Embrace Your World

102nd Calendar
2007/2008

MAILING ADDRESS

Office of the Registrar
Nova Scotia Agricultural College
PO Box 550, Truro
Nova Scotia, Canada B2N 5E3

902.893.6722 Tel
1.888.700.6722 Toll free
902.895.5529 Fax
reg@nsac.ca
www.nsac.ca

The Nova Scotia Agricultural College reserves the right to make changes to this Calendar without notice.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message from Registrar</td>
<td>4</td>
</tr>
<tr>
<td>Mission Statement</td>
<td>5</td>
</tr>
<tr>
<td>Statement of Values</td>
<td>5</td>
</tr>
<tr>
<td>2007/2008 Schedule of Dates</td>
<td>6</td>
</tr>
<tr>
<td>General Information</td>
<td>7</td>
</tr>
<tr>
<td>History</td>
<td>7</td>
</tr>
<tr>
<td>Programs Offered</td>
<td>7</td>
</tr>
<tr>
<td>Facilities</td>
<td>7</td>
</tr>
<tr>
<td>Student Services</td>
<td>7</td>
</tr>
<tr>
<td>Athletics</td>
<td>7</td>
</tr>
<tr>
<td>Career Services</td>
<td>8</td>
</tr>
<tr>
<td>Health Services</td>
<td>8</td>
</tr>
<tr>
<td>Residence & Food Services</td>
<td>8</td>
</tr>
<tr>
<td>Academic Support Services</td>
<td>8</td>
</tr>
<tr>
<td>Peer Tutoring Program</td>
<td>8</td>
</tr>
<tr>
<td>Student Government</td>
<td>8</td>
</tr>
<tr>
<td>International Programs</td>
<td>8</td>
</tr>
<tr>
<td>Agricultural Colleges Exchange Program</td>
<td>9</td>
</tr>
<tr>
<td>Articulation Agreements</td>
<td>10</td>
</tr>
<tr>
<td>Professional Organizations for Agrologists and Engineers</td>
<td>10</td>
</tr>
<tr>
<td>E-mail Usage at NSAC</td>
<td>10</td>
</tr>
<tr>
<td>Computing Services</td>
<td>10</td>
</tr>
<tr>
<td>Library</td>
<td>11</td>
</tr>
<tr>
<td>Continuing and Distance Education</td>
<td>11</td>
</tr>
<tr>
<td>Churches</td>
<td>11</td>
</tr>
<tr>
<td>Day Care</td>
<td>11</td>
</tr>
<tr>
<td>Admissions Information</td>
<td>12</td>
</tr>
<tr>
<td>Admissions Status</td>
<td>12</td>
</tr>
<tr>
<td>Admission</td>
<td>13</td>
</tr>
<tr>
<td>Admission Requirements</td>
<td>14</td>
</tr>
<tr>
<td>NSAC Admission Requirements, by Program</td>
<td>14</td>
</tr>
<tr>
<td>For Students Graduating from High Schools in the United States of America</td>
<td>15</td>
</tr>
<tr>
<td>Financial Information</td>
<td>16</td>
</tr>
<tr>
<td>Tuition Fees (Canadian Citizens and Permanent Residents)</td>
<td>16</td>
</tr>
<tr>
<td>Tuition Fees (International Students)</td>
<td>16</td>
</tr>
<tr>
<td>Books</td>
<td>16</td>
</tr>
<tr>
<td>Student and Technology Renewal Fees</td>
<td>16</td>
</tr>
<tr>
<td>Program-related Fees</td>
<td>17</td>
</tr>
<tr>
<td>Residence and Meal Plan Fees</td>
<td>17</td>
</tr>
<tr>
<td>Refunds</td>
<td>18</td>
</tr>
<tr>
<td>Non-payment of Fees</td>
<td>18</td>
</tr>
<tr>
<td>Application to Graduate</td>
<td>18</td>
</tr>
<tr>
<td>Transcripts</td>
<td>18</td>
</tr>
<tr>
<td>Registration Deposit</td>
<td>18</td>
</tr>
<tr>
<td>Residence Deposit/Cancellation Fee</td>
<td>18</td>
</tr>
<tr>
<td>Canada Student Loans Program</td>
<td>19</td>
</tr>
<tr>
<td>International Student Information</td>
<td>19</td>
</tr>
<tr>
<td>Regulations and Procedures</td>
<td>20</td>
</tr>
<tr>
<td>Freedom of Information and Protection of Privacy</td>
<td>20</td>
</tr>
<tr>
<td>Advising</td>
<td>20</td>
</tr>
<tr>
<td>Academic Standing</td>
<td>20</td>
</tr>
<tr>
<td>Academic Responsibility</td>
<td>21</td>
</tr>
<tr>
<td>Advanced Standing</td>
<td>21</td>
</tr>
<tr>
<td>Athletics</td>
<td>21</td>
</tr>
<tr>
<td>Attendance in Class</td>
<td>22</td>
</tr>
<tr>
<td>Auditing Courses</td>
<td>22</td>
</tr>
<tr>
<td>Challenge for Credit</td>
<td>22</td>
</tr>
<tr>
<td>Course Load</td>
<td>22</td>
</tr>
<tr>
<td>Dropping Courses</td>
<td>22</td>
</tr>
<tr>
<td>Examinations</td>
<td>23</td>
</tr>
<tr>
<td>Grades</td>
<td>23</td>
</tr>
<tr>
<td>Graduation</td>
<td>24</td>
</tr>
<tr>
<td>Standing on Graduation</td>
<td>24</td>
</tr>
<tr>
<td>Health Insurance Requirements</td>
<td>25</td>
</tr>
<tr>
<td>Permission to Take Courses Elsewhere</td>
<td>25</td>
</tr>
<tr>
<td>Plagiarism</td>
<td>25</td>
</tr>
<tr>
<td>President's List</td>
<td>25</td>
</tr>
<tr>
<td>Readmission</td>
<td>25</td>
</tr>
<tr>
<td>Registration</td>
<td>25</td>
</tr>
<tr>
<td>Residence</td>
<td>26</td>
</tr>
<tr>
<td>Student Safety</td>
<td>25</td>
</tr>
<tr>
<td>Student Status</td>
<td>26</td>
</tr>
<tr>
<td>Transcripts</td>
<td>26</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>26</td>
</tr>
<tr>
<td>Explanation of Terms and Codes</td>
<td>27</td>
</tr>
<tr>
<td>Undergraduate Degree Programs</td>
<td>28</td>
</tr>
<tr>
<td>Bachelor of Science in Agriculture (B.Sc.(Agr.))</td>
<td>28</td>
</tr>
<tr>
<td>Bachelor of Technology (Environmental Horticulture)</td>
<td>38</td>
</tr>
<tr>
<td>Bachelor of Technology in Applied Science</td>
<td>38</td>
</tr>
<tr>
<td>Engineering Diploma</td>
<td>41</td>
</tr>
<tr>
<td>Pre-veterinary Medicine</td>
<td>43</td>
</tr>
<tr>
<td>Technology Programs</td>
<td>44</td>
</tr>
<tr>
<td>Diploma in Enterprise Management</td>
<td>44</td>
</tr>
<tr>
<td>Companion Animal</td>
<td>45</td>
</tr>
<tr>
<td>Dairy Farm</td>
<td>46</td>
</tr>
<tr>
<td>Equine</td>
<td>47</td>
</tr>
<tr>
<td>Farming</td>
<td>47</td>
</tr>
<tr>
<td>Food Retail</td>
<td>48</td>
</tr>
<tr>
<td>Environmental Horticulture</td>
<td>48</td>
</tr>
<tr>
<td>Plant Science</td>
<td>49</td>
</tr>
<tr>
<td>Veterinary</td>
<td>51</td>
</tr>
<tr>
<td>University Preparatory Courses</td>
<td>52</td>
</tr>
<tr>
<td>Certificate Programs</td>
<td>53</td>
</tr>
</tbody>
</table>
Table of Contents

Description of Courses—Undergraduate and Technical 54
- Academic 54
- Agricultural 54
- Agronomy 56
- Animal Science 57
- Aquaculture 64
- Art 64
- Biology 65
- Chemistry 68
- Communications 71
- Computer 72
- Economics 72
- English 76
- Engineering 77
- Environmental Sciences 83
- Extension Education 85
- Food Science 85
- French 86
- Genetics 87
- Geography 88
- Geology 88
- History 88
- Horticulture 89
- International Development 93
- Internship 94
- Math 94
- Management 96
- Microbiology 99
- Nutrition 100
- Philosophy 100
- Physics 101
- Plant Science 102
- Political Science 103
- Research Methods/Project-Seminars 104
- Sociology 105
- Soils 106
- Spanish 107
- Special Topics 107
- Statistics 110
- Veterinary Technology 110

Graduate Program 115
- Master of Science in Agriculture 115
- Admission Requirements 116
- Academic Deadlines 118
- Programs of Full-Time and Part-Time Study 119
- General Information 119
- Other Program Components 122
 - Demonstrating 122
 - ATC Examination 123
 - Thesis 124
- Registration 126
- Full-Time, Part-Time, and Other Categories 129
- Fees 130
- Course Selection and Enrollment 131
- Financial Support 131
- Thesis Regulations 133
- Convocation 136
- Graduate Curriculum Listing 136
- Graduate Course Descriptions 137

Scholarships, Bursaries, and Academic Prizes 143
- Definition of Terms 143
- Procedure for Appeals of Scholarship Renewal Decisions 144
 - I. Entrance Scholarships and Bursaries 145
 - II. Continuation Scholarships and Bursaries 151
 - III. Graduate Scholarship/Bursaries 161
 - IV. Medals and Prizes 163
 - V. Scholarships and Bursaries for Continuing Studies beyond NSAC 165
 - VI. Other Entrance External Scholarships & Bursaries 166
 - VII. Other Continuing External Scholarships and Bursaries 173
 - VIII. Other Scholarship, Bursary, Award Resource List 182

Administration and Faculty 183
- Administrative Officers 183
- Faculty 183

Appendix I: New to Old Course Numbers 187

Appendix II: Old to New Course Numbers 195

Appendix III: NSAC Courses Eligible for Admission to Atlantic Veterinary College 203

Appendix IV: Course Designations 205

Index 206
Welcome to the Nova Scotia Agricultural College (NSAC), where for over 100 years we have been educating and training talented and dedicated students like yourself. NSAC graduates have gone into scientific research, medicine, pharmacy, law, veterinary science, agrology, business and a hundred other respected and rewarding careers. There is no limit on where an NSAC education can take you.

Applied Education
NSAC is proud of its commitment to applied education and training in all of its programs, from science to business to agriculture to veterinary technology. Here you don’t talk about experiments, you put on your lab coat and get out the chemicals and chromatograph. You don’t talk about how to run a business, you research the market, set up a model business and try to turn a profit. You don’t talk about how to vaccinate dogs or cats, you protect animals from deadly diseases by giving them vaccines. Applied. Not just hearing, but doing. That is the best way to learn.

Small Size and Welcoming Faculty and Staff
Twelve-to-one. That is the incredibly low ratio of students to faculty. It guarantees your instructors will know your name and that you’ll be able to actively participate in all of your classes. It also means that your instructors will be able to adjust their teaching methods to your unique learning style, and if you need some extra help understanding a difficult concept it will be there for you. And since the NSAC strives to provide a warm and welcoming environment for all students, your instructors won’t be the only ones who know your name. You might just walk into the Registry, Student Services or the Athletic Centre and be greeted by your first name.

Student Life
Students are encouraged to participate in all aspects of student life at NSAC. We have a great residence experience, athletic programs, student government and many clubs and activities. From basketball teams to equestrian and drama clubs, we have a diverse number of experiences waiting for you. Come, participate, and grow.

Support Services
At NSAC, we work hard to deliver the support services that students like you need to be successful, both in and out of the classroom. Every single student is assigned an academic advisor, even before you get here. Our advisors are trained to assist students with the transition to university life and guide you throughout the academic process, whenever you need us. We also have a variety of other services such as peer tutoring, writing centre, study skills programs, and health and career counselling. At NSAC we understand that you’re more than just a student.

Research Intensity and its Benefit to Students
Our faculty members are real-world researchers who are finding new and innovative solutions to some of the world’s most troubling problems—like water quality, health and reproduction, and protecting the food supply—and they are bringing this research into their classrooms every day, further enriching the experience of NSAC students.

These are just some of the many reasons to join the NSAC family. Congratulations on making an excellent choice for your higher education.

Wayne Paquet
Registrar
Mission Statement

The Nova Scotia Agricultural College excels in education and the provision of new knowledge in agriculture, food, and the environment for the benefit of society.

STATEMENT OF VALUES
In support of their mission, the faculty and staff of the College espouse the following values:

Excellence
We seek to achieve excellence in all we do. Our evaluation of ourselves and our students should reflect this high standard. We seek continuous improvement in our teaching, research and service and expect from our students, faculty, and staff a dedication and commitment to these pursuits.

Leadership
We provide leadership in the pursuit of truth, innovation, and solutions to problems encountered by the agriculture and food industry and rural communities. We seek to provide our students with opportunities to develop leadership skills, wisdom, and independence.

Cooperation
We seek cooperation and partnership with industry representatives, government agencies, and other universities and colleges in Canada and around the world.

Accessibility
We strive to make our programs accessible to all.

Community
We are responsible for ensuring a safe, healthy, motivating environment for the entire College community. We also have a commitment to the wider human community to act with equity, charity, and responsibility both as an institution and as individuals comprising the institution.

Accountability
We cherish the ideals of academic freedom and individual rights while recognizing the importance of personal and professional integrity and accountability for our actions. We operate in a fiscally responsible manner with all funding groups.

Environmental Responsibility
We seek to act respectfully and responsibly towards the environment and to provide leadership in soil and water conservation.

Respect and Fairness
We are dedicated to our students and to their pursuit of skills and knowledge. We respect all persons without prejudice or discrimination. We respect the opinions of others and encourage open debate. We strive to deal fairly with all people.
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 26, 2007</td>
<td>Open House</td>
</tr>
<tr>
<td>September 4, 2007</td>
<td>Student Services Orientation</td>
</tr>
<tr>
<td>September 5, 2007</td>
<td>Fall Registration and Academic Orientation</td>
</tr>
<tr>
<td>September 6, 2007</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>September 19, 2007</td>
<td>Last day to register for a course—Fall semester</td>
</tr>
<tr>
<td>October 8, 2007</td>
<td>Thanksgiving—No classes</td>
</tr>
<tr>
<td>October 19, 2007</td>
<td>Last day to drop a course without academic penalty</td>
</tr>
<tr>
<td>October 19, 2007</td>
<td>College Royal—No Classes in afternoon</td>
</tr>
<tr>
<td>October 20, 2007</td>
<td>Homecoming/Reunion Weekend</td>
</tr>
<tr>
<td>October 25, 2007</td>
<td>Autumn Assembly</td>
</tr>
<tr>
<td>November 11, 2007</td>
<td>Remembrance Day</td>
</tr>
<tr>
<td>November 12, 2007</td>
<td>No Classes, in honour of Remembrance Day</td>
</tr>
<tr>
<td>November 16, 2007</td>
<td>Last day to apply for Drop Fail Status</td>
</tr>
<tr>
<td>December 1, 2007</td>
<td>Last day to apply to graduate from Master's program in May</td>
</tr>
<tr>
<td>December 3, 2007</td>
<td>Last day of classes (Fall semester)</td>
</tr>
<tr>
<td>December 6–14, 2007</td>
<td>Exams</td>
</tr>
<tr>
<td>December 15, 2007</td>
<td>Last day to apply to graduate from undergraduate or technical program in May</td>
</tr>
<tr>
<td>January 3, 2008</td>
<td>Classes begin</td>
</tr>
<tr>
<td>January 16, 2008</td>
<td>Last day to register for a course—Winter semester</td>
</tr>
<tr>
<td>February 6, 2008</td>
<td>President’s List Reception</td>
</tr>
<tr>
<td>February 14, 2008</td>
<td>Founding Day</td>
</tr>
<tr>
<td>February 15, 2008</td>
<td>Last day to drop a course without academic penalty</td>
</tr>
<tr>
<td>February 18–22, 2008</td>
<td>Mid-term Study Break</td>
</tr>
<tr>
<td>February 29, 2008</td>
<td>Last day to apply to the Veterinary Technology program</td>
</tr>
<tr>
<td>March 14, 2008</td>
<td>Last day to apply for Drop Fail Status</td>
</tr>
<tr>
<td>March 21, 2008</td>
<td>Good Friday—No Classes</td>
</tr>
<tr>
<td>March 24, 2008</td>
<td>Easter Monday—No Classes</td>
</tr>
<tr>
<td>April 4, 2008</td>
<td>Last day of classes—Winter Semester</td>
</tr>
<tr>
<td>April 7–15, 2008</td>
<td>Winter semester examinations</td>
</tr>
<tr>
<td>May 2, 2008</td>
<td>Convocation</td>
</tr>
<tr>
<td>June 30, 2008</td>
<td>Last day to cancel registration and residence application and receive refund</td>
</tr>
<tr>
<td>July 2, 2008</td>
<td>Last day to apply to graduate from Master's program in October.</td>
</tr>
</tbody>
</table>
HISTORY
The Nova Scotia Agricultural College was formally opened in 1905 to assume and expand the work that for several years had been carried on by the School of Horticulture in Wolfville and the School of Agriculture in Truro. The College operates under the authority of an Act of the Legislature of Nova Scotia. The College colours are blue and gold.

PROGRAMS OFFERED
A wide range of programs is offered at NSAC, including:
• a four-year Bachelor of Science (Agriculture) program offered in association with Dalhousie University
• a two-year Master of Science program offered in association with Dalhousie University
• a two-year Engineering diploma program
• a two-year Pre-Veterinary Medicine program
• a two-year Bachelor of Technology program in Environmental Horticulture that requires prior completion of a two-year landscape-related diploma program (in association with Dalhousie University)
• a four-year Bachelor of Technology program in Applied Science offered in association with Dalhousie University
• a two-year Veterinary Technology Diploma program
• a two-year Environmental Horticulture Technology Diploma program
• a two-year Plant Science Technology Diploma program
• a two-year Enterprise Management Diploma program, with specializations in Dairy, Equine, Companion Animal, Farming and Food Retail
• an Academic Certificate program in Organic Agriculture.

Detailed information on these programs can be found in individual program sections in this calendar. Please consult the table of contents.

NSAC reserves the right to make program revisions or additions.

FACILITIES
The Nova Scotia Agricultural College is located on a 165-hectare property at Bible Hill, a kilometre northeast of Truro, Nova Scotia. The College buildings—Cumming Hall, Harlow Institute, Banting Building, MacRae Library, Langille Athletic Centre, Collins Horticultural Building, Cox Institute of Agricultural Technology, Boulden Building, Hancock Veterinary Building, Haley Institute, the Dairy Building, MacMillan Show Centre, and a modern farm building complex—provide excellent teaching and research facilities, as well as offices and laboratories for faculty and staff and for some staff of the Nova Scotia Department of Agriculture. Fraser House, Trueman House, Chapman House, and Jenkins Hall provide excellent accommodation and dining facilities for students.

STUDENT SERVICES
The Dean of Student Services is responsible for all non-classroom aspects of student life from initial acceptance to graduation. This includes areas such as residence and food services, medical/counselling services, career services and athletics.

Athletics
Recreational activities. The Langille Athletic Centre provides an opportunity for students to choose a number of activities to enjoy during their leisure time. Racquetball, squash, and badminton are very popular racquet games. The spacious facility includes a power lifting room with free weights and a number of specific benches for the serious lifter. A fitness and muscle toning room contains individual weight machines, stair climbers, bikes, rowing machines, and other equipment for the individual who wants to maintain a level of fitness. Swimming, tennis, golf, and curling facilities are also available, off campus, to students during the academic year.

Intramural athletics. The intramural program includes competition in soccer, softball, volleyball, hockey, basketball, badminton, table tennis, racquetball, squash, flag football, and ultimate Frisbee.

Varsity athletics. NSAC is one of ten members in the Atlantic Colleges Athletic Association. Conference sports for both men and women include soccer, volleyball, and basketball. Winners from the ACAA advance to the national championships administered by the Canadian Colleges Athletic Association.

Also recognized as varsity teams are men’s and women’s woodsmen and rugby teams. Rugby teams compete with other post-secondary teams in the Maritimes. The woodsmen teams compete in Canadian Intercollegiate Lumberjacking Association (CILA) tournaments throughout the year against teams from New Brunswick, Quebec, Ontario, Maine, Vermont, and New York.
Career Services

The Nova Scotia Agricultural College provides facilities and personnel to assist graduates and undergraduates in obtaining part-time, summer, and permanent employment.

Career Services contacts representatives of the agricultural industry to arrange for on- and off-campus recruitment of student employees. Individual counselling related to career planning and employment information associated with agriculture is also available. Students are informed of employment opportunities, which are posted on bulletin boards at various locations on campus. General information on career planning, potential employers, and exchange programs is also available at Career Services.

Health Services

The clinic is located in the Dairy Building with weekday hours being maintained from mid-August to late June. Students are assisted with physical, emotional, and lifestyle issues. In that process, Peer Educators share current lifestyle and personal health advice with fellow students.

General health concerns and referrals to community specialists are also made through the Assistant Dean, Health Services. Physician-attended clinics are held weekly, and topical clinics held during each semester.

Residence and Food Services

Accommodation and dining facilities are available for up to 350 students in co-educational and single-sex arrangements. Three residences—Chapman, Fraser and Trueman—are equipped with private and shared accommodation, modern laundry facilities, mail delivery, and student lounge/games room. Each room is equipped with basic furnishings such as bed, mattress, desk, chair, closet, and drapes. Students are encouraged to develop their social and personal potential through participation in House Council, Student Union, and Student Services activities.

An alternative student accommodation is offered at Trueman House, which features apartment-like living in large, bright, recently renovated rooms. Each 11-bedroom section (apartment) includes a fully equipped kitchen, sitting room with cable TV, high-speed Internet, microwave, laundry room, storage area, and shared washrooms and showers.

Food Services provides a balanced, healthy menu from which on-campus students may choose a variety of main-course and dessert items. Special meals are held to celebrate many special occasions such as Thanksgiving, Christmas, etc.

Academic Support Services

The Nova Scotia Department of Education provides support for post-secondary students with a permanent learning disability and/or physical/mental disability. NSAC students may seek assistance from a Department Disability Resource Facilitator located on campus. Documentation (a Psych Ed assessment for a learning disability; a letter from a doctor for a physical disability) must be provided with regards to the disability and its impact on learning. The Disability Resource Facilitator can assist Canadian students with applications for funding resources (e.g. Canada Study Grant). Students from other countries must apply to their respective home countries for similar funding.

If the student is accepted by the Department of Education (Rehabilitation Programs and Services) as a client, such things as tutoring, note taking, interpreters (for hearing impaired) and FM systems may be funded.

Peer Tutoring Program

A peer tutoring program provided by Student Services is available for all NSAC students. To access the service, students meet with the program co-ordinator, sign a contract, and are matched with an appropriate tutor. Students may seek help for more than one subject area at a time. Each student normally receives two hours of tutorial each week for each course.

Student Government

Through a system of self-government, students are encouraged to accept the greatest possible degree of responsibility in connection with their own affairs. Only full-time students taking regular programs are allowed to act as executive members of the Student Union or as members of student committees.

Faculty members are appointed by the Faculty to act in an advisory capacity with student committees on financial, literary, social, and athletic affairs so that every possible benefit may be derived from these activities.

