tailored to your individual needs and consistent with your educational and life goals.

If you have questions about your classes; academic program; major, advanced major or honours selection; degree regulations; changing faculties, or if you are experiencing academic difficulties, a dedicated team of Academic Advisors can develop and implement a plan for your educational and life goals.

23. Studying for Success
Our primary goal is to assist you in becoming a more efficient and effective learner. As part of Student Academic Success Services, Studying for Success offers programs to help you reach your academic potential during your time at Dalhousie. Workshops are offered to small groups of students to develop or enhance personal learning strategies and, when applicable, are customized to focus on particular disciplines or fields of study ensuring that the workshop content is relevant to your needs.

Topics regularly covered include time management, getting the most from lectures, critical reading, problem-solving, preparing for and writing exams. Study Skills coaches offer personal coaching either by appointment or on a drop-in basis during regularly scheduled hours, and will refer students to other academic resources when appropriate.

For more details contact Studying for Success:
Location: 3104/3103, Killam Library
Telephone: Appointments: 494-3077
Coordinator: 494-2468
Website: http://sfs.studentservices.dal.ca/

24. University Bookstore
The University Bookstore, owned and operated by Dalhousie, is a service and resource centre for the university community and the general public.

The Bookstore carries all necessary and supplementary stationery and supplies. Also available are gift items, mugs, clothing and crested wear, cards, jewelry, class rings and backpacks with new items being introduced on a regular basis. A Special Order department is located at the customer service area and will order and ship books worldwide and work with faculties and departments to meet their specific needs.

The main Bookstore is situated on the lower level of the Student Union Building on University Avenue, and is open year round, Monday to Saturday (hours vary throughout the year).

The Health Sciences Bookstore has the largest and most complete medical book section in Atlantic Canada, with over 2,000 titles in stock. Thousands of other titles are specially ordered annually, and the department ships out books to consumers and hospitals throughout the world. The Health Sciences Bookstore is located in the Dentistry building, 5981 University Avenue, and is open year round, Monday to Saturday. Hours vary throughout the year.

The Sexton Campus Bookstore is located in the Student Service Centre at 1360 Barrington Street (Building B) and is open from 9:00 a.m. - 4:00 p.m. Monday to Friday. It supplies texts and reference books required for Architecture and Engineering students as well as crested clothing, stationery and other supplies.

The Bookstore website has online ordering capabilities, for both textbooks and general merchandise. Visit the Bookstore online at http://www.dal.ca/bookstore.

25. University Health Services
The University operates a medical clinic in Howe Hall, 6230 Coburg Road (corner of LeMarchant and Coburg), which is staffed by family doctors and nurses. Further specialists’ services are available and will be arranged through Health Services when indicated. Student information collected by Health Services is completely confidential and may not be released without signed permission of the student.

Appointments are made during the clinic’s open hours, from 9:00 a.m. to 10:00 p.m., Monday to Friday and 10:00 a.m. to 6:00 p.m., Saturday and Sunday, by calling 494-2171. In the event of an urgent medical problem, students may seek medical advice during clinic hours. After hours, students should seek assessment by calling 811 to speak to a registered nurse, or visit the local emergency room. The QEII emergency room on Summer Street is the closest emergency room.

All students must have medical and hospital coverage. All Nova Scotia students are covered by the Nova Scotia Medical Services Insurance. All other Canadian students must maintain coverage from their home provinces. This is especially important for residents of any province requiring payment of premiums. All non-Canadian students must be covered by medical and hospital insurance prior to registration. Details of suitable insurance may be obtained from the Student Accounts office prior to registration. Any student who has had a serious illness within the last 12 months, or who has a chronic medical condition, may wish to contact and advise Health Services; preferably with a statement from the doctor. Further information is available on our website at http://www.healthservices.dal.ca.

26. University Secretariat
The University Secretariat provides professional and administrative support and advice to the Board of Governors and University Senate so as to facilitate their effective governance of the University.

The Secretariat manages, coordinates and informs the effective operation of the Board and Senate by:
• Supporting the operations of the University’s governance bodies and their respective standing and ad hoc committees;
• Proposing and developing objectives and plans to establish and achieve priorities;
• Advising on governance issues and developing and implementing policies, procedures and processes that reflect governance best practices;
• Developing, implementing, managing and coordinating the University academic integrity, student discipline & academic appeals policies and processes, and maintaining official records relative to these processes;
• Serving as a repository for University policies and information and data on matters relating to University governance; and
• Facilitating communication and collaboration with key stakeholders.

Visit the website at: http://secretariat.dal.ca/

27. Writing Centre

The Writing Centre’s programs recognize that students in all disciplines are required to write clearly to inform, persuade, or instruct an audience in term papers, laboratory reports, essay examinations, critical reviews and other academic assignments. Students benefit from discussing their work with supportive instructors and peer tutors.

The Centre currently offers a number of services. The main office in the Killam Library’s Learning Commons allows students to obtain advice on writing issues. Tutors also work part of the week at Sexton and the Law School Library. Finally, seminars are held throughout the university year on topics such as essay writing, science writing, mechanics of writing, English as a second language issues, admission applications, etc.

Contact the Writing Centre by visiting the main office in the Killam Learning Commons, calling 494-1963 or emailing at writingcentre@dal.ca. Students can also obtain information on services, hours of operation, and links to writing resources at http://www.writingcentre.dal.ca, and http://dal.ca.libguides.com/writingcentre. Appointments can also be booked online at http://writingcentre.dal.ca
Financial Aid

PLEASE NOTE: The contents of this section are subject to change without notice.

The University reserves the right to publicize the recipients of merit awards.

I. Government Student Loans

Canadian students are to apply for government assistance to the appropriate agency in that province or territory in which the applicant is a bona fide resident. The addresses for Canada Student Loan authorities of those provinces and territories participating in the plan are listed below:

Alberta
Alberta Students Finance
P.O. Box 28000
Station Main
Edmonton, AB T5J 4R4
Fax: (780) 422-4516
Tel: (780) 427-3722
1-800-222 6485 (toll-free in Canada)
http://www.alis.gov.ab.ca

British Columbia
Student Services Branch
Ministry of Advanced Education
P.O. Box 9173
Stn Provincial Government
Victoria, BC V8W 9H7
Fax: 1-800-262-2112
1-800-561-1818 (toll-free in Canada/US)
http://www.aved.gov.bc.ca/studentaidbc

Manitoba
Manitoba Student Aid Advanced Education
409-1181 Portage Ave.
Winnipeg, MB R3G 0T3
Fax: (204) 948-3421
Tel: (204) 945-2313 (outside Manitoba)
1-800-561-1818 (toll-free in Canada/US)
http://www.studentaid.gov.mb.ca

New Brunswick
Student Financial Services
Department of Education
P.O. Box 6000
77 Westmorland St., TD Tower, 5th Floor
Fredericton, NB E3B 5H1
Fax: (506) 444-4333
Tel: (506) 453-2577 or
1-800-667-5626 (Atlantic Provinces, Ontario and Quebec only)
http://www.studentaid.gnb.ca

Newfoundland & Labrador
Student Financial Services Division
Department of Youth Services and Post-Secondary Education
P.O. Box 8700
St. John’s, NL A1C 4J6
Fax: (709) 729-2298
1-888-657-0800
http://www.ed.gov.nl.ca/studentaid/

Northwest Territories
Student Financial Assistance
Department of Education
Cultural and Employment
Government of NWT
P.O. Box 1320
Yellowknife, NT X1A 2L9
Fax: 1-800-661-0893
Tel: (867) 873-7190
1-800-661-0793
http://www.nwtsfa.gov.nt.ca

Nova Scotia
Student Assistance Office
Department of Education
P.O. Box 2290, Halifax Central
Halifax, NS B3J 3C8
Fax: (902) 424-0540
Tel: (902) 424-8420 (metro)
1-800-565-8420 (within province)
(Street location: Trade Mart Building, 2012 Brunswick at Cogswell Street, Halifax, N.S.)
http://studentloans.ednet.ns.ca

Nunavut
Adult Learning & Post-Secondary Services
Nunavut Department of Education
Box 390
Arviat, NU
XOC 0E0
Fax: 1-877-860-0167
1-877-860-0880
http://www.edu.gov.nu.ca/

Ontario
Ontario Student Assistance Program
Student Support Branch
Ministry of Training, Colleges and Universities
P.O. Box 4500
Thunder Bay, ON P7B 6G9
Fax: (807) 343-7278
Tel: (807) 343-7260
http://osap.gov.on.ca

Prince Edward Island
Student Financial Services
Department of Education
P.O. Box 2000
16 Fitzroy St
Charlottetown, PE C1A 7N8
Fax: (902) 368-6144
Tel: (902) 368-4660
http://www.studentloan.pe.ca

Québec
Residents of Québec apply to:
Ministère de l’Éducation
Aide financière aux études
1035, rue De La Chevrotière
Québec, QC G1R 5A5
Tel: (418) 646-4505
Tel:1-888-345-4505
http://www.studentloan.pe.ca

Saskatchewan
Student Financial Assistance Branch Saskatchewan Learning
3085 Albert Street, Walter Scott Building
Regina, SK S4P 3V7
Tel: (306) 787-5620
1-800-597-8278
http://www.student-loans.sk.ca
II. Dalhousie Graduate Bursaries

All graduate students currently registered in a degree program, beyond year one, are eligible to apply. Students who unexpectedly find themselves in financial need may apply to the Graduate Studies Office for university bursaries made available through the student assistance program.

Bursaries are for students who can prove their need. Students eligible for government loans must have applied for them before a bursary application can be considered. Please note there are no appeals on bursary decisions. Bursary applications can be found on the Faculty of Graduate Studies website at http://dal.ca/grad/currentstudents/funding

Applications from international graduate students are handled by the Faculty of Graduate Studies (for emergency financial assistance). The Faculty of Graduate Studies has limited funds for international graduate students. (Application information can be found on the Faculty of Graduate Studies website at http://dal.ca/grad/currentstudents/funding

A. General Information about Bursaries

It should be noted that Canada Student Loans (with or without provincial bursaries and/or loans) are expected by provincial authorities to meet the financial deficiencies of the students and that bursaries subsequently awarded by the University must be reported and are liable to be deducted (in part of in whole) from the amounts originally allocated under the Canada Student Loan Plan or provincial aid program.

B. Government Notification

Holders of Dalhousie University bursaries should note that the University is required, upon written request, to report its award winners to the respective Provincial Student Aid Authority.
in accordance with such special program or policy. For further information regarding these fees, please contact Student Accounts or the Dean’s office of the applicable faculty.

Students should make special note of the academic dates contained in the front section of the calendar as well as fee dates. Students should also be aware that additional fees and/or interest will be charged when deadlines for payment of fees as contained herein are not met.

All the regulations in this section may not apply to Graduate Students. Please refer to the Faculty of Graduate Studies section of the Graduate Calendar.

II. University Regulations

The following general regulations are applicable to all payments made to the University in respect of fees. Please refer to our website for additional information on payment options: http://www.moneymatters.dal.ca.

- Fees must be paid in Canadian funds by cash, electronic bank transfer, interac, negotiable cheque or money order.
- Money transferred to a student’s account should not exceed the annual charges associated with tuition and ancillary fees.
- If payment by cheque is returned by the bank as non-negotiable, there will be an additional fee of $20.00 and the account will be considered unpaid. Furthermore, if the bank returns a cheque that was to cover payment of tuition, the student’s registration may be cancelled and, if permitted to re-register, a late fee will apply.
- Accounts in arrears must be paid by cash, certified cheque, money order or interac prior to registration in a future term.

A. Admission Deposits

1. Note: These rates are for 2011-2012. (For information only)

A non-refundable deposit of $200 is payable on admission by all new undergraduate and graduate students. Undergraduate students accepted by April 20 are required to pay the deposit by May 15. Undergraduate students accepted after April 20 must pay the deposit within three weeks of receiving an offer of admission. Graduate students must pay the deposit within four weeks of receiving an offer of admission.

Undergraduate Medicine students are required to pay a $500, non-refundable, admission deposit.

International Dentistry, Qualifying Dentistry and Internetworking students are required to pay a non-refundable $2,500 admission deposit.

The admission deposit will be credited towards fees at time of registration.

B. Registration

A student is considered registered after selection of course(s).

Selection of course(s) is deemed to be an agreement by the student for the payment of all assessed fees.

Non attendance does not constitute withdrawal. Students must ensure that they withdraw from all classes online.

C. Late Registration

Students are expected to register on or before the specified registration dates. Students wishing to register after these dates must receive the approval of the Registrar. A late registration fee of $50.00 will apply if registration and payment of fees has not been completed by specified dates. This fee is payable at time of payment and will be in addition to regular fees.

D. Academic Fees

I. Fee Schedule

The 2012/2013 academic fee schedule is not yet available. Once fees are approved for 2012/2013, a complete schedule showing the required payments of the academic fees and deposits will be made available. The official schedule will be available online at http://www.moneymatters.dal.ca.
NOTE: Students registered in more than one program are required to pay separate academic fees for each program. Additional fees for distance courses and programs may apply.

2. Exchange Students
Outbound exchange students whose fees are paid to Dalhousie University will be assessed tuition and fees for 15 credit hours in their faculty.

APPROVED TUITION FEES 2011/2012

<table>
<thead>
<tr>
<th>Degree Program</th>
<th>Program Fee</th>
<th>Per Course Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture, Community Design</td>
<td>648.90</td>
<td></td>
</tr>
<tr>
<td>Arts and Social Sciences</td>
<td>621</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td>704.40</td>
<td></td>
</tr>
<tr>
<td>Dentistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dental Hygiene Diploma</td>
<td>16,509</td>
<td>7,756</td>
</tr>
<tr>
<td>Dental Hygiene Degree</td>
<td>40,000</td>
<td>784.80</td>
</tr>
<tr>
<td>Engineering</td>
<td>704.40</td>
<td></td>
</tr>
<tr>
<td>Health Professions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disability Management Diploma</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Emergency Health Services Management Diploma</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>Health Administration</td>
<td>704.40</td>
<td>723</td>
</tr>
<tr>
<td>Health Science</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td>Health Services Administration Diploma</td>
<td>704.40</td>
<td></td>
</tr>
<tr>
<td>Nursing & Kinesiology</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td>Pharmacy</td>
<td>744.60</td>
<td></td>
</tr>
<tr>
<td>Recreation & Health Promotion</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td>Social Work</td>
<td>686.10</td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>12,366</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commerce Co-op</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>13,818</td>
<td>2,498</td>
</tr>
<tr>
<td>Post-Graduates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>704.40</td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRADUATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture and Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Professional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Professional, Masters of Architecture</td>
<td>7,473</td>
<td>747.90</td>
</tr>
<tr>
<td>Environmental Design Studies</td>
<td>7,473</td>
<td>784.80</td>
</tr>
<tr>
<td>Planning</td>
<td>7,473</td>
<td></td>
</tr>
<tr>
<td>Arts and Social Sciences</td>
<td>6,553</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td>7,473</td>
<td></td>
</tr>
<tr>
<td>Dentistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD/MS (Oral and Maxillofacial)</td>
<td>16,509</td>
<td>8,096</td>
</tr>
<tr>
<td>Prosthodontics</td>
<td>16,509</td>
<td></td>
</tr>
<tr>
<td>Periodontics</td>
<td>16,509</td>
<td></td>
</tr>
<tr>
<td>Electronic Commerce</td>
<td>8,283</td>
<td></td>
</tr>
<tr>
<td>Engineering, Applied Science, Biomedical Engineering & Food Science</td>
<td>7,473</td>
<td>2,020</td>
</tr>
<tr>
<td>Engineering - Internet Working (per course)</td>
<td>8,283</td>
<td></td>
</tr>
<tr>
<td>Health Professions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Health Services Research</td>
<td>6,670</td>
<td></td>
</tr>
<tr>
<td>Clinical Vision Science</td>
<td>8,096</td>
<td></td>
</tr>
<tr>
<td>Health Promotion, Leisure Studies</td>
<td>7,473</td>
<td></td>
</tr>
<tr>
<td>Health Administration</td>
<td>7,473</td>
<td></td>
</tr>
<tr>
<td>Human Communication Disorders (Years 1 and 2)</td>
<td>9,384</td>
<td>7,774</td>
</tr>
<tr>
<td>Human Communication Disorders (Year 3)</td>
<td>9,384</td>
<td></td>
</tr>
<tr>
<td>Kinesiology and Nursing</td>
<td>8,096</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Sciences</td>
<td>9,381</td>
<td></td>
</tr>
<tr>
<td>Occupational Therapy</td>
<td>13,017</td>
<td></td>
</tr>
<tr>
<td>Entry Level</td>
<td>13,017</td>
<td></td>
</tr>
<tr>
<td>Post Professional</td>
<td>9,381</td>
<td></td>
</tr>
<tr>
<td>Physiotherapy</td>
<td>7,774</td>
<td></td>
</tr>
<tr>
<td>Entry Level</td>
<td>13,017</td>
<td></td>
</tr>
<tr>
<td>Rehabilitation Research</td>
<td>9,381</td>
<td></td>
</tr>
<tr>
<td>Social Work</td>
<td>726.30</td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>9,212</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBA Corporate Residency</td>
<td>19,570</td>
<td>6,648</td>
</tr>
<tr>
<td>Environmental Studies</td>
<td>8,282</td>
<td></td>
</tr>
<tr>
<td>Library and Information Studies</td>
<td></td>
<td>658.20</td>
</tr>
<tr>
<td>Public Administration</td>
<td></td>
<td>658.20</td>
</tr>
<tr>
<td>Resource and Environmental Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Management</td>
<td>6,648</td>
<td></td>
</tr>
<tr>
<td>Medicine</td>
<td>8,966</td>
<td></td>
</tr>
<tr>
<td>Community Health & Epidemiology</td>
<td>7,473</td>
<td></td>
</tr>
<tr>
<td>Medicine - Except Community Health & Epidemiology</td>
<td>7,473</td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>7,473</td>
<td></td>
</tr>
<tr>
<td>Doctorate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arts and Social Sciences</td>
<td>6,900</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td>7,809</td>
<td></td>
</tr>
<tr>
<td>Engineering, Applied Science & Biomedical Engineering</td>
<td>7,809</td>
<td></td>
</tr>
<tr>
<td>Law</td>
<td>9,528</td>
<td></td>
</tr>
<tr>
<td>Medicine</td>
<td>7,809</td>
<td></td>
</tr>
<tr>
<td>Nursing</td>
<td>8,433</td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>7,809</td>
<td></td>
</tr>
<tr>
<td>Continuing Fee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Programs</td>
<td>2,046</td>
<td></td>
</tr>
<tr>
<td>International Student Differential Fee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Programs except Graduate Thesis-based</td>
<td>7,731</td>
<td></td>
</tr>
<tr>
<td>Graduate Thesis-based Programs</td>
<td>5,546</td>
<td></td>
</tr>
<tr>
<td>International Dentistry, Qualifying Dentistry and Internet working are exempt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Health Insurance</td>
<td>636 per year</td>
<td></td>
</tr>
</tbody>
</table>