INTERNATIONAL PROGRAMS

NSAC is committed to being a leader in global food security. Opportunities are available for students to participate in this process by enhancing their global knowledge base and professional skill set. Students can participate in a variety of ways, including student exchanges and courses that are taught in foreign countries.
General Information

NSAC Student Exchanges
- Students spend one or two semesters abroad.
- Tuition is paid at NSAC; Canadian students are eligible for Canada Student Loans.
- Courses are recognized for transfer credit by NSAC and the partner institution.
- Application deadlines are announced each semester via www.nsac.ca/international.

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway</td>
<td>Norwegian University of Life Sciences</td>
</tr>
<tr>
<td>Finland</td>
<td>Hâme Polytechnic</td>
</tr>
<tr>
<td>Denmark</td>
<td>The Royal Veterinary & Agricultural University</td>
</tr>
<tr>
<td>USA</td>
<td>Virginia Tech</td>
</tr>
<tr>
<td></td>
<td>Iowa State University</td>
</tr>
<tr>
<td>Mexico</td>
<td>Universidad Autonoma de Baja California</td>
</tr>
<tr>
<td></td>
<td>Instituto Tecnologico del Valle de Oaxaca</td>
</tr>
<tr>
<td>Canada</td>
<td>Marine Institute, Memorial University of Newfoundland</td>
</tr>
<tr>
<td></td>
<td>Université Laval</td>
</tr>
</tbody>
</table>

NSAC Study Agreements
NSAC has formal agreements with the following institutions. Students pay tuition at the host university. Students coming to NSAC must meet English language requirements and pay international student tuition and fees.
- Students spend one or two semesters abroad.
- International student tuition fees apply; Canadian students are eligible for Canada Student Loans.
- Courses are recognized for transfer credit by NSAC and the partner institution.

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czech Republic</td>
<td>Czech University of Agriculture Prague</td>
</tr>
<tr>
<td>Japan</td>
<td>Faculty of Horticulture, Chiba University</td>
</tr>
<tr>
<td>Korea</td>
<td>Cheonan Yonam College</td>
</tr>
<tr>
<td></td>
<td>Chungju National University</td>
</tr>
<tr>
<td>Pakistan</td>
<td>University of Veterinary and Animal Sciences</td>
</tr>
<tr>
<td>Slovakia</td>
<td>Slovak Agricultural University</td>
</tr>
<tr>
<td>Taiwan</td>
<td>National Chiayi University</td>
</tr>
<tr>
<td>Thailand</td>
<td>King Mongkut’s University of Technology Thonburi</td>
</tr>
<tr>
<td>Ukraine</td>
<td>Chernihiv State Institute of Economics and Management</td>
</tr>
</tbody>
</table>

International Course Credits
- Students travel abroad with NSAC faculty for the delivery of one-to-three-week course offerings.
- Tuition is paid at NSAC; Canadian students are eligible for Canada Student Loans.
- Credit and non-credit options are available.

Agro-eco Study Tour: held in Cuba, one week in the Winter semester
The British Garden: Spring semester
Food Systems in the Tropics: Spring semester
Agricultural Systems of Central Europe: Spring semester

Students can request consideration for credit through Special Topics courses and/or Research Methods courses when participating in international study programs. Contact NSAC International or Registry for more details.

International Associations
College of Agriculture, Science and Education (CASE), Jamaica.
CASE, in association with NSAC, offers the Bachelor of Technology in Environmental Sciences and the Bachelor of Technology in Agricultural Production and Food Systems Management. These programs are delivered at CASE.

For more information on international study, work, or internship opportunities for students, please contact NSAC International at www.nsac.ca/international.

AGRICULTURAL COLLEGES EXCHANGE PROGRAM
This program provides an opportunity for technical students in several of the programs to enroll in another college for one semester of their second academic year. In this way they broaden their study program.

Other colleges participating with NSAC in this program are:
- Ontario Agricultural College, University of Guelph, Ontario
- Eastern College, Newfoundland & Labrador
- Olds College, Alberta
- Lakeland College, Vermilion Campus, Alberta
- University of Maine
- Writtle College, England

Arrangements may also be made for students who wish to complete a semester of study at other colleges in Britain, with approval.

Students wishing to do a technical exchange program at another institution must have that program approved by the Registrar. The request should be submitted to the Registrar by the student’s program advisor or the Department Head. Upon approval of the program, the student will be issued a Letter of Permission detailing which courses will be replaced in the student’s program and which courses must be completed at the host institution. The programs must be laid out before the student leaves for the exchange institution.
ARTICULATION AGREEMENTS
The NSAC works collaboratively with other universities to extend the educational experience of students by formalizing the study of a program at more than one educational institution.

2 + 2 FAFU/NSAC Program
Chinese students take the first two years of their B.Sc.(Agr.) from Fujian Agricultural and Forestry University (FAFU) and the final two years at NSAC.

NSAC/Brock Viticulture Program
Students study for one or two years at NSAC and then complete the Bachelor of Science in Oenology and Viticulture program at the University of Brock.

PROFESSIONAL ORGANIZATIONS FOR AGROLOGISTS AND ENGINEERS
Agrology is “the profession of applying science and scientific principles to the business and art of agriculture.” University graduates who are skilled in the science and business of agriculture are encouraged to join their provincial Institute of Agrologists. Provincial Institutes offer the opportunity to get to know and exchange ideas with other professional agrologists in the province and other parts of Canada through membership in the Agricultural Institute of Canada. Membership in an Institute of Agrologists provides an element of fellowship in the profession and the opportunity to attend scientific conferences and educational tours, and to receive newsletters and technical publications. Membership in an Institute is required by provincial statute to practise agrology in most provinces.

The practice of engineering in Canada is governed by independent and autonomous provincial and territorial associations of Professional Engineers, which serve as licensing bodies for the profession. Each association has been established under a Professional Engineering Act adopted by its provincial or territorial legislature. The Canadian Council of Professional Engineers (CCPE) is the national federation of those associations of Professional Engineers and assists them in coordinating and standardizing their work. One such standardization is the accreditation of all Canadian engineering programs to ensure that the academic content and teaching facilities are acceptable to allow graduates admission into all provincial and territorial associations.

E-MAIL USAGE AT NSAC
To improve communication at NSAC, e-mail is approved as one of the official means of communication for academic and administrative purposes. As with all official University communications, faculty, staff and students have a responsibility to ensure that e-mail is accessed, read, and acted upon in a timely fashion. Use of NSAC e-mail is bound by the guidelines set out in the official NSAC Code of Conduct, the NSAC Information Technology Services Policy, the NS Provincial Government e-mail policy, and any relevant federal or provincial legislation.

COMPUTING SERVICES
Information Technology Services is responsible for managing the computing resources found on the NSAC Academic Network. The mandate of ITS is to:
• provide a consistent, state-of-the-art academic computing environment;
• provide broad and flexible access;
• provide an equitable distribution of academic computing resources to meet the demands of the College community;
• ensure that graduating students are equipped to meet the challenges of new communications technology; and
• provide efficient and effective management of academic computing resources.

ITS manages over 120 workstations running Windows environments. The workstations are distributed among five general-access labs and connected through a campus-wide network. Microsoft and Corel Suite applications, mathematical, statistical, and CAD software, as well as discipline-specific software, are available from any workstation. Students have full access to both Internet and e-mail services from any lab.

The ITS Media Centre provides students with access to digital cameras, multimedia projectors, scanners, imaging software, and colour printing.

The MacRae Library catalogue and library catalogues from other educational institutions are available through the campus network.

Internet and e-mail services are available to students living in residence. For further information about residence connections please contact Student Services at (902) 893-6672.

For further information about any other computing question please contact the Helpdesk:
e-mail helpdesk@nsac.ca
phone (902) 893-6154
fax (902) 893-5449

The Policy Governing Access to and Use of NSAC Academic Computing and the Academic Computing Services User Policy govern the use of computing resources.
LIBRARY
Registered students, faculty and staff have access to MacRae Library and Novanet services and collections representing the world literature of the life sciences, agriculture and food sciences, and core collections in the social sciences and humanities.

NSAC MacRae Library, as a member of Novanet, shares a single automated online catalogue of library holdings with nine other post-secondary institutions in Nova Scotia (Atlantic School of Theology, Cape Breton University, Dalhousie University, Mount Saint Vincent University, Nova Scotia Community College, NSCAD University, St. Francis Xavier University, Saint Mary's University, University of King's College). NSAC users may borrow through Novanet Express Document Delivery from a collection of over 2 million volumes, and access electronic resources through links in the Novanet catalogue and the Library home page.

MacRae Library electronic resources can be accessed from any computer workstation on the campus network, from the 32 computers in the Library's Information Commons, and from remote locations by those authenticated in the campus proxy server. The Library subscribes to the main databases for the agricultural sciences (CAB Abstracts and CAB Archive 1910–1972, AGRICOLA, AGRIS, Food Science and Technology Abstracts, BIO & AGR Index, Academic Search Premier, Web of Science), a growing number of which provide links to the full text online. The Library participates in the Canadian Research Knowledge Network (CRKN) national site-licensing, and the Atlantic Scholarly Information Network (ASIN) initiatives. NSAC students, faculty and research staff have access to approximately 13,000 full-text peer-reviewed electronic journals (JSTOR, ScienceDirect, ASAE Engineering Technical Library, Wiley Interscience, Springer-Verlag, American Chemical Society, Royal Society of Chemistry, Institute of Physics) and approximately 600 e-books.

CONTINUING AND DISTANCE EDUCATION
NSAC students often benefit from learning opportunities offered through the Centre for Continuing and Distance Education (CDE). It offers short-term courses on specific topics, both credit and non-credit certificate programs for professional or personal benefit, and continuing education for members of agri-sector professional associations.

CDE is actively involved in the development of NSAC’s distance education capacity and supports the use of WebCT for both on-campus and distance education courses. CDE coordinates the development and delivery of web-based credit courses. A listing of courses and programs available by distance education is on the NSAC website at www.nsac.ca/de.

A number of credit courses are held in the spring/summer semester. These offerings are based upon student demand.

For updated information on CDE courses and programs, check the CDE website at www.nsac.ca/cde or contact (902) 893-6666. On campus, CDE’s main office is Room 276 of the Haley Institute.

CHURCHES
Churches representing a wide range of denominations are located in Truro and Bible Hill.

DAY CARE
The NSAC Day Care is a non-profit organization governed by a Board of Advisors appointed by the President. The day care is open five days a week from 7:30 am to 6:00 pm. It is licensed under the Department of Community Services for 33 children per day. A reduced rate is available for the children of students. Five subsidized spaces are also funded by the Department of Community Services. These spaces are available only to students whose income falls below a certain level. Remember to reserve early to ensure a space in September. The NSAC Day Care promotes quality child care.
ADMISSIONS STATUS

Full-time
Students are admitted to a program of study as full-time (three or more courses per semester) students if they meet all current admission requirements of that program at the time of application and there is room in the program. The Registrar may admit full-time students on a probationary basis. Full-time students in good standing have the right to move through the program in the normal fashion.

Part-time
Students are admitted to a program of study as part-time (fewer than three courses per semester) students if they meet all the current admission requirements of that program at the time of application and there is room in the program. The Registrar may admit part-time students on a probationary basis. Part-time students in good standing have the right to move through the program in the normal fashion.

Mature
Students who are at least 23 years of age and who do not meet admission requirements may be admitted as either full-time or part-time students on the basis of being mature applicants. Mature applicants are considered on a case-by-case basis, and may be admitted on a probationary basis. Mature students who complete one full semester in good standing assume normal student status.

Visiting
Students are admitted as visiting students on the basis of a Letter of Permission from another post-secondary institution. Enrollment in specific courses is subject to availability of seats in the course. Visiting students do not have student status beyond the semester to which they are admitted.

No Program
Students may be admitted to one or more courses on a “no program” basis. Admission is to specified courses on a case-by-case basis. No-program students have no ongoing status.

International
Students who do not have Canadian citizenship or permanent residence in Canada may be admitted as international students. These students must produce proof of a student visa before permission to register will be granted.
ADMISSION
It is the responsibility of each applicant to ensure that the application file is complete. The following must be submitted by each applicant to the Office of the Registrar:

- a completed application form (forms not properly completed will delay processing)
- the application fee of $25
- an official record of high school work
- an official transcript for work done at previous post-secondary institutions (if applicable)
- evidence of competency in English for applicants whose native language is not English (see information on English Language Tests)
- supplementary information as required for specific programs.

Response to Applications
NSAC will respond to your application as promptly as possible and will advise you of any documentation still required. When documentation is complete, applications are placed in the hands of the appropriate admissions committee. Although every effort is made to have decisions made quickly, there may be a delay during peak periods. As soon as decisions are made, whether admission, deferral, or rejection, applicants will be advised.

Please note, possession of minimum requirements does not guarantee admission.

Early Acceptance
Applicants currently attending high school who have good grades, i.e. a strong average, may be given early acceptance, conditional on satisfactory completion of work for which they are currently enrolled.

Final Acceptance
Applicants must successfully complete high school classes in the required subjects or leave their current post-secondary institution in good standing.

Academic Probation
Students may be admitted to NSAC on Academic Probation:

(a) if the student is a mature student who does not meet admission requirements for the program, or
(b) if the student’s last full-time enrollment at any institution has resulted in dismissal or suspension for academic reasons, or
(c) if the student meets most, but not all, of the requirements for admission.

When a student is admitted on probation, all regulations for probationary students apply.

English Language Requirements
If English is not your native language, you must provide official results from one of the following standardized tests:

- TOEFL—a minimum score of 550 OR a minimum computer-based TOEFL score of 213
- TOEFL IBT—a minimum score of 80
- MELAB—a minimum score of 80
- IELTS—a minimum score of 6.0.

Note: Students who meet all admission requirements except for the English Testing levels may be accepted to NSAC subject to completion of a University Preparatory English Program offered by the International Language Institute, in cooperation with NSAC. Please contact NSAC for more information.

Application Deadlines for Domestic Students
The application deadline for all programs for Fall semester is August 1, with the following exception:
Veterinary Technology—**February 28**.

The application deadline for Winter semester is **December 1**.

Application Deadlines for International Students
The application deadline for all programs for Fall semester is **March 1**.

The application deadline for Winter semester is **July 1**.
Admission Requirements

NSAC ADMISSION REQUIREMENTS, BY PROGRAM, 2007/2008

Possession of the minimum entrance requirements does not guarantee admission.

B.Sc. (Agriculture) and Pre-Veterinary Medicine

Admission into the B.Sc.(Agr.) or the Pre-Veterinary program requires high school graduation with an average of at least 60% in five Grade 12 university preparatory subjects, including:

- English
- Pre-Calculus Mathematics (or 70% in Academic Mathematics)*
- any two of the following science requirements: Chemistry*, Biology, Physics*, Geology, Oceanography, or Agriculture
- one elective.

* Applicants who are otherwise qualified but do not have the appropriate physics, chemistry and/or math courses may be admitted with the requirement that they take the relevant non-credit introductory studies course(s) in their first year prior to registering in the degree-level counterpart(s). The non-credit introductory studies courses include CHEM0050 Preparatory Chemistry, PHYS0050 Introductory Physics, and MATH0050 Functions.

Notes: Nova Scotia students who have successfully completed five Grade 12 university preparatory credits, including English and Mathematics, are able to use NS Oceans 11 and/or NS Agriculture 11 to meet the above-noted science requirements.

Bachelor of Technology (Environmental Horticulture)

Admission into the Bachelor of Technology in Environmental Horticulture program requires completion of the Environmental Horticulture Technology program (or its equivalent) with an average of at least 60%.

Bachelor of Technology (Applied Science)

Admission into the Bachelor of Technology in Applied Science program requires high school graduation with an average of at least 60% in five Grade 12 university preparatory subjects, including:

- English
- Pre-Calculus Mathematics (or 70% in Academic Mathematics)*
- Physics*
- two electives

* Applicants who are otherwise qualified but do not have the appropriate physics, chemistry and/or math courses may be admitted with the requirement that they take the relevant non-credit introductory studies course(s) in their first year prior to registering in the degree-level counterpart(s). The non-credit introductory studies courses include CHEM0050 Preparatory Chemistry, PHYS0050 Introductory Physics, and MATH0050 Functions.

Engineering Diploma

Admission into the Engineering program requires high school graduation with an average of at least 60% in five Grade 12 university preparatory subjects, including:

- English
- Pre-Calculus Mathematics (or 70% in Academic Mathematics)*
- Physics*
- one elective.

* Applicants who are otherwise qualified but do not have the appropriate physics, chemistry and/or math courses may be admitted with the requirement that they take the relevant non-credit introductory studies course(s) in their first year prior to registering in the degree-level counterpart(s). The non-credit introductory studies courses include CHEM0050 Preparatory Chemistry, PHYS0050 Introductory Physics, and MATH0050 Functions.

Technology Diploma (Enterprise Management)

Admission into the Diploma in Enterprise Management program requires high school graduation with an average of at least 50% in the following university preparatory courses:

- Grade 12 Academic English
- Grade 11 Academic Mathematics
- Biology 11 or Chemistry 11 or Agriculture
- Integrated Science 10 or equivalent.

* Experience is required for the Dairy and Equine specializations. Please contact the Registry Office for more information.
Admission Requirements

Technology Diploma (Veterinary)
Admission into the Veterinary Technology program requires high school graduation with an average of at least 60% in five Grade 12 university preparatory subjects, including:
- English
- Pre-Calculus Mathematics (or 70% in Academic Mathematics)
- Chemistry
- Biology
- one elective.

Technology Diploma (Environmental Horticulture)
Admission into the Environmental Horticulture Technology program requires high school graduation with an average of at least 60% in five university preparatory subjects, including:
- Grade 12 English
- Grade 12 Mathematics
- Grade 12 Biology
- one Grade 12 elective
- Grade 11 Chemistry.

Technology (Plant Science)
Admission into the Plant Science Technology program requires high school graduation with an average of at least 50% in four university preparatory courses, including:
- Grade 12 English
- Grade 11 Mathematics
- Grade 11 Chemistry
- Grade 10 Biology or Integrated Science.

ADMISSION REQUIREMENTS FOR B.SC.(AGR.) PROGRAM FOR STUDENTS GRADUATING FROM HIGH SCHOOLS IN THE UNITED STATES OF AMERICA
Students must have achieved a 'B' average in five Grade 12 university preparatory subjects, including:
- English
- Pre-Calculus Mathematics*
- any two of the following science requirements: Biology, Chemistry*, Physics*, Geology, Oceanography, or Agriculture
- one other Grade 12 university preparatory subject.

Students must have achieved average SAT I scores of at least 500.
Students who are not U.S. citizens, or whose mother tongue is other than English, may be subject to additional requirements.

* Applicants who are otherwise qualified but do not have the appropriate physics, chemistry and/or mathematics courses may be admitted with the requirement that they take the relevant non-credit introductory studies course(s) in their first year prior to registering in the degree-level counterpart(s). The non-credit introductory studies courses are CHEM0050 Preparatory Chemistry, PHYS0050 Introductory Physics, and MATH0050 Functions.
Financial Information

Note: At the time of printing the 2007/2008 NSAC Calendar, fees for 2007/2008 were unavailable. The rates shown below are the rates for the 2006/2007 academic year. The rates for 2007/2008 will be posted on the website (www.nsac.ca/reg) when available.

The College reserves the right to make changes without notice in its published scale of charges for tuition, accommodations and meals, and other fees.

All fees are due and payable as of the first day of classes (September 6, 2007, for the Fall semester and January 3, 2008, for the Winter semester). Payment must be by cash, money order, certified cheque, Visa, MasterCard, or debit card. Any student with an unpaid account at the end of the second week of classes will be permitted to continue only upon settlement of the outstanding account.

TUITION FEES (CANADIAN CITIZENS AND PERMANENT RESIDENTS)

<table>
<thead>
<tr>
<th>Program</th>
<th>Price per Course (2006/2007 rates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree level</td>
<td>$550</td>
</tr>
<tr>
<td>Technical level</td>
<td>$340</td>
</tr>
<tr>
<td>Veterinary Technology Courses</td>
<td>$456</td>
</tr>
<tr>
<td>Audit (Degree level)</td>
<td>$550</td>
</tr>
<tr>
<td>Audit (Technical level)</td>
<td>$340</td>
</tr>
<tr>
<td>Non-credit Preparatory</td>
<td>$215</td>
</tr>
<tr>
<td>Workplace Readiness</td>
<td>$100</td>
</tr>
<tr>
<td>Distance Education Course Fee</td>
<td>$25*</td>
</tr>
</tbody>
</table>

*Off-site non-program Distance Education students are charged a $40 DE Course Fee, but no student fees.

For information on Graduate Program fees, contact the Research & Graduate Studies Office.

Undergraduates are permitted to register for graduate-level courses only with the approval of the Graduate Coordinator. In cases where undergraduates are permitted to register for graduate courses, the graduate tuition fee will be applied.

TUITION FEES (INTERNATIONAL STUDENTS)

<table>
<thead>
<tr>
<th>Program</th>
<th>Price per Course (2006/2007 rates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree level</td>
<td>$1100</td>
</tr>
<tr>
<td>Technical level</td>
<td>$680</td>
</tr>
</tbody>
</table>

BOOKS (2006/2007 rates)

| Full-time students (approx./year) | $1200 |

STUDENT AND TECHNOLOGY RENEWAL FEES

A Student Fee, covering Caution/Development Fund and non-academic student activities and support programs, and a Technology Renewal fee are charged to all full- and part-time students. These fees are compulsory and non-refundable.

<table>
<thead>
<tr>
<th>Full-time Students (per semester) (2006/2007 rates)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Fees</td>
<td>$158</td>
</tr>
<tr>
<td>Technology Renewal</td>
<td>$50</td>
</tr>
<tr>
<td>Health/Dental Fees*</td>
<td>$260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part-time Students (per course) (2006/2007 rates)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Part-time Student Fee</td>
<td>$31</td>
</tr>
<tr>
<td>Technology Renewal</td>
<td>$15</td>
</tr>
</tbody>
</table>

Extended Health and Dental Plan

In 2005/2006 students voted to implement a new health and dental plan. All full-time domestic students at NSAC are automatically enrolled in the Student Health and Dental plans when they register for classes. The premium for each plan is an annual one; therefore the process for opting out must be done prior to the specified deadline. The deadline each year coincides with NSAC’s last date to register for a course. More information regarding your Student Health and Dental plans can be found at www.gallivan.ca or by visiting the on-site Student Benefits Plan Office.
Financial Information

Caution/Development Fund
Full-time students, at the beginning of each semester, must make a payment to cover the cost of damages to College property, breakage in labs, etc.

In residence, damage to floors, walls, doors, windows, lighting, the sprinkler system, or furniture in any bedroom will be charged to the occupants of the room in equal shares, and damage to the common parts of the College and residences will be charged to the entire student body if the offender is not charged.

All students are subject to a general levy through the office of the Dean of Student Services for deliberate breakage and damage to buildings and equipment that cannot be traced. The balance of monies collected and not required to cover damages/breakages will be placed into funds to support student residence development, study abroad, and broad-based student development activities and services.

Program-Related Fees (2006/2007 Rates)
Students may be required to pay specific program-related fees not shown in the calendar. These include fees for items such as laboratory coats, steel-toed boots, hard hats, etc.

Full-time students in the Veterinary Technology program are charged an additional Materials and Service Fee, which is payable at registration. In 2006/2007 this fee was $95 per semester. For a complete list of supplies and services that are provided to Veterinary Technology students in return for this fee, contact the Department of Plant and Animal Sciences.

NSAC requires that all students entering the Veterinary Technology program be vaccinated against rabies and show proof of vaccination prior to beginning the program. This is required as a result of the increasing possibility that animals in this region may be infected. The HDVC is given in three doses—one on each of days 0, 7, and 21. Veterinary Technology students will be required to have their serum tested for rabies antibodies two years following the vaccination and those with inadequate levels of protection will be required to get an additional dose of HDVC.