Note: Complete fee schedules are available online. The 2011/2012 fee schedule currently online is expected to be updated in June of 2012 with the 2012/2013 academic fees. For course fees are based on a 5 credit hour course.

E. Payment
The payment of academic fees will be received at the Student Accounts Office located on the basement level of the Henry Hicks Academic Administration building or the Student Service Centre on Sexton Campus.

For the convenience of students, non-cash payments are accepted by mail. Fees paid by mail must be received by Student Accounts on or before the deadlines specified in order to avoid late payment and/or delinquency charges.

The following regulations apply to the payment of academic fees. For further information on regulations regarding withdrawal of registration, please refer to "Class Changes, Refunds and Withdrawals" on page 317:

a. All students must pay the applicable deposit in accordance with Section A.

b. Those holding external scholarships or awards paid by, or through, Dalhousie must provide documentation of the scholarship or award before term fees are due.

c. Those whose fees are paid by a government (or other agency) must have the third party billing form completed and returned to Student Accounts by September 21 or January 18 for the respective term. The form is available online at http://www.moneymatters.dal.ca.

d. Those paying the balance of their account by Canada Student Loan must negotiate the loan by September 21 or January 18 for the respective term. Interest will be charged after these dates and a late registration fee will apply.

e. Those whose fees are paid by Dalhousie University staff tuition fee waiver must present the appropriate waiver form and pay applicable incidental fees by September 21 or January 18.

f. Those who are Canadian citizens or permanent residents, 65 years of age (or over) and enrolled in an undergraduate degree program will have their tuition fees waived, but must pay the applicable incidental fees.

g. Scholarships or awards paid by or through Dalhousie University will be applied to academic and residence fees.

h. When a Canada Student Loan, provincial loan or co-payable bursary is presented at the Student Accounts Office, any unpaid charges, will be deducted.

i. Fees cannot be deducted from salaries paid to students employed at Dalhousie University.

j. Any payments will first be applied to past due balances.

F. Access to Student Financial Information
Student Accounts is often asked to disclose financial information on a student's account by parents and others so they can make accurate tuition payments.
University policy recognizes the financial account as belonging to the student and therefore, to protect student privacy, account information is considered confidential. For more information on granting permission for financial information to be released to a third party (such as a parent), please contact Student Accounts at (902) 494-3998 or visit our website at http://www.moneymatters.dal.ca.

G. International Students

1. Differential Fee

Registering students who are not Canadian Citizens or permanent residents are required to pay an additional fee referred to as a “Differential Fee” in the amount of $3865.50 maximum per term, subject to increase in 2012/2013. There is a proportional charge for part-time international students. International Dentistry, Qualifying Dentistry and Internet working students are exempt. Graduate Students please see Section 4.7 of the Graduate Studies Calendar to determine the number of years a student is required to pay the differential fee. If a student receives landed immigrant status, the differential fee will not be assessed for the current term and beyond. In order to process a retroactive reimbursement of differential fees in a current term, proof of residency must be submitted to the Registrar’s office prior to the last day of December, April, August for each term.

2. Health Insurance

International students will be charged for an International Student Health Insurance Plan when they register. If a student already has health coverage, they can apply to opt out of the International Student Plan at the International Student & Exchange Services Office (ISES) before September 21, 2012. Costs for the health plan change annually. More details on the international student health plan costs and opt out process can be found at the ISES website: http://ises.dal.ca. Full-time students will also be assessed the DSU Health and Dental plans, see 11.P.1.

Health Insurance - International Students (2011/2012 fees, for information only)
- Single - $636.00 per year
- Family - $1560.00 per year

H. Audit Classes

All students auditing a class pay one-half of the regular tuition fee plus full auxiliary fees, if applicable. In such cases, the student is required to complete the usual registration process.

A student who is registered to audit a class who during the session wishes to change their registration to credit must receive approval from the Registrar. This must be done on or before the last day for withdrawal without academic penalty. The same deadline applies for a change from credit to audit. Graduate students please see Section 6.6.4 for audit information.

I. Class Changes, Refunds and Withdrawals

Please consult Student Accounts for all financial charges and the Registrar’s Office for academic regulations.

Refund Conditions

Students withdrawing from all courses must submit written notification to the Registrar’s Office. Non attendance does not constitute withdrawal so please ensure courses are dropped. Refunds due to course withdrawals will be effective when a course(s) is dropped online at http://www.dal.ca/online or written notification is received at the Registrar’s Office. Please contact Student Accounts to have your refund processed.

In the Faculties of Architecture and Planning and Health Professions students who wish to withdraw from the University must obtain written approval from the appropriate school or college and submit the appropriate forms to the Registrar. Students should continue to attend class until their withdrawal has been approved.

Refunds will be processed as follows:

a. Based on the withdrawal date, fees are refunded based on the percentages outlined in the online refund schedule http://www.moneymatters.dal.ca.

b. No refunds will be made for 30 days when payment has been made by personal cheque or 60 days for a cheque drawn on a bank outside of Canada.

c. A student who is dismissed from the University for any reason will not be entitled to a refund of fees.

d. Refunds will be made to the National Student Loan Centre if a student has received a Canada or provincial student loan.

e. Refunds will be prorated on fees paid by Dalhousie scholarships and/or fee waiver.

f. A valid Dalhousie University ID must be presented in order for the student to receive a refund.

g. No fee adjustment will be made for a student changing their degree or program as follows:

<table>
<thead>
<tr>
<th>Program</th>
<th>After Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular (Sept. - April)</td>
<td>September 21</td>
</tr>
<tr>
<td>Winter Term</td>
<td>January 18</td>
</tr>
<tr>
<td>Fall Terms</td>
<td>May 21</td>
</tr>
<tr>
<td>Summer Term</td>
<td>After May 13</td>
</tr>
</tbody>
</table>

J. Refund Schedule

Please visit http://www.dal.ca/admissions.html in June of 2011 to view the new refund schedule.

Important Information Regarding Refunds

- A portion of fees as outlined in the refund schedule will be assessed if withdrawal from a course occurs after September 21 (Fall Term) and January 18 (Winter Term). Withdrawals before these dates will be completely refunded, but no substitutions will be allowed from a financial perspective after these dates.
- Non-attendance does not constitute withdrawal and fees will be payable.
- The refund schedule does not apply to the University of King’s College Journalism Program.
- For financial charge inquiries, contact Student Accounts at (902) 494-3998 or Student.Accounts@dal.ca.

K. Delinquent Accounts

Accounts are considered delinquent when the balance of fees has not been paid by September 21 for the fall term, (January 18 for the winter term).

Interest at a rate set by the University will be charged weekly on delinquent accounts for the number of days overdue.

Effective July 1st, 2011 the rate of interest is 6.0% per annum, compounded monthly.

A student whose account is delinquent for more than 30 days will be denied University privileges including access to transcripts. A student will be reinstated upon payment of the fees outstanding, the arrears interest and a $50.00 reinstatement fee. Students will not be permitted to register in future terms until all outstanding amounts are paid in full. Subsequently, if the bank does not honour the payment, the student may be deregistered.

Graduating students whose accounts are delinquent on April 15 will not receive their degree/diploma parchment. For fall graduation the deadline is September 1. Transcripts are withheld until payment is received in full.

Accounts which become seriously delinquent may be placed in collection or further legal action may be taken against the individual. Students will be responsible for charges incurred as a result of such action.

L. Canada Student Loans

Students planning to pay by Canada Student Loan should apply to their province in April or May so that funds will be available by the time payment is required. The University will deduct fees/charges from the loan at the time of endorsement. Please contact the appropriate provincial office to determine eligibility as well as class load requirements. A late fee of $50.00 will apply if the loan is negotiated after September 21, 2012.

(Friday 18, 2013 for students registered for winter term and May, 2013 for students registering for the summer term).
M. Provincial Bursaries and University Scholarships

These cheques are distributed by the Student Accounts Office. Any unpaid fees and/or temporary loans along with charges, if applicable, are deducted and payment will be issued within one week of endorsement for any balance remaining. A valid Dalhousie University ID and Social Insurance Number must be presented in order to receive cheques. Please contact the appropriate provincial office to determine eligibility as well as class requirements for provincial bursaries. For more information on student loans, bursaries or scholarships inquiries should be directed to the Registrar’s Office - on the first floor of the Henry Hicks Academic Administration building, Room 123.

N. Income Tax Credit from Academic Fees

The amount of academic fees constituting an income tax credit is determined by Canada Revenue Agency.

A special income tax certificate (T2202A) will be available annually through Web for Student at http://www.dal.ca/online no later than February 28 for the previous calendar.

O. Identification Cards (DalCard)

All full and part-time students should obtain identification cards upon registration and payment of appropriate fees. If a card is lost, a fee of $15.00 is charged. Regular session ID cards are valid until August 31.

P. Student Fees

1. Student Union Fee

Every student registered at Dalhousie is a member of the Student Union and required to pay a Student Union fee as part of their registration procedure. These fees have been approved by students in referenda and, along with other revenue of the Union, are allocated each year by the Student Council budget.

For information only, 2011-2012 full-time student union fees are $59.00 per term. DSU Health Insurance is $253.00 per year. Students with separate health insurance may apply to the DSU for reimbursement. For more information please contact the Student Union Office in Room 222 of the Student Union Building (SUB), phone: (902) 494-2580 or visit their website at http://www.dsu.ca

2. Student Service Fee

Student Service provides and supports various Dalhousie Services including health services and athletics. For information only, 2011-2012 Student Service fee is $116.50 per term for full-time students.

The following services will be provided without additional charges unless specified:

- Change from Audit to Credit
- Confirmation of Enrollment
- Confirmation of Fee Payment
- Dalplex Membership
- Leave of Absence Fee
- Letter of Permission
- Replacement Tax Receipt
- Transcripts (maximum of 5 requested at one time)

3. Laboratory Deposits

A deposit for the use of laboratory facilities in certain departments is required. The deposit is determined and collected by these departments. Students will be charged for careless or willful damage regardless of whether or not a deposit is required.

4. Additional Student Fees

The official fee schedules are available online at http://www.moneymatters.dal.ca and include other charges such as auxiliary, society, and facilities renewal fee.

Departments may also charge additional fees on a cost recovery basis not included in the schedules. Examples include, but are not limited to, print or copy fees, transportation costs and material fees. Students registered in online courses and distance programs will be assessed additional fees for delivery of these courses.

Miscellaneous fees are charged as outlined in the table below.

<table>
<thead>
<tr>
<th>Miscellaneous Fees 2012-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fee</td>
</tr>
<tr>
<td>Late Registration</td>
</tr>
<tr>
<td>Reinstatement Fee</td>
</tr>
<tr>
<td>Returned Cheque</td>
</tr>
<tr>
<td>Admission Deposit</td>
</tr>
<tr>
<td>Application Fee</td>
</tr>
<tr>
<td>Late Graduation Application</td>
</tr>
<tr>
<td>Replacement ID</td>
</tr>
<tr>
<td>Replacement Bus Pass</td>
</tr>
<tr>
<td>Transcript</td>
</tr>
<tr>
<td>Fax Fees</td>
</tr>
<tr>
<td>Metro</td>
</tr>
<tr>
<td>Canadian</td>
</tr>
<tr>
<td>International</td>
</tr>
<tr>
<td>Residence Application Fee</td>
</tr>
</tbody>
</table>

* Except for the following programs which require payment of a $70.00 application fee: Occupational Therapy, Pharmacy, Physiotherapy, Social Work, Diploma programs in Meteorology, Outpost and Community Health Nursing, and Health Services Administration; and all programs in the Faculties of Medicine, Dentistry (including Dental Hygiene), Law, and Graduate Studies.

** Where appropriate, contact Registrar’s office for details.

Note: Fees are subject to change after publication of this calendar.

5. University Bus Pass Fee (UPass)

All eligible full-time students will receive a Metro-Transit bus pass (UPass). The fee for the pass in 2011/2012 is $137.70. Please refer to http://www.upass.dal.ca for further information and the most current rates.

Q. Statements and Monthly Notices

Students with current activity will be issued electronic statements. Students will be notified through their official Dalhousie email account when a new statement is available. Subsequent monthly payment reminders will be sent to the student’s official Dalhousie email address. Refer to http://www.moneymatters.dal.ca for more information.

III. Residence Fees

Residence rates vary depending on the location and style of accommodations available. For up-to-date residence options and rates, please visit http://www.dal.ca/residence. All residence rates include local telephone service with voice mail features, cable TV service and ResNet (high-speed Internet/wireless). Rates do not include the non-refundable $50 Residence Application Fee or, in the case of traditional residences, the Residence Council Fee.

It is important to note that traditional residences have a mandatory meal plan; however, there are several options available for students. Traditional residences include: Howe Hall, Risley Hall, Shirreff Hall, Eliza Ritchie Hall, Gerard Hall, O’Brien Hall, Mini Residences, and Residence Houses. Non-traditional residence options include: Glengary Apartments, and the Grad House. Meal plans are not required in non-traditional residences but are recommended. For up-to-date meal plan options and rates, please visit http://www.foodservices.dal.ca.

Important:

- Once offered admission to an academic program of study at Dalhousie, students are eligible to submit a residence application with the required $50 non-refundable fee. The application will not be processed until both the $200 admission deposit and $50 residence application fee have been paid.

- Students must be registered full-time at Dalhousie to apply to residence.

- No refund will be made to any resident who is dismissed for misconduct. Discretionary power in exceptional circumstances remains
with the Director, Residence Operations, in conjunction with the Director, Residence Life or their designates.

- All residence students, new and returning, who have received notification of their room assignment, must pay a $500 deposit to confirm their acceptance. The deposit is due within the time frame specified by the Residence Office.
- The $500 deposit is non-refundable.
- The $50 residence application fee and $500 deposit can be paid by credit card (M/C, Visa, Amex) by visiting http://www.dal.ca/admissions.html. For more payment options, please visit www.dal.ca/admissions.html.
- No residence room will be held based on post-dated or “insufficient fund” cheques.
- Deposits or fees cannot be deducted from scholarships, fellowships, or similar awards.
- Residence agreements are for 8-month terms (September – April). Please note, residences close during the December break.

A. Residence Term

The residence term commences the day before classes begin in September in the College of Arts and Science and ends on the last day of the examination period in the College of Arts and Science in April. Students must vacate the residence 24 hours after their last exam and residences are closed over the December break.

If required, an additional fee is payable by all residents who are registered in a Faculty where the academic session commences before or continues after the session of the College of Arts and Science. Special arrangements are to be made with the appropriate Residence Life Manager for accommodation for periods prior to or following the session as defined above.

B. Payment of Residence Fees

Payment may be made in full at registration or in two instalments. The first instalment must be paid in full by September 21, 2012. Interest is assessed weekly at a rate as set by the University and will be charged on all accounts outstanding after September 21, 2012 and on any second instalment outstanding after January 18, 2013. The student will not be permitted to register for another session until all accounts are paid in full. A student whose account is delinquent for more than 30 days will be denied university privileges including access to transcripts. The student will be reinstated upon payment of the fees outstanding, the arrears interest, and a $50 reinstatement fee. For additional information regarding outstanding or delinquent accounts, please see II. Fees, Section K.

All residence fees can be paid at the Student Accounts Office, the Student Service Centre (Sexton Campus), or online at http://www.dal.ca/admissions.html.

Students should make an appointment as soon as possible with the Assistant Manager of Student Accounts if they are having financial difficulties.

C. Residence Communications

All residences are wired for high-speed Internet/wireless, local telephone service and cable TV access. The cost is included in residence fees. Check out the website at http://www.dal.ca/rescomm.
Awards

PLEASE NOTE: The contents of this awards section are subject to change without notice.

The University reserves the right to publicize the recipients of merit awards.

I. Faculty of Graduate Studies

A. General Disciplines

1. Faculty of Graduate Studies Scholarships

Each department has a limited number of scholarships available for students pursuing a degree program on a full-time basis. Scholarships are not offered to anyone on leave from a job with salary continuation. Those wishing to be considered for scholarship assistance are advised to contact the Graduate Coordinator in the department to which they are applying for details on eligibility and deadlines (NOT the Faculty of Graduate Studies). Graduate Coordinator contact information can be found at http://www.dalgrad.dal.ca/departments/.

In general, Faculty of Graduate Studies Scholarships will be paid to the student in regular monthly payments on the 27th of each month, after University tuition and fees have been deducted. Payments are made by automatic bank deposit. Deposit advice statements are available on dal online. Where warranted, with permission of the Dean of Graduate Studies, a student may receive scholarship funding for a maximum of 12 months while pursuing research off-campus.

Very well qualified scholars who receive awards from federal agencies may also receive Dalhouse supplements within the limits set down by the FGs and/or agencies offering the awards.

There are no appeals on decisions on scholarships, grants or bursaries.

Killam Predoctoral Scholarships

Killam scholars are selected on the basis of nominations made by departments. It is expected that nominees will also have applied for funding from relevant national or international agencies for which they are eligible. Canadian students are eligible for nomination for the Killam Scholarships only if they have applied for the relevant national scholarship (NSERC, SSHRC, CIHR, etc.).

Only those students registered in a program with a thesis requirement are eligible to hold the Killam Predoctoral Scholarship.

Killam scholarship holders must be eligible to receive scholarship support for at least two years. This means that at the Masters level only newly entering students will be considered. Renewal is upon evidence of satisfactory performance at a required minimum level. Masters students may hold a Killam Scholarship for 24 months and Doctoral students for up to 36 months except when holding honourary degree for 48 months. The scholarships will be valued at $20,000 for a Master’s program and $25,000 for a Doctoral program. Tuition/fees are not waived and must be paid out of the award, but additional funds to assist with transportation to Halifax, and differential fees for foreign students will be supplied. Killam scholars may perform instructing or demonstrating duties, and, if they do, will be given additional remuneration for these services through the employing department.

Killam scholarships are open to both Canadians and non-Canadians.

PLEASE NOTE: Candidates do not apply for these Scholarships. On the basis of the information in a completed application for admission the graduate department concerned may nominate the student to the selection committee. Contact the department Graduate Coordinator for further information.

Eliza Ritchie Doctoral Scholarship for Women

The Eliza Ritchie Doctoral Scholarship was established to commemorate Women’s Centennial Year (1988) and to recognize the contribution to Dalhousie of one of its most important nineteenth-century graduates. After completing her undergraduate studies at Dalhousie in 1887, Eliza Ritchie (1856-1933) became one of the first Canadian women to receive a PhD degree (Cornell University, 1889). She cut short her professional career at Wellesley College to return to Halifax in 1899, where she devoted her energies to feminist and cultural causes, and to Dalhousie, for the rest of her life. She was the first warden of a Dalhousie women’s residence (Forrest Hall, 1912-13), the first woman to serve as a member of the Dalhousie Board of Governors (1919-25), a founding member of the editorial board of the Dalhousie Review, and the first woman to receive an honourary degree from Dalhousie (LLD, 1927). Scholarships are awarded to Canadians and permanent residents only and preference given to candidates from the Atlantic Provinces. Among such applicants preference will be given to those in disciplines in which women are under represented. The award will have a value of $24,000 for a 12-month academic period at Dalhousie and is renewable (upon application) for two additional years. One scholarship may be awarded each year. The deadline for receipt of the prescribed applications is March 15th. Additional information and application forms (new or renewal) are available on the Faculty of Graduate Studies website at http://www.dal.ca/grad/currentstudents/funding/eliza.

James Robinson Johnston Graduate Scholarship for African Canadians

The James Robinson Johnston Graduate Scholarship is supported by the Faculty of Graduate Studies and the Endowment for the James Robinson Johnston Chair in Black Canadian Studies at Dalhousie as part of the commitment of the Johnston endowment and the university to support the development of Black Canadian scholars in graduate studies and the professions. James R. Johnston was Dalhousie’s first black graduate in the Law Faculty in 1898 and was a major figure in the legal profession and the Black community throughout his short life. Today young African Canadians can be found pursuing studies in the arts, sciences, health professions and management as well as the traditional professions of law, dentistry and medicine. This scholarship is intended to provide an opportunity for promising African Canadian students to pursue their work at the graduate level.

To be eligible, applicants must have been accepted, by the application deadline, into a program of study in any discipline in which Dalhousie offers a graduate degree. Successful applicants are normally expected to have attained scholarship standing.

Successful candidates for an initial award and for renewals will be identified by the James Robinson Johnston Scholarship Committee. The general rules for Dalhousie Graduate Scholarships will be applied except that, in the case of this scholarship, the award must be taken up initially in the first year of the degree program.

Scholarships are valued at $15,000 (Master’s level) and $19,000 (Doctoral level) per year for a twelve-month academic year of full-time study. The tuition and fees are not waived and must be paid out of the award. Scholarships may be renewed, subject to satisfactory annual progress review, for one additional year (Master’s level) or two additional years (Doctoral level). Scholarship awards can not extend beyond two years of Master’s level study or four years of doctoral level study. Renewal is not automatic, but must be applied for using the renewal application forms. Application forms for new and renewal awards are available from the Faculty of Graduate Studies website at http://www.dal.ca/grad/currentstudents/funding/jr. The deadline for receipt of new and renewal applications is March 15th.

Nova Scotia Black and First Nations Students Graduate Entrance Scholarships

Dalhousie University offers two entrance scholarships, awarded annually, to First Nations and Indigenous Black students entering a Dalhousie graduate program for the first time following graduation from a Dalhousie University undergraduate program. The objective of these scholarships is...
to increase the representation of Indigenous Black and First Nations communities in the university’s wide diversity of graduate programs, and ultimately in the academy and in advanced professional occupations. To be eligible, applicants must have been accepted, by the application deadline, into a graduate program at Dalhousie. This may be at the Master’s or Doctoral level, and may include professional, course-based or thesis-based programs. Students must have been accepted with an admission GPA of 3.3 (B+) or higher. Admission GPA’s are based on the last two years (six terms) of undergraduate study. Recipients of this scholarship must begin full-time academic study at Dalhousie in the academic year for which it has been awarded.

Successful candidates for an initial award and for renewal will be evaluated by a special Scholarship Committee constituted by the Dean of the Faculty of Graduate Studies. The general rules for Dalhousie Graduate Scholarships will be applied except that, in the case of this scholarship, the award must be taken up in the first year of the degree program. These scholarships are valued at $15,000 each and are renewable for a maximum of one year (three academic terms) for students maintaining good standing in the first year of their program. Renewal is automatic, but must be applied for using the renewal application forms. Eligibility, conditions and application forms for new and renewal awards are available from the Faculty of Graduate Studies web site at http://www.dal.ca/grad/currentstudents/funding/nbfn. The deadline for receipt of new and renewal applications is May 15th.

President’s Award
At Dalhousie we actively recruit the brightest minds and deepest thinkers; graduate students who will push the innovation agenda and shape the future. The President’s Awards provide a competitive edge at Dalhousie to attract and retain those PhD students who are successful in the competition for national scholarships.

This award is targeted to students starting PhD programs who have a full doctoral scholarship from one of the specified agencies. The Specified Agencies are NSERC (PGSD or CGSD), SSHRC (Doctoral or CGSD), CIHR (Doctoral or CGSD), and/or Killam (Doctoral). The award will cover tuition but not international differential fees or other student fees. It will be granted for up to the first two years for PhD students.

The award will be granted for each term that the student is registered as a full time student, paying full tuition (i.e., not continuing fees) provided that the student is receiving a full doctoral scholarship from one of the specified agencies and that tuition is not covered by any other award, agency or government.

The Faculty of Graduate Studies will notify eligible students and departments following admission. The Award will be verified and applied to the student’s tuition each term for the duration of the award.

The Vitamin Scholarship
The Vitamin Scholarship was established for research and education related to vitamins and vitamin products (vitamins A, B1 to B6, B8, B9, B12, C, E, H, il-carotene, canthaxanthin, methionine, and products containing or being derived from these vitamins). Applications from students interested in pursuing research and/or educational activities in nutritional or food related programs, or consumer services and protection activities are also considered.

Thesis Masters and Doctoral students with a first class average who intend to pursue studies and research related to vitamins and vitamin-related products are eligible to apply. Masters level scholarships will be for one year only, while doctoral level scholarships may be renewed for one additional year. Award recipients will be identified by the Faculty of Graduate Studies Scholarship Committee.

The general Dalhousie Graduate Award Rules are applied, except that the Award must be taken up upon commencing the first year of the program. The Award is valued at $19,000 (Masters) and $21,000 (Doctoral) (2008-2009) for a twelve-month academic year (1-2 awards per year). It is tenable only at Dalhousie University. This award is not available for the 2012/13 academic year.

Fees are not waived and must be paid out of the award and students must be accepted to Dalhousie before they apply. The application and annual renewal request deadline is February 15th.

B. External Scholarships
There are numerous scholarships available from external funding agencies that can be held by students pursuing graduate studies at Dalhousie (and other Universities). A database containing information about these scholarships is available at http://www.dal.ca/grad/currentstudents/funding/external.

C. Specific Disciplines
1. Architecture
The Henry Adams Medal and The Henry Adams Certificate
Field of Study: Architecture
Eligibility: Students graduating from the MArch program.
Number and Value: One medal with a certificate
Basis of Award: Top-ranking students who have demonstrated excellence throughout the four years of the professional program.
Donor or Awarding Agency: American Institute of Architects, Washington, DC.
Selection: School of Architecture
Application: Application not required.

Adjeleian Award in the Aesthetics of Structures
Field of Study: Architecture or Structural Engineering
Eligibility: A graduating student in either the MArch program or the Civil Engineering degree program. The award alternates between Architecture and Civil Engineering. (It will be made to Architecture next in 2013.)
Number and Value: One, $1,000 (subject to annual review).
Tenure: One year.
Basis of Award: The award will be granted to the graduating student who demonstrates in a project both aesthetic principles in buildings or bridges and unified roots of Architectural and Structural Engineering.
Donor or Awarding Agency: Dr. John Adjeleian.
Selection: School of Architecture
Application: For Architecture, an application is not required.

H. Allen Brooks Traveling Fellowship
To provide a periodic award, to be made to an exceptionally promising student, graduating from, or recently graduated from the professional architecture or planning degree programs in the Faculty of Architecture and Planning, for the purpose of study by travel and contemplation while observing, sketching, reading, or writing, and have time free to think and mature while acquiring knowledge useful for the award holder’s future work, and contribution to the profession, and to society. The award is intended to be a special honour for the recipient.

The Alpha Rho Chi Medal
Alpha Rho Chi, National Social-Professional Fraternity of Architecture, awards the Alpha Rho Chi Medal to a graduating senior of the School of Architecture who has shown an ability for leadership, performed willing service for the School, and gives promise of real professional merit through attitude and personality.

The Alumni Memorial Award
This award, which was initiated in 1984 in the memory of Mr. Michael Kravosky, B.Arch. ’83, is awarded each year to a graduating student elected by the graduating class for outstanding service to the school in student activities and affairs. The award is made from the proceeds of the Architecture Alumni Memorial Fund, and is subject to annual review.

The Architects’ Association of New Brunswick Scholarship
This scholarship of $1000 was established by colleagues to the Heinz Fleckenstein Memorial Fund, with additional contributions from the AANB and Dalhousie Architecture Alumni. The scholarship is awarded to a student who is a permanent resident of New Brunswick and is entering the Master of Architecture program. The recipient must demonstrate strong design ability with functional solutions, and an aptitude and knowledge in areas beyond design. The scholarship is awarded in September. No application is required.
Design and Construction Institute Engineering and Architecture Scholarship

This $1,000 scholarship is awarded to a student who shows a commitment to pursuing a career in the design and construction industries in Nova Scotia. The award alternates between the Faculty of Engineering and the School of Architecture, starting with Engineering in 2011. The selection will be based on academic achievement and recommendations from professors.

Jonathan Hart Memorial Fund

This fund was established in memory of Jonathan Hart, MArch ’96, by Mr. Justice Gordon Hart and Mrs. Catherine Hart, following Jonathan’s request to support architecture in the community. Proceeds from this fund are used periodically to bring architectural work to the public, and to encourage young architects and businesses to work together on projects for the betterment of the community. Selection is made by the School of Architecture.

Barry Johns Scholarship for Design

This $1,000 scholarship, donated by Barry Johns (BArch 1972), is awarded to the student entering the Master of Architecture program who completed the entire BEDS program at Dalhousie University with the highest average grade in Design courses. No application is required. The selection is made by the School of Architecture Scholarship Committee.

George Lawen / Dexel Developments Scholarship

Dexel Developments is an award-winning mixed-use property developer focused primarily on residential apartments and the regeneration of existing heritage properties located in the Halifax business district. The George Lawen / Dexel Developments Scholarship was created in 2010 by Louis Lawen to recognize and support the crucial role of planning to the future development of Halifax and the surrounding area by supporting a student who intends to pursue a career in the Maritimes. The scholarship is named in honour of Louis’s father, George Lawen. The scholarship will provide a $5,000 award to a student entering the final year of the Master of Planning program, with second preference to a student entering the final year of the Master of Architecture program. The student will have demonstrated active involvement in community service, and will have a high academic standing and an interest in urban design or urban planning.

William P. Lydon Scholarship

This scholarship of $1200 was established in memory of William P. Lydon, a founder of Lydon Lynch. An insightful natural leader, Bill gently encouraged people to realize their potential. He understood the societal value of architecture and its capacity to uplift the human spirit. Bill himself, it seemed, elevated nearly all who knew him. The award is given to a student who has completed the Bachelor of Environmental Design Studies and is entering the Master of Architecture program. The recipient must demonstrate goodwill, kindness, generosity and respect for others, qualities that defined Bill’s character, be actively involved in community services, and have a higher than average academic standing. The scholarship is awarded in April.