Students in the Diploma in Enterprise Management program are required to pay an additional $75 fee for workplace readiness training such as First Aid and Occupational Health & Safety.

Residence and Meal Plan Fees (2006/2007 Rates)

<table>
<thead>
<tr>
<th>Plan</th>
<th>Price per Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fall 2006</td>
</tr>
<tr>
<td>Shared room and 7-Day Meal Plan</td>
<td>$3212</td>
</tr>
<tr>
<td>Shared room and 5-Day Meal Plan</td>
<td>$3171</td>
</tr>
<tr>
<td>Private room and 7-Day Meal Plan</td>
<td>$3472</td>
</tr>
<tr>
<td>Private room and 5-Day Meal Plan</td>
<td>$3431</td>
</tr>
<tr>
<td>Large private room and 7-Day Meal Plan</td>
<td>$3698</td>
</tr>
<tr>
<td>Large private room and 5-Day Meal Plan</td>
<td>$3657</td>
</tr>
</tbody>
</table>

Students living in residence are provided with a meal plan that permits them to eat either 5 or 7 days a week in the main dining hall. The dining hall provides continuous service from early in the day until late in the evening, allowing them to eat as often as they like throughout the day/evening. Once an option has been selected, no plan changes during the semester are permitted. A change of plan can be made at the end of the Fall semester for the Winter semester.

Other Residence Fees (per year)

<table>
<thead>
<tr>
<th>Fee</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>House Fee</td>
<td>$30</td>
</tr>
<tr>
<td>Laundry Fee</td>
<td>$60</td>
</tr>
</tbody>
</table>

Please note that residence students will be charged the following fees for lost keys: $50 for a room key; $100 for a front door key.

Graduate/Mature Student Housing

NSAC offers alternate student accommodation on the ground floor of Trueman House.

This program features apartment-style living with peers. It includes a fully equipped kitchen with lots of cupboard space. The furnished sitting area includes cable TV and a computer with high-speed Internet; students share these common areas from eleven private rooms. Each student room is furnished and includes local phone service, cable, and high-speed Internet service. The washrooms and shower rooms are shared.

Rates for 2006/2007 were $554 and $586 monthly, payable at the first of each month. This includes access to the laundry room, cleaning of common areas, garbage removal, parking, utilities, high-speed Internet, cable, and local phone service.

Students wishing to apply should forward an application and deposit of $250 to reserve space in this program. This deposit will be applied to the first month’s rent. The deposit will be refunded up to, but no later than, one month prior to your arrival date. Students are required to notify the residence office in writing of their intent to terminate their residence agreement.

Students participating in this program may, but are not required to, purchase a meal plan from Food Services in Jenkins Hall.

Note: Phones, TVs, computers, and connection cables are the responsibility of the student.
Refunds
Withdrawal from the College and/or residence is not effective until the student has completed the appropriate documentation as specified in this Calendar and the Residence Handbook, and has returned the ID Card to Student Services.

Student fees will be refunded to students who withdraw during the first two weeks of the semester. After the second week, there will be no refund except in the case of a withdrawal for health or other compelling compassionate reasons.

Tuition Fees
Refunds for students who withdraw from the College will be as follows:
- Until the end of 10th class day: 100%
- Until the end of 15th class day: 80%
- Until the end of 20th class day: 50%
- Until the end of 25th class day: 25%
- Beyond 25th class day: No refund

Residence Fees
Students who accept a place in residence and fail to cancel their residence application prior to June 30 for the Fall semester and December 10 for the Winter semester will forfeit their residence deposit or be levied a $300 cancellation fee. Room fees are charged from the first day that residences are officially open. Students who withdraw from residence will be charged room fees as follows:
- 1st week (or any part thereof): $300
- 2nd week (or any part thereof): $650
- 3rd week (or any part thereof): $1200
From the end of the third week, 100% of the room fee for the semester will be charged.

Meal fees are charged on a per-week basis for each week or part week prior to the student's official withdrawal from residence.

Non-payment of Fees
If fees are owing, you must arrange with Financial Services to pay outstanding fees before registration will be permitted. Transcripts will not be issued to students with outstanding accounts.

Application to Graduate
Students intending to graduate in May must submit an “Application to Graduate” to the Registrar by the previous December 15. Students who apply by November 15 to graduate will receive confirmation from the Registrar prior to the start of the Winter term. There is no fee charged for an application to graduate submitted by the deadline. Applications that are submitted after December 15 must be accompanied by a $50 late fee.

Transcripts
Students’ academic records, including their official NSAC files, are the property of NSAC. Students’ records are privileged information and to that end transcripts will not be released by the Registrar to those outside the university without the prior written permission of the student. As required by their appointment, academic administrators within NSAC have access to students’ complete academic records.

To request a transcript, a student must complete the appropriate form, obtainable from the Registrar’s Office, or mail or fax a signed letter of request to the Registrar’s Office. It is not possible to accept a transcript request over the telephone. Transcript requests are processed strictly in the order in which they are received. Although the normal processing time is approximately five working days, additional time will be required at peak periods.

Official transcripts are forwarded directly from the Registrar’s Office to an official third party.

Students whose accounts are in arrears will be denied transcripts until the debt is paid.

Registration Deposit
New Students
The final admission step for new students is to submit the $200 Registration Deposit to the Office of the Registrar. When this deposit is received, the student is granted a Permit to Register and will receive a package guiding him or her through the registration process. The registration deposit will be refunded up to but not after June 30, for students who submit written notice of cancellation by that time. No deposits received after June 30 will be refunded.

Returning Students
Students with outstanding balances will not be permitted to register for the Fall or Winter semester without making arrangements to settle their accounts with Financial Services.

Residence Deposit/Cancellation Fee
New students wishing to apply for accommodation in residence must submit the $190 Residence Deposit by June 1. However, this may be submitted at the same time as the Registration Deposit. Deposits are applied to total residence fees. The residence deposit will be refunded, up to but not after June 30, for students who submit written notice of cancellation by that time. No deposits received after June 30 will be refunded.

Returning Students Registered for Residence Room Draw
Returning students wishing to take part in the March Room Draw should contact the Office of the Dean of Student Services for details. A cancellation fee of $300 will be levied against any students failing to cancel their application in writing by June 30.
Note: students with outstanding balances on their accounts will not be permitted to enter the room draw.

Early Arrivals to Residence
Early arrival in residence is normally not possible, but in extenuating circumstances may be accommodated. A written request documenting why alternative arrangements cannot be made must be provided to the Residence Manager no later than August 15 for the Fall semester, or December 1 for Winter. Those granted permission to arrive early will be charged a per diem rate.

Canada Student Loans Program
Eligible students enrolled in the degree and technical programs can apply for Government of Canada student loans and bursaries. Application for a Certificate of Eligibility must be made to the issuing authority of the applicant’s province of residence.

Application forms are available as follows:

Nova Scotia
Department of Education
PO Box 2290
Halifax Central
Halifax, NS B3J 3C8

New Brunswick
Department of Advanced Education and Labour
PO Box 6000
Fredericton, NB E3B 5H1

Prince Edward Island
Department of Education
PO Box 2000
Charlottetown, PE C1A 7N8

Newfoundland & Labrador
Department of Education
Student Aid Division
St. John’s, NL A1C 5R9

The application should be completed and filed with the issuing authority during the early summer, so that an eligibility form can be issued before Registration Day. The applicant then presents the Certificate of Eligibility at registration time. Once it is signed, the student may take it to the lending agency to arrange for funds.

International Student Information

Application Deadlines
September admission March 1
January admission July 1

Typical Costs Per Year (in Canadian dollars):
Note: At the time of printing the 2007/2008 NSAC Calendar, tuition fees for the 2007/2008 were unavailable. The rates shown below are the rates for the 2006/2007 academic year.

Degree Tuition: $11,000 (10 courses)
Books and instruments $1,200
Health insurance (mandatory single coverage) $420 (approximately)
Student Fees: $416
Residence Plus Meal Plans (shared/5-day meal plan): $6,342
House/Laundry Fees: $90
Personal Expenses (clothing and amusement): $1,600 (approximately)
Typical Total: $21,068

Information regarding off-campus housing and leases can be found on the Student Services website: www.nsac.ca/stuserv.

Student Visa and Health Insurance
International students must have proof of a student visa and health insurance before permission to register will be granted.
All students are under the charge of the President and are responsible to him at all times for their conduct. The President is authorized to make any additional regulations found necessary for the discipline of the College and to impose fines or other penalties for any infraction of rules and regulations. The President has delegated responsibility for student discipline to the Dean of Student Services. College rules with respect to student behaviour and the process for dealing with student discipline are contained in the Community Standards section of the NSAC Student Handbook.

Every student is expected to show, both within and outside the College, such respect for order, morality, and the rights of others, and such sense of personal honour, as is demanded of good citizens. Students found guilty of immoral, dishonest, or improper conduct, violation of rules, or failure to make satisfactory progress shall be liable to College discipline. Students should make themselves familiar with detailed regulations and procedures, which are published in the NSAC Student Handbook under Community Standards and the Residence Handbook, available at www.nsac.ca/stuserv.

Students are encouraged to participate in approved College orientation activities. Hazing as a part of initiation is forbidden.

FREEDOM OF INFORMATION AND PROTECTION OF PRIVACY
The Freedom of Information and Protection of Privacy (FOIPOP) Act provides for the protection of an individual’s right to privacy but also requires that certain records be disclosed upon request unless they are exempted from the disclosure. The Act requires that the College not disclose personal information if that information would constitute an unreasonable invasion of personal privacy. Applicants to NSAC are advised that information they provide along with other information placed in a student file will be used in conjunction with College practices for internal use and will not be disclosed to third parties except in compliance with the FOIPOP Act or as otherwise required by law. The Federal Statistics Act allows Statistics Canada to collect student information for statistical analysis. However, this information will not be released in a manner that identifies individual students. Please note that the Maritime Provinces Higher Education Commission collects this information for Statistics Canada and does similar analysis.

Further information on the use of this information can be obtained from Statistics Canada’s website (www.statcan.ca) or by writing to the Post-secondary Section, Centre for Education Statistics, 17th Floor, R. H. Coats Building, Tunney’s Pasture, Ottawa, ON K1A 0T6.

ADVISING
NSAC is committed to providing students with assistance in the transition to university life and guidance throughout the academic process. Academic advisors are assigned to all students, assisting them with a wide variety of issues, from time management to program selection. It is important to note that the final responsibility for program success rests with the student.

ACADEMIC STANDING
- Academic records are reviewed after every term.
- Academic Probation can be assessed after each term. Students on Academic Probation can continue to register on their own while on probation.
- At the end of the academic year (after the Winter semester) academic records will be reviewed and students with poor academic records may, at that time, be placed on Academic Probation or Academically Dismissed (Required to Withdraw) for a full semester (normally the Fall semester, applying to return in the Winter semester).

Academic Probation
Academic Probation is assessed each term. Students are placed on Academic Probation if they take two or more courses and:
- they have a sessional average less than 50%, or
- they have failed 50% or more of their courses (including Drop Fails), or
- their cumulative average is less than 60% (less than 55% for Tech students).

Students on Academic Probation need to work with their advisors to ensure that they have a plan in place to assist them in improving their academic performance. Students on probation are limited to a maximum workload of 5 credit courses for degree students and 6 credit courses for technical students.

Removal From Academic Probation
Students will not be removed from Academic Probation until their cumulative average is at least 60% (at least 55% for Tech students).
Academic Dismissal (Required To Withdraw)
Academic Dismissal is assessed only after the Winter semester. Students will be Dismissed for a full semester if they have two consecutive terms (normally Fall/Winter) of two or more courses where:
- they have a sessional average below 50%, or
- they have failed 50% or more of their courses (including Drop Fails).

Note: Students returning from a period of Academic Dismissal are automatically placed on Academic Probation.

Academic Dismissal—Appeal Policy
Grounds for Appeal
The following are the only grounds that a student may use for appealing Academic Dismissal:
- medically documented/supported personal illness, injury, or trauma
- documented/supported severe traumatic circumstances in immediate family, such as death or serious illness.

Appeal Process Procedures and Deadlines
1. Students must submit a letter to the Registrar requesting that their status be appealed. The letter should clearly demonstrate that the appeal is in accordance with the Grounds for Appeal in the section above. Documentation supporting any claims made must also be included. All information contained in the letter will be kept confidential.
2. Appeals relating to Winter semester performance must be received by 4:30 pm on June 15. The Registrar will meet with members of the Standards and Admissions Committee to review the appeal.
3. Students will be informed of the decision by letter only. All decisions are final.

ACADEMIC RESPONSIBILITY
NSAC students are expected to display self-discipline and maturity throughout their period of study at the College. At times there may be considerable pressure to achieve high grades, and some students may be tempted to obtain grades in a dishonest manner.

Practices such as cheating, plagiarism, and other misrepresentation relating to academic work compromise the integrity of the College and the degrees and diplomas that the College awards. The College does not condone these nor other forms of academic misconduct under any circumstances and will take appropriate disciplinary action.

Regulations concerning Academic Misconduct can be found in the following documents: 1) NSAC Student Code of Conduct; 2) Guidelines for Dealing with Cases of Academic Dishonesty at NSAC. These documents are available at www.nsac.ca/stuserv and in the Community Standards section of the NSAC Student Handbook.

ADVANCED STANDING
Students who have completed courses at other post-secondary institutions may be eligible to receive credit for work done on the following basis:
- Each course must be at the same academic level as the one it is replacing.
- Each course must satisfy a requirement of the student's academic program.
- Students enrolled in a four-year degree program must complete a minimum of 15 courses at NSAC to graduate.
- Students enrolled in an Engineering Diploma program must complete a minimum of 11 courses at NSAC to graduate.
- Students enrolled in a technical diploma program must complete a minimum of one-half of the required courses at NSAC to graduate.

Students may be eligible for advanced credit standing based on the results of an Advanced Placement exam (AP) or an International Baccalaureate certificate (IB). Those wishing to apply for credit at NSAC based on AP or IB must supply an official transcript of test results to the Registrar's Office. The student will be notified once the assessment is complete.

Only credits that are relevant to the student's program will be considered. Transfer credits will be awarded based on equivalent NSAC courses. Elective credits may be awarded for courses that have no direct match in the NSAC curriculum. Credits will be awarded upon admission to the B.Sc.(Agr.) degree program for students with an AP national exam with 4 or 5, or Higher Level IB classes with 5, 6, or 7. A maximum of ten credits may be awarded.

Transfer credits are evaluated on an individual basis and will vary depending on each student's personal academic program. Please consult the Registrar's Office for information concerning your application and transfer credits.

Official transcripts must be submitted to the Registrar's Office before previous post-secondary work will be considered for advanced standing.

Transcripts received after August 15 for the Fall semester, or after December 1 for the Winter semester, may not be evaluated before Add/Drop deadlines.

ATHLETICS
All full-time students are eligible to play for teams representing the College, subject to conditions established by NSAC, the Atlantic Colleges Athletic Association, and the Canadian Colleges Athletic Association.

All teams or groups that represent the institution must be accompanied by a member of the College staff or senior leader (non-student) approved by the Athletic Director (athletics) or Dean of Student Services (groups or clubs).
ATTENDANCE IN CLASS
Students are expected to attend all lectures and laboratory periods in the courses for which they are registered.

Specific courses have mandatory attendance requirements. In these courses, attendance requirements will be stated at the outset of the course. Absence from scheduled activities may be considered grounds for automatic failure.

Students wishing to absent themselves from classes for compassionate reasons must obtain permission from the Instructor. If a student is absent for two or more consecutive days, they must obtain permission from the Registrar.

A student who arrives late for class may be refused admission.

AUDITING COURSES
A student may, with the permission of the instructor, audit a course. Terms and conditions of the audit will be set forth by the instructor at the outset. Students who do not fulfill the conditions may have their privileges revoked, and will not have the audit recorded on their transcript. Audit students are not entitled to evaluation of their performance.

CHALLENGE FOR CREDIT
Students who have acquired competence in material covered by an NSAC course may obtain credit for the course by means of a course challenge.

Procedures
• Application for Challenge for Credit is made to the Registrar. A Challenge for Credit is charged at 50% of the course fee.
• The department that is responsible for the course in question must be satisfied that there is a reasonable basis for requesting a Challenge for Credit, such as previous work experience or educational experience for which a credit cannot be obtained directly. The department may designate courses that cannot be challenged. The academic basis of the department's decision is final and cannot be appealed.
• The Challenge for Credit will normally be in the form of a comprehensive examination, but for a course with an accompanying laboratory or project(s) the department may require the demonstration of appropriate skills as a prerequisite to, or as a part of, the Challenge for Credit examination. A Challenge for Credit examination is given at the discretion of, and is administered by, the department.
• The department and instructor concerned will determine the content and format of the Challenge for Credit examination.
• A Challenge for Credit examination will be given at a time arranged by the department, but must be completed and the grade submitted prior to the last date for adding a course for the term in which the particular course is offered.

• Challenge for Credit examinations will be graded as either Pass or Fail. This grade is final and cannot be appealed. If the Challenge for Credit examination is passed, the course will appear on the student's transcript indicating a “P” for pass. Challenge for Credit examination failures will not be recorded on the student's transcript.
• No student may Challenge for Credit a course that appears on the student's transcript. This includes courses assigned a Drop Fail (DF) or Audit status and courses offered at NSAC or courses attempted elsewhere for which a credit would normally have been granted by NSAC. The latter information can be obtained from the Registrar's Office.
• A student currently on Academic Probation or with a Required to Withdraw status may not Challenge for Credit.
• A student may not Challenge for Credit more than once in any course.
• A maximum of six credits may be accumulated by Challenge for Credit.

COURSE LOAD
Normal Course Load
A normal full-time course load for students registered in the degree program is considered to be five courses per semester. A normal full-time course load for students registered in the technical program ranges from five to six courses per semester, depending on the program.

Course Overload
Students registered in the degree program who wish to take more than six courses in a single term must have the permission of the Vice-President Academic in consultation with the student's advisor. Students registered in the technical program who wish to take more than seven courses in a single term must have the permission of the Vice-President Academic in consultation with the student's advisor.

DROPPING COURSES
Deadline to Drop a Course Without Penalty
The last day to drop a course without academic penalty is 4:30 pm on the Friday of the seventh week of classes (October 19, 2007, for the Fall semester and February 15, 2008, for the Winter semester).

Drop Failure
A Drop Fail in a course is a grade assigned when a student drops the course at the Registrar's Office after “the last day for dropping a course without academic penalty” and no later than the last day permitted for a Drop Fail. A Drop Fail is counted as a failed subject when determining student standings. When determining averages a Drop Fail is not counted as a course (mark). It is recorded on the transcript as a “DF.” Courses with DF will not be included in determining full-time status.
Regulations and Procedures

Deadline for Drop Fail Status
The last day to declare a Drop Fail status for a course is 4:30 pm on the Friday of the 11th week of classes (November 16, 2007, for the Fall semester and March 14, 2008, for the Winter semester).

If a student is registered for a course after the deadline date indicated for a Drop Fail, the mark earned will be entered on the record regardless of whether or not the examination is written.

EXAMINATIONS

Examination Regulations
1. No student may leave the examination room until one-half hour after the beginning of the examination.
2. No student may be admitted to the examination room after one-half hour of the time allotted for the examination has passed.
3. Foreign language dictionaries, reported to and approved by the examiner, may be used by students whose native language is not English.
4. A student must not communicate with any other student in any manner whatsoever during the examination period.
5. All texts, handbooks, notes, tables, and other printed or written and loose paper must be deposited with the supervisor in charge of the examination, before the student takes his/her seat, unless provision has been made by the examiner for reference books and materials to be allowed.
6. A student who is found guilty of cheating in any manner by the Faculty Council Judicial Committee may lose credit for the course. The Judicial Committee may apply additional penalties including fines, suspensions, and/or a permanent notice of academic discipline on the student’s transcript.
7. If an entire day of exams is cancelled (e.g. inclement weather) the exams on that day will normally be rescheduled to the day after the posted exam schedule.

Rereading of an Examination
A student may consult with the instructor for information on and interpretation of the evaluation of his/her examination paper. If the student is not satisfied after consultation, he/she may apply to the Registrar’s Office for a reread. The application must be submitted within 30 days of the release of the original mark and be accompanied by a $100 fee. The fee will be returned if the mark is raised, but will be forfeited if it is not. The reread is to be performed by an appropriate person outside the institution and arranged by the head of the department concerned.

Supplemental Examination
Supplemental examinations are not offered.

Deferred Examinations
A deferred examination is permitted only on extreme compassionate grounds and requires proper certification. Unless the student presents further certification, each deferred examination must be written within two weeks of the day on which the regular examination in the course was scheduled. Permission to defer an exam and arrangements for the specific time and place of writing are to be made by the instructor in consultation with the Registrar.

GRADES

Basis of Marking
NSAC courses are marked according to a numeric grading scale of 0–100; a passing grade is 50%. The evaluation of a course may be based on tests, laboratory exercises, other assignments, examinations, and attendance. In determining a final mark, instructors will take into consideration the total work of the course. The evaluation used by one instructor will not necessarily be the one used by another.

At the beginning of each course, professors are required to indicate to students, in writing, the attendance requirements and the workload for the course, together with the appropriate dates and values of tests, term papers, quizzes, other assignments, and final examinations. No credit is given for a course unless all requirements for it have been completed.

Grade Appeals
Wherever possible, the student should resolve differences over assigned grades with the course instructor. After consultation with the instructor, the student may still wish to appeal the grade. The appeal must be submitted in writing to the Registrar, along with the $25 non-refundable fee, after release of final marks and no later than 30 days after the release of final marks. The Registrar may waive the 30-day deadline in exceptional circumstances.

Appeals of grades will be considered by a committee convened by the Registrar and consisting of the Vice-President Academic, the Department Head, the Chair of the Standards and Admissions Committee, and one member of Faculty Council selected by the student. In the case where one of the committee members is the instructor of the course in question, the Vice-President Academic will appoint an alternate. The committee will consider written submissions from the student and the instructor, and may request to meet with either of them. An appeal may be based on questions of process or content. In the case of the latter, any grade changes must be based on a reread. If the committee does not recommend a reread, the student may ask for one. In that case the student must pay a $100 fee, which will be refunded if the resulting grade is higher. Grades resulting from rereads may be higher or lower than the original grade and are final. The Department Head for the course in question will recommend to the appeals committee an external person or persons who will be selected to conduct the reread. In the
case where the Department Head is the instructor of the course in question, the Vice-President Academic will recommend the external reader to the committee.

All decisions of the grades appeals committee are final. In the case where a grade is changed, the instructor will be provided with a written explanation for the change.

Release of Final Grades
Official records of grades, transcripts, degrees, or diplomas will be withheld pending full payment of all outstanding balances owing to the College.

GRADUATION
Application for Graduation
Students intending to graduate in May must submit an “Application to Graduate” to the Registrar by the previous December 15. Applications are available at the Registrar’s Office.

Late Application for Graduation Fee
An application to graduate that is submitted after December 15 must be accompanied by a $50 Late Fee.

Graduation Requirements
Graduands may opt to fulfill the program requirements in place at the time they entered the program or those in place at the time of graduation. The graduand must completely satisfy the syllabus he/she chooses. In the event that courses are no longer offered, the College will prescribe appropriate substitutes.

Diplomas Granted in Absentia
Unless the Registrar has been notified 24 hours prior to the commencement of graduation exercises that a candidate for graduation is to be absent, a fee of $10 must be paid to the Registrar’s Office before a diploma is released.

Academic Residency Requirements
B.Sc.(Agr.)
Students intending to graduate with a B.Sc.(Agr.) must successfully complete a minimum of 15 semester courses at NSAC, including 6 of the last 10 required courses.