Maritime Hobbies and Crafts Bursary

This $500 bursary, donated by Maritime Hobbies and Crafts, provides financial assistance to a full-time student entering the winter term of the BEDS program or MArch program in the School of Architecture. Applicants must be making satisfactory academic progress and must demonstrate financial need by submitting a bursary application. The selection is made by the School of Architecture Scholarship Committee.

Nova Scotia Association of Architects - Ojars Biskaps Award

The Ojars Biskaps Award honours the memory of Professor Ojars Biskaps, who provided distinguished service to both the academic and professional architecture communities of Nova Scotia. Professor Biskaps was a beloved teacher at the School of Architecture, a significant designer working in collaboration with local architecture practices, and past president of the Nova Scotia Association of Architects. His love of drawing, as a means of documentation, inquiry, storytelling, and humour, characterized his work and life. This $1000 award is given by the School of Architecture to a student who has completed the BEDS program and is entering the MArch program, based on a Year 4 portfolio that integrates academic study and design practice, and uses drawing for architectural inquiry and expression.

The Nova Scotia Association of Architects Prize

The Nova Scotia Association of Architects gives a prize to a student who, in the final year of the MArch program, displays an outstanding awareness of the architect’s responsibility to society by demonstration in his/her scholarly and design work.

Nova Scotia Association of Architects Scholarship

Field of Study: Architecture

Eligibility: A student entering the final year of the MArch program who is a native of Nova Scotia or has had his/her permanent residence in Nova Scotia for some years, and who plans to enter the architectural profession upon graduation.

Number and Value: One, $2,000 (subject to annual review).

Basis of Award: Record of academic excellence.

Donor or Awarding Agency: Nova Scotia Association of Architects.

Selection: School of Architecture.

Application: Application not required.

The William Nycum & Associates Limited Scholarship

Field of Study: Architecture

Eligibility: A student who has successfully completed the first term of the MArch program.

Number and Value: One, $1,000.

Tenure: One year.

Basis of Award: This scholarship is awarded to the student who most strongly demonstrates creative thinking and a passion for architecture. The scholarship is given to assist the recipient’s studies. Candidates are requested to submit a one-page application demonstrating commitment to architecture.

Selection: School of Architecture.

Application: Apply to Director, School of Architecture.

Application Deadline: December 1.

George W. Rogers Award

This award of up to $1000 was established in memory of Donald L. Dunke, Professor of Architecture at the University of Manitoba for 25 years. The award was named in honour of his student, George W. Rogers, a successful Halifax architect who has been an RAIC member, active in the community, and has received a Governor General’s Award for Architecture. The award is given to a Canadian student who has earned a Bachelor of Environmental Design Studies degree and is entering the MArch program. The recipient must be active in student life, extra-curricular and community activities; demonstrate potential to contribute to the architecture profession; and display exceptional academic standing. Financial need may be a consideration. The scholarship is awarded in April. No application is required.

Bruce and Dorothy Rosetti Scholarships

Field of Study: Architecture

Eligibility: One or more students in the first year of the MArch program with a consistently high record of performance.

Number and Value: Up to five per year, up to $4,000 each (subject to annual review).

Basis of Award: To assist students in carrying out supervised research.

Donor or Awarding Agency: Estate of Bruce and Dorothy Rosetti.

Selection: School of Architecture.

Application: Application not required.

The Royal Architectural Institute of Canada Student Medal

The Royal Architectural Institute of Canada’s Student Medal is awarded annually to a student graduating from a professional degree program in each School of Architecture in Canada who, in the judgment of the faculty of the respective School, has achieved the highest level of academic excellence and/or has completed the outstanding final design thesis for that academic year.

The Royal Architectural Institute of Canada Honour Roll

For each School of Architecture, a maximum of four students, from the top ten percent of the graduating class in the professional degree program,
shall receive honour roll certificates from the RAIC, in addition to the student who receives the RAIC Student Medal.

School of Architecture Thesis Prize
The School of Architecture awards a book prize to one or more students who have completed an outstanding design thesis in the MArch program.

Steel Structures Education Foundation Scholarship for Excellence in Steel Design
This $3,000 scholarship, donated by the Steel Structures Education Foundation, is awarded to a Master of Architecture student who has completed a thesis in steel design. The scholarship is intended to support subsequent thesis design work that uses structural steel in a critical way. Applications are due on the first Friday in January. Selection is made by the School of Architecture. Following the completion of the thesis, a report is required for publication by SSEF.

Walter Gardner Stanfield Scholarships
Field of Study: Architecture or Planning
Eligibility: Students entering the first term of a graduate program in the School of Architecture or in the School of Planning.
Number and Value: One $1,000-$2,000 (subject to annual review).
Basis of Award: Applicants will be expected to have demonstrated, in the quality of work submitted in support of their application, both academic excellence and outstanding preparedness for the program to be undertaken in the Faculty.
Donor or Awarding Agency: Estate of Walter Gardner Stanfield.
Selection: Faculty of Architecture and Planning. Selection will be made by the appropriate admissions committee. All applications for graduate study received by the first day of the summer term prior to entering the program will be considered automatically, and recipients will be notified two weeks later.

John D. Watson Memorial Scholarship
This scholarship is awarded in remembrance of John D. Watson (MArch 1990), who passed away in 1998. It provides $2,500 for a Master of Architecture student to pursue thesis-related research in green design, sustainability, and/or new technologies. These funds may be used for travel. Applicants must have a satisfactory academic record, demonstrate financial need, and submit a proposal of study to be carried out during the following work term, followed by a research report a month after the end of the work term. Apply to the School of Architecture by November 30.

The Ernest Wilby Memorial Scholarship
Field of Study: Architecture.
Eligibility: A student entering the penultimate year receives this award. The award is given annually, commencing with the most easterly school in Canada and continuing each year to the most westerly, then repeating. (The scholarship was last awarded in 2004, and is expected to be awarded again in 2014.)
Number and Value: One, $1,000.
Basis of Award: Financial need, as well as definite promise and talent.
Donor or Awarding Agency: The Royal Architectural Institute of Canada, on behalf of the Wilby Foundation.
Selection: School of Architecture.
Application: Application not required.

2. Business Administration

Centre for International Business Studies First Year Graduate Scholarship
One scholarship of $1,000 is offered to a first year MBA student majoring in International Business. The scholarship recipient is selected on the basis of a career interest in international business and academic performance.

Dover Mills Fellowship in International Business
The Dover Mills Fellowship in International Business was created with a generous endowed gift to Dalhousie’s Capital Ideas Campaign by Dover Mills Limited. The $5,000 fellowship is available to three full-time Atlantic Canadian students entering the final year of MBA studies, who are specializing in international business. Fellowship recipients will be selected on the basis of a career interest in international business and academic performance to date.

Goldberg-Schulich Award for Entrepreneurship
The Goldberg-Schulich Award for Entrepreneurship is a $2,500 award presented by the Goldberg-Schulich School of Business at Dalhousie University to students who have an interest in starting a business. The award is given annually to one or more students recognized for demonstrating exceptional aptitude and potential in the field of entrepreneurship.

NORTHSTAR Trade Finance - Mary Grover LeBlanc Memorial Fellowship - International Business
The Mary Grover LeBlanc Memorial Fellowship in International Business is offered to one graduate student in the Department of Accounting and Finance at Dalhousie University. The fellowship is available to students who have demonstrated academic excellence and financial need, and who have a strong interest in international business.

3. Chemistry

Donald R. Arnold Scholarship
The Donald R. Arnold Scholarship is awarded to the student with the highest overall academic standing in Chemistry, and who has demonstrated exceptional aptitude for research. Application not required.

Gerry Dauphinee Graduate Scholarship in Chemistry
The scholarship is awarded to a full-time graduate student in Chemistry who has shown excellence in research and teaching. Application not required.

4. Economics

Robert L. Comeau Scholarship
The Robert L. Comeau Scholarship is awarded to a female graduate student studying for the MSc or PhD degree in Economics at Dalhousie University. The scholarship is intended to support the financial needs of students who have demonstrated exceptional aptitude for research. Application not required.
requirements. The Department decides when and to whom the award will be given.

U.L.G. Rao Memorial Prize in Economics

Family, friends, former students and colleagues of the late Professor U.L. Gouranga Rao established the U.L.G. Rao Memorial Prize in Economics in his memory. Gouranga Rao was a member of Dalhousie’s Department of Economics from 1968 to 2002. This annual prize is awarded to the Master’s student(s) in Economics with the highest GPA in the MA Core Classes.

Zella Crowe Spencer Memorial

The Zella Crowe Spencer Memorial Scholarship is an annual award that will be used to “top-up” a regular Dalhousie Scholarship award going to a new or continuing female graduate student in economics. Candidates must have first-class standing in their university economics studies to date. It is open to students already in or applying to any graduate program offered by the Department of Economics. Separate application for the scholarship is not required.

5. Engineering

APENS Engineering Centennial Scholarship

Number and Value: One, $3,000 (subject to annual review)

Tenure: Normally two years (may be extended to a third year).

Basis of Award: The scholarship is awarded on the basis of the applicant’s academic achievement in the Bachelor of Engineering program at Dalhousie.

Eligibility: The candidate must be a Nova Scotian who has graduated with a Bachelor of Engineering from Dalhousie and who has been accepted into a graduate program in a field of engineering related to space technology.

Field of Study: Engineering

Selection: Selection is carried out by the Faculty of Engineering, Graduate Studies Committee.

Donor or Awarding Agency: The Association of Professional Engineers of Nova Scotia established this Scholarship as an on-going reminder and celebration of the 1887 to 1987 Centennial of Canadian Engineering.

Apply to: Engineering Graduate Studies Coordinator

Deadline: March 31.

The Dr. L.F. Kirkpatrick Scholarship

Number and Value: One, $1,000.

Tenure: One year.

Basis of Award: The award is based on the academic record of the applicant during the final two years of the undergraduate engineering curriculum at a recognized university. Preference will be given to a candidate with an interest in doing research in the power utility field.

Eligibility: Accepted as a full-time graduate student in engineering at Dalhousie.

Field of Study: Power Engineering

Selection: Selection will be carried out by the Faculty of Engineering Graduate Studies Committee.

Donor or Awarding Agency: The Nova Scotia Power Inc. established this scholarship in 1982 in recognition of dedicated service rendered by Dr. L.F. Kirkpatrick as President of Nova Scotia Power Inc.

Apply to: Engineering Graduate Studies Coordinator

Application Deadline: March 31.

The Dr. S.K. Malhotra Graduate Scholarship

Number and Value: One, $2,500. (Subject to annual review)

Tenure: One year.

Eligibility: Accepted in the Civil Engineering Graduate Program, Faculty of Engineering. The area of research carried out shall be in the field of Structural Engineering. First preference will be given to a student from India.

Selection: Selection is carried out by the Faculty of Engineering, Graduate Studies Committee.

Donor: The scholarship was established in memory of Dr. S.K. Malhotra, former Dean of Graduate Studies and Professor of Civil Engineering at TUNS from 1965 to 1990, by his family and friends.

Apply to: Engineering Graduate Studies Coordinator

Application Deadline: March 31.

The Dr. Stirling Whiteway Graduate Scholarship in Materials Engineering

Number and Value: One, $1200. (Subject to annual review)

Tenure: One year.

Basis of Award: The award is based on the academic record of the applicant during the final two years of the undergraduate engineering program at a recognized university. Preference will be given to a candidate from Nova Scotia who is registered in the Materials Engineering graduate program.

Selection: Selection will be carried out by the Faculty of Engineering Graduate Studies Committee.

Donor: This scholarship was established in memory of Dr. Stirling Whiteway, former Principal Research Officer, NRC Halifax and adjunct professor of Metallurgical Engineering.

The Medjuck Scholarship in Energy Studies

Number and Value: One, approximately $1,000. (Subject to annual review)

Tenure: One year, may be renewed subject to satisfactory progress.

Basis of Award: The scholarship is awarded on the student’s academic achievement.

Eligibility: Accepted in a recognized graduate program in the Faculty of Engineering with a research project in the area of Energy Studies.

Field of Study: Engineering

Selection: Selection will be carried out by the Faculty of Engineering Graduate Studies Committee.

Apply to: Engineering Graduate Studies Coordinator

Application Deadline: March 31.

G.G. Meyerhof Graduate Fellowship

Number and Value: One, $4,000 per year. (Subject to annual review)

Tenure: One year; possibility of renewal subject to satisfactory performance.

Eligibility: Accepted in a graduate program in Civil Engineering in the Faculty of Engineering. Preference is given to Canadian citizens who are graduates in engineering of recognized Canadian Universities.

Field of Study: Geotechnical Engineering

Selection: Selection will be carried out by the Faculty of Engineering Graduate Studies Committee.

Donor or Awarding Agency: Board of Governors of Dalhousie.

Apply to: Engineering Graduate Studies Coordinator

Application Deadline: March 31.

Exxon Mobil Canada Ltd. Post-Graduate Scholarship

Number and Value: One, $5,000

Tenure: One year.

Basis of Award: The award is based primarily on the academic record of the applicant’s undergraduate program. Preference will be given to Canadian citizens or landed immigrants.

Eligibility: Eligible for admission to a graduate program in the Faculty of Engineering leading to an advanced research degree.

Field of Study: Any field of study offered in the Faculty of Engineering.

Selection: Selection will be carried out by the Graduate Program Committee of the Faculty of Engineering.

Donor or Awarding Agency: Exxon Mobil Canada Ltd.

Apply to: Engineering Graduate Studies Coordinator

Application Deadline: March 31.

George C. Reid and Lucille M. Reid Scholarships

Number and Value: 5/$5,000 maximum each. (Subject to annual review)

Tenure: One year renewable.

Basis of Award: The Scholarships are open to students who are accepted into the graduate program in the Department of Mechanical Engineering. The field of study within Mechanical Engineering is not limited although the student must be registered in a research degree program. Preference will be given to new applicants for the MASc degree. The scholarship may be given to new applicants for the MASc degree.
be renewed based on satisfactory performance, one for the MASc degree and twice for the PhD degree.

Selection: The decision of the award will be made by the Engineering Graduate Studies Coordinator, based on recommendations from the Department of Mechanical Engineering.

Application Deadline: Consult Department.

Bruce and Dorothy Rosetti Engineering Research Scholarships
Number and Value: Varies/up to $6,000. (Subject to annual review)
Tenure: One year, may be renewed subject to satisfactory progress.
Basis of Award: The Scholarship is awarded on the basis of the student’s academic achievement and on letters of reference. Normally a foreign student is not eligible for this scholarship during the first year of graduate study at the University. In the awarding of this Scholarship the level of other financial support for each applicant will be considered in order to ensure the broadest distribution of scholarship funds.
Eligibility: Accepted in a recognized graduate program in the Faculty of Engineering.
Field of Study: Engineering, Food Science.
Selection: Selection will be carried out by the Faculty of Engineering Graduate Studies Committee.
Donor or Awarding Agency: Bruce and Dorothy Rosetti Bequest.
Apply to: Engineering Graduate Studies Coordinator.
Application Deadline: March 31.

6. English

The Malcolm Ross Award in Canadian Literature
Established to honour the late Malcolm Ross, founding editor of the New Canadian Library and long-time member of the Department of English, a prize of $200 to be awarded to an outstanding MA or PhD thesis on Canadian Literature. McClelland and Stewart have generously provided the funding to recognize Professor Ross’s role in forwarding the study of Canadian literature.

The Malcolm Ross Graduate Scholarship in English
Established by his colleagues and friends in memory of Malcolm Ross, distinguished scholar and editor and long-time member of the English Department. A graduate scholarship in the approximate amount of $1,200 to be awarded by the department’s Graduate Committee to an outstanding student entering the M.A. program in English. Applicants to the MA program are automatically considered for this award.

The James W. Tupper Graduate Fellowship in English
Two fellowships, of an annual value of approximately $5,500 each, are awarded by the English Department, on the recommendation of the Undergraduate Committee, to students selected on the criteria of the GPA of all English classes at the 2000 level and beyond and a clear indication that the student(s) will go on to do graduate work. The work must be done at a university approved by the faculty; it need not be held at Dalhousie. Students registered at both Dalhousie and King’s are eligible.

7. Environmental Studies

The Gerald and Margaret Godsoe Scholarship
Established by the Godsoe family to support a highly qualified and motivated individual entering the Master of Environmental Studies (MES) program at Dalhousie. The recipient must hold an honours degree in natural or social sciences, engineering, architecture or its equivalent, with first-class standing in his/her course of study or have proof of exceptional merit. Further, the recipient must have made significant contributions through community service, leadership and education on environmental issues. Eligibility is limited to Canadian citizens and permanent residents of Canada living in the country. The recipient will be selected by the Admissions Committee at the School for Resource and Environmental Studies. Students wishing to be considered for this award must append a clearly marked, separate typewritten page to the admission application containing a brief description of activities and community involvement in environmental issues.

8. School of Information Management

Alumni Scholarship
Sponsored by the School’s Associated Alumni. Awarded to one incoming student on the basis of academic excellence and evidence of a commitment to a career in librarianship. No application necessary.

Barbara A.M. Patton Scholarship
Awarded to one incoming or returning student on the basis of academic merit (A- or better) and a demonstrated interest in international development, local community support, or law librarianship.

To be considered for this award please submit to the MLIS Program Coordinator, by May 1st, a statement (including the names of two references) demonstrating your interest in international development, local community support, or law librarianship.

Stephanie Downs Memorial Award
Awarded to a returning/2nd year MLIS student who has worked, volunteered or studied in an international environment outside his/her home country. The student must demonstrate a strong work ethic and leadership potential in any setting, preferably including the MLIS Program at Dalhousie University.

To be considered for this award, please submit, by May 1st, a one-page statement of interest via email attachment demonstrating your fit for this award, and a current CV. Submit applications to the Stephanie Downs Memorial Award.

H. W. Wilson Foundation Award
Awarded to one incoming student on the basis of academic merit. No application necessary.

9. Marine Affairs Program

The Douglas M. Johnston MASC Scholarship in Marine Affairs
This is an annual scholarship in the amount of $5,000 established by the Maritime Awards Society of Canada (MASC) for a Canadian citizen to pursue the Master of Marine Management (MMM) degree. The criteria for conferral of the scholarship include the following: applicants must be Canadian citizens; must demonstrate superior academic records; and may undergo a financial needs assessment. Qualified applicants to the MASC are automatically considered for this scholarship upon completion of their application; no separate application is necessary.

Master of Marine Management Gold Award
The award is named in honour of Dr. Edgar Gold, CM, QC, one of the founders of the Dalhousie Ocean Studies program. An annual financial award is presented to the most deserving MMM graduates at the end of each academic year in October. The candidates will be identified within the annual peer group of MMM graduates according to academic performance and overall ability to reflect the ideal graduate as the “honest broker” – i.e. one who is mindful of the complementary and competing multi- and inter-disciplinary interests which influence the design, implementation, and outcome of the management process in marine affairs. The Gold Award recipient is the student who best exemplifies MAP’s objectives with the knowledge, skills and attitudes necessary to be a leader in the field of Marine Affairs. Students must have met all requirements to graduate by September 1 of each year in order to be eligible for award consideration.

10. Mathematics and Statistics

The Professor Michael Edelstein Memorial Graduate Prize
Dr. Edelstein was an outstanding Professor in the Department of Mathematics and Statistics from 1964 to 1982. He was instrumental in the transformation of the department to the research department it is now, with a strong graduate component. A fund was established by his family to provide an annual prize to be awarded to a graduate student who shows great promise in the mathematical sciences. In order to encourage mathematical talent in both genders, the prize will alternate between male and female recipients.
Heller-Smith Foundation Graduate Scholarship in Mathematics & Statistics
The Scholarship was established to provide financial support and recognition to a graduate student. This scholarship will be awarded annually on the basis of academic achievement as determined by the faculty committee in the department of Mathematics and Statistics.

The Patrick F. Lett Graduate Student Assistance Bursary in Mathematics and Statistics
This bursary is to aid graduate students who are having difficulties getting sufficient assistance from other sources. Students must demonstrate financial need in conjunction with supportive information from their supervisor or the Chair of the Department.

11. Nursing
Alexandra Hirth Award for Excellence in Nursing Research
This award was established in memory of and in recognition of Alexandra Hirth’s commitment to excellence. The award will provide financial support for students in the thesis stream of the Master of Nursing program. The annual award will be made to an outstanding student whose thesis has the potential to contribute to the development of nursing knowledge and whose research is focused on issues related to individuals or families living with chronic illness. Deadline for applications is May 31.

Electic MacLennan Memorial Scholarship
The scholarship pays tribute to Dr. MacLennan’s outstanding contribution to nursing education. Applicants must be a graduate of the School of Nursing, Dalhousie University baccalaureate or Master’s program, have a grade point average of 3.66 or greater, clearly state her/his career and educational goals and how the particular program will contribute to their development, be accepted as a full-time student or have completed 3 full credits in a recognized School of Nursing, and demonstrate potential for or show active involvement in advancing the nursing profession in Canada. Deadline for application is May 31st. Information is available from the School of Nursing.

Katherine and Robert MacDonald Scholarship
The scholarship is intended to provide financial assistance to a student who is studying in a non-thesis option of the Master of Nursing program at Dalhousie University and who has demonstrated excellence in clinical nursing practice at the end of the first year of study. The applicant must have a grade point average of 3.6 or greater, have completed a minimum of one credit of nursing clinical classes and demonstrated excellence in nursing practice, and must supply a statement of career goals explaining how the selected graduate program will contribute to excellence in clinical nursing practice. Deadline for application is May 31st. Information is available from the School of Nursing.

Margaret Cragg Award
This award was established by the family and friends in honour of Margaret M. Cragg, who pioneered the movement against violence toward women and in the practice of preventative interdisciplinary health care. An annual financial award is made available to a graduate student in Nursing. Further information is available from the School of Nursing.

Margaret Inglis Hagerman Graduate Scholarship in Nursing
The scholarship is awarded annually to a Master of Nursing student at Dalhousie University who has demonstrated leadership.

Lottie M. Morrison Scholarship
The scholarship is awarded to a student(s) entering a Dalhousie University graduate Nursing program who intends to further their studies in the area of Mental Health.

Dr. R.M. MacDonald Scholarship
The scholarship pays tribute to Dr. MacDonald’s concern to prepare students for the nurse practitioner role. The scholarship is awarded annually to one or more students entering the nurse practitioner stream.

Ruth May Award
The scholarship recognizes Dr. May’s commitment to the education of outposts nurses and nurse practitioners. The award is given annually to one or more nursing students in the nurse practitioner stream in recognition of clinical excellence and professional growth.

Ann Trenholm Memorial Prize
The prize is awarded to one or more graduates of the nurse practitioner program who in the judgment of the faculty shows the most promise for contributing to the health of a disadvantaged Canadian community.

Sigma Theta Tau International Rho Rho Chapter Award
The award recognizes outstanding scholarship by qualified nurses and/or nursing students that will advance knowledge in the area of nursing science and practice. The applicant must be an active member of the Rho Rho Chapter.

School of Nursing MN Scholarship
One or more annual scholarships are awarded to students entering, for part-time study, the Master of Nursing program at Dalhousie University. Applicants must have a minimum grade point average of 3.66 and submit an application letter outlining the contribution they can make to nursing and health care as an outcome of graduate study in nursing.

School of Nursing PhD Scholarship
The scholarship is awarded annually to one or more full-time students enrolled in the PhD (Nursing) program who demonstrates potential for and/or shows active involvement in advancing the nursing profession in Canada.

Helen Watson Memorial Scholarship
The scholarship is awarded annually to a full-time student enrolled in the PhD in Nursing program who demonstrates potential for or shows active involvement in advancing the nursing profession in Canada. The annual award will provide financial support for students in the thesis stream of the Master of Nursing program. The annual award will be made to an outstanding student whose thesis has the potential to contribute to the development of nursing knowledge and whose research is focused on issues related to individuals or families living with chronic illness. Deadline for applications is May 31.

12. Occupational Therapy
The following awards are offered in both the MSc(OT)-Post - Professional and MSc(OT) Entry level Program.

Electora Bell Scholarship MSc(OT) Entry level and Post - Professional Awards
This award was established to encourage students at all level of occupational therapy education to promote the integration of theory and practice in occupational therapy. The Elizabeth Bell Scholarship supports the rapid expansion of occupational therapy knowledge development and knowledge transfer through entry level, post-professional and PhD studies. In the Entry-level program, the award will be given to a student who has achieved excellent evaluations in all fieldwork courses. Occupational therapists in the Post-professional masters who achieve a grade of A or higher in OCCU 5020 are eligible for this award. Occupational therapists in a Dalhousie PhD program are eligible for consideration based on their PhD application Statement of Interest.

Fred Sammons Scholarship (MSc(OT) Entry level and Post - Professional Awards)
In 1986, Fred Sammons an occupational therapist and entrepreneur, donated money to Dalhousie University to establish a scholarship award for student research. With the closure of the BSc(OT) program in 2007, the Fred Sammons Scholarship was revised. The purpose of the revised, combined Fred Sammons Scholarship is true to the spirit of the original awards. The two Fred Sammons Scholarship awards will a) inspire students learning about research as they enter occupational therapy through Dalhousie’s MSc(OT) degree, and b) inspire clinicians in Atlantic Canada who are advancing their research background through completion of Dalhousie’s MSc(OT - Post-Professional) degree. In the spirit of the existing two endowed awards supported by Mr. Fred Sammons, a Fred Sammons Scholarship will be awarded annually to:

i. one full-time student in Year 2 of the MSc(OT) program, and has the highest academic standing in the following Year 1 courses: OCCU 5006.03, Wellness and Inclusion by Design and Technology, OCCU 5005.04

326 Awards
Enabling Occupation 2 will also be considered given that its course content also includes technology and design elements.

AND

ii. one full-time OR part-time qualified occupational therapy clinician who is registered to practice in one of the four Atlantic Provinces, enrolled in the MSc(OT - Post-Professional) thesis program. Priority will be given to the student whose proposed research combines excellence in research design, relevance to Atlantic Canada, and interests related to technology and design solutions that promote health well-being and inclusion in everyday living.

The following awards are offered in the MSc(OT - Post-Professional) Program. These awards are awarded at the School's Graduation celebration unless otherwise stated.

School of Occupational Therapy Graduate Scholarships
This scholarship supports full or part-time students who are entering the School's Master of Science program. Selection will be based on the student’s scholarly achievement to date and is decided by the Committee of the Whole, School of Occupational Therapy, or a sub-committee of selected faculty. One or more scholarships of approximately $250 each are offered annually.

Barbara O’Shea Graduate Award (Post-Professional Award)
This award was established in recognition of contributions made by Barbara O’Shea to the School of Occupational Therapy as founding director and to the profession of occupational therapy. This award will be awarded to one or two full or part-time students entering the first year of the Post-Professional Master of Science program at Dalhousie University. Selection will be based on the student’s scholarly achievement to date and on a combination of contribution to the profession and potential for graduate studies (evidence taken from the Letter of Intent). In selecting, preference will be given to graduates of the Bachelor of Science (Occupational Therapy) program, Dalhousie University.

The following awards are offered in the MSc(OT) Entry Level Program. These awards are awarded at the School's Graduation celebration unless otherwise stated.

NSSOT Student Society Award
This award recognizes outstanding contribution with the Dalhousie Occupational Therapy Student Society (DOTSS) and involvement with the NSSOT.

NBAOT Awards for Fieldwork
This award recognizes high achievement on fieldwork performance ratings, quality of application of theoretical knowledge and therapeutic principles in a variety of fieldwork settings in New Brunswick.

Newfoundland and Labrador Occupational Therapy Board Prize
This award is given to the Newfoundland and Labrador student with the highest G.P.A. throughout the standard two year MSc(OT) occupational therapy program.

P.E.I. Occupational Therapy Society Award for Community Occupational Therapy
This award is given to the student who shows interest, enthusiasm, sensitivity and advocacy for community practice together with high academic achievement.

CAOT Student Award
This award is given to the student who has achieved the highest academic standing in occupational therapy theory courses.

Sheila Poole Run for the Rock Award
This award is given to the student who clearly demonstrates balance among sound academic achievement, professional growth, athletics and community involvement.

Cardwell Robinson Award
This award is given to the student who demonstrates academic achievement, aptitude and interest in courses related to psychiatry and mental health with at least one full-time fieldwork placement in a mental health setting.

Elsevier Canada Award
This award is given to the student with the second highest cumulative grade point average (GPA) and percentage score throughout the program.

Nova Scotia Society of Occupational Therapists (NSSOT) Book Prize
This award is given to the student who has demonstrated outstanding promotion of class spirit and contribution to extracurricular activities (professional and social) in the School of Occupational Therapy and the community.

Grainger Award
This award is given to a second year MSc(OT) student who has shown outstanding demonstration of application and integration of theoretical biomedical knowledge with professional therapeutic application.

Newfoundland and Labrador Association of Occupational Therapists (NLAOT) Book Prize
This award is given to a MSc(OT) student from Newfoundland with the highest cumulative grade point average (GPA) entering the second year of the standard MSc(OT) program sequencing. A student is determined to be from Newfoundland based upon their admission residency.

Dalhousie Occupational Therapy Student Involvement Award
This award is given to a second year MSc(OT) student in good academic standing, who is a member of the Dalhousie Occupational Therapy Student Society (DOTSS) and has clearly demonstrated leadership qualities, actively participated in DOTSS and the promotion of School &/or DOTSS spirit.

Phyllis Kennedy Memorial Bursary
This is awarded to a deserving 2nd year MSc(OT) entry level program student who is in good academic standing and who demonstrates an interest in their studies and the School.

13. Oceanography

The Kathy Ellis Memorial Book Prize
This prize was established through the support of Kathy’s friends and colleagues who expressed the wish she be remembered and agreed that a fitting manner would be through the award of an annual book prize in Oceanography, given in her name. Kathy had a deep commitment to the principles of high quality scientific research and the communication of this knowledge to students and professionals in developing nations. This prize is presented annually to the Department of Oceanography graduate student, in their first year, who achieves the highest average in the Oceanography core courses.

The Professor F. Ronald Hayes International Scholarship
This scholarship fund was established in memory of Professor F. Ronald Hayes, founder and first director of the Institute of Oceanography of Dalhousie University, and in commemoration of the Joint Oceanographic Assembly which was held at Dalhousie during August, 1982. The purpose of the scholarship is to provide financial support for a new graduate student in the first year of a MSc or a PhD program in the Department of Oceanography. The recipient must be from a developing country (“developing country” shall be defined as one belonging to the United Nations Group of 77), from a state of the former Soviet Union, or from an economically disadvantaged country such as: Albania, Bulgaria, Romania and the former Yugoslavia. The recipient will be nominated through the normal screening process by the Departmental Graduate Admission Committee. For further information contact the Department of Oceanography.

14. Oral and Maxillofacial Surgery

John P. Laba Memorial Research Award
The income earned from a fund established in memory of John P. Laba by family, friends, patients and colleagues, will provide for this award which
may be given annually. The recipient will be the dentist accepted in the Graduate Program in Oral and Maxillofacial Surgery and will be given exclusively for the presentation, dissemination and/or publication of research related to Oral and Maxillofacial Surgery. For further information please contact the Department of Oral and Maxillofacial Surgery.

15. Philosophy
The Douglas Butler Memorial Prize
The Butler Memorial fund was established in memory of Dr. Douglas Butler, a good friend of the Philosophy Department who had taught Summer Session classes with us, and who died suddenly in Halifax in 1991 at the age of 34. The prize is awarded annually for the best MA student term paper.

16. School of Physiotherapy
All prizes and awards given by the School of Physiotherapy are awarded at Convocation.

Canadian Physiotherapy Association Award
A certificate and first-year membership in the Canadian Physiotherapy Association constitute this annual award. It is presented to the student who has achieved the highest aggregate percentage in academic and clinical physiotherapy education.