B.Tech
Students intending to graduate with a B.Tech must successfully complete a minimum of 15 semester courses at NSAC, including 6 of the last 10 required courses.

Engineering Diploma
Students intending to graduate with an Engineering Diploma must successfully complete a minimum of 11 courses at NSAC, including 6 of the last 10 required courses.

Technical Diploma
Students intending to graduate with a Technical Diploma must successfully complete a minimum of one-half of the total required courses at NSAC, including 7 of the last 12.

Transfer Credits for Technical Graduates Admitted to the NSAC B.Sc.(Agr.) Program
Students who have graduated from an NSAC Technical diploma program, and who have been admitted to the NSAC B.Sc.(Agr.) program, shall be awarded a minimum of 10 credits toward the NSAC B.Sc.(Agr.) program, provided all other program requirements are met.

Applicants with Technical diplomas from other institutions will be evaluated on a case-by-case basis, and these applicants will normally be awarded the 10-course minimum if their technical program matches one of those offered by NSAC.

Minimum Cumulative Average Requirements for the B.Sc.(Agr.), B.Tech, B.Eng. and Diploma in Enterprise Management
Students are required to have a minimum cumulative average of 60% in all courses required for the program in order to graduate. Courses transferred from other institutions are not normally considered in calculating the cumulative average.

Standing on Graduation (effective September 2006)
With High Honours
Cumulative average of 90% or higher

With Honours
Cumulative average of 80–89.9%

Second Diploma
The minimum requirement for a second Technical diploma is 12 additional courses that include all of the required courses of the syllabus.

Advanced Standing
Students who successfully complete a Technical diploma program at NSAC and apply to the B.Sc.(Agr.) program will receive a minimum of 10 credits towards their degree.
HEALTH INSURANCE REQUIREMENTS
International students not covered by a Canadian provincial health insurance plan are required to purchase a health insurance policy through the College. Once admitted, the student will be registered for coverage effective their date of arrival in Canada. The charge will be included on each student's account. Other insurance policies from home countries will not be accepted. International students who bring their immediate families to Canada must ensure they have appropriate health coverage.

Full-time Canadian students are automatically enrolled in the Gallivan Health/Dental Insurance Plan. For more information see www.gallivan.ca. Students who participate in varsity athletics are covered by a “sport” insurance policy. Details can be obtained through the Athletic Department.

It is the students’ responsibility to ensure that they have adequate health and accident insurance. The College does not accept any responsibility for costs related to accident or sickness for students participating in programs of study, athletic, or College-related events.

PERMISSION TO TAKE COURSES ELSEWHERE
NSAC students wishing to enroll in courses at other institutions for credit in an NSAC program must obtain, in advance, a Letter of Permission from the Registrar.

Courses that are taken without a Letter of Permission will not be credited towards a student's program.

Letter of Permission forms are available at the Registrar's Office.

PLAGIARISM
Copying someone else's work without giving him/her credit is plagiarizing.

The most obvious form of plagiarism is simply to copy word for word from a book, article or Internet site, omitting quotation marks and any mention of the original author.

A slightly more subtle form of plagiarism occurs when a writer's ideas are used by someone trying to pass them off as their own. Admittedly, in this second case, exact words used by the original writer may not be copied, but the essence of what the original writer wrote is. Therefore, it is plagiarism.

The fact that one is not copying from printed, published sources does not absolve one from the charge of plagiarism. One may be justly accused and convicted of it by copying unpublished term papers, essays, assignments, reports (including laboratory reports), and collections.

READEMISSION
Former students of NSAC must complete an Application for Admission to be readmitted.

Students who have been Academically Dismissed (required to withdraw) from NSAC must apply to the Registrar for readmission. Applications for readmission will be considered on an individual basis. Applications must be accompanied by a letter outlining the factors that accounted for poor academic performance and explaining why the applicant feels ready to commence studies again.

REGISTRATION
Computerized Registration
NSAC uses Datatel’s Colleague Student Information System (SIS) to enable students to register for courses via the web from anywhere in the world. Once students have paid their registration deposit, they will be issued a Permit to Register which includes login information (Username and Password) and instructions on how to register using this system. No-program students will be registered by the Registry Office.

Course Registrations
It is the responsibility of the student to ensure that he/she is properly registered in courses. Students will receive credit only for courses in which they are registered by the deadline to add courses. Conversely, a student who does not properly withdraw from a course will receive a mark of “0” for that course and will be responsible for all tuition fees. Deadlines for adding and dropping courses are strictly enforced.

Prerequisites
Students may be removed from courses for which they do not have prerequisites. Prerequisite waivers can be granted only by the instructors and must be submitted in writing, with the instructor’s signature, to the Registrar.

RESIDENCE
Residence Regulations are to be found in the NSAC Student Handbook under Community Standards, and in the Residence Handbook, available at www.nsac.ca/stuserv.

STUDENT SAFETY
Students must comply with all safety requirements of the College. This includes safety rules specific to programs and courses.
Regulations and Procedures

STUDENT STATUS
Scholarship students are normally required to be enrolled in four or more courses per semester.

Full-time
Students who are taking three or more credit courses in a semester, are registered in a program, and have ongoing status are full-time students.

Part-time
Students who are taking fewer than three courses, are registered in a program, and have ongoing status are part-time students.

Visiting
Students who are admitted to one or more courses on the basis of a Letter of Permission from another bona fide post-secondary institution are visiting students. Visiting students do not have ongoing student status. That is, if they wished to enroll for another semester they would be required to go through the Application for Admission process again.

No Program
Students may be admitted to one or more courses on a “no-program” basis. Admission is to specified courses on a case-by-case basis. No-program students do not have ongoing student status.

TRANSCRIPTS
No transcript will be sent to any other institution, business, etc., without the student’s authorization in writing.

WITHDRAWAL
Students who wish to withdraw from NSAC must notify the Registrar’s Office. Students will not be able to withdraw from all their courses using the Student Information System after the first two weeks of classes; this must be done in person at the Registrar’s Office. At the time of withdrawal, the student must return the Student ID Card.
Explanation of Terms and Codes

Each course is described by an alpha-numeric code. The alpha prefix identifies the main subject area, and the following digits identify the specific course.

Courses numbered 1000 or higher are taken for degree credit courses. Numbers 0100 to 0999 are offered in Technical programs. Numbers up to 0099 are offered as non-degree requirements. Numbers 5000+ are offered in the Graduate Program.

Courses with an ‘A’ designation focus on one or more aspects of the agri-food system—the production, management, processing, and marketing of crops and livestock and their products. Other courses may use agricultural examples, but are not designated ‘A’ because their main focus is not on the agri-food system.

Some first-year core courses are offered by distance delivery in addition to or instead of traditional delivery. These courses are denoted by DE.

PROGRAM CODES

BSCAG Degree (B.Sc.(Agr.))
BTECH Bachelor of Technology (B.Tech)
ENG Engineering
MSC Masters
TY Technology

Degree

<table>
<thead>
<tr>
<th>Major</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB Agricultural Business</td>
<td>AB Agricultural Business</td>
</tr>
<tr>
<td>AQ Aquaculture</td>
<td>AC Agricultural Chemistry</td>
</tr>
<tr>
<td>AS Animal Science</td>
<td>AS Animal Science</td>
</tr>
<tr>
<td>BSM Bio-Environmental Systems Management</td>
<td>AEC Agricultural Economics</td>
</tr>
<tr>
<td>AEC Agricultural Economics</td>
<td>EV Environmental Sciences</td>
</tr>
<tr>
<td>EV Environmental Sciences</td>
<td>PM Pest Management</td>
</tr>
<tr>
<td>PS Plant Science</td>
<td>PS Plant Science</td>
</tr>
<tr>
<td>PV Pre-Veterinary</td>
<td></td>
</tr>
<tr>
<td>NP No Program, University</td>
<td></td>
</tr>
</tbody>
</table>

Bachelor of Technology

APS Applied Science
EH Environmental Horticulture

Engineering

ENG Engineering

Technology

<table>
<thead>
<tr>
<th>Major</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT Veterinary Technology</td>
<td>AGR Agronomy</td>
</tr>
<tr>
<td>EH Environmental Horticulture</td>
<td>ED Edible Horticulture</td>
</tr>
<tr>
<td>PS Plant Science</td>
<td>OH Ornamental Horticulture</td>
</tr>
<tr>
<td>EMCA Enterprise Management</td>
<td>Companion Animal</td>
</tr>
<tr>
<td>EMDF Enterprise Management</td>
<td>Dairy Farming</td>
</tr>
<tr>
<td>EME Enterprise Management</td>
<td>Equine</td>
</tr>
<tr>
<td>EMF Enterprise Management</td>
<td>Farming</td>
</tr>
<tr>
<td>EMFR Enterprise Management</td>
<td>Food Retail</td>
</tr>
</tbody>
</table>

Explanation of Terms and Codes

Each course is described by an alpha-numeric code. The alpha prefix identifies the main subject area, and the following digits identify the specific course.
BACHELOR OF SCIENCE IN AGRICULTURE
[B.S.C.(AGR.)]
The Nova Scotia Agricultural College in association with Dalhousie University offers a four-year (40-course) program leading to a degree in Agricultural Science. NSAC students in the Agricultural Sciences who successfully complete the prescribed courses with a Cumulative Grade Average at or above the minimum required (60%), and who are in good standing, will be granted the degree of Bachelor of Science in Agriculture, B.Sc.(Agr.). Graduates of this program meet the formal educational requirements for Professional Agrologists in the provincial Institutes of Agrologists of the Atlantic Provinces.

Normally, students select a major during their first year at NSAC and continue in that field of study until they graduate.

Majors Offered at NSAC
- Agricultural Business
- Agricultural Economics
- Animal Science
- Aquaculture
- Bio-Environmental Systems Management
- Environmental Sciences
- Plant Science

Minors Offered at NSAC
- Agricultural Business
- Agricultural Chemistry
- Animal Science
- Environmental Science
- Plant Science

Admission Requirements
Admission into the B.Sc.(Agr.) program requires high school graduation with an average of at least 60% in five Grade 12 university preparatory subjects, including:

- English
- Pre-Calculus Mathematics (or 70% in Academic Mathematics)*
- any two of the following science requirements: Chemistry*, Biology, Physics*, Geology, Oceanography, or Agriculture
- one elective.

* Nova Scotia students who have successfully completed five Grade 12 university preparatory credits, including English and Mathematics, are able to use NS Oceans 11 and/or NS Agriculture 11 to meet the above-noted science requirements.

* Applicants who are otherwise qualified but do not have the appropriate physics, chemistry and/or math courses may be admitted with the requirement that they take the relevant non-credit introductory studies course(s) in their first year prior to registering in the degree-level counterpart(s). The non-credit introductory studies courses include CHEM0050 Preparatory Chemistry, PHYS0050 Introductory Physics, and MATH0050 Functions.

Syllabus
All Majors
Year 1
Semester I
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRI1000</td>
<td>Agricultural Ecosystems (A)</td>
<td></td>
</tr>
<tr>
<td>BIOL1002</td>
<td>Biology I</td>
<td></td>
</tr>
<tr>
<td>CHEM1000</td>
<td>General Chemistry I</td>
<td></td>
</tr>
<tr>
<td>ECON1000</td>
<td>Principles of Microeconomics*</td>
<td>DE</td>
</tr>
<tr>
<td>MATH1000</td>
<td>Introductory Calculus I</td>
<td></td>
</tr>
</tbody>
</table>

Semester II
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1003</td>
<td>Biology II</td>
</tr>
<tr>
<td>CHEM1001</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>ECON1000</td>
<td>Principles of Microeconomics*</td>
</tr>
<tr>
<td>MATH1001</td>
<td>Introductory Calculus II</td>
</tr>
</tbody>
</table>

Elective**

and one of:
- ENGL1000 Composition
- ENGL1001 The Novel
- ENGL1002 Nature in English and American Literature
- GEOG1000 Introductory Human Geography
- SOCI1000 Introductory Sociology

* ECON1000 Principles of Microeconomics can be taken in either semester and should be alternated with the choice of ENGL1000, ENGL1001, ENGL1002, GEOG1000, or SOCI1000.

** Students planning to major in Agricultural Business or Agricultural Economics may wish to select ECON1001 Principles of Macroeconomics.

Required Courses Past the First Year (required of all students)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT2000</td>
<td>Introduction to Statistics</td>
</tr>
<tr>
<td>RESM4XXX*</td>
<td>Project-Seminar I (A)</td>
</tr>
<tr>
<td>RESM4XXX*</td>
<td>Project-Seminar II (A)</td>
</tr>
</tbody>
</table>

plus two Humanities electives, one of which must be at the 3000 or 4000 level.

* RESM4XXX: Project-Seminar I and RESM4XXX: Project-Seminar II represent the Project-Seminar courses, including RESM4004. Students may take their Project-Seminar courses from any department, but the research topic must be approved by the head of the department responsible for the major in which they are registered.

DE indicates that the course may be offered by Distance Education in addition to or instead of by traditional methods of delivery.

Students must complete 12 ‘A’ (Agricultural) courses to be awarded the B.Sc.(Agr.); four ‘A’ courses are in the College Core (including first year). Courses with an ‘A’ designation focus on one or more aspects of the agri-food system—the production, management, processing, and
marketing of crops and livestock and their products. Other courses may use agricultural examples, but are not designated ‘A’ because their main focus is not on the agri-food system.

The purpose of the project-seminar course sequence in the College Core is to give each student the opportunity to pursue independent research in the area of his/her interest. Each student will gain hands-on experience as well as experience in the preparation, design, and analysis of a project in written and oral formats.

Agricultural Business
Agricultural Business at NSAC will prepare students for this exciting and growing industry both here and around the world. In this program science and management practices converge to solve problems and capture opportunities in our natural world. In four years students will attain an applied education with a science foundation and leading business management skills. The food industry will change, but food will always be a priority.

In addition to the B.Sc.(Agr.) core, students must take the following courses to meet the requirements of this program:

Major
- ECON1001 Principles of Macroeconomics
- ECON2000 Intermediate Microeconomics
- ECON2002 Production Economics (A)
- ECON3000 Mathematical Economics
- ECON3002 Agricultural and Food Policy (A)
- ECON3003 Mathematical Programming
- MGMT2002 Marketing
- MGMT2003 Financial Management (A)
- MGMT2004 Financial Accounting I
- MGMT2005 Financial Accounting II
- MGMT3000 Management Accounting
- MGMT4000 Strategic Management
- MGMT4001 Advanced Entrepreneurship (A)
- STAT3000 Intro to Planned Studies: Surveys and Experiments

Electives must include four ‘A’ courses.

Minor
A minimum of six courses including:
- MGMT2002 Marketing
- MGMT2003 Financial Management (A)

and any four additional courses approved by the Business and Social Sciences Department Head. Students may not select courses which are required for their major or the College core.

Students should see the academic advisor in the department offering the minor for selection of appropriate courses. Final approval of the head of the department offering the minor is required.

Recommended Syllabus for a Major in Agricultural Business

Year 2

<table>
<thead>
<tr>
<th>Semester VIII</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON2000</td>
<td>Principles of Macroeconomics</td>
<td></td>
</tr>
<tr>
<td>MGMT2004</td>
<td>Financial Accounting I</td>
<td></td>
</tr>
<tr>
<td>STAT2000</td>
<td>Introduction to Statistics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VII</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON3000</td>
<td>Mathematical Economics</td>
<td></td>
</tr>
<tr>
<td>MGMT2002</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>MGMT2003</td>
<td>Financial Management (A)</td>
<td></td>
</tr>
<tr>
<td>MGMT3000</td>
<td>Management Accounting</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VI</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON2002</td>
<td>Production Economics (A)</td>
<td></td>
</tr>
<tr>
<td>MGMT2005</td>
<td>Financial Accounting II</td>
<td></td>
</tr>
<tr>
<td>STAT3000</td>
<td>Intro to Planned Studies: Surveys & Experiments</td>
<td></td>
</tr>
</tbody>
</table>

| Elective |

Year 3

<table>
<thead>
<tr>
<th>Semester V</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON3000</td>
<td>Mathematical Economics</td>
<td></td>
</tr>
<tr>
<td>MGMT2002</td>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>MGMT2003</td>
<td>Financial Management (A)</td>
<td></td>
</tr>
<tr>
<td>MGMT3000</td>
<td>Management Accounting</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester IV</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON1001</td>
<td>Principles of Macroeconomics I</td>
<td></td>
</tr>
<tr>
<td>ECON2002</td>
<td>Production Economics (A)</td>
<td></td>
</tr>
<tr>
<td>MGMT2005</td>
<td>Financial Accounting II</td>
<td></td>
</tr>
<tr>
<td>STAT3000</td>
<td>Intro to Planned Studies: Surveys & Experiments</td>
<td></td>
</tr>
</tbody>
</table>

| Elective |

Year 4

<table>
<thead>
<tr>
<th>Semester VII</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT4000</td>
<td>Strategic Management</td>
<td></td>
</tr>
<tr>
<td>RESM4004</td>
<td>Research Methods for Economics & Business (A)</td>
<td></td>
</tr>
</tbody>
</table>

| Elective |

<table>
<thead>
<tr>
<th>Semester VIII</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT4001</td>
<td>Advanced Entrepreneurship (A)</td>
<td></td>
</tr>
<tr>
<td>RESM4005</td>
<td>Project-Seminar for Economics & Business (A)</td>
<td></td>
</tr>
</tbody>
</table>

| Elective |
Undergraduate Degree Programs

Electives must include two Humanities courses, one of which must be at the 3000 or 4000 level, and four ‘A’ courses. (See Appendix I for a list of courses and their designations.)

Agricultural Economics

Agricultural Economics at NSAC will help students develop professional decision-making skills. These skills apply to real-world issues facing people in Canada and internationally. In a practical, “real-world” approach, students not only develop an understanding of the issues but also learn to choose among the possible solutions. Meeting NSAC’s high academic standards positions graduates for success in the job market and in graduate studies.

In addition to the B.Sc.(Agr.) core, students must take the following courses to meet the requirements of this program:

Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON1001</td>
<td>Principles of Macroeconomics</td>
</tr>
<tr>
<td>ECON2000</td>
<td>Intermediate Microeconomics</td>
</tr>
<tr>
<td>ECON2001</td>
<td>Intermediate Macroeconomics</td>
</tr>
<tr>
<td>ECON3000</td>
<td>Mathematical Economics</td>
</tr>
<tr>
<td>ECON3002</td>
<td>Agricultural and Food Policy (A)</td>
</tr>
<tr>
<td>ECON3003</td>
<td>Mathematical Programming</td>
</tr>
<tr>
<td>ECON3004</td>
<td>Agricultural Markets and Prices (A)</td>
</tr>
<tr>
<td>ECON3005</td>
<td>Econometrics</td>
</tr>
<tr>
<td>ECON4001</td>
<td>Agri-food Policy Analysis (A)</td>
</tr>
<tr>
<td>MGMT2002</td>
<td>Marketing</td>
</tr>
<tr>
<td>MGMT2003</td>
<td>Financial Management (A)</td>
</tr>
<tr>
<td>MGMT2004</td>
<td>Financial Accounting I</td>
</tr>
</tbody>
</table>

Electives must include four ‘A’ courses.

Minor

A minimum of six courses including:

- ECON1001 Principles of Macroeconomics*
- and any five additional courses approved by the Business and Social Sciences Department Head.

*Students may not select courses which are required for their major or the College core.

Students should see the academic advisor in the department offering the minor for selection of appropriate courses. Final approval of the head of the department offering the minor is required.

Recommended Syllabus for a Major in Agricultural Economics

Year 2

<table>
<thead>
<tr>
<th>Semester III</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON2000</td>
</tr>
<tr>
<td>MGMT2004</td>
</tr>
<tr>
<td>STAT2000</td>
</tr>
<tr>
<td>Elective</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Semester V</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON2001</td>
</tr>
<tr>
<td>ECON3000</td>
</tr>
<tr>
<td>ECON3005</td>
</tr>
<tr>
<td>MGMT2002</td>
</tr>
<tr>
<td>MGMT2003</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Semester VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON4001</td>
</tr>
<tr>
<td>RESM4004</td>
</tr>
<tr>
<td>Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESM4005</td>
</tr>
<tr>
<td>Elective</td>
</tr>
</tbody>
</table>
Undergraduate Degree Programs

* Students who successfully complete ECON1001 Principles of Macroeconomics in their first year as an elective may be able to select ECON2001 Intermediate Macroeconomics in Semester III. STAT2000 is a prerequisite to ECON3005, and should be completed in Semester III or IV.

Electives must include two Humanities courses, one of which must be at the 3000 or 4000 level, and four ‘A’ courses. (See Appendix I for a list of courses and their designations.)

Animal Science

Whether a student wants to work in agriculture, go on to training in veterinary medicine or continue on to advanced research in animal nutrition, physiology, genetics or behaviour studies, this major features both in-depth study of animal biology and enough freedom to focus on anything from Business to Genetics and Molecular Biology at NSAC.

In addition to the B.Sc.(Agr.) core, students must take the following courses to meet the requirements of this program:

Major
- ANSC2000: Animal Agriculture I (A)
- ANSC2001: Animal Agriculture II (A)
- ANSC3000: Animal Breeding (A)
- BIOL2006: Mammalian Physiology
- BIOL3008: Growth, Reproduction, and Lactation (A)
- CHEM2000: Organic Chemistry I
- CHEM3001: Biochemical Pathways
- GENE2000: Genetics
- NUTR3000: Animal Nutrition
- PHYS1002: Physics I or PHYS1000 Physics for Life Sciences I

plus three ‘A’ courses:
- two Animal Science courses at the 3000 or 4000 level, and
- one Animal Science course at the 4000 level (RESM4002 and RESM4003 cannot be used)

Minor

Any six courses approved by the Animal Science Department Program Advisor. The content of the minor will be decided on a student-by-student basis. Students cannot select courses which are required for their major or the College core. Students wishing to take fourth-year module courses (ANSC4000, ANSC4001 series) should note that prerequisite courses must be completed prior to enrollment.

Students should see the academic advisor in the department offering the minor for selection of appropriate courses. Final approval of the head of the department offering the minor is required.

NSAC courses designated as Animal Science electives for the major, or courses for the minor, include the following:
- ANSC2000: Animal Agriculture I (A)
- ANSC2001: Animal Agriculture II (A)
- ANSC2002: The Horse: Its Biology and Use (A)
- ANSC2003: Companion Animal Behaviour
- ANSC2004: Organic Livestock Production (A)
- ANSC3000: Animal Breeding (A)
- ANSC 3001: Animal Health (A)
- ANSC 3002: Domestic Animal Behaviour (A)
- ANSC 3003: Eggs and Dairy Products (A)
- ANSC 3004: Meat Science (A)
- ANSC 3005: Animal Welfare (A)
- ANSC 4000: Topics in Animal Production I (A)
- ANSC 4001: Topics in Animal Production II (A)
- ANSC 4003: Avian Production Systems (A)
- AQUA2000: Introduction to Aquaculture (A)
- AQUA3000: Fish Health (A)
- AQUA4000: Finfish Production
- AQUA4001: Shellfish Production
- BIOL2006: Mammalian Physiology
- BIOL 3004: Environmental Physiology (A)
- BIOL3005: Physiology of Aquatic Animals
- BIOL3006: Aquatic Ecology
- BIOL3008: Growth, Reproduction and Lactation (A)
- BIOL 4000: Avian Biology (A)
- BIOL4001: Animal Cell Biology
- GENE 4000: Molecular Applications to Animal Production
- GENE4000: Molecular Applications to Animal Production
- NUTR3000: Animal Nutrition (A)
- NUTR 3001: Applied Animal Nutrition (A)
- NUTR3002: Fish Nutrition
- NUTR 4000: Ruminant Digestive Physiology and Metabolism
- SPEC4000: Special Topics in Animal Science and Aquaculture

Recommended Syllabus for a Major in Animal Science

Year 2

Semester III

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC2000</td>
<td>Animal Agriculture I (A)</td>
</tr>
<tr>
<td>CHEM2000</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>GENE2000</td>
<td>Genetics I</td>
</tr>
<tr>
<td>PHYS* or</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>ELECTIVE</td>
</tr>
</tbody>
</table>
Undergraduate Degree Programs

Semester IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2006</td>
<td>Mammalian Physiology</td>
</tr>
<tr>
<td>CHEM3001</td>
<td>Biochemical Pathways</td>
</tr>
<tr>
<td>PHYS* or</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Year 3

Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC2001</td>
<td>Animal Agriculture II (A)</td>
</tr>
<tr>
<td>BIOL3008</td>
<td>Growth, Reproduction & Lactation (A)</td>
</tr>
<tr>
<td>NUTR3000</td>
<td>Animal Nutrition</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Year 4

Semester VII

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESM4002</td>
<td>Project-Seminar I (A)</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Semester VIII

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESM4003</td>
<td>Project-Seminar II (A)</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

* PHYS—Students must complete the combination of PHYS1000 or PHYS1002 and STAT2000 in Semesters III & IV. If PHYS1000/PHYS1002 is done in Semester III, then STAT2000 will be done in Semester IV. If STAT2000 is done in Semester III, then PHYS1002 will be done in Semester IV.

Electives must include two Humanities courses, one of which must be at the 3000 or 4000 level; two 3000- or 4000-level Animal Science courses; and one 4000-level Animal Science course. Overall four ‘A’ electives are required. (See Appendix I for a list of courses and their designations.)

Aquaculture

Aquaculture is the growing of fish, shellfish and aquatic plants to enhance both our society and aquatic ecosystems. Globally, aquaculture is expanding fast; by 2030 over half of our seafood will be farmed. A Major in Aquaculture is the gateway to a diversity of rewarding careers such as food production, seafood marketing, water resource management, conservation, and management of wild fish stocks.

In addition to the B.Sc.(Agr.) core, students must take the following courses to meet the requirements of this program:

Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC3000</td>
<td>Animal Breeding (A)</td>
</tr>
<tr>
<td>AQUA2000</td>
<td>Introduction to Aquaculture (A)</td>
</tr>
<tr>
<td>AQUA3000</td>
<td>Fish Health (A)</td>
</tr>
<tr>
<td>AQUA4000</td>
<td>Finfish Production or</td>
</tr>
<tr>
<td>AQUA4001</td>
<td>Shellfish Production</td>
</tr>
<tr>
<td>BIOL3005</td>
<td>Physiology of Aquatic Animals (A)</td>
</tr>
<tr>
<td>BIOL3006</td>
<td>Aquatic Ecology</td>
</tr>
<tr>
<td>CHEM2000</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM3001</td>
<td>Biochemical Pathways</td>
</tr>
<tr>
<td>ENGN2004</td>
<td>Aquacultural Environment (A)</td>
</tr>
<tr>
<td>ENGN3013</td>
<td>Aquacultural Engineering (A)</td>
</tr>
<tr>
<td>GENE2000</td>
<td>Genetics</td>
</tr>
<tr>
<td>MGMT2003</td>
<td>Financial Management (A)</td>
</tr>
<tr>
<td>MIRC2000</td>
<td>Microbiology</td>
</tr>
<tr>
<td>NUTR3000</td>
<td>Animal Nutrition or</td>
</tr>
<tr>
<td>NUTR3002</td>
<td>Fish Nutrition (A)</td>
</tr>
<tr>
<td>PHYS1000</td>
<td>Physics for Life Sciences I or</td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics I</td>
</tr>
<tr>
<td></td>
<td>and one of:</td>
</tr>
<tr>
<td>ECON4002</td>
<td>Topics in Advanced Farm Management (A)</td>
</tr>
<tr>
<td>MGMT1000</td>
<td>Small Business Entrepreneurship</td>
</tr>
<tr>
<td>MGMT2002</td>
<td>Marketing</td>
</tr>
<tr>
<td>MGMT2004</td>
<td>Financial Accounting I</td>
</tr>
</tbody>
</table>

Recommended Syllabus for a Major in Aquaculture

Year 2

Semester III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUA2000</td>
<td>Introduction to Aquaculture (A)</td>
</tr>
<tr>
<td>CHEM2000</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>GENE2000</td>
<td>Genetics</td>
</tr>
<tr>
<td>PHYS* or</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>
Undergraduate Degree Programs

Semester IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3001</td>
<td>Biochemical Pathways</td>
</tr>
<tr>
<td>ENGN2004</td>
<td>Aquacultural Environment (A)</td>
</tr>
<tr>
<td>MICR2000</td>
<td>Microbiology</td>
</tr>
<tr>
<td>PHYS* or</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Year 3

Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3005</td>
<td>Physiology of Aquatic Animals (A)</td>
</tr>
<tr>
<td>BIOL3006</td>
<td>Aquatic Ecology</td>
</tr>
<tr>
<td>MGMT2003</td>
<td>Financial Management (A)</td>
</tr>
<tr>
<td>NUTR3000</td>
<td>Animal Nutrition or Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Semester VI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC3000</td>
<td>Animal Breeding (A)</td>
</tr>
<tr>
<td>AQUA3000</td>
<td>Fish Health (A)</td>
</tr>
<tr>
<td>ENGN3013</td>
<td>Aquacultural Engineering (A)</td>
</tr>
<tr>
<td>NUTR3002</td>
<td>Fish Nutrition (A) or Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Year 4

Semester VII

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUA4000</td>
<td>Finfish Production or Elective</td>
</tr>
<tr>
<td>RESM4010</td>
<td>Aquaculture Project-Seminar I (A)</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Semester VIII

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQUA4001</td>
<td>Shellfish Production or Elective</td>
</tr>
<tr>
<td>RESM4011</td>
<td>Aquaculture Project-Seminar II (A)</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

* PHYS—Students must complete the combination of PHYS1000 or PHYS1002 and STAT2000 in Semesters III & IV. If PHYS1000/PHYS1002 is done in Semester III, then STAT2000 will be done in Semester IV. If STAT2000 is done in Semester III, then PHYS1002 will be done in Semester IV.

Electives must include two Humanities courses, one of which must be at the 3000 or 4000 level (see Appendix I for a list of courses and their designations), and one of the following:

- ECON4002 Topics in Advanced Farm Management (A)
- MGMT1000 Small Business Entrepreneurship
- MGMT2002 Marketing
- MGMT2004 Financial Accounting

Bio-Environmental Systems Management

The Bio-Environmental Systems Management major provides graduates with a background in the management of technology association with environmental and biological systems applied to land, water, building, and machinery. This program was developed in response to growing global challenges to develop and manage technologically advanced sustainable food and fibre production systems for the new environmentally conscious millennium.

In addition to the B.Sc.(Agr.) core, students must take the following courses to meet the requirements of this program:

Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN1003</td>
<td>Properties and Mechanics of Materials</td>
</tr>
<tr>
<td>ENGN2000</td>
<td>Environmental Impacts and Resource Management (A)</td>
</tr>
<tr>
<td>ENGN2001</td>
<td>Agricultural Machinery</td>
</tr>
<tr>
<td>ENGN2002</td>
<td>Introduction to Systems Analysis</td>
</tr>
<tr>
<td>ENGN2003</td>
<td>Food Processing Systems (A)</td>
</tr>
<tr>
<td>ENGN2006</td>
<td>Surveying</td>
</tr>
<tr>
<td>ENGN3001</td>
<td>Engineering Measurements and Controls (A)</td>
</tr>
<tr>
<td>ENGN3003</td>
<td>Technology for Precision Agriculture</td>
</tr>
<tr>
<td>ENGN3007</td>
<td>Structures and Their Environment (A)</td>
</tr>
<tr>
<td>ENGN3009</td>
<td>Materials Handling and Processing (A)</td>
</tr>
<tr>
<td>ENGN3010</td>
<td>Soil and Water (A)</td>
</tr>
<tr>
<td>ENGN4000</td>
<td>Water and Water Quality Management (A)</td>
</tr>
<tr>
<td>ENGN4002</td>
<td>Management of Mechanized Agricultural Systems (A)</td>
</tr>
<tr>
<td>MGMT2003</td>
<td>Financial Management (A)</td>
</tr>
<tr>
<td>MGMT2004</td>
<td>Financial Accounting I</td>
</tr>
<tr>
<td>PHYS1000</td>
<td>Physics for Life Sciences I or</td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics I</td>
</tr>
</tbody>
</table>

Recommended Syllabus for a Major in Bio-Environmental Systems Management

Year 2

Semester III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN2002</td>
<td>Introduction to Systems Analysis</td>
</tr>
<tr>
<td>ENGN2006</td>
<td>Surveying</td>
</tr>
<tr>
<td>MGMT2004</td>
<td>Financial Accounting I</td>
</tr>
<tr>
<td>PHYS* or</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>
Undergraduate Degree Programs

Semester IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN1003</td>
<td>Properties and Mechanics of Materials</td>
</tr>
<tr>
<td>ENGN2001</td>
<td>Agricultural Machinery</td>
</tr>
<tr>
<td>PHYS* or Elective</td>
<td></td>
</tr>
</tbody>
</table>

* PHYS—Students must complete the combination of PHYS1000 or PHYS1002 and STAT2000 in Semesters III & IV. If PHYS1000/PHYS1002 is done in Semester III then STAT2000 will be done in Semester IV. If STAT2000 is done in Semester III, then PHYS1000/1002 will be done in Semester IV.

Electives must include two Humanities courses, one of which must be at the 3000 or 4000 level. CMMT3000 Communication Theory and Skills and EXTE3000 Extension Education in the Rural Community or EXTE3001 Leadership Development and the Social Action Process are recommended. (See Appendix I for a list of courses and their designations.)

Electives must include two Humanities courses, one of which must be at the 3000 or 4000 level. CMMT3000 Communication Theory and Skills and EXTE3000 Extension Education in the Rural Community or EXTE3001 Leadership Development and the Social Action Process are recommended. (See Appendix I for a list of courses and their designations.)

†strongly recommend MGMT2000 Human Resource Management
‡strongly recommend ENGN2004 Aquacultural Environment

Recommended Electives:

- CHEM2000 Organic Chemistry I
- CSC1000 Computer Methods
- ECON2000 Intermediate Microeconomics
- ECON3001 Environmental Economics
- ECON3002 Agricultural and Food Policy (A)
- ECON4003 Resource Economics
- ENGN3013 Aquacultural Engineering (A)
- ENGN4001 Water Quality Issues (A)
- MATH4000 Agricultural Modelling
- MGMT2002 Marketing
- MGMT4000 Strategic Management
- SPEC4012 Directed Studies in Agricultural Engineering (A)
- STAT3000 Intro to Planned Studies: Surveys and Experiments

Environmental Sciences

Environmental issues are on the front pages every day. NSAC's four-year degree program is just the ticket to a fantastic career working on behalf of the environment. This program is unique because it covers so many disciplines, with a team of coordinators from many different disciplines—and that means a well-rounded education.

Coordinators from environmental biology, environmental chemistry, soil and water quality, waste management, and environmental economics build a multi-subject curriculum—lots of hands-on work, plus it is an integrated program, unlike most university programs out there. Students learn by identifying environmental issues and then dissecting them into biological, chemical, and socioeconomic aspects. By the time they graduate, students have a complete understanding of the implications of environmental problems, the causes, and potential solutions.

In addition to the B.Sc.(Agr.) core, students must take the following courses to meet the requirements of this program:
Undergraduate Degree Programs

Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3001</td>
<td>Ecology</td>
</tr>
<tr>
<td>CHEM2000</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM3001</td>
<td>Biochemical Pathways</td>
</tr>
<tr>
<td>ECON2000</td>
<td>Intermediate Microeconomics</td>
</tr>
<tr>
<td>ECON3001</td>
<td>Environmental Economics</td>
</tr>
<tr>
<td>ENGN4000</td>
<td>Water and Water Quality Management (A)</td>
</tr>
<tr>
<td>ENVS2000</td>
<td>Environmental Studies I (A)</td>
</tr>
<tr>
<td>ENVS2001</td>
<td>Environmental Studies II (A)</td>
</tr>
<tr>
<td>ENVS3001</td>
<td>Environmental Sampling and Analysis</td>
</tr>
<tr>
<td>ENVS3002</td>
<td>Waste Treatment and Site Remediation (A)</td>
</tr>
<tr>
<td>MICR2000</td>
<td>Microbiology</td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics I or</td>
</tr>
<tr>
<td>PHYS1000</td>
<td>Physics for the Life Sciences I</td>
</tr>
<tr>
<td>SOIL2000</td>
<td>Introduction to Soil Science (A)</td>
</tr>
<tr>
<td>STAT3000</td>
<td>Introduction to Planned Studies: Surveys and Experiments</td>
</tr>
</tbody>
</table>

plus one of the following two courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3009</td>
<td>Environmental Chemistry</td>
</tr>
<tr>
<td>ENGN2000</td>
<td>Environmental Impacts & Resource Management (A)</td>
</tr>
</tbody>
</table>

Electives must include three ‘A’ courses (only two ‘A’ courses if ENGN2000 is taken).

Within the Environmental Sciences major students may select any one of the following areas of specialization:

- Environmental Biology
- Environmental Chemistry
- Environmental Economics
- Environmental Soil Science
- Pest Management
- Waste Management

Interested students are to consult with the Program Advisor.

Minor

A minimum of five courses including

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVS2000</td>
<td>Environmental Studies I (A)</td>
</tr>
<tr>
<td>ENVS2001</td>
<td>Environmental Studies II (A)</td>
</tr>
</tbody>
</table>

and three other courses approved by the Department of Environmental Sciences.

Students may not select courses which are required for their major or the College core.

Students should see the academic advisor in the department offering the minor for selection of appropriate courses. Final approval of the head of the department offering the minor is required.

Recommended Syllabus for a Major in Environmental Sciences

Year 2

Semester III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM2000</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>ECON2000</td>
<td>Intermediate Microeconomics</td>
</tr>
<tr>
<td>ENVS2000</td>
<td>Environmental Studies I (A)</td>
</tr>
<tr>
<td>SOIL2000</td>
<td>Introduction to Soil Science (A)</td>
</tr>
<tr>
<td>STAT2000</td>
<td>Introduction to Statistics or Elective</td>
</tr>
</tbody>
</table>

Semester IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3001</td>
<td>Biochemical Pathways</td>
</tr>
<tr>
<td>ENVS2001</td>
<td>Environmental Studies II (A)</td>
</tr>
<tr>
<td>MICR2000</td>
<td>Microbiology</td>
</tr>
<tr>
<td>STAT3000</td>
<td>Intro to Planned Studies: Surveys and Experiments</td>
</tr>
<tr>
<td>STAT2000</td>
<td>Introduction to Statistics or Elective</td>
</tr>
</tbody>
</table>

Year 3

Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3001</td>
<td>Ecology</td>
</tr>
<tr>
<td>ECON3001</td>
<td>Environmental Economics</td>
</tr>
<tr>
<td>ENVS3001</td>
<td>Environmental Sampling and Analysis</td>
</tr>
<tr>
<td>PHYS1000 *</td>
<td>Physics for the Life Sciences I or</td>
</tr>
<tr>
<td>PHYS1002 *</td>
<td>Physics I or Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Semester VI

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM3009</td>
<td>Environmental Chemistry or Elective</td>
</tr>
<tr>
<td>ENGN4000</td>
<td>Water and Water Quality Management (A)</td>
</tr>
<tr>
<td>ENVS3002</td>
<td>Waste Treatment and Site Remediation (A)</td>
</tr>
<tr>
<td>PHYS1000 *</td>
<td>Physics for the Life Sciences I or</td>
</tr>
<tr>
<td>PHYS1002 *</td>
<td>Physics I or Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Year 4

Semester VII

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN2000</td>
<td>Environmental Impacts and Resource Management (A) or Elective</td>
</tr>
<tr>
<td>RESM4006</td>
<td>Environmental Sciences Project-Seminar I (A)</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

35
Undergraduate Degree Programs

Semester VIII

CHEM3009 Environmental Chemistry or Elective
RESM4007 Environmental Sciences Project-Seminar II (A)

Elective
Elective

Note for Years 3 and 4: One of the following two courses is required:
ENGN2000 Environmental Impacts and Resource Management (A) or
CHEM3009 Environmental Chemistry. CHEM3009 is offered in alternate
years.

* Students must take either PHYS1000 or PHYS1002 but not both for
credit.

Electives must include one Humanities course at the 3000 or 4000 level,
one additional Humanities course at any level (see Appendix I for a list
of courses and their designations), and three ‘A’ courses. However, if
ENGN2000 is taken, then only two additional ‘A’ courses are required.

Plant Science
Newly revised! This classic program in plant agriculture has been offered
for over a hundred years at NSAC, yet it is as up-to-date as the newest
scientifically tested plant cultivars and the latest developments in
biotechnology and advancements in agroecology. Students will be
provided with a range of basic and applied courses related to production
of crops for use by humans and livestock. The program focuses on crop
production that is sustainable in terms of production, profits and the
environment. The Major in Plant Science provides a wide range of
options following graduation, and it is suited to students who want to
go on to careers in agriculture or in plant-related business, or to
graduate studies and research. There is a rich world of opportunities in
this field.

In addition to the College Core, students must take the following
courses to meet the requirements of this program:

Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2000</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>BIOL2002</td>
<td>Plant Physiology</td>
</tr>
<tr>
<td>BIOL2004</td>
<td>Structural Botany</td>
</tr>
<tr>
<td>BIOL2005</td>
<td>Principles of Plant Pathology (A)</td>
</tr>
<tr>
<td>BIOL2008</td>
<td>Plant Diversity</td>
</tr>
<tr>
<td>BIOL3000</td>
<td>General Entomology (A)</td>
</tr>
<tr>
<td>BIOL3002</td>
<td>Weed Science (A)</td>
</tr>
<tr>
<td>CHEM2000</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>CHEM3000</td>
<td>Biochemistry or</td>
</tr>
<tr>
<td></td>
<td>Biochemical Pathways</td>
</tr>
<tr>
<td>GENE2000</td>
<td>Genetics</td>
</tr>
<tr>
<td>MICR2000</td>
<td>Microbiology</td>
</tr>
<tr>
<td>PLSC4002</td>
<td>Plant Ecophysiology (A)</td>
</tr>
<tr>
<td>SOIL2000</td>
<td>Introduction to Soil Science (A)</td>
</tr>
<tr>
<td>SOIL3000</td>
<td>Soil Fertility and Nutrient Management (A)</td>
</tr>
</tbody>
</table>

Two plant production courses from the list below

\[
\text{NSAC courses classified as Plant Production courses:} \\
\text{AGRN2000 Organic Field Crop Management (A)} \\
\text{AGRN2001 Cereal-Based Cropping systems (A)} \\
\text{AGRN2002 Forage-Based Cropping Systems (A)} \\
\text{AGRN2008 Potato Production (A)} \\
\text{HORT2000 Vegetable Production (A)} \\
\text{HORT2001 Principles of Organic Horticulture (A)} \\
\text{HORT2004 Introduction to Viticulture (A)} \\
\text{HORT2006 Tree Fruit Crops (A)} \\
\text{HORT2007 Small Fruit Crops (A)} \\
\text{HORT2009 Landscape Plant Nursery Management (A)} \\
\text{HORT2010 Greenhouse & Floriculture Crop Management (A)} \\
\text{HORT4002 Management of Specialized Turf (A)} \\
\text{PLSC1000 Farm Woodlot Management (A)} \\
\text{PLSC2000 Specialty Crops (A)} \\
\text{PLSC2001 Theory and Practice of Plant Propagation (A)} \\
\]

Minor
Any five Plant Science* degree courses.

Students cannot select courses which are required for their major.

Students should see the academic advisor in the department offering the
minor for selection of appropriate courses. Final approval of the head of
the department offering the minor is required.

* NSAC course designations classified as Plant Science electives for the
major, or courses for the minor, include AGRN, HORT, and PLSC. In
addition the following courses are also designated as Plant Science:
BIOL3007 Insect and Diseases of Landscape Plants; INTD3000 Tropical
Agriculture; SPEC4010 Special Topics in Plant Science I; and SPEC4011
Special Topics in Plant Science II.
Recommended Syllabus for a Major in Plant Science
(first offered in 2008/2009)

Students must either have Grade 12 Physics or take PHYS0050 at some time during their first or second year at NSAC.

Year 2

Semester III

BIOL2000 Cell Biology
BIOL2008 Plant Diversity
CHEM2000 Organic Chemistry I
GENE2000 Genetics I
SOIL2000 Introduction to Soil Science (A)

Semester IV

BIOL2002 Plant Physiology
BIOL2004 Structural Botany
CHEM3001 Biochemical Pathways*
 or CHEM3000 in Semester V
 or Elective
MICR2000 Microbiology
 Elective

Year 3

Semester V

BIOL3000 General Entomology (A)
BIOL3002 Weed Science (A)
CHEM3000 Biochemistry*
 or CHEM3001 in Semester IV
 or Elective
STAT2000 Introduction to Statistics or Elective

Semester VI

BIOL2005 Principles of Plant Pathology (A)
SOIL3000 Soil Fertility and Nutrient Management (A)
RESM4008 Plant Science Project-Seminar I (A)
STAT2000 Introduction to Statistics or Elective
 Elective

Year 4

Semester VII

PLSC4002 Plant Ecophysiology (A)
RESM4009 Plant Science Project-Seminar II (A)
 Elective
 Elective
 Elective

Semester VIII

 Elective
 Elective
 Elective
 Elective

* Students must complete one of either CHEM3000 or CHEM3001.

Electives must include two Humanities courses, one of which must be at the 3000 or 4000 level, and at least two plant production courses (see list above).

Minor in Agricultural Chemistry

A minimum of five chemistry courses, including CHEM2000 and CHEM3003.

Students should see the academic advisor in the department offering the minor for selection of appropriate courses. Final approval of the head of the department offering the minor is required.

Course selection must be approved by the Department of Environmental Sciences. Students may not select courses which are required for their major.

Minor in Pest Management

MICR2000 Microbiology
 Elective

plus a minimum of three other courses from the following:

BIOL2005 Principles of Plant Pathology (A)
BIOL3000 General Entomology (A)
BIOL3002 Weed Science (A)
BIOL4003 Plant-Microbe Interactions
ENVS4002 Economic Entomology (A)
ENVS4003 Applied Weed Science (A)

Students should see the academic advisor in the department offering the minor for selection of appropriate courses. Final approval of the head of the department offering the minor is required.

Students may not select courses which are required for their major.
BACHELOR OF TECHNOLOGY
The Bachelor of Technology (B.Tech) is awarded in association with Dalhousie University. It is a four-year program designed to provide a comprehensive study of specific areas of technology. Graduates of this program will have mastered a number of skills necessary to address present and future advances in technology associated with specific career paths. A balance of communication and technical skills will be achieved.

All majors in the program have an admission requirement of at least two years of post-secondary studies. The majors are designed to provide advanced studies for NSAC diploma graduates and require many of the elements of these programs as a foundation. Applicants from other post-secondary programs will be assessed and may be required to take some qualifying courses upon admission. Each major has specific entrance requirements, and possession of minimum requirements does not guarantee admission.

BACHELOR OF TECHNOLOGY (ENVIRONMENTAL HORTICULTURE)
This Nova Scotia Agricultural College program is designed to prepare students for a career in the landscape horticulture profession. It will prepare students to work successfully in the diverse landscape industry or to create their own businesses within the industry. This major could also lead to graduate study in the area of landscape architecture and related fields.