Canadian Physiotherapy Cardiorespiratory/CPA Student Excellence Award
This award is given at convocation in recognition of outstanding achievement in cardio-respiratory physiotherapy.

Ken Hill Electrotherapy Award
This award, established by the ERP Group, is in honour of Mr. Ken Hill, retired Professor of Dalhousie University and who also received an honorary Doctorate from the University in 2002. The award is given to the member of the graduating class who demonstrates excellence in electrotherapy.

Morris B. Kohler Award in Physiotherapy
This prize is awarded to the student who has demonstrated the greatest interest in the treatment of long-term rehabilitation patients, while attending the Nova Scotia Rehabilitation Centre.

Hazel Lloyd Memorial Prize
The Hazel Lloyd Foundation was established by Miss Aphra Lloyd in memory of her sister, Miss Hazel A. Lloyd (1930-1985), Associate Professor, School of Physiotherapy. Friends, associates and alumni have made additional contributions. The purpose is to foster interest in geriatrics and gerontology, Professor Lloyd’s major areas of interest. The Foundation awards an annual Prize to the student with the highest standing in Integrated Practice.

Jean McAloney Memorial Prize
This prize is awarded annually to the student in the graduating class who has demonstrated the highest clinical standing. The prize is sponsored by the College of Physiotherapists of New Brunswick.

Donna Myers Memorial Award
This award is given by the Nova Scotia Branch of the Canadian Physiotherapy Association in memory of Donna Myers, one of the founding members of the Physiotherapy Professional Association of Nova Scotia. This award is presented to the student who exemplifies dedication and professionalism by achieving the greatest improvement in overall academic standing who consistently demonstrates professionalism and enthusiasm for physiotherapy. Recipient must be a student CPA member.

New Brunswick Student Professionalism Award
This award was established to recognize the graduating student who exemplifies professional behaviour and attributes within the academic and clinical settings. It is sponsored by the New Brunswick Physiotherapy Association.

Newfoundland and Labrador College of Physiotherapy Prize
This prize is given to the student in the graduating class who has attained the highest academic standing in Musculoskeletal studies.

Newfoundland and Labrador Physiotherapy Association Prize
This prize is awarded to the member of the graduating class who has attained the highest standing in Neuroscience studies.

Nova Scotia College of Physiotherapists Prize
This is an annual award given to a graduating student who has demonstrated the greatest degree of leadership within their class. The recipient is chosen by his/her classmates by secret ballot.

Nova Scotia Section of Orthopedic Division, CPA Award
Established by the Nova Scotia Section of the Orthopedic Division of CPA, this annual award is given to the student in the graduating class with the best overall achievement in all Orthopedics / Musculo-Skeletal components of the Physiotherapy Program. The recipient of this award has demonstrated a consistently high skill level in the practical and clinical components of musculo-skeletal physiotherapy.

Prince Edward Island Physiotherapy Association Prize
This prize is awarded annually to the student who has the highest academic standing in Human Anatomy.

School of Physiotherapy and CPA Pediatric Division
This award is given by the School of Physiotherapy and CPA Pediatric Division to recognize a graduating student who has shown a keen interest in pediatrics physiotherapy. The recipient is selected based on both academic and practical excellence in the pediatric portions of the physiotherapy program.

The Patricia Stanfield Covert Award in Physiotherapy
An endowment has been established to provide an annual prize to a physiotherapy student who is entering the final year of the program. The recipient is to be nominated by classmates on the basis of extra curricular activities, interpersonal skills and scholarship proficiency.

Unsung Hero Award
This award is given to the graduating student who has generously contributed her/his time and efforts to School activities and has demonstrated a positive and enthusiastic school spirit.

Cardio-Respiratory Award
This award initiated by anonymous donor recognizes excellence in cardiorespiratory physiotherapy. It is awarded to the student who achieves the highest academic and clinical standing in all components of cardiorespiratory physiotherapy.

Student Research Award
This award is given annually by the School of Physiotherapy. It recognizes student research efforts, and is presented to the research group who achieves the highest evaluation on their podium presentation at the School of Physiotherapy Annual Research Day.

17. Physics
The William Leiper Memorial Scholarship
Dr. Leiper was an outstanding Professor in the Department of Physics from 1968 until his death in 1980. An endowment was established from funds donated by family, colleagues and friends of Dr. Leiper after his death to provide an annual scholarship to a student(s) with special ability pursuing a graduate degree in Physics. The scholarship is awarded at the discretion of the Physics and Atmospheric Science Department and is normally granted to a student already engaged in graduate studies at Dalhousie. The scholarship amount is to a maximum of $500.

The James Gordon MacGregor Memorial Teaching Fellowship in Physics
Relatives of the late Dr. J. G. MacGregor contributed to the James Gordon MacGregor Memorial Fund to provide awards to both undergraduate and graduate students in the study of physics. The graduate fellowships are offered to candidates pursuing a Master’s or Doctoral degree in Physics. The holder of this fellowship is expected to provide instruction to undergraduate students during the academic session. The fellowships will be awarded at the discretion of the Physics and Atmospheric Science Department. Application is not required.
18. Planning

Atlantic Planners Institute Student Award
Field of Study: Planning.
Eligibility: A full-time student in his/her graduating year in a planning school accredited by the Canadian Institute of Planners in the Atlantic Provinces.
Number and Value: One, a trophy or plaque engraved with the recipient’s name, supplemented by a cash award of $500.
Tenure: One year.
Basis of Award: Academic achievement and contribution to planning in the community.
Donor or Awarding Agency: Atlantic Planners Institute.
Selection: Atlantic Planners Institute
Application: Application not required.

Canadian Institute of Planners Student Award for Academic Excellence
Field of Study: Planning
Eligibility: A full-time student member of the Canadian Institute of Planners.
Number and Value: One, a certificate bearing the CIP seal and a book prize.
Basis of Award: The award is made to the student who has achieved the highest academic standing over the length of the MPlan program.
Donor or Awarding Agency: Canadian Institute of Planners.
Selection: School of Planning
Application: Application not required.

Canadian Institute of Planners Student Scholarships (4)
Value: $2,000 to $4,000.
Basis: Will be awarded annually in recognition of a thesis, practicum, or major research paper which may be proposed or in progress.
Eligibility: An individual may apply to the Canadian Institute of Planners. Applicant must be a student member in good standing with the CIP and must be enrolled full-time in a recognized planning program.
Field of Study: Planning.
Selection: Submission will be judged on the basis of its potential contribution to the planning profession (in theory or practice) or its potential service to a community or a community group.
Apply to: Application forms may be obtained from the School of Planning and must be received in the CIP national office by the date specified on the application form.

George Lawen / Dexel Developments Scholarship
Dexel Developments is an award-winning mixed-use property developer focused primarily on residential apartments and the regeneration of existing heritage properties located in the Halifax business district. The George Lawen / Dexel Developments Scholarship was created in 2010 by Louis Lawen to recognize and support the crucial role of planning to the future development of Halifax and the surrounding area by supporting a student who intends to pursue a career in the Maritimes. The scholarship is named in honour of Louis’s father, George Lawen. The scholarship will provide a $5,000 award to a student entering the final year of the Master of Planning program, with second preference to a student entering the final year of the Master of Architecture program. The student will have demonstrated active involvement in community service, and will have a high academic standing and an interest in urban design or urban planning.

Dorothy Leslie Prize
This prize, named after the former secretary of the School of Planning, is awarded to a student finishing the first year of the Masters program who has made a significant contribution to the life of the School.

The Master of Planning Prize
This is a book prize given to a graduating student on the basis of academic excellence as well as a demonstrated commitment to community planning.

Nova Scotia Planning Directors Association Award (NSPDA)
Nova Scotia Planning Directors Association Award is given to a student of Planning who has demonstrated academic excellence and leadership. Value $500, awarded annually in April. Selection: School of Planning Faculty.

Bruce and Dorothy Rosetti Scholarships
Field of Study: Planning.
Eligibility: Students registered in the Master of Planning program.
Number and Value: One or more, $6,000 total (subject to annual review).
Basis of Award: To assist students in carrying out their programs of study. Awards will be given on the basis of academic excellence.
Donor or Awarding Agency: Estate of Bruce and Dorothy Rosetti.
Selection: Faculty of Architecture and Planning.
Application: Apply to School of Planning.
Application Deadline: April 15.

School of Planning Achievement in Planning Studies Award
This prize is awarded in recognition of academic excellence upon completing the first year of the Master of Planning degree program.

The School of Planning Prize
The School of Planning awards a book prize to a student who has achieved academic excellence in the program and contributed to the life of the school.

The School of Planning Project Prize
The School of Planning Project Prize is awarded to the graduate who has produced the best individual project.

School of Planning Team Project Prize
The prize is awarded to graduating students in the team completing the most outstanding senior team project.

Walter Gardner Stanfield Scholarships
Field of Study: Architecture or Planning.
Eligibility: Students entering the first term of a graduate program in the Faculty of Architecture and Planning.
Number and Value: One or more, $2,000 total.
Basis of Award: Applicants will be expected to have demonstrated, in the quality of work submitted in support of their application, both academic excellence and outstanding preparedness for the program to be undertaken in the Faculty.
Donor or Awarding Agency: Estate of Walter Gardner Stanfield.
Selection: Faculty of Architecture and Planning.
Application: Application not required.

19. Psychology

The Clinical Citizenship Award
The Clinical Citizenship Award will be awarded annually to the graduate student in the Clinical Psychology PhD Program who is deemed to have been the “best citizen” and the most positively helpful or supportive to fellow students (graduate or undergraduate) during their time in the Program. The award will be decided on by a committee of students and others chosen and headed by the Clinical Program Co-ordinator. The award is to honour the outstanding contributions of Beatrice Hanisch to the Clinical Psychology PhD Program since its inception in 1989.

The Dr. Mabel E. Goudge Scholarship in Psychology
In her Will, the late Dr. Mabel Goudge bequeathed a sum of money to endow a scholarship for the most outstanding woman graduate student in experimental or clinical psychology.
The D.O. Hebb Post-Graduate Prize
To honour the memory of Donald Olding Hebb (BA 1925), Professor Emeritus (1977-1985), the Psychology Department established the D.O. Hebb Post-Graduate Prize (valued at $1,000), which is awarded by the Graduate Program Committee, to an entering Masters and/or PhD student who has demonstrated the best potential to make a significant scientific contribution to the field of psychology.

20. Social Work
Check the website for more detailed information: http://socialwork.dal.ca/current20%students/

Association of Black Social Workers of Canada Bursary.
To assist full and part time African Canadian students who are attending the Dalhousie School of Social Work and who are studying towards a social work degree.

Calvin Ruck Scholarship
This scholarship is for BSW and MSW African Nova Scotian students who have demonstrated a desire to improve the social conditions and further the interests of African Nova Scotian/Canadian people and their communities through the study and practice of Social Work. Careful consideration will be given to the purposes and vision of NSAACP and to the qualities of courage, generosity, persistence, and leadership that characterize Dr. Ruck's life and work.

Hanna G. Matheson Bursaries
These bursaries are available to students enrolled in the BSW or MSW degree programs on the basis of need. The fund is administered by the Registrar's Office, from which application forms are available.

The Lawrence T. Hancock Scholarship
The Hancock Scholarship was established to honour Dr. Lawrence T. Hancock for his devoted work as the first full time director of the Maritime School of Social Work, 1949 to 1973, and for his service to the profession and community. The scholarship is awarded annually to a student in the Master of Social Work program who has demonstrated a high level of academic achievement and a potential for leadership in the field of social work. Letters of application are to be submitted by October 15th.

Margaret Cragg Award
This award was established by family and friends in honour of Margaret M. Cragg, who pioneered the movement against violence toward women and in the practice of preventative, interdisciplinary health care. An annual financial award is made available to a graduate student in Social Work. Letters of application are to be submitted by October 15th.

Raoul Leger Memorial Humanitarian Award
This award was established to honour the memory of Raoul Leger, who received a Master's degree in Social Work from Dalhousie University in 1977. His work at home and abroad exemplified his commitment to community development, peace and social justice. The award presented to a graduating BSW or MSW student, who is nominated on the basis of achievement with a continued involvement in critical social issues.

Sonja R. Weil Memorial Bursary
Family and friends established this endowment in memory of Sonja Weil and in tribute to her work as a social worker and psychotherapist. This bursary is open to students in the BSW and MSW programs, although first priority is given to graduate students who demonstrate financial need, satisfactory academic standing and interest in those areas which most closely reflect Sonja Weil's work in child and family therapy. Letters of application are to be submitted by October 15th.

The School of Social Work MSW Alumni Scholarship
This Alumni award has been established to support financial scholarships to be given to students in the Master of Social Work degree program who demonstrate the highest values of humanity, community, and service in the study of Social Work as reflected in contributions to the learning environment of the School. A student must be nominated for this award.

Eva Mary and Judge Hiram S. Farquhar Bursary
To provide an annual bursary(s) for one (or more) student(s) enrolled in the Bachelor or Master of Social Work Program at Dalhousie University who demonstrates financial need. Preference given to a student born in or a resident of Hants County.

II. University Awards

The Irving and Jeanne Glovin Award
The Oskar Schindler Humanities Foundation established this award in 2003 to support research into the meaning and principles underlying “good human conduct”. The research submitted will seek to define the meaning of “good human conduct” with which all persons could agree, to explore its sources, and develop pragmatic educational strategies and ways of teaching children, to show by action, respect and acceptance of others of any circumstances and/or background. The Irving and Jeanne Glovin Award will enable collaborative research by students, in the final year of undergraduate study or graduate study, in any major discipline or interdisciplinary program, together with a professor or mentor. The recipient will be preferably one who has a broad general education and interdisciplinary interests appropriate to the research topic chosen. A copy of the research essay, accompanied by a letter of recommendation from the faculty member, must be submitted by April 15th each year to the Dean of Faculty of Arts and Social Sciences, or the Dean of Graduate Studies. The recipient will be asked to present the research essay.

The Dr. Ron Stewart Award for Student Leadership in Global Health
Awarded annually to a student who has demonstrated leadership in global health and a commitment to improving the health of marginalized communities. This Award is coordinated through the International Health Office.

III. Bursaries

A. General Information about Bursaries
Canada Student Loans (with or without provincial bursaries and/or loans) are expected, by provincial authorities, to meet the financial deficiencies of the students. Bursaries subsequently awarded by the University must be reported and are liable to be deducted (in part or in whole) from the amounts originally allocated under the Canada Student Loan Plan or provincial aid program.

B. Government Notification
Holders of Dalhousie University bursaries should note that the University is required, upon written request, to report its award winners to the respective Provincial Student Aid Authority.

C. Faculty of Graduate Studies Bursaries
Students may apply to the Faculty of Graduate Studies for university bursaries made available through Dalhousie’s Student Assistance Program. Bursary awards are based on eligibility and need. They are normally meant to help students overcome temporary financial emergencies such as medical costs or other unforeseen expenses. In exceptional circumstances a Faculty of Graduate Studies Bursary may be awarded for a chronic shortfall in the student's annual budget, and then only for students beyond their first year of graduate study at Dalhousie University who do not receive full scholarship support as defined by Faculty of Graduate Studies for Master's or PhD programs.

Students must be registered in order to receive a bursary. Students eligible for government loans must have applied for such loans and provide evidence of the assessment before a bursary application can be considered.

Applications from international graduate students (students who are not Canadian citizens or landed immigrants) are not considered by the FGS Bursary Committee but must apply through the office of International Student and Exchange Services for emergency financial assistance.

Bursary applications are considered monthly throughout the year by the Faculty of Graduate Studies Graduate Bursary Committee (section II.4.5.7). Awards are for a maximum of $600, lower amounts may be awarded. Normally students cannot receive more than one bursary award in an academic year. Decisions of the Bursary Committee are not subject to appeal.
The total available for bursaries in a given year depends on the amount available through the Student Assistance Program of the office of the Vice-President Student Services.

D. Other Awards and Bursaries

The Phi Kappa Pi Joe Ghiz Memorial Award
A prize of $750.00 will be awarded to a student studying at the Masters or Doctoral level in any discipline at Dalhousie University. The student must have a first-class standing (GPA 3.7/4.3) or higher in the last two years of previous study (graduate and/or undergraduate) and demonstrate both community involvement and university life involvement. Application forms are available on the Faculty of graduate Studies website and should be submitted to the Faculty of Graduate Studies by the October 31st deadline.