Admission Requirements
Years one and two of this program are satisfied by the successful completion of the Environmental Horticulture Technology program or a landscape-related program approved by the Department of Environmental Sciences, with a cumulative average of at least 60%. Applicants who meet the general requirements described above (two years post-secondary) may be admitted to the program upon completion of prescribed preparatory courses.

Year 3

<table>
<thead>
<tr>
<th>Semester V</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL1002</td>
</tr>
<tr>
<td>CHEM1000</td>
</tr>
<tr>
<td>ENVS2000</td>
</tr>
<tr>
<td>HORT3000</td>
</tr>
<tr>
<td>SOIL2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN3019</td>
</tr>
<tr>
<td>ENVS2001</td>
</tr>
<tr>
<td>HORT4000</td>
</tr>
<tr>
<td>MGMT1000</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

BACHELOR OF TECHNOLOGY IN APPLIED SCIENCE
This program results in the awarding of an Engineering Technology Diploma after successful completion of Year 2, and a Bachelor of Technology in Applied Science after successful completion of Year 4.

Under the auspices of a Memorandum of Understanding (MOU), graduates of the degree program are qualified to apply for direct admission into the Bachelor of Education program in Technology Education offered by Acadia University. Any student planning to continue studies towards a teaching certificate should, in consultation with their Student Advisor, ensure that their program of study includes six courses from a second teachable subject area such as Biology, Chemistry, Economics, or Mathematics.

Admission Requirements
Admission into the Bachelor of Technology in Applied Science program requires high school graduation with an average of at least 60% in five Grade 12 university preparatory subjects including:
• English
• Pre-Calculus Mathematics (or 70% in Academic Mathematics)*
• Physics*
• two electives.

Year 4

<table>
<thead>
<tr>
<th>Semester VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3000</td>
</tr>
<tr>
<td>BIOL3002</td>
</tr>
<tr>
<td>HORT3001</td>
</tr>
<tr>
<td>RESM4006</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2005</td>
</tr>
<tr>
<td>BIOL4003</td>
</tr>
<tr>
<td>ENVS4002</td>
</tr>
<tr>
<td>ENVS4003</td>
</tr>
<tr>
<td>RESM4007</td>
</tr>
</tbody>
</table>

Note: Students are required to take one Humanities elective at the 2000 level or higher. (See Appendix I for a list of courses and their designations.)
* Applicants who are otherwise qualified but do not have the appropriate physics, chemistry, and/or math courses may be admitted with the requirement that they take the relevant non-credit introductory studies course(s) in their first year prior to registering in the degree-level counterpart(s). The non-credit introductory studies courses are CHEM0050 Preparatory Chemistry, PHYS0050 Introductory Physics, and MATH0050 Functions.

Note: Courses in Technology Education, Chemistry and Biology would be an asset.

Students must complete the following courses to complete the requirements of the program:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI1000</td>
<td>Computer Methods</td>
</tr>
<tr>
<td>ECON1000</td>
<td>Principles of Microeconomics (A)</td>
</tr>
<tr>
<td>ENGL1000</td>
<td>Composition</td>
</tr>
<tr>
<td>ENGN1001</td>
<td>Design and Graphics</td>
</tr>
<tr>
<td>ENGN1003</td>
<td>Properties and Mechanics of Materials</td>
</tr>
<tr>
<td>ENGN1004</td>
<td>Wood Construction Technology I</td>
</tr>
<tr>
<td>ENGN1005</td>
<td>Metal Construction Technology I</td>
</tr>
<tr>
<td>ENGN2001</td>
<td>Agricultural Machinery</td>
</tr>
<tr>
<td>ENGN2006</td>
<td>Surveying</td>
</tr>
<tr>
<td>ENGN2007</td>
<td>Fluid Power Technology</td>
</tr>
<tr>
<td>ENGN2008</td>
<td>Digital Electronics and Computer Interfacing</td>
</tr>
<tr>
<td>ENGN3001</td>
<td>Engineering Measurements and Controls</td>
</tr>
<tr>
<td>ENGN3009</td>
<td>Materials Handling and Processing</td>
</tr>
<tr>
<td>ENGN3018</td>
<td>Technology Modules</td>
</tr>
<tr>
<td>ENGN3019</td>
<td>Communications Technology</td>
</tr>
<tr>
<td>ENV2000</td>
<td>Environmental Studies I</td>
</tr>
<tr>
<td>ENV2001</td>
<td>Environmental Studies II</td>
</tr>
<tr>
<td>MATH1000</td>
<td>Introductory Calculus I</td>
</tr>
<tr>
<td>MATH1001</td>
<td>Introductory Calculus II</td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics I</td>
</tr>
<tr>
<td>RESM4000</td>
<td>BESM Project Seminar I</td>
</tr>
<tr>
<td>RESM4001</td>
<td>BESM Project Seminar II</td>
</tr>
<tr>
<td></td>
<td>1 English Elective</td>
</tr>
<tr>
<td></td>
<td>1 Social Studies Elective</td>
</tr>
<tr>
<td></td>
<td>5 Technology Electives</td>
</tr>
<tr>
<td></td>
<td>11 Electives</td>
</tr>
</tbody>
</table>

Recommended Syllabus

Year 1

Semester I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON1000</td>
<td>Principles of Microeconomics</td>
</tr>
<tr>
<td>ENGL1000</td>
<td>Composition</td>
</tr>
<tr>
<td>ENGN1001</td>
<td>Design and Graphics</td>
</tr>
<tr>
<td>ENGN1005</td>
<td>Metal Construction Technology I</td>
</tr>
<tr>
<td>MATH1000</td>
<td>Introductory Calculus I</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN1003</td>
<td>Properties & Mechanics of Materials</td>
</tr>
<tr>
<td>ENGN1004</td>
<td>Wood Construction Technology I</td>
</tr>
<tr>
<td>ENGN2001</td>
<td>Agricultural Machinery</td>
</tr>
<tr>
<td>MATH1001</td>
<td>Introductory Calculus II</td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics I</td>
</tr>
</tbody>
</table>

Year 2

Semester III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI1000</td>
<td>Computer Methods</td>
</tr>
<tr>
<td>ENGN2006</td>
<td>Surveying</td>
</tr>
<tr>
<td>ENGN3009</td>
<td>Materials Handling & Processing</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Semester IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN2007</td>
<td>Fluid Power Technology</td>
</tr>
<tr>
<td>ENGN2008</td>
<td>Digital Electronics & Computer Interfacing</td>
</tr>
<tr>
<td>ENGN3001</td>
<td>Engineering Measurements & Controls</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

The Engineering Technology Diploma is conferred upon successful completion of Year 2.
Undergraduate Degree Programs

Year 3

Semester V

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN3019</td>
<td>Communications Technology</td>
</tr>
<tr>
<td>ENVS2000</td>
<td>Environmental Studies I</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
</tbody>
</table>

Semester VI

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN3018</td>
<td>Technology Modules</td>
</tr>
<tr>
<td>ENVS2001</td>
<td>Environmental Studies II</td>
</tr>
<tr>
<td>RESM4000</td>
<td>Bio-Environmental Systems Management Project-Seminar I</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
</tbody>
</table>

Year 4

Semester VII

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESM4001</td>
<td>Bio-Environmental Systems Management Project-Seminar II</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
</tbody>
</table>

Semester VIII

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
</tr>
</tbody>
</table>

* Over the four years of the program, a total of at least five courses must be chosen from the list of technology electives below (two will have been completed during Year 2 and cannot be double-counted in Years 3 & 4).

The following lists contain courses qualifying as electives in the designated study areas required of the program. Many of these courses have prerequisites; it is the student's responsibility to ensure that any prerequisite requirements for taking any of the courses listed are met.

Technology Electives

- ENGN2000: Environmental Impacts and Resource Management (A)
- ENGN2002: Introduction to Systems Analysis
- ENGN2004: Aquacultural Environment (A)
- ENGN2009: Metal Construction Technology II
- ENGN2010: Wood Construction Technology II
- ENGN3003: Technology for Precision Agriculture
- ENGN3007: Structures and their Environment
- ENGN3010: Soil and Water (A)
- ENGN3013: Aquacultural Engineering (A)
- ENGN3016: Engineering Economy
- ENGN4000: Water and Water Quality Management (A)

Social Studies Electives

- CMMT3000: Communication Theory and Skills**
- ECON1001: Principles of Macroeconomics
- EXTE3000: Extension Education in the Rural Community
- EXTE3001: Leadership Development and the Social Action Process
- GEOG1000: Introductory Human Geography
- GEOG3000: Rural Geography**
- HIST1000: Introduction to Canadian History I: 1000–1867
- HIST1001: Introduction to Canadian History II: 1867–present
- HIST3000: Rural History**
- PHIL3000: Environmental and Agricultural Ethics
- POLS1000: Introduction to Political Science
- POLS1001: Structure and Function of Government
- SOCI1000: Introductory Sociology
- SOCI1001: Introductory Sociology II
- SOCI3000: Rural Sociology

** Students intending to get their B.Ed. (Technology Education) degree must take one of these electives to meet provincial teacher licensing requirements.

English Electives

- ENGL1001: The Novel
- ENGL1002: Nature in English and American Literature
- ENGL3000: Literature of Atlantic Canada
Undergraduate Degree Programs

ENGINEERING DIPLOMA
The Engineering Diploma program is the first two years of Dalhousie’s Bachelor of Engineering (B.Eng.). It is a 22-course Associated Universities program given in conjunction with Dalhousie University’s Faculty of Engineering. Students who successfully complete this program at NSAC receive an Engineering Diploma.

As Dalhousie University and the Associated Universities (AUs) form a unified system of engineering education, all diploma graduates from the AUs are guaranteed admission to Dalhousie. Students at the AUs will normally apply to disciplines at Dalhousie at the end of their first year in engineering since some discipline-specific courses are required in Year 2. They will be granted placeholder status on the basis of their averages and the availability of seats in the discipline. These placeholders will be assured continuance if the standards for promotion are met by the student at the AU in Year 2. Placeholders are valid for one year, although holders may reapply. Those who elect the Biosystems (Agricultural) or Environmental Engineering disciplines at Dalhousie University, which are sponsored jointly by Dalhousie and NSAC, may elect to complete them as co-op programs.

Students are free to apply for transfer to Dalhousie before completion of the engineering diploma, subject to Dalhousie’s course transfer regulations—this is an important consideration for those requiring discipline-specific courses not offered at a particular AU. This B.Eng. program leads to recognition by the provincial Associations of Professional Engineers.

Admission Requirements
Admission into the Engineering program requires high school graduation with an average of at least 60% in five Grade 12 university preparatory subjects including:
• English
• Pre-Calculus Mathematics (or 70% in Academic Mathematics)*
• Chemistry*
• Physics*
• one elective

* Applicants who are otherwise qualified but do not have the appropriate physics, chemistry, and/or math courses may be admitted with the requirement that they take the relevant non-credit introductory studies course(s) in their first year prior to registering in the degree-level counterpart(s). The non-credit introductory studies courses are CHEM0050 Preparatory Chemistry, PHYS0050 Introductory Physics, and MATH0050 Functions.

Graduation Requirements
The academic requirements for the Engineering Diploma are successful completion of:
• all courses specified in the syllabus of courses
• at least 22 one-semester courses
• at least 11 courses at NSAC, including 6 of the last 10 required courses.

The minimum level of academic achievement to graduate is a cumulative average of 60%.

Syllabus

Year 1
Semester I
CHEM1000 General Chemistry I
ENGL1002* Nature in English and American Literature
ENGN1001 Design and Graphics
MATH1000 Introductory Calculus I
PHYS1002 Physics I

Semester II
CHEM1001 General Chemistry II
ENGN1002 Statics
MATH1001 Introductory Calculus II
PHYS1003 Physics II
Humanities*

Year 2
Semester III
CSCI2000 Computer Science
ENGN3000 Electric Circuits
Discipline-specific
Discipline-specific
Discipline-specific
Discipline-specific

Semester IV
MATH2001 Differential Equations
STAT2001 Probability & Statistics for Engineering
Discipline-specific
Discipline-specific
Discipline-specific
Discipline-specific
Undergraduate Degree Programs

Note: The following discipline-specific courses are required for each engineering discipline:

Engineering Diploma Program—Required Discipline-Specific Courses

Semester III

<table>
<thead>
<tr>
<th>Bio systems</th>
<th>ENGN2005 Dynamics</th>
<th>CHEM2000 Organic Chemistry I</th>
<th>BIOL1002 Biology I</th>
<th>Humanities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Agricultural)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil</td>
<td>ENGN2005 Dynamics</td>
<td>ENGN3002 Thermodynamics</td>
<td>MATH2000 Multivariable Calculus</td>
<td>Humanities</td>
</tr>
<tr>
<td>Electrical/Computer</td>
<td>ENGN3004 Digital Circuits</td>
<td>ENGN3002 Thermodynamics</td>
<td>MATH2000 Multivariable Calculus</td>
<td>Humanities</td>
</tr>
<tr>
<td>Industrial</td>
<td>ENGN2005 Dynamics</td>
<td>ENGN3002 Thermodynamics</td>
<td>MATH2000 Multivariable Calculus</td>
<td>Humanities</td>
</tr>
<tr>
<td>Mechanical</td>
<td>ENGN2005 Dynamics</td>
<td>ENGN3002 Thermodynamics</td>
<td>Humanities</td>
<td>Humanities</td>
</tr>
<tr>
<td>Metallurgical</td>
<td>ENGN2005 Dynamics</td>
<td>ENGN3002 Thermodynamics</td>
<td>MATH2000 Multivariable Calculus</td>
<td>Humanities</td>
</tr>
<tr>
<td>Mining</td>
<td>ENGN2005 Dynamics</td>
<td>ENGN3002 Thermodynamics</td>
<td>MATH2000 Multivariable Calculus</td>
<td>Humanities</td>
</tr>
</tbody>
</table>

Semester IV

<table>
<thead>
<tr>
<th>Bio systems</th>
<th>ENGN3006 Strength of Materials</th>
<th>ENGN3011 Fluid Mechanics</th>
<th>ENGN3016 Engineering Economy</th>
<th>BIOL1003 Biology II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Agricultural)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>ENGN3005 Fund of Chem Engineering</td>
<td>ENGN3011 Fluid Mechanics</td>
<td>ENGN3016 Engineering Economy</td>
<td>Humanities</td>
</tr>
<tr>
<td>Civil</td>
<td>ENGN3006 Strength of Materials</td>
<td>ENGN3011 Fluid Mechanics</td>
<td>ENGN3016 Engineering Economy</td>
<td>GEOL2000 Intro to Geology</td>
</tr>
<tr>
<td>Electrical/Computer</td>
<td>MATH3000 Applied Linear Algebra</td>
<td>CSC1000 Data Structures & Num. Methods</td>
<td>ENGN3008 Circuit Analysis</td>
<td>ENGN3017 Design Project</td>
</tr>
<tr>
<td>Environmental</td>
<td>GEOL2000 Intro to Geology</td>
<td>ENGN3011 Fluid Mechanics</td>
<td>ENGN3016 Engineering Economy</td>
<td>BIOL1003 Biology II</td>
</tr>
<tr>
<td>Industrial</td>
<td>ENGN3006 Strength of Materials</td>
<td>ENGN3011 Fluid Mechanics</td>
<td>ENGN3016 Engineering Economy</td>
<td>Humanities</td>
</tr>
<tr>
<td>Mechanical</td>
<td>ENGN3006 Strength of Materials</td>
<td>ENGN3011 Fluid Mechanics</td>
<td>ENGN3016 Engineering Economy</td>
<td>ENGN3017 Design Project</td>
</tr>
<tr>
<td>Metallurgical</td>
<td>ENGN3006 Strength of Materials</td>
<td>ENGN3011 Fluid Mechanics</td>
<td>ENGN3016 Engineering Economy</td>
<td>Humanities</td>
</tr>
<tr>
<td>Mining</td>
<td>ENGN3006 Strength of Materials</td>
<td>ENGN3011 Fluid Mechanics</td>
<td>ENGN3016 Engineering Economy</td>
<td>Humanities</td>
</tr>
</tbody>
</table>

Notes:

Prior to graduation from Dalhousie University's Faculty of Engineering, students must complete one Technical Communications course and two Writing Courses. It is possible to complete all of these requirements by taking the appropriate combination of courses while at NSAC.

- Technical Communications course credit: ENGL1000 in combination with ENGN1001 and CSCI2000 satisfies this requirement.
- Writing course credits: Any of the following NSAC courses qualify—ENGL1000, ENGL1001, ENGL1002, SOCI1000, and GEOG1000.

* Humanities courses: Any course with the designation ENGL, SOCI, GEOG, ARTS, HIST, PHIL, or POLS will qualify for credit towards the Engineering Diploma.
PRE- VETERINARY MEDICINE

This is a two-year program which qualifies students to apply for admission to the Doctor of Veterinary Medicine program at the Atlantic Veterinary College (University of Prince Edward Island) in Charlottetown. NSAC's pre-vet program exposes students to animals such as sheep, cattle, and poultry. Students can take part in the active Pre-Vet Club and volunteer to help with lambing, daily milking or egg collection on the NSAC farm.

Students who have completed this Pre-Veterinary program are considered to have completed the first two years of the B.Sc.(Agr.) and are eligible to switch into one of the other majors at NSAC.

NSAC Admission Requirements

Admission into the Pre-Veterinary program requires high school graduation with an average of at least 60% in five Grade 12 university preparatory subjects, including:

- English
- Pre-Calculus Mathematics (or 70% in Academic Mathematics)*
- any two of the following science requirements: Chemistry*, Biology, Physics*, Geology, Oceanography, or Agriculture
- one elective

* NS students who have successfully completed five Grade 12 university preparatory credits, including English and Mathematics, are able to use NS Oceans 11 and/or NS Agriculture 11 to meet the above-noted science requirements.

* Applicants who are otherwise qualified but do not have the appropriate physics, chemistry and/or math courses may be admitted with the requirement that they take the relevant non-credit introductory studies course(s) in their first year prior to registering in the degree-level counterpart(s). The non-credit introductory studies courses include CHEM0050 Preparatory Chemistry, PHYS0050 Introductory Physics, and MATH0050 Functions.

Atlantic Veterinary College Admission Requirements

The following is the minimum academic requirement for application for admission to the Atlantic Veterinary College (AVC) at the University of Prince Edward Island. It is the student's responsibility to ensure that the requirements are met. Students should consult the latest UPEI calendar to make sure that there have been no changes. Twenty, one-semester courses or equivalent are required. Students are recommended to be registered in at least three credit courses per semester. These include:

- Biology: four courses, including Genetics and Microbiology
- Chemistry: three courses, including Organic Chemistry
- English: two courses, including one with emphasis on writing
- Humanities and Social Sciences: three courses
- Mathematics: two courses, including Statistics
- Physics: one course
- Electives: five from any discipline.

Science courses will normally have a laboratory component.

Canadian applicants to AVC must have established residency in one of the four Atlantic Provinces. For more information, please consult the AVC website at www.upei.ca/avc.

See Appendix III for a list of NSAC courses that meet AVC Admission Requirements.

Recommended Syllabus

Year 1

Semester I

- AGR1000 Agricultural Ecosystems* (A) DE
- BIOL1002 Biology I
- CHEM1000 General Chemistry I
- ENGL1000 Composition
- MATH1000 Introductory Calculus I

Semester II

- BIOL1003 Biology II
- CHEM1001 General Chemistry II
- ECON1000 Principles of Microeconomics* (A) DE
- ENGL1001 The Novel
- MATH1001 Introductory Calculus II *

Year 2

Semester III

- ANSC2000 Animal Agriculture I* (A)
- CHEM2000 Organic Chemistry I
- GENE2000 Genetics I
- PHYS** Physics
- STAT2000 Introduction to Statistics

* Humanities/SS Elective***

*May substitute another elective; check requirements of specific options to complete a degree at NSAC.

** PHYS1000 Physics for Life Sciences I or PHYS1002 Physics

*** Any Humanities or Economics (ECON) course will fit the requirement of Humanities or Social Science Elective (see Appendix I for a list of courses and their designations).
Technology Programs

The Nova Scotia Agricultural College offers specialized two-year programs to prepare students for careers associated with laboratory techniques in Veterinary Technology, and with the practice of Environmental Horticulture, Plant Science and Enterprise Management. These studies lead to a Diploma of Technology in each of these areas.

GENERAL INFORMATION
A candidate for these programs may qualify for admission with high school completion or equivalent. See syllabus of each program for specific admission requirements.

Each candidate must be available for an interview, if requested. Students who successfully complete all the requirements will be granted a Diploma of Technology. A High Honours diploma will be awarded to a student who has attained an average of at least 90%, and an Honours diploma will be awarded to one who has attained an average of at least 80%.

DIPLOMA IN ENTERPRISE MANAGEMENT
The Diploma in Enterprise Management (DEM) is a program designed to provide the fundamentals of business management and at the same time allow students to specialize in one of the following areas: dairy, farming, equine, companion animal or food retail. This two-year technology program provides students with the management, communication, and leadership skills necessary to manage a business such as a farm, stable, pet, or food retail operation. Careers in marketing, sales, or service are other options.

Graduation Requirements:
Students are required to successfully complete all of the required courses in their selected program with a cumulative average of 60%. Students must also satisfactorily complete the internship as required by specific options.

Students choose one of the following options:

Companion Animal—This specialization is best suited for students interested in working in the pet industry as either owners or managers of pet-related businesses. Sales and service are other areas of employment, e.g. managing the pet section of a department store or selling pet care products to other businesses. Along with the business courses, students will study the care and management of small animals, reptiles, and fish.

Dairy Farm—This specialization is designed for students interested in a career in the dairy industry whether it is operating their own dairy farm, working as a herds-person, or employed in sales or service for the dairy industry.

Equine—This specialization is designed specifically for those students interested in someday owning or managing an equine-related business. It provides students who have a passionate interest in horses to study something they love and at the same time receive a solid business education which is directly transferable to any type of business operation.

Farming—Students planning to operate/manage a farm or who wish to work in the agricultural industry in sales or service should choose this specialization. Along with the primary emphasis on business, students pick and choose among a number of livestock, field crop or horticulture electives to develop a program best suited to their long-term career interests.

Food Retail—This program is designed for people who are interested in a career in the food industry and who want a thorough understanding of how food is produced. Career possibilities include produce manager, meat manager, or owner/manager of agri-food operation.
This diploma program is a unique mix of full-credit courses and courses designated as workplace readiness courses (non-credit). The workplace readiness courses develop the practical skills and knowledge required to work in business and in the area of specialty. The workplace readiness courses common to all the options include: career preparation, public speaking, first aid, Occupational Health and Safety (OHS), Workplace Hazardous Materials Information System (WHMIS), business ethics, and professionalism. Specialty workplace readiness courses are specific to the area chosen, e.g. dairy medicines and Hazard Analysis and Critical Control Point (HACCP) for the dairy farming option. Some of these courses will be scheduled throughout the semester, and others will be offered at the beginning of the semester. Students may be required to bring protective clothing and footwear, depending on the option chosen.

Some of the options—Companion Animal, Farming and Food Retail—have an internship requirement for the spring and summer semesters. Students will be expected to obtain employment in their area of specialty and complete a designated list of competencies. The employers will be expected to complete an assessment of the student’s performance. See the course descriptions for more details.

Students who successfully complete all the requirements of the DEM will be granted a Technology Diploma and thus become Associates of the Nova Scotia Agricultural College. It is the student’s responsibility to see that the requirements for the diploma are fulfilled. Students who wish to continue on to complete a degree will be given advanced standing in NSAC’s degree programs.

Admission Requirements
Admission into this program requires high school graduation with:
- Grade 12 Academic English
- Grade 11 Academic Mathematics
- Biology 11 or Chemistry 11 or Agriculture
- Integrated Science 10 or equivalent.

In addition the following are required for entry into specific programs:
- **Dairy**—The student is expected to be experienced in the care and handling of dairy animals. The Equine Competency Form (found on the website at www.nsac.ca/dem/images/2006EquineCompetencyForm.pdf) is required.
- **Equine**—The student is expected to be experienced in the care and handling of horses. Resumés and letters of recommendation demonstrating practical experience and knowledge will be required.

DIPLOMA IN ENTERPRISE MANAGEMENT—COMPANION ANIMAL

Year 1

<table>
<thead>
<tr>
<th>Semester I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAD0020</td>
<td>Skills for Academic Success*</td>
</tr>
<tr>
<td>ANSC0116</td>
<td>The Companion Animal Enterprise</td>
</tr>
<tr>
<td>ECON0100</td>
<td>Introductory Microeconomics</td>
</tr>
<tr>
<td>ENGL0101</td>
<td>Writing for Business</td>
</tr>
<tr>
<td>MATH0100</td>
<td>Business Math</td>
</tr>
<tr>
<td>MGMT0100</td>
<td>Accounting</td>
</tr>
<tr>
<td>MGMT0206</td>
<td>Marketing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC0117</td>
<td>Companion Animal Growth, Development, and Nutrition</td>
</tr>
<tr>
<td>ANSC0217</td>
<td>Companion Animal Behaviour</td>
</tr>
<tr>
<td>CMMT0020</td>
<td>Career and Employment Skills*</td>
</tr>
<tr>
<td>MGMT0101</td>
<td>Applied Accounting & Taxation</td>
</tr>
<tr>
<td>MGMT0104</td>
<td>Small Business Entrepreneurship</td>
</tr>
<tr>
<td>MGMT0207</td>
<td>Advertising and Promotion</td>
</tr>
<tr>
<td>ANSC0208</td>
<td>The Biology and Care of Aquarium Fish and Reptiles** or</td>
</tr>
<tr>
<td>ANSC0209</td>
<td>The Biology and Care of Avian and Small Animal Species**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester III (Spring/Summer)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INTE0100</td>
<td>Internship</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Semester IV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC0210</td>
<td>Introduction to Companion Animal Health</td>
</tr>
<tr>
<td>ANSC0212</td>
<td>Companion Animal Genetics and Reproduction</td>
</tr>
<tr>
<td>MGMT0020</td>
<td>Business Leadership, Ethics, and Professionalism*</td>
</tr>
<tr>
<td>MGMT0202</td>
<td>Managing Retail Operations and Physical Resources</td>
</tr>
<tr>
<td>MGMT0203</td>
<td>Customer Relations Management</td>
</tr>
<tr>
<td>MGMT0204</td>
<td>Financial Management</td>
</tr>
</tbody>
</table>
Technology Programs

Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC0211</td>
<td>Companion Animal Facilities Management</td>
</tr>
<tr>
<td>CMMT0021</td>
<td>Introduction to Public Speaking *</td>
</tr>
<tr>
<td>MGMT0201</td>
<td>Business Project</td>
</tr>
<tr>
<td>MGMT0205</td>
<td>Human Resource Management</td>
</tr>
<tr>
<td>MGMT0208</td>
<td>Retail Sales Management</td>
</tr>
<tr>
<td>MGMT0103</td>
<td>Business Law</td>
</tr>
<tr>
<td>ANSC0208</td>
<td>Biology and Care of Aquarium Fish and Reptiles** or</td>
</tr>
<tr>
<td>ANSC0209</td>
<td>Biology and Care of Avian and Small Animal Species**</td>
</tr>
</tbody>
</table>

* Workplace Readiness Course

Additional Workplace Readiness Courses required:
- WHMIS
- First Aid
- OHS
- Workplace Safety
- Kennel Duty***

** Courses are offered in alternate years.

*** Students will be expected to complete 40 hours of kennel duty as part of the requirements for the program. This may be completed at the Boulden Animal Centre, an animal shelter, or any acceptable animal facility.

DIPLOMA IN ENTERPRISE MANAGEMENT—DAIRY FARM

Year 1

Semester I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAD0020</td>
<td>Skills for Academic Success*</td>
</tr>
<tr>
<td>ANSC0020</td>
<td>Dairy Industry I*</td>
</tr>
<tr>
<td>ANSC0112</td>
<td>Animal Biology and Management I</td>
</tr>
<tr>
<td>ECON0100</td>
<td>Introductory Microeconomics</td>
</tr>
<tr>
<td>ENGL0101</td>
<td>Writing For Business</td>
</tr>
<tr>
<td>MATH0100</td>
<td>Business Math</td>
</tr>
<tr>
<td>MGMT0100</td>
<td>Accounting</td>
</tr>
<tr>
<td>SOIL0100</td>
<td>Principles of Soil Science</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRN0202</td>
<td>Forage-Based Cropping Systems</td>
</tr>
<tr>
<td>ANSC0021</td>
<td>Dairy Industry II*</td>
</tr>
<tr>
<td>ANSC0113</td>
<td>Animal Biology and Management II</td>
</tr>
<tr>
<td>ANSC0114</td>
<td>Animal Feed and Nutrition Management</td>
</tr>
<tr>
<td>CMMT0020</td>
<td>Career and Employment Skills*</td>
</tr>
<tr>
<td>ENGN2001</td>
<td>Agricultural Machinery</td>
</tr>
<tr>
<td>MGMT0101</td>
<td>Applied Accounting & Taxation</td>
</tr>
<tr>
<td>SOIL0200</td>
<td>Soil Management</td>
</tr>
</tbody>
</table>

Year 2

Semester III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRN0201</td>
<td>Cereal-Based Cropping Systems</td>
</tr>
<tr>
<td>ANSC0204</td>
<td>Dairy Herd Health and Nutrition Management</td>
</tr>
<tr>
<td>ANSC0205</td>
<td>Optimizing Bovine Reproductive and Genetic Performance</td>
</tr>
<tr>
<td>ENGN0200</td>
<td>Environmental Management</td>
</tr>
<tr>
<td>MGMT0020</td>
<td>Business Leadership, Ethics, and Professionalism*</td>
</tr>
<tr>
<td>MGMT0102</td>
<td>Agricultural Marketing</td>
</tr>
<tr>
<td>MGMT0204</td>
<td>Financial Management</td>
</tr>
</tbody>
</table>

Semester IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC0206</td>
<td>Managing Dairy Milking Systems and Housing Facilities</td>
</tr>
<tr>
<td>ANSC0207</td>
<td>Records Management and Decision Making for Dairy Herds</td>
</tr>
<tr>
<td>CMMT0021</td>
<td>Introduction to Public Speaking*</td>
</tr>
<tr>
<td>ECON0202</td>
<td>Production Economics</td>
</tr>
<tr>
<td>MGMT0201</td>
<td>Business Project</td>
</tr>
<tr>
<td>MGMT0205</td>
<td>Human Resource Management</td>
</tr>
<tr>
<td>MGMT0103</td>
<td>Business Law</td>
</tr>
</tbody>
</table>

* Workplace Readiness Course

Additional Workplace Readiness Courses required:
- WHMIS
- First Aid
- OHS
- Farm Safety
- On-Farm HACCP
- Dairy Medicines Course
DIPLOMA IN ENTERPRISE MANAGEMENT—EQUINE

Year 1

Semester I
- ACAD0020 Skills for Academic Success*
- ANSC0022 Equine Industry *
- ANSC0112 Animal Biology and Management I
- ECON0100 Introductory Microeconomics
- ENGL0101 Writing For Business
- MATH0100 Business Math
- MGMT0100 Accounting
- SOIL0100 Principles of Soil Science

Semester II
- AGRN0202 Forage-Based Cropping Systems
- ANSC0113 Animal Biology and Management II
- ANSC0114 Animal Feed and Nutrition Management
- CMMT0020 Career and Employment Skills*
- MGMT0101 Applied Accounting & Taxation
- MGMT0104 Small Business Entrepreneurship
- SOIL0200 Soil Management

Year 2

Semester III
- ANSC0213 Equine Growth & Nutrition
- ANSC0214 Equine Health, Genetics and Reproduction
- ENGN0200 Environmental Management
- MGMT0020 Business Leadership, Ethics, and Professionalism*
- MGMT0103 Customer Relations Management
- MGMT0204 Financial Management
- MGMT0206 Marketing

Semester IV
- ANSC0023 Equine Workshop*
- ANSC0215 Equine Facilities Management
- ANSC0216 Equine Health & Fitness
- ANSC0217 Companion Animal Behaviour
- CMMT0021 Introduction to Public Speaking*
- MGMT0201 Business Project
- MGMT0205 Human Resource Management
- MGMT0103 Business Law

* Workplace Readiness Course

Additional Workplace Readiness Courses required:
- WHMIS
- First Aid
- OHS
- Work Safety
- HACCP or QA
- Equine Medicines Course

DIPLOMA IN ENTERPRISE MANAGEMENT—FARMING

Year 1

Semester I
- ACAD0020 Skills for Academic Success*
- ECON0100 Introductory Microeconomics
- ENGL0101 Writing For Business
- MATH0100 Business Math
- MGMT0100 Accounting
- SOIL0100 Principles of Soil Science
- PLSC0100 Utilization of Plant Resources or
- ANSC0112 Animal Biology and Management I or
- ANSC0115 Introduction to Animal Production**

Semester II
- CMMT0020 Career and Employment Skills*
- MGMT0101 Applied Accounting & Taxation
- MGMT0104 Small Business Entrepreneurship
- SOIL0200 Soil Management
- Elective
- Elective
- Elective

Semester III (Spring/Summer)
- INTE0100 Internship

Semester IV
- ENGN0200 Environmental Management
- MGMT0020 Business Leadership, Ethics, and Professionalism*
- MGMT0102 Agricultural Marketing
- MGMT0204 Financial Management
- Elective
- Elective
- Elective

* Workplace Readiness Course
Technology Programs

Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMMT0021</td>
<td>Introduction to Public Speaking*</td>
</tr>
<tr>
<td>MGMT0103</td>
<td>Business Law</td>
</tr>
<tr>
<td>MGMT0205</td>
<td>Human Resource Management</td>
</tr>
<tr>
<td>ECON0202</td>
<td>Production Economics</td>
</tr>
<tr>
<td>MGMT0201</td>
<td>Business Project</td>
</tr>
<tr>
<td>FOOD0020</td>
<td>Topics in Agriculture and Food Enterprise Management*</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

* Workplace Readiness Course

Semester II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC0118</td>
<td>Animal Products</td>
</tr>
<tr>
<td>CMMT0020</td>
<td>Career and Employment Skills*</td>
</tr>
<tr>
<td>FOOD0100</td>
<td>Food Components Preparation, Selection and the Human Diet</td>
</tr>
<tr>
<td>MGMT0101</td>
<td>Applied Accounting & Taxation</td>
</tr>
<tr>
<td>MGMT0104</td>
<td>Small Business Entrepreneurship</td>
</tr>
<tr>
<td>MGMT0207</td>
<td>Advertising and Promotion</td>
</tr>
<tr>
<td>PLSC0203</td>
<td>Plant Products Physiology</td>
</tr>
</tbody>
</table>

Semester III (Spring/Summer)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT0100</td>
<td>Internship</td>
</tr>
</tbody>
</table>

Year 2

Semester IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON0100</td>
<td>Introductory Microeconomics</td>
</tr>
<tr>
<td>FOOD0200</td>
<td>Food Safety and Quality Management</td>
</tr>
<tr>
<td>MGMT0020</td>
<td>Business Leadership, Ethics, and Professionalism*</td>
</tr>
<tr>
<td>MGMT0202</td>
<td>Managing Retail Operations and Physical Resources</td>
</tr>
<tr>
<td>MGMT0203</td>
<td>Customer Relations Management</td>
</tr>
<tr>
<td>MGMT0204</td>
<td>Financial Management</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMMT0021</td>
<td>Introduction to Public Speaking *</td>
</tr>
<tr>
<td>FOOD0020</td>
<td>Topics in Agriculture and Food Enterprise Management*</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

* Workplace Readiness Course

Additional Workplace Readiness Courses required:

- WHMIS
- First Aid
- OHS
- Farm Safety
- On-Farm HACCP or QA
- Livestock Medicines Course (for students interested in livestock production)

** ANSC0115 Introduction to Animal Production is appropriate for students who wish to take only one livestock course during their program. It is not suitable for students interested in concentrating on livestock production.

Elective Selection for the Farming Option

Students can select elective courses from a number of areas including agronomy, horticulture, and animal science. Distance Education courses on specific topic areas such as beef and sheep are also available. Students will need to consult with the Farming Program Advisor to assist in the selection of courses best suited to their future career plans.

Diploma in Enterprise Management — Food Retail

Year 1

Semester I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAD0020</td>
<td>Skills for Academic Success*</td>
</tr>
<tr>
<td>ANSC0115</td>
<td>Introduction to Animal Production</td>
</tr>
<tr>
<td>ENGL0101</td>
<td>Writing For Business</td>
</tr>
<tr>
<td>MATH0100</td>
<td>Business Math</td>
</tr>
<tr>
<td>MGMT0100</td>
<td>Accounting</td>
</tr>
<tr>
<td>MGMT0206</td>
<td>Marketing</td>
</tr>
<tr>
<td>PLSC0100</td>
<td>Utilization of Plant Resources</td>
</tr>
</tbody>
</table>

Additional Workplace Readiness Courses required:

- WHMIS
- First Aid
- OHS
- Workplace Safety
- Safe Food Handling Course (e.g. National Sanitation Program, Serve Safe, or In Good Hands)
- Basic HACCP or QM

Elective Selection for the Food Retail Option

Students can select elective courses from a number of areas including agronomy, horticulture, and animal science. Students will need to consult with the Food Retail Program Advisor to assist in the selection of courses best suited to their future career plans.
ENVIRONMENTAL HORTICULTURE
The Nova Scotia Agricultural College offers this two-year program to help prepare students for careers with landscaping firms, planning agencies, recreational parks, or institutions, or in self-employed roles as landscape horticultural technologists.

Admission Requirements
Admission into the Environmental Horticulture Technology program requires high school graduation with an average of at least 60% in five university preparatory subjects including:
- Grade 12 English
- Grade 12 Mathematics
- Grade 12 Biology
- one Grade 12 elective
- Grade 11 Chemistry.

Syllabus

Year 1

Semester I
- ENGL0101 Writing for Business
- HORT0100 Landscape Plants I
- HORT0102 Turfgrass Production and Management
- HORT0103 Landscape Horticulture I
- SOIL0100 Principles of Soil Science

Semester II
- BIOL0102 Plant Physiology and Stress Management
- BIOL0103 Weed Science
- ENGN0101 Horticultural Engineering
- HORT0101 Landscape Plants II
- SOIL0200 Soil Management

Year 2

Semester III
- BIOL0200 Entomology
- ENGL0101 Writing for Business
- ENGN0100 Surveying
- HORT0204 Landscape Plants III
- HORT0207 Arboriculture
- HORT0209 Landscape Horticulture II

Semester IV
- BIOL2005 Principles of Plant Pathology
- HORT0208 Landscape Maintenance
- HORT0205 Residential Landscape Design and Construction
- HORT0210 Landscape Design and Construction

Required additional training: WHMIS, First Aid, OHS

Recommended Workplace Readiness Courses:
- CMMT0020 Career and Employment Skills
- CMMT0021 Introduction to Public Speaking

PLANT SCIENCE TECHNOLOGY
This two-year program takes an entrepreneurial approach to agriculture, stressing a combination of practical skills and good basic knowledge; students learn in the context of social and environmental responsibility using sustainable production systems. Graduates will be skilled in problem-solving, diagnostics and whole-system analysis.

The first two semesters are common for the three areas of concentration (Edible Horticulture, Ornamental Horticulture, and Agronomy), providing students with a strong background in plant production techniques and small business practices and preparing them for their required summer work experience in PLSC0202 Plant Science Techniques. In the second year of study, students concentrate in their area of specialization, allowing them to tailor their education by selecting from more specialized courses.

Admission Requirements
Admission into the Plant Science Technology program requires high school graduation with an average of at least 50% in four university preparatory courses including:
- Grade 12 English
- Grade 11 Mathematics
- Grade 11 Chemistry
- Grade 10 Biology or Integrated Science.

Syllabus

Year 1

Semester I
- BIOL0200 Entomology
- ENGL0101 Writing for Business
- ENGN0100 Surveying
- HORT0204 Landscape Plants III
- HORT0207 Arboriculture
- HORT0209 Landscape Horticulture II

Semester II
- BIOL2005 Principles of Plant Pathology
- HORT0208 Landscape Maintenance
- HORT0205 Residential Landscape Design and Construction
- HORT0210 Landscape Design and Construction

Required additional training: WHMIS, First Aid, OHS

Recommended Workplace Readiness Courses:
- CMMT0020 Career and Employment Skills
- CMMT0021 Introduction to Public Speaking

PLANT SCIENCE TECHNOLOGY
This two-year program takes an entrepreneurial approach to agriculture, stressing a combination of practical skills and good basic knowledge; students learn in the context of social and environmental responsibility using sustainable production systems. Graduates will be skilled in problem-solving, diagnostics and whole-system analysis.

The first two semesters are common for the three areas of concentration (Edible Horticulture, Ornamental Horticulture, and Agronomy), providing students with a strong background in plant production techniques and small business practices and preparing them for their required summer work experience in PLSC0202 Plant Science Techniques. In the second year of study, students concentrate in their area of specialization, allowing them to tailor their education by selecting from more specialized courses.

Admission Requirements
Admission into the Plant Science Technology program requires high school graduation with an average of at least 50% in four university preparatory courses including:
- Grade 12 English
- Grade 11 Mathematics
- Grade 11 Chemistry
- Grade 10 Biology or Integrated Science.

Syllabus

Year 1

Semester I
- BIOL0200 Entomology
- ENGL0101 Writing for Business
- ENGN0100 Surveying
- HORT0204 Landscape Plants III
- HORT0207 Arboriculture
- HORT0209 Landscape Horticulture II

Semester II
- BIOL2005 Principles of Plant Pathology
- HORT0208 Landscape Maintenance
- HORT0205 Residential Landscape Design and Construction
- HORT0210 Landscape Design and Construction

Required additional training: WHMIS, First Aid, OHS

Recommended Workplace Readiness Courses:
- CMMT0020 Career and Employment Skills
- CMMT0021 Introduction to Public Speaking

PLANT SCIENCE TECHNOLOGY
This two-year program takes an entrepreneurial approach to agriculture, stressing a combination of practical skills and good basic knowledge; students learn in the context of social and environmental responsibility using sustainable production systems. Graduates will be skilled in problem-solving, diagnostics and whole-system analysis.

The first two semesters are common for the three areas of concentration (Edible Horticulture, Ornamental Horticulture, and Agronomy), providing students with a strong background in plant production techniques and small business practices and preparing them for their required summer work experience in PLSC0202 Plant Science Techniques. In the second year of study, students concentrate in their area of specialization, allowing them to tailor their education by selecting from more specialized courses.

Admission Requirements
Admission into the Plant Science Technology program requires high school graduation with an average of at least 50% in four university preparatory courses including:
- Grade 12 English
- Grade 11 Mathematics
- Grade 11 Chemistry
- Grade 10 Biology or Integrated Science.

Syllabus

Year 1

Semester I
- BIOL0200 Entomology
- ENGL0101 Writing for Business
- ENGN0100 Surveying
- HORT0204 Landscape Plants III
- HORT0207 Arboriculture
- HORT0209 Landscape Horticulture II

Semester II
- BIOL2005 Principles of Plant Pathology
- HORT0208 Landscape Maintenance
- HORT0205 Residential Landscape Design and Construction
- HORT0210 Landscape Design and Construction

Required additional training: WHMIS, First Aid, OHS

Recommended Workplace Readiness Courses:
- CMMT0020 Career and Employment Skills
- CMMT0021 Introduction to Public Speaking

PLANT SCIENCE TECHNOLOGY
This two-year program takes an entrepreneurial approach to agriculture, stressing a combination of practical skills and good basic knowledge; students learn in the context of social and environmental responsibility using sustainable production systems. Graduates will be skilled in problem-solving, diagnostics and whole-system analysis.

The first two semesters are common for the three areas of concentration (Edible Horticulture, Ornamental Horticulture, and Agronomy), providing students with a strong background in plant production techniques and small business practices and preparing them for their required summer work experience in PLSC0202 Plant Science Techniques. In the second year of study, students concentrate in their area of specialization, allowing them to tailor their education by selecting from more specialized courses.
Technology Programs

Semester III (Spring/Summer)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLSC0202</td>
<td>Plant Science Techniques</td>
</tr>
</tbody>
</table>

Semester IV and Semester V

After the 12 core courses are taken in the first year, students must choose 12 more courses to complete the diploma. Each student chooses an area of specialization from the three shown below. Each area has 7 core courses, including the summer course PLSC0202 Plant Science Techniques. The student then chooses 5 more elective courses (at least 3 from the “recommended electives” group) to complete the 24 credits.

Ornamental Horticulture

Semester IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORT0100</td>
<td>Landscape Plants I</td>
</tr>
<tr>
<td>HORT0103</td>
<td>Landscape Horticulture I</td>
</tr>
<tr>
<td>HORT0201</td>
<td>Greenhouse Crop Management</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGN0101</td>
<td>Horticultural Engineering</td>
</tr>
<tr>
<td>HORT0101</td>
<td>Landscape Plants II</td>
</tr>
<tr>
<td>HORT0200</td>
<td>Landscape Plant Nursery Production</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Edible Horticulture

Semester IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRN0201</td>
<td>Cereal-Based Cropping Systems</td>
</tr>
<tr>
<td>ENGN0200</td>
<td>Environmental Management</td>
</tr>
<tr>
<td>HORT0202</td>
<td>Small Fruit Crops</td>
</tr>
<tr>
<td>HORT0211</td>
<td>Vegetable Production</td>
</tr>
<tr>
<td>PLSC0020</td>
<td>Farm Workplace Skills Module</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRN0200</td>
<td>Potato Production</td>
</tr>
<tr>
<td>AGRN0202</td>
<td>Forage-Based Cropping Systems</td>
</tr>
<tr>
<td>ANCS0113</td>
<td>Animal Biology and Management II</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Recommended Electives:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC0114</td>
<td>Animal Feed and Nutrition Management</td>
</tr>
<tr>
<td>ENGN0101</td>
<td>Horticultural Engineering</td>
</tr>
<tr>
<td>ENGN2001</td>
<td>Agricultural Machinery</td>
</tr>
<tr>
<td>ENGN3003</td>
<td>Technology for Precision Agriculture</td>
</tr>
<tr>
<td>HORT0102</td>
<td>Turfgrass Production and Management</td>
</tr>
<tr>
<td>HORT0204</td>
<td>Landscape Plants III</td>
</tr>
<tr>
<td>HORT2001</td>
<td>Principles of Organic Horticulture</td>
</tr>
<tr>
<td>MGMT0102</td>
<td>Agricultural Marketing</td>
</tr>
<tr>
<td>MGMT0103</td>
<td>Business Law</td>
</tr>
<tr>
<td>MGMT0204</td>
<td>Financial Management</td>
</tr>
<tr>
<td>PLSC0203</td>
<td>Plant Products Physiology</td>
</tr>
<tr>
<td>PLSC1000</td>
<td>Farm Woodlot Management</td>
</tr>
<tr>
<td>PLSC2000</td>
<td>Specialty Crops</td>
</tr>
</tbody>
</table>

Agronomy

Semester IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRN0201</td>
<td>Cereal-Based Cropping Systems</td>
</tr>
<tr>
<td>ANSC0112</td>
<td>Animal Biology and Management I</td>
</tr>
<tr>
<td>ENGN0200</td>
<td>Environmental Management</td>
</tr>
<tr>
<td>PLSC0020</td>
<td>Farm Workplace Skills Module</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Semester V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRN0200</td>
<td>Potato Production</td>
</tr>
<tr>
<td>AGRN0202</td>
<td>Forage-Based Cropping Systems</td>
</tr>
<tr>
<td>ANCS0113</td>
<td>Animal Biology and Management II</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
</tr>
</tbody>
</table>

Recommended Electives:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC0114</td>
<td>Animal Feed and Nutrition Management</td>
</tr>
<tr>
<td>ENGN0101</td>
<td>Horticultural Engineering</td>
</tr>
<tr>
<td>ENGN2001</td>
<td>Agricultural Machinery</td>
</tr>
<tr>
<td>ENGN3003</td>
<td>Technology for Precision Agriculture</td>
</tr>
<tr>
<td>HORT0102</td>
<td>Turfgrass Production and Management</td>
</tr>
<tr>
<td>HORT0204</td>
<td>Landscape Plants III</td>
</tr>
<tr>
<td>HORT2001</td>
<td>Principles of Organic Horticulture</td>
</tr>
<tr>
<td>MGMT0102</td>
<td>Agricultural Marketing</td>
</tr>
<tr>
<td>MGMT0103</td>
<td>Business Law</td>
</tr>
<tr>
<td>MGMT0204</td>
<td>Financial Management</td>
</tr>
<tr>
<td>PLSC0203</td>
<td>Plant Products Physiology</td>
</tr>
<tr>
<td>PLSC1000</td>
<td>Farm Woodlot Management</td>
</tr>
<tr>
<td>PLSC2000</td>
<td>Specialty Crops</td>
</tr>
</tbody>
</table>

or other courses approved by the Department of Plant & Animal Sciences.