The John and Lina Graham Commonwealth Bursary
The donors established this fund to mark the 75th anniversary in 1988 of the Association of Commonwealth Universities. It is used to assist graduate students who find themselves in need of financial aid while in Nova Scotia. Recipients will be residents of Commonwealth countries, other than Canada, who in the opinion of the selecting body demonstrate need. Contact the Faculty of Graduate Studies office for further information.

The Dr. P. Anthony Johnstone Memorial Bursary
The donors established this fund in 1994 to honour the memory of Dr. P. Anthony (Tony) Johnstone (1931-1989), scholar, educator and Director of the Nova Scotia Human Rights Commission, 1985-1989. It is used to assist humanities or social science graduate student who has a record of interest and involvement in social justice and human rights. Contact the Faculty of Graduate Studies office for further information.

The Linda Marie Gillingwater Rainsberry Bursary
The bursary was established in 2009 to honor the memory of Linda Gillingwater Rainsberry - student, writer, editor, educator, fundraiser, conflict mediator, television producer and curriculum designer. The bursary, valued at $1000, will be used to assist single mothers whose area of study is in the Faculty of Arts Social Sciences and whose research incorporates a social justice analysis. Preference is given to a student whose research is on women studies, however, single mothers enrolled in any graduate program at Dalhousie, are eligible to apply. Contact the Faculty of Graduate Studies for the deadline date and for information on making application.

IV. Teaching Assistantships
Most departments offer Teaching Assistantships. The number, amounts and conditions vary. Enquiries should be directed to the department or school.

The President’s Graduate Teaching Assistant Awards
Dalhousie University recognizes and applauds the important contributions of Graduate Teaching Assistants to the educational mission of the University. The work of TAs, in the classrooms, laboratories and behind the scenes, provides crucial support for faculty members and greatly enhances the learning process for undergraduate students. Each year, the President’s Graduate Teaching Assistant Awards are presented to those TAs who have achieved outstanding success in the area of undergraduate instruction.

Nominations are accepted at the Centre for Learning and Teaching. The winners are chosen in the Spring of each year.

V. Research and Travel Grants

A. Research Grants
Research grants to assist thesis research are available for graduate students in disciplines where such funding would not be available through the research grant(s) of their supervisor or through external grants or awards to the student. In most cases this will be for minor research expenses in disciplines covered by the mandate of the Social Sciences and Humanities Research Council (SSHRC). Students in other disciplines may also apply to the Faculty of Graduate Studies for research grants but in all cases Faculty of Graduate Studies grants can be awarded only when the student has not secured external funding, the supervisor does not have research grant support and no funding is available from the department.

Guidelines and application forms are available on the Faculty of Graduate Studies website at http://www.dalgrad.dal.ca/currentstudents/funding/grants. If applicable, students must secure Ethics approval for their research. Further information is available from the Office of Research Ethics Administration Website at http://researchservices.dal.ca/research_1482.html. Students may simultaneously apply for a research grant and ethics approval; however, funds will not be approved until Ethics Approval has been received. Research grants will be established under their supervisor’s signing authority.

B. Conference Travel Grants
Conference travel grants can be awarded to graduate students in thesis programs. In order to be eligible, students must be presenting a poster or paper based on their current program thesis research at a scholarly meeting or conference.

A letter of acceptance from the conference organizers, or a copy of the conference program with registration cost must accompany the application. The letter of acceptance or conference program must include the name of the applicant, the title of the poster or paper to be presented, and the dates and location of the conference. Department approval must be given to applications.

Travel costs can be claimed only for travel from Halifax to and from the location of the conference, and must be based on the lowest available fares. For conferences held in Nova Scotia only registration costs can be claimed, travel costs and per diem costs are not eligible.

Applications must be received in the Faculty of Graduate Studies office a minimum of one month in advance of the conference. Applications will not be accepted retroactively or for a conference that occurs in the term following the completion of their degree requirements.

Students are eligible to apply for one travel grant during the period of their graduate degree program at Dalhousie.

Guidelines and application forms are available on the Faculty of Graduate Studies website at http://www.dalgrad.dal.ca/currentstudents/funding/grants.

VI. Killam Postdoctoral Fellowships
Killam funds provide for postdoctoral fellowships in many fields of study. The annual stipend is $44,000 (2011) plus travel and research grants. There are no restrictions regarding nationality of applicants, but non-Canadian candidates must meet all Canadian Immigration requirements. Qualifying applicants should have recently completed a PhD degree at a recognized university and should not hold a permanent academic position to which they will return. Since these Fellowships are intended to attract new scholars to Dalhousie, scholars already at Dalhousie are not eligible to apply, including Dalhousie PhDs, Dalhousie or King’s employees, and researchers in residence at Dalhousie or King’s with external sources of funding. These awards may be taken up between May 1st and January 15th. Fellows may engage in limited teaching duties in the University. Completed applications and supporting documents must be submitted to the Department in which the applicant wishes to work, no later than December 15th. The results of the competition are usually announced in mid-February, and all applicants are notified of the results.

VII. Awards on Graduate Transcripts
A select number of scholarships and awards are recorded on the official Dalhousie transcript for graduate students. The list of such scholarships and awards is available from the Faculty of Graduate Studies.
Index

A

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Dates</td>
<td>1</td>
</tr>
<tr>
<td>Acceptable Use of Information Technology Resources</td>
<td>19</td>
</tr>
<tr>
<td>Accommodation Policy For Students</td>
<td>2</td>
</tr>
<tr>
<td>Accounts</td>
<td>315</td>
</tr>
<tr>
<td>Admission Dates</td>
<td>2</td>
</tr>
<tr>
<td>Admission Deposit</td>
<td>315</td>
</tr>
<tr>
<td>Admission Requirements</td>
<td></td>
</tr>
<tr>
<td>Application Deadlines</td>
<td>2</td>
</tr>
<tr>
<td>Application Process</td>
<td>24</td>
</tr>
<tr>
<td>English Language Competency</td>
<td>23</td>
</tr>
<tr>
<td>Graduate Programs</td>
<td>22</td>
</tr>
<tr>
<td>Rescission of Acceptance</td>
<td>8</td>
</tr>
<tr>
<td>Transfer Credit</td>
<td>23</td>
</tr>
<tr>
<td>African Studies, Centre for</td>
<td>300</td>
</tr>
<tr>
<td>Agriculture</td>
<td>37</td>
</tr>
<tr>
<td>Alumni Association/Alumni Relations</td>
<td>306</td>
</tr>
<tr>
<td>Anatomy and Neurobiology</td>
<td>42</td>
</tr>
<tr>
<td>Anthropology</td>
<td>293</td>
</tr>
<tr>
<td>Application Deadline</td>
<td>2</td>
</tr>
<tr>
<td>Architecture</td>
<td>45</td>
</tr>
<tr>
<td>Architecture, Faculty of</td>
<td>45</td>
</tr>
<tr>
<td>Planning</td>
<td>255</td>
</tr>
<tr>
<td>Arts and Social Sciences, Faculty of</td>
<td></td>
</tr>
<tr>
<td>Classics</td>
<td>95</td>
</tr>
<tr>
<td>English</td>
<td>132</td>
</tr>
<tr>
<td>French</td>
<td>146</td>
</tr>
<tr>
<td>German</td>
<td>150</td>
</tr>
<tr>
<td>History</td>
<td>164</td>
</tr>
<tr>
<td>International Development Studies</td>
<td>183</td>
</tr>
<tr>
<td>Musicology</td>
<td>206</td>
</tr>
<tr>
<td>Philosophy</td>
<td>240</td>
</tr>
<tr>
<td>Political Science</td>
<td>261</td>
</tr>
<tr>
<td>Sociology and Social Anthropology</td>
<td>293</td>
</tr>
<tr>
<td>Arts Centre</td>
<td>307</td>
</tr>
<tr>
<td>Athletics and Recreational Services</td>
<td>306</td>
</tr>
<tr>
<td>Atlantic Health Promotion Research Centre</td>
<td>299</td>
</tr>
<tr>
<td>Atlantic Institute of Criminology</td>
<td>299</td>
</tr>
<tr>
<td>Atlantic Research Centre (ARC)</td>
<td>299</td>
</tr>
<tr>
<td>Atmospheric Science</td>
<td>56</td>
</tr>
<tr>
<td>Audit Classes</td>
<td>30</td>
</tr>
<tr>
<td>Audit of Classes</td>
<td></td>
</tr>
<tr>
<td>Audit fees</td>
<td>317</td>
</tr>
<tr>
<td>Awards</td>
<td></td>
</tr>
<tr>
<td>Assistantships</td>
<td>320</td>
</tr>
<tr>
<td>Research and Travel Grants</td>
<td>331</td>
</tr>
<tr>
<td>Scholarships</td>
<td>320</td>
</tr>
<tr>
<td>Awards Index</td>
<td>336</td>
</tr>
<tr>
<td>Awards on Graduate Transcripts</td>
<td>331</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Biochemistry and Molecular Biology</td>
<td>56</td>
</tr>
<tr>
<td>Bioethics</td>
<td>60</td>
</tr>
<tr>
<td>Biological Engineering</td>
<td>265</td>
</tr>
<tr>
<td>Biological Engineering Program</td>
<td>266</td>
</tr>
<tr>
<td>Biology</td>
<td>61</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>65</td>
</tr>
<tr>
<td>Biophysics</td>
<td>248</td>
</tr>
<tr>
<td>Black Student Advising Centre (BSAC)</td>
<td>306</td>
</tr>
<tr>
<td>Bookstore</td>
<td>311</td>
</tr>
<tr>
<td>Brain Repair Centre</td>
<td>299</td>
</tr>
<tr>
<td>Business Administration</td>
<td>70</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Canadian Institute of Fisheries Technology (CIFT)</td>
<td>299</td>
</tr>
<tr>
<td>Centre for African Studies</td>
<td></td>
</tr>
<tr>
<td>Centre for Comparative Genomics and Evolutionary Bioinformatics</td>
<td>300</td>
</tr>
<tr>
<td>Centre for Environmental and Marine Geology</td>
<td>300</td>
</tr>
<tr>
<td>Centre for European Studies</td>
<td>301</td>
</tr>
<tr>
<td>Centre for Foreign Policy Studies</td>
<td>301</td>
</tr>
<tr>
<td>Centre for Innovation in Infrastructure</td>
<td>301</td>
</tr>
<tr>
<td>Centre for International Trade and Transportation</td>
<td>301</td>
</tr>
<tr>
<td>Centre for Learning and Teaching</td>
<td>306</td>
</tr>
<tr>
<td>Centre for Marine Vessel Development and Research (CMVDR)</td>
<td>301</td>
</tr>
<tr>
<td>Centre for Risk Management, Faculty of Management</td>
<td>305</td>
</tr>
<tr>
<td>Centre for Water Resources</td>
<td>301</td>
</tr>
<tr>
<td>Centres and Institutes</td>
<td></td>
</tr>
<tr>
<td>Canadian Residential Energy End-Use Data and Analysis Centre (CREEDAC)</td>
<td>300</td>
</tr>
<tr>
<td>Centre for African Studies</td>
<td>300</td>
</tr>
<tr>
<td>Centre for Environmental and Marine Geology</td>
<td>300</td>
</tr>
<tr>
<td>Centre for European Studies</td>
<td>301</td>
</tr>
<tr>
<td>Centre for Foreign Policy Studies</td>
<td>301</td>
</tr>
<tr>
<td>Centre for International Business Studies</td>
<td>301</td>
</tr>
<tr>
<td>Centre for Water Resources</td>
<td>301</td>
</tr>
<tr>
<td>Dalhousie Institute on Society and Culture (DISC)</td>
<td>302</td>
</tr>
<tr>
<td>European Union Centre of Excellence</td>
<td>302</td>
</tr>
<tr>
<td>Health Law Institute</td>
<td>303</td>
</tr>
<tr>
<td>Institute for Research in Materials (IRM)</td>
<td>303</td>
</tr>
<tr>
<td>Law and Technology Institute</td>
<td>303</td>
</tr>
<tr>
<td>Marine and Environmental Law Institute</td>
<td>304</td>
</tr>
<tr>
<td>Minerals Engineering Centre</td>
<td>304</td>
</tr>
<tr>
<td>Neuroscience Institute</td>
<td>304</td>
</tr>
<tr>
<td>Norman Newman Centre for Entrepreneurship</td>
<td>305</td>
</tr>
<tr>
<td>Trace Analysis Research Centre</td>
<td>305</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>265, 268</td>
</tr>
<tr>
<td>Chemistry</td>
<td>84</td>
</tr>
<tr>
<td>Civil and Resource Engineering</td>
<td>89</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>89–90</td>
</tr>
<tr>
<td>Classics</td>
<td>95</td>
</tr>
<tr>
<td>Clinical Vision Science</td>
<td>98</td>
</tr>
<tr>
<td>Clubs and Organizations</td>
<td>311</td>
</tr>
<tr>
<td>Code of Student Conduct</td>
<td>15</td>
</tr>
<tr>
<td>Community Health and Epidemiology</td>
<td>101</td>
</tr>
<tr>
<td>Computational Biology and Bioinformatics</td>
<td>103</td>
</tr>
<tr>
<td>Computer Science, Faculty of</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td>104</td>
</tr>
<tr>
<td>Electronic Commerce</td>
<td>121</td>
</tr>
<tr>
<td>Health Informatics</td>
<td>161</td>
</tr>
<tr>
<td>Counselling Services</td>
<td>307</td>
</tr>
<tr>
<td>Crosslisted Classes</td>
<td>3</td>
</tr>
</tbody>
</table>

332 Index
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations</td>
<td>8</td>
</tr>
<tr>
<td>Definitions</td>
<td>3</td>
</tr>
<tr>
<td>Dentistry, Faculty of</td>
<td></td>
</tr>
<tr>
<td>Oral and Maxillofacial Surgery</td>
<td>229</td>
</tr>
<tr>
<td>Periodontics</td>
<td>233</td>
</tr>
<tr>
<td>Prosthodontics</td>
<td>273</td>
</tr>
<tr>
<td>Deposits</td>
<td>315</td>
</tr>
<tr>
<td>Admission</td>
<td>315</td>
</tr>
<tr>
<td>Laboratory</td>
<td>318</td>
</tr>
<tr>
<td>Discipline</td>
<td>12</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Earth Sciences</td>
<td>110</td>
</tr>
<tr>
<td>Eco-Efficiency Centre, Faculty of Management</td>
<td>302</td>
</tr>
<tr>
<td>Economics, Faculty of</td>
<td>114</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>118</td>
</tr>
<tr>
<td>Electronic Commerce</td>
<td>121</td>
</tr>
<tr>
<td>Engineering - General</td>
<td>124</td>
</tr>
<tr>
<td>Engineering Mathematics</td>
<td>131</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>65</td>
</tr>
<tr>
<td>Civil and Resource Engineering</td>
<td></td>
</tr>
<tr>
<td>Civil Engineering Program</td>
<td>90</td>
</tr>
<tr>
<td>Mining Engineering Program</td>
<td>92</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>118</td>
</tr>
<tr>
<td>Engineering - General</td>
<td>124</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>140</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>174</td>
</tr>
<tr>
<td>Internetworking</td>
<td>186</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>199</td>
</tr>
<tr>
<td>Oil and Gas Engineering</td>
<td>229</td>
</tr>
<tr>
<td>Process Engineering and Applied Science</td>
<td>235</td>
</tr>
<tr>
<td>Process Engineering and Applied Science</td>
<td></td>
</tr>
<tr>
<td>Biological Engineering</td>
<td>265</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>265</td>
</tr>
<tr>
<td>Food Science</td>
<td>265</td>
</tr>
<tr>
<td>Materials Engineering</td>
<td>265</td>
</tr>
<tr>
<td>English</td>
<td>132</td>
</tr>
<tr>
<td>Environmental and Marine Geology, Centre for</td>
<td>300</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>140</td>
</tr>
<tr>
<td>Environmental Studies</td>
<td>150</td>
</tr>
<tr>
<td>European Union Centre of Excellence</td>
<td>302</td>
</tr>
<tr>
<td>Examinations</td>
<td></td>
</tr>
<tr>
<td>Policy in the Event that a Formal Examination Cannot be</td>
<td>8</td>
</tr>
<tr>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>Regulations</td>
<td>8</td>
</tr>
<tr>
<td>Religious Holidays</td>
<td>9</td>
</tr>
<tr>
<td>Requests for an Alternative Final Examination</td>
<td>8</td>
</tr>
<tr>
<td>Scheduling of Classes/Examinations</td>
<td>8</td>
</tr>
<tr>
<td>Exchange Services, International Student and</td>
<td>309</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Fees</td>
<td>315</td>
</tr>
<tr>
<td>Academic Fees</td>
<td>315</td>
</tr>
<tr>
<td>Additional Student Fees</td>
<td>318</td>
</tr>
<tr>
<td>Admission Deposit</td>
<td>315</td>
</tr>
<tr>
<td>Audit Classes</td>
<td>317</td>
</tr>
<tr>
<td>Bursaries</td>
<td>318</td>
</tr>
<tr>
<td>Class Changes</td>
<td>317</td>
</tr>
<tr>
<td>Delinquent Accounts</td>
<td>317</td>
</tr>
<tr>
<td>Health Insurance</td>
<td>317</td>
</tr>
<tr>
<td>Identification Cards (DalCard)</td>
<td>318</td>
</tr>
<tr>
<td>Income Tax Credit</td>
<td>318</td>
</tr>
<tr>
<td>International Students</td>
<td>317</td>
</tr>
<tr>
<td>Differential Fee</td>
<td>317</td>
</tr>
<tr>
<td>Health Insurance</td>
<td>317</td>
</tr>
<tr>
<td>Laboratory Deposits</td>
<td>318</td>
</tr>
<tr>
<td>Late Registration</td>
<td>315</td>
</tr>
<tr>
<td>Payment</td>
<td>316</td>
</tr>
<tr>
<td>Refunds</td>
<td>317</td>
</tr>
<tr>
<td>Registration</td>
<td>315</td>
</tr>
<tr>
<td>Regulations</td>
<td>315</td>
</tr>
<tr>
<td>Residency Fees</td>
<td>318–319</td>
</tr>
<tr>
<td>Scholarships</td>
<td>318</td>
</tr>
<tr>
<td>Statements and Monthly Notices</td>
<td>318</td>
</tr>
<tr>
<td>Student Loans</td>
<td>317</td>
</tr>
<tr>
<td>Student Service Fee</td>
<td>318</td>
</tr>
<tr>
<td>Student Union Fee Distribution</td>
<td>318</td>
</tr>
<tr>
<td>Tuition Fees</td>
<td>316</td>
</tr>
<tr>
<td>Withdrawals</td>
<td>317</td>
</tr>
<tr>
<td>Fellowships</td>
<td>320</td>
</tr>
<tr>
<td>Financial Aid</td>
<td></td>
</tr>
<tr>
<td>Government Student Loans</td>
<td>313</td>
</tr>
<tr>
<td>Food Science</td>
<td>265</td>
</tr>
<tr>
<td>Food Science Program</td>
<td>269</td>
</tr>
<tr>
<td>Foreign Policy Studies, Centre for</td>
<td>301</td>
</tr>
<tr>
<td>Freedom of Information and Protection of Privacy</td>
<td>9</td>
</tr>
<tr>
<td>French</td>
<td>146</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>150</td>
</tr>
<tr>
<td>Global Health Office</td>
<td>303</td>
</tr>
<tr>
<td>Government Student Loans</td>
<td>313</td>
</tr>
<tr>
<td>Graduate Bursaries</td>
<td>314</td>
</tr>
<tr>
<td>Graduate Programs</td>
<td>20</td>
</tr>
<tr>
<td>Graduate Studies</td>
<td>20</td>
</tr>
<tr>
<td>Graduate Studies, Faculty of</td>
<td></td>
</tr>
<tr>
<td>Admission Requirements</td>
<td>22</td>
</tr>
<tr>
<td>Appeals</td>
<td>36</td>
</tr>
<tr>
<td>Application Process</td>
<td>24</td>
</tr>
<tr>
<td>Conflict of Interest</td>
<td>27</td>
</tr>
<tr>
<td>Convocation</td>
<td>36</td>
</tr>
<tr>
<td>Degree Requirements</td>
<td>28</td>
</tr>
<tr>
<td>Departmental and Program Listings</td>
<td>37</td>
</tr>
<tr>
<td>Examinations</td>
<td>31</td>
</tr>
<tr>
<td>Faculty Regulations</td>
<td>20</td>
</tr>
<tr>
<td>Graduate Programs</td>
<td>20</td>
</tr>
<tr>
<td>Integrity in Scholarly Activity</td>
<td>27</td>
</tr>
<tr>
<td>Intellectual Honesty and Plagiarism</td>
<td>27</td>
</tr>
<tr>
<td>Intellectual Property</td>
<td>28</td>
</tr>
<tr>
<td>Membership</td>
<td>20</td>
</tr>
<tr>
<td>Musicology</td>
<td>206</td>
</tr>
<tr>
<td>Registration Procedures and Regulations</td>
<td>24</td>
</tr>
<tr>
<td>Thesis Regulations</td>
<td>33</td>
</tr>
<tr>
<td>Thesis Supervisors and Supervisory Committees</td>
<td>31</td>
</tr>
</tbody>
</table>

Index 333
Index

Material Engineering Program .. 271
Management, Faculty of
Libraries .. 309
Leisure Studies .. 160
Law, Faculty of ... 190
Law and Technology Institute .. 303
Liberal Arts .. 302
Libraries .. 309
Library & Information Studies .. 175
Management, Faculty of
Business Administration ... 70
Electronic Commerce .. 121
Environmental Studies .. 142
Information Management ... 176
Marine Affairs Program .. 192
Public Administration .. 281
Marine Affairs Program .. 192
Marine and Environmental Law Institute 304
Material Engineering Program ... 271
Medical Sciences .. 203
Medicine, Faculty of
Anatomy and Neurobiology ... 42
Biochemistry and Molecular Biology ... 56
Biomedical Engineering ... 65
Community Health and Epidemiology 101
Computational Biology and Bioinformatics 103
Health Informatics .. 161
Medical Sciences .. 203
Microbiology and Immunology ... 204
Neuroscience ... 208
Pathology ... 231
Pharmacology ... 236
Physiology and Biophysics .. 238
Physiotherapy ... 248
Philosophy .. 240
Pharmacology ... 236
Nuclear Magnetic Resonance Research Resource (NMR3) ... 299, 305
Native American Studies ... 208
Neuroscience Institute... 304
Norman Newman Centre for Entrepreneurship.............................. 305
Office of the Ombudsperson ... 310
Oral and Maxillofacial Surgery .. 229
Pathology ... 231
Petroleum Engineering .. 235
Pharmacy ... 236
Pharmaceutical Industry ... 238
Philosophy ... 240
Physics .. 244
Physiology and Biophysics .. 248
Physiotherapy ... 251
Plagiarism .. 11
Planning ... 255
Political Science.. 261
Process Engineering and Applied Science 265
Prosthodontics ... 273
Protection of Property .. 18
Psychology ... 273
Public Administration .. 281
Qualifying Student (Master’s only) ... 26
Refund Schedule .. 317
R
RBC Centre for Risk Management, Faculty of Management........... 305
Awards Index

A
Adjeleian Award in the Aesthetics of Structures ..321
Alexandra Hirth Award for Excellence in Nursing Research326
Alpha Rho Chi Medal ..321
Alumni Memorial Award ..321
Alumni Scholarship ..325
Anna Trenholm Memorial Prize ..326
APENS Engineering Centennial Scholarship324
Architects’ Association of New Brunswick Scholarship321
Architecture ..321
Atlantic Planners Institute Student Award329
Association of Black Social Workers of Canada Bursary330

B
Barbara A.M. Patton Scholarship ..325
Barbara O’Shea Graduate Award (Post-Professional Award)327
Barry Johns Scholarship for Design ..322
Bruce and Dorothy Rosetti Engineering Research Scholarships325
Bursaries ...322, 329
Bursary Administration ..323

C
Calvin Ruck Scholarship ..330
Canadian Institute of Planners Student Award for Academic Excellence ..329
Canadian Institute of Planners Student Scholarships (4)329
Canadian Physiotherapy Association Award328
Canadian Physiotherapy Cardio-Respiratory/CPA Student Excellence Award ...328
CAOT Student Award ...327
Cardio-Respiratory Award ...328
Cardwell Robinson Award ..327
Centre for International Business Studies First Year Graduate Scholarship ..323
Chemistry ...323
Conference Travel Grants ...331

D
D.O. Hebb Post-Graduate Prize ...330
Dalhousie Occupational Therapy Student Involvement Award327
Donald R. Arnold Scholarship ..323
Donna Myers Memorial Award ..328
Dorothy Leslie Prize ...329
Douglas Butler Memorial Prize ...328
Douglas E. Ryan Prize for Excellence Graduate Studies in Chemistry 323
Dr. L.F. Kirkpatrick Scholarship ..324
Dr. Mabel E. Gudge Scholarship in Psychology329
Dr. P. Anthony Johnston Memorial Bursary331
Dr. S.K. Malhotra Graduate Scholarship ..324
Dr. Stirling Whiteway Graduate Scholarship in Materials Engineering ...324

E
Economics ...323
Electa MacLennan Memorial Scholarship326
Eliza Ritchie Doctoral Scholarship for Women320
Elizabeth Bell Scholarship MSc(O) Entry level and Post-Professional Awards ...330
Elsevier Canada Award ..327
Engineering ...324
English ..325
Environmental Studies ...325
Ernest Wilby Memorial Scholarship ..323
Eva Mary and Judge Hiram S. Farquhar Bursary330
External Scholarships ..321
Exxon Mobil Canada Ltd. Post-Graduate Scholarship324

F
Faculty of Graduate Studies Bursaries ...330
Faculty of Graduate Studies Scholarships ..320
Fred Sammons Scholarship (MScOT Entry level and Post-Professional Awards) ...330

G
G.G. Meyerhof Graduate Fellowship ..324
General Disciplines ..320
General Information about Bursaries ...330
George C. Reid and Lucille M. Reid Scholarships324
George Lawen / Dexus Developments Scholarship322, 329
George W. Rogers Award ..322
Gerald and Margaret Godsoe Scholarship ..325
Gerry Dauphinee Graduate Scholarship in Chemistry323
Ghost Lab Prize ..322
Goldberg-Schulich Award for Entrepreneurship323
Government Notification ...330
Grainger Award ..327

H
H. Allen Brooks Traveling Fellowship ..321
H. W. Wilson Foundation Award ..325
Hanna G. Matheson Bursaries ..330
Hazel Lloyd Memorial Prize ..328
Helen Watson Memorial Scholarship ..326
Heller-Smith Foundation Graduate Scholarship in Mathematics & Statistics ..330
Henry Adams Medal and The Henry Adams Certificate321

I
Information Management, School of ...325
Irving and Jeanne Glovin Award ...330

J
James Gordon MacGregor Memorial Teaching Fellowship in Physics 328
James Robinson Johnston Graduate Scholarship for African Canadians 320
James W. Tupper Graduate Fellowship in English325

336 Awards Index
Jean McAloney Memorial Prize ... 328
John D. Watson Memorial Scholarship ... 323
John P. Laba Memorial Research Award 327
Jonathan Hart Memorial Fund ... 322

K
Katherine and Robert MacDonald Scholarship 326
Kathy Ellis Memorial Book Prize .. 327
Ken Hill Electrotherapy Award ... 328
Kenneth T. Leffek Prize for the Best PhD Thesis in Chemistry 323
Killam Postdoctoral Fellowships ... 331
Killam Predoctoral Scholarships .. 320

L
Lawrence T. Hancock Scholarship .. 330
Lottie M. Morrison Scholarship ... 326

M
Malcolm Ross Graduate Scholarship in English 325
Malcom Ross Award in Canadian Literature 325
Margaret Cragg Award ... 326, 330
Margaret Inglis Hagerman Graduate Scholarship in Nursing 326
Marine Affairs Program ... 325
Maritime Hobbies and Crafts Bursary 322
Master of Marine Management Gold Award 325
Master of Planning Prize ... 329
Mathematics and Statistics ... 325
Medjuck Scholarship in Energy Studies 324
Michael Mezei Memorial Scholarship ... 326
Morris B. Kohler Award in Physiotherapy 328

N
NBAOT Awards for Fieldwork .. 327
New Brunswick Student Professionalism Award 328
Newfoundland and Labrador Association of Occupational Therapists (NLAOT) Book Prize .. 327
Newfoundland and Labrador College of Physiotherapy Prize 328
Newfoundland and Labrador Occupational Therapy Board Prize ... 327
Newfoundland and Labrador Physiotherapy Association Prize ... 328
NORTHSTAR Trade Finance - Mary Grover LeBlanc Memorial Fellowship - International Business 323
Nova Scotia Association of Architects - Ojars Biskaps Award 322
Nova Scotia Association of Architects Scholarship 322
Nova Scotia Association of Architects Scholarship 322
Nova Scotia Black and First Nations Students Graduate Entrance Scholarships .. 320
Nova Scotia College of Physiotherapists Prize 328
Nova Scotia Planning Directors Association Award (NSPDA) ... 329
Nova Scotia Section of Orthopedic Division, CPA Award 328
Nova Scotia Society of Occupational Therapists (NSSOT) Book Prize 327
NSSOT Student Society Award ... 327
Nursing ... 326

O
Occupational Therapy ... 326
Oceanography .. 327
Oral and Maxillofacial Surgery .. 327
Other Bursaries ... 331

P
P.E.I. Occupational Therapy Society Award for Community Occupational Therapy ... 327
Patricia Stanfield Covert Award in Physiotherapy 328
Patrick F. Lett Graduate Student Assistance Bursary in Mathematics and Statistics ... 326
Philosophy ... 328
Phyllis Kennedy Memorial Bursary .. 327
Physics ... 328
Planning .. 329
President's Award .. 321
President's Graduate Teaching Assistant Awards 331
Prince Edward Island Physiotherapy Association Prize 328
Professor F. Ronald Hayes International Scholarship 327
Professor George A.B. Kartsaklis Memorial Scholarship 323
Professor Michael Edelstein Memorial Graduate Prize 325
Psychology ... 329

R
Raoul Leger Memorial Humanitarian Award 330
Research and Travel Grants .. 331
Research Grants ... 331
Robert L. Comeau Scholarship ... 323
Royal Architectural Institute of Canada Honour Roll 322
Royal Architectural Institute of Canada Student Medal 322
Ruth May Award ... 326

S
School of Architecture Thesis Prize .. 323
School of Nursing MN Scholarship .. 326
School of Nursing PhD Scholarship ... 326
School of Occupational Therapy Graduate Scholarships (MSc OT Entry Level and Post-Professional Awards) 327
School of Physiotherapy ... 328
School of Physiotherapy Paediatric Prize 328
School of Planning Achievement in Planning Studies Award 329
School of Planning Prize ... 329
School of Planning Project Prize .. 329
School of Planning Team Project Prize 329
School of Social Work MSW Alumni Award 330
Sheila Poole Run for the Rock Award .. 327
Sigma Theta Tau International Rho Rho Chapter Award 326
Social Work .. 330
Sonja R. Weil Memorial Bursary .. 330
Specific Disciplines ... 321
Steel Structures Education Foundation Scholarship for Excellence in Steel Design ... 323
Stephanie Downs Memorial Award ... 325
Student Research Award .. 328

T
Teaching Assistantships ... 331
The Clinical Citizenship Award .. 329
The Dr. Ron Stewart Award for Student Leadership in Global Health 330
The John and Lina Graham Commonwealth Bursary 331
The Linda Marie Gillingwater Rainsberry Bursary 331
The Phi Kappa Pi Joe Ghiz Memorial Award 331

Awards Index 337
U
U.L.G. Rao Memorial Prize in Economics324
University Awards ..330
Unsung Hero Award ..328

V
Vitamin Scholarship ...321

W
Walter Gardner Stanfield Scholarships323, 329
William Leiper Memorial Scholarship ...328
William Nyceum & Associates Limited Scholarship322
William P. Lydon Scholarship ..322

Z
Zella Crowe Spencer Memorial ..324