Plant Science core courses from the other areas of concentration may also be used as recommended electives: HORT0100, HORT0204, HORT0200, HORT0201, HORT0202, HORT0203, AGRN0200, HORT0103, HORT0211.
Technology Programs

VETERINARY TECHNOLOGY
The Veterinary Technology Program prepares graduates with the skills and knowledge required to enter veterinary practice as technical assistants to veterinarians. Veterinary technicians have also made successful careers in a variety of other fields, including the management of animal shelters, research with animals in universities and for private companies, sales for veterinary supply companies, and employment with zoos and in wildlife rehabilitation.

The Veterinary Technology Program at NSAC is a two-year program with four standard semesters and an intersession after the first year. In addition to on-campus learning there are off-campus externships at the Atlantic Veterinary College and in general veterinary practices. To reflect the major employment opportunities in Atlantic Canada, the program is oriented mainly towards companion animals. The modest large-animal content is appropriate for graduates entering mixed practice and for those who wish to further develop their livestock or equine competence. Under the supervision of veterinarians and veterinary technicians in the VT program’s Boulden Animal Clinic, students learn the skills and tasks required of them in companion animal practice.

The AHT Program at NSAC is accredited by the Canadian Veterinary Medical Association (CVMA). Re-accreditation of the Veterinary Technology program is due in the Winter of 2007, and the new program has been designed to meet these CVMA standards. The animal facilities are approved for teaching by the Canadian Council on Animal Care. The Animal Clinic is accredited by the Nova Scotia Veterinary Medical Association.

Admission Requirements
Admission into the Veterinary Technology program requires high school graduation with an average of at least 60% in five Grade 12 university preparatory subjects including:

- English
- Pre-Calculus Mathematics (or 70% in Academic Mathematics)
- Chemistry
- Biology
- one elective.

Year 1

<table>
<thead>
<tr>
<th>Semester I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VTEC0111</td>
<td>Animal Medicine and Nursing I</td>
</tr>
<tr>
<td>VTEC0112</td>
<td>Clinical Exercises I</td>
</tr>
<tr>
<td>VTEC0113</td>
<td>Veterinary Clinical Pathology I</td>
</tr>
<tr>
<td>VTEC0114</td>
<td>Fundamentals in Veterinary Technology I</td>
</tr>
<tr>
<td>VTEC0115</td>
<td>Anatomy-Physiology-Pathology I</td>
</tr>
<tr>
<td>ENGL0101</td>
<td>Writing for Business</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC0217</td>
<td>Companion Animal Behaviour</td>
</tr>
<tr>
<td>VTEC0121</td>
<td>Animal Medicine and Nursing II</td>
</tr>
<tr>
<td>VTEC0122</td>
<td>Clinical Exercises II</td>
</tr>
<tr>
<td>VTEC0123</td>
<td>Veterinary Clinical Pathology II</td>
</tr>
<tr>
<td>VTEC0124</td>
<td>Fundamentals in Veterinary Technology II</td>
</tr>
<tr>
<td>VTEC0125</td>
<td>Anatomy-Physiology-Pathology II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VTEC0131</td>
<td>Internship in Veterinary Technology</td>
</tr>
<tr>
<td>VTEC0132</td>
<td>Externship at the Atlantic Veterinary College</td>
</tr>
<tr>
<td>VTEC0133</td>
<td>Externship in General Veterinary Practice</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Semester IV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VTEC0211</td>
<td>Animal Medicine and Nursing III</td>
</tr>
<tr>
<td>VTEC0212</td>
<td>Clinical Exercises III</td>
</tr>
<tr>
<td>VTEC0213</td>
<td>Veterinary Clinical Pathology III</td>
</tr>
<tr>
<td>VTEC0214</td>
<td>Fundamentals in Veterinary Technology III</td>
</tr>
<tr>
<td>VTEC0215</td>
<td>Livestock/Equine Principles</td>
</tr>
<tr>
<td></td>
<td>Elective*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester V</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VTEC0221</td>
<td>Animal Medicine and Nursing IV</td>
</tr>
<tr>
<td>VTEC0222</td>
<td>Clinical Exercises IV</td>
</tr>
<tr>
<td>VTEC0223</td>
<td>Veterinary Clinical Pathology IV</td>
</tr>
<tr>
<td>VTEC0224</td>
<td>Fundamentals in Veterinary Technology IV</td>
</tr>
<tr>
<td>VTEC0225</td>
<td>Lab Animal & Alternate Pet Medicine</td>
</tr>
<tr>
<td></td>
<td>Elective*</td>
</tr>
</tbody>
</table>

* Electives must be approved by Program Coordinator.
University Preparatory Courses

University Preparatory courses are offered for students who do not meet entrance requirements or who require upgrading to enter certain courses. These one-semester non-credit courses in Chemistry, Physics, and Mathematics are offered in Fall and Winter semesters.

Applicants may, based on individual assessment, be admitted into University Preparatory courses. The assessment includes educational background, life experience, and personal motivation. Students with sufficient academic background may be eligible to take some university credit courses along with their required University Preparatory courses. Applicants may also be admitted into University Preparatory courses as prerequisites for another course.

For detailed course descriptions of the following University Preparatory courses, please see Description of Courses.

CHEM0050 Preparatory Chemistry
MATH0050 Functions
PHYS0050 Introductory Physics

For more information, please contact the Registrar's Office (reg@nsac.ca).
Certificate Programs

Certificate of Specialization in Organic Agriculture
NSAC offers a Certificate program in Organic Agriculture. This initiative provides students with an opportunity to specialize in the expanding area of organic agriculture. The Certificate of Specialization in Organic Agriculture enables students to approach agriculture from their area of interest, to know they can be recognized for this accomplishment, and to continue to take other courses in agriculture toward a degree. To date the total organic sector is about 1–2% of agriculture overall. However, the employment opportunities are expected to increase in an industry that is growing at the rate of 20% per year. There are also opportunities for self-employment on smaller farms than might be profitable under conventional production. Any student who has successfully completed four of the eligible organic agriculture credit courses (see list) and has an overall average of at least 60% in these courses can apply to receive a Certificate of Specialization in Organic Agriculture. Two of the courses may be substituted with approved organic agriculture courses offered by external institutions (see below). A Letter of Permission is required for these alternate courses.

All NSAC courses in the Certificate of Specialization in Organic Agriculture program are offered through Distance Education.

Eligible Courses:
AGRI2000 (AGRI1002) Transition to Organic Agriculture
AGRN2000 (AGRN1000) Organic Field Crop Management
ANSC2004 (ANSC1000) Organic Livestock Production
ENVS2002 (ENVS1000) Composting and Compost Use
HORT2001 Principles of Organic Horticulture

Note: Students will not be required to take the courses in any particular order. ENVS2002, AGRI2000 and HORT2001 are currently offered in the Fall semester. ANSC2004 and AGRN2000 are currently offered in the Winter semester.

Other institutions offering courses that may be taken within the certificate program:
1. University of British Columbia [Agroecology 361 Key Indicators of Sustainable Agriculture],
2. University of Manitoba [Dryland Cropping Systems],
3. University of Guelph [Marketing in Organic Agriculture], and

* A student cannot receive credit for taking the same course in both French and English.

For more information or to apply for the Certificate, contact the Centre for Continuing & Distance Education, (902) 893-6666.
Description of Courses—Undergraduate and Technical

The course descriptions are grouped according to discipline and are in alphabetical and numerical order. NSAC implemented a new course numbering system for the 2004/2005 academic year. Course descriptions include any applicable course designations (e.g. (A) for Agriculture courses, and (H) for Humanities courses). The course designations will assist students in determining program requirements as described in the program syllabi. Appendices I and II provide lists of old and new course numbers, with course designations.

Students who require a course for their program are given priority over students who are using the course as an elective. Enrollment in some cases may be restricted to specific program groups or may have maximum enrollment.

Course information indicates the weekly instructional requirement in hours per week. Thus "Winter – 3 lecs, 1 tutorial, and 3 labs" would indicate that the student would attend three hours of lecture, one hour of tutorial, and three hours of lab in the Winter semester. It does NOT indicate how many separate instructional sessions there are. For example, the three lecture hours may be three one-hour sessions, or two one-and-a-half-hour sessions.

The faculty reserves the right to make any necessary revisions or additions.

Corequisite: A course that must be taken concurrently with another course that lists it as a corequisite.

Prerequisite: A course that must be taken prior to the course that lists it as a prerequisite.

Preparatory: A course that is recommended to be taken prior to the course that lists it as a preparatory. This is particularly important for students without sufficient background information in that area.

Note: Students may be removed from courses for which they do not have prerequisites. Students who feel that they can successfully complete a course but do not have the required prerequisites or corequisites may seek the permission of the instructor to register for the course. Prerequisite waivers can be granted only by the instructors and must be submitted in writing, with the instructor's signature, to the Registry.

ACADEMIC

ACAD0020: Skills for Academic Success
Co-ordinator: TBA
The objective of this course is to facilitate the successful transition from high school or the workplace to university life. This course will expose students to the functions of various student services on campus, will encourage the development of good study skills, and explore the life management skills necessary to achieve success at university. This is a Workplace Readiness course required for the Diploma in Enterprise Management.
Fall semester – 1 lec per week.

AGRICULTURAL

AGRI1000: Agricultural Ecosystems (A) DE
Coordinator: Prof. Caldwell
This course is an introduction to agriculture and food systems. The principles of agricultural production as studied in the disciplines of animal science, plant science, agricultural engineering, and soil science will be integrated to give a comprehensive view of agricultural ecosystems. Course work will include lectures, laboratories, problem-solving exercises, and small-group work. There will be a farm tour for all AGRI1000 students on September 19, 2007, from 1 pm until 7 pm. The course will expose students to issues and raise questions to be considered during the remainder of their undergraduate careers.
Along with the goal of providing the students with a knowledge of the application of science to agriculture, this course will assist students to understand the integrated nature of agriculture and food systems in both regional and global contexts. Associated course goals are to develop communication and independent learning skills and the ability to function effectively in team situations, and to stimulate students to think critically, logically, and quantitatively while respecting the values and ideas of others.
Fall semester – 3 lecs, 2 labs and/or tutorials per week.
DE – also offered as a web-based distance education course.
AGRI1001: Food Security (A) DE
Coordinator: Prof. Fredeen
This course is structured similarly to AGRI1000. The emphasis will be on food security and recycling resources. Topics will include: global population, food production and distribution; globalization of agricultural trade; agricultural ethics; and rural sustainability. Course work will include lectures, laboratories, problem-solving exercises, and small-group work. The course will expose students to issues and raise questions for students to answer during the remainder of their undergraduate careers.

Along with the goal of providing the students with a knowledge of the application of science to agriculture, this course will assist students in understanding the integrated nature of agriculture and food systems in both regional and global contexts. Associated course goals are to develop communication and independent learning skills and the ability to function effectively in team situations, and to stimulate students to think critically, logically, and quantitatively while respecting the values and ideas of others.

Winter semester.
DE – only offered as a web-based distance education course.

AGRI1003: Agriculture Today (A)
Instructor: G. Martin
The course offers a basic overview of the agricultural industry in the Atlantic Provinces. Production trends and limiting factors, agricultural research, farm organizations, and government role in the industry are studied to provide an awareness and appreciation of Atlantic agriculture, the major things happening in it, and the new technology associated with it. The progress of the local industry and current issues are followed up through weekly reading assignments and class presentations. Commodity updates are presented through student seminars. This is a discussion-based course requiring class participation.

Winter semester – 3 lecs per week.

AGRI2000: Transition to Organic Agriculture (A) DE
Instructor: TBA
This course is recommended for students looking for a general introduction to organic agriculture. The course consists of five stand-alone modules: Why organic?, Organic Certification, Planning the Farm System, Transition to Organic Crop Production, and Transition to Organic Livestock Production. Throughout the course students will be encouraged to participate in discussion groups and use the organic information resources currently available over the Internet.

Fall semester.
DE – only offered as a web-based distance education course.

AGRI3000: Agrometeorology
Instructor: Prof. Gordon
Prerequisite: PHYS1000 or PHYS1002
Introduction to the weather and climate of the Atlantic region. The course will cover the basics of the surface weather systems, the energy balance of crops, and the factors determining the climate of the region. The final phase will look at how weather information is used to predict crop maturity, yield, disease severity, and insect pest levels.

Winter semester – 3 lecs and 2 labs per week. Offered in alternate years; next offered in 2007/2008.

AGRI4000: Contemporary Issues in Agriculture (A)
Instructor: Prof. Tennessen
Prerequisite: third- or fourth-year standing
This course has limited enrollment.
This course allows senior students in all disciplines to discuss current topics of interest to agricultural professionals. These topics could include soil degradation, integrated pest management, antibiotics in feed, the occupation of farming, animal welfare, etc. Students will be given weekly required readings.

Fall semester – 3-period seminar weekly.
AGRONOMY

AGRN0200: Potato Production
cross-referenced as AGRN2008
Instructor: Prof. Goodyear
Cultural practices involved in production are discussed in relation to the botanical characteristics of the potato plant. Physiological changes involved in sprouting, tuber initiation, crop development, and storage are considered in detail. Seed potato production is given particular attention.
Winter semester – 3 lecs and 2 labs per week.

AGRN0201: Cereal-Based Cropping Systems
cross-referenced as AGRN0201
Instructor: Prof. Martin
This course takes a systems approach to the study of crop and soil management in rotations involving the growing of the principal cereals, oilseeds, pulses and other grains and their relationship to other crops in a rotation. Through a whole-farm approach over time, it studies environmentally and economically sustainable methods for grain cash crops and grain-based animal feed production. It stresses soil and water conservation and an understanding of the principles and processes of the nutrient cycles, which are critical to improving the food production environment. Students will gain knowledge of grains as they relate to people and the environment, from soil to shelf, both in a Maritime temperate climate and in an international context.
Fall semester – 3 lecs and 2 labs per week.

AGRN0202: Forage-Based Cropping Systems
cross-referenced as AGRN0202
Instructor: Prof. McLean
The second course in cropping systems focuses on the forage crops. Students will acquire the basic knowledge and skills for the management of forage crops within cropping systems in a socially and environmentally responsible manner. Soil and water conservation will be emphasized in the context of production agriculture. Production and management for sustainable yields of forage crops under conditions specific to Atlantic Canada will be emphasized. Students will develop investigative and critical thinking skills to evaluate forage publications and enable themselves to address production challenges as they arise.
Winter semester – 3 lecs and 2 labs per week.

AGRN2000 (AGRN1000): Organic Field Crop Management (A) DE
Instructor: D. Jans
This course will introduce students to organic principles and practices applied to the production and management of field crops. The criteria for optimum yield and quality of field crops are presented within the context of organic farming principles, sustainable soil and nutrient management, and the requirements for organic certification. Five stand-alone modules provide a framework for study:
Soil and Field Management Practices: methods used in organic farming to build and maintain soil fertility, preserve soil structure, conserve and recycle nutrients, reduce weed pressure, and reduce outbreaks of pest and disease;
Nutrient Management Planning: how to optimize the efficiency of nutrient cycling, improve resource utilization, and minimize nutrient loss on the farm;
Forages: organic methods of production for pasture, hay, silage, cover crops, or green manure;
Row Crops: organic methods of production of cereal row crops (corn, sorghum), root crops (carrots, potatoes), seed legumes (soybean, peas, beans), and others (e.g. hemp); and
Small Grains and Oilseeds: organic methods of production of winter-seeded grains (winter wheat, winter rye), spring-seeded grains (spring wheat, oats, and barley), oilseeds (canola, flax), and others.
Winter semester.
DE – only offered as a web-based distance education course.

AGRN2001: Cereal-Based Cropping Systems (A)
cross-referenced as AGRN0201
Instructor: Prof. Martin
This course takes a systems approach to the study of crop and soil management in rotations involving the growing of the principal cereals, oilseeds, pulses, and other grains, and their relationship to other crops in a rotation. Through a whole-farm approach over time, it studies environmentally and economically sustainable methods for grain cash crops and grain-based animal feed production. It stresses soil and water conservation and an understanding of the principles and processes of the nutrient cycles, which are critical to improving the food production environment. Students will gain knowledge of grains as they relate to people and the environment, from soil to shelf, both in a Maritime temperate climate and in an international context.
Fall semester – 3 lecs and 2 labs per week.
Description of Courses—Undergraduate and Technical

AGRN2002: Forage-Based Cropping Systems (A)
cross-referenced as AGRN0202
Instructor: Prof. McLean
Forage crop production, management, and use will be discussed in the context of agricultural ecosystems. Emphasis will be placed on beneficial management practices to reduce negative impacts on the environment, while maintaining profitability and sustainability of rural communities. Topics covered will include pasture, hay, and silage, as well as the role of perennial and annual forages in crop rotations.
Winter semester – 3 lecs and 2 labs per week.

AGRN2008 (AGRN3002): Potato Production (A)
cross-referenced as AGRN0200
Instructors: Profs. Asiedu and Goodyear
Preparatory: PLSC0100 or AGR11000
History, biosystematics, and eco-physiology of the crop are emphasized. Production practices for seed, table, and processing stock and marketing in the Atlantic Provinces are examined. Soil fertility, crop health management strategies, and nutritional qualities and storage are covered in detail. Some commercial operations are visited.
Winter semester – 3 lecs and 2 labs per week.

AGRN4000: Agronomy (A)
Instructor: Prof. Caldwell
Prerequisites: AGRN2001, AGRN2002, PLSC4001
The objective is to review and integrate material from prerequisite subjects on field crop production, soils, climate, and basic sciences into crop management systems. Students successfully completing this course will qualify to be identified as agronomists.
Winter semester – 3 lecs per week.

ANIMAL SCIENCE

ANSC0020: Dairy Industry I
Instructors: Department of Plant and Animal Sciences Faculty
Coordinator: TBA
Students participate in an examination of the structure of dairy industry and of the supply management system in which dairy farms operate. They will also be required to identify current issues facing the industry and to examine their potential impact on sustainability and opportunities in the Atlantic Canadian industry.
This is a Workplace Readiness course required for the Dairy Farm option in the Diploma in Enterprise Management.
Fall semester – 1 lec per week.

ANSC0021: Dairy Industry II
Instructors: Department of Plant and Animal Sciences Faculty
Coordinator: TBA
A continuation of the topics in ANSC0020 Dairy Industry I. Students extend their examination of the issues facing the dairy industry in a series of lectures presented by speakers from a variety of fields.
This is a Workplace Readiness course required for the Dairy Farm option in the Diploma in Enterprise Management.
Winter semester – 1 lec per week.

ANSC0022: Equine Industry
Instructors: TBA
This course enables students to examine the structure of the equine industry and to discuss the issues, challenges, and opportunities facing the industry. Speakers from the equine industry are invited to discuss relevant topics, and students participate in the discussion and write summaries of the discussion.
This is a Workplace Readiness course required for the Equine Option in the Diploma in Enterprise Management.
Fall semester – 1 lec per week.
ANSC0023: Equine Workshop
Instructors: TBA
Coordinator: TBA
This course challenges the student to explore leading-edge technologies and advanced techniques and ideas in equine management, and to evaluate their role in the individual enterprise and in the equine industry. Students are responsible for identifying workshop topics and arranging for an industry specialist to deliver the material in a workshop format. The workshops are conducted outside normal class times and will also be open to industry participants. Some of the organizational requirements will be completed in advance of the workshop. This is a Workplace Readiness course required for the Equine option in the Diploma in Enterprise Management. Winter semester – up to 12 hours, to be completed in a two-week period over the semester. The workshop may also be scheduled on a weekend.

ANSC0112: Animal Biology and Management I
Instructor: F. Nicholson
Students examine production cycles, reproduction, and genetics in farm animals, with a focus on care and management during breeding, parturition, growth, and lactation. Lectures cover the principles that are common to all species, and the labs and tutorial sessions focus on more specialized topics that are relevant to the management of bovine, equine, and other ruminant species. Fall semester – 3 lecs and 2 labs per week.

ANSC0113: Animal Biology and Management II
Instructor: F. Nicholson
Prerequisite: ANSC0112
Students examine the biological basis for animal behaviour, animal welfare, environmental physiology, and animal health. They also examine the role and importance of legislation and voluntary codes of practice in animal welfare and animal health. The course will enable the student to analyze and select handling practices, housing options, biosecurity, and disease prevention options that meet the needs of the animal and the enterprise. Lectures cover the principles that are common to all species, and the labs and tutorial sessions focus on more specialized topics that are relevant to the management of bovine, equine, and other ruminant species. Winter semester – 3 lecs and 2 labs per week.

ANSC0114: Animal Feed and Nutrition Management
Instructor: F. Nicholson
Prerequisite: ANSC0112
Students examine in detail the biology of digestion and nutrient metabolism and the assessment of feedstuff quality in forage-based feeding systems. The course will enable the students to analyze strategies for meeting nutrient requirements and avoiding nutritional problems, and to assess feed efficiency and feed costs for the enterprise. Lectures cover the principles that are common to all species, and the labs and tutorial sessions focus on more specialized topics that are relevant to the management of bovine, equine, and other ruminant species. Winter semester – 2 lecs and 2 labs per week.

ANSC0115: Introduction to Animal Production
Instructor: TBA
This course enables the student to integrate a knowledge of production and production systems into a “soil-to-shelf” marketing approach. Students participate in an examination of food animal production, with an emphasis on the production of animal food products for a consumer-driven market. Students focus on food safety, environmental, and animal welfare concerns in modern livestock production, and discuss how different production systems address these concerns. The focus will be on meat and poultry production, but dairy and egg production are also considered. Fall semester – 3 lecs and 2 labs per week.

ANSC0116: Companion Animal Enterprise
Instructor: TBA
This course will enable the student to oversee the routine care of animals in a companion animal facility and to develop some of the basic workplace communication skills necessary in a companion animal enterprise. Students examine the structure of the companion animal industry and discuss the issues, challenges, and opportunities facing the industry. The basic care component covers mainly dogs and cats, with some coverage of other species, and a portion of this will be conducted outside class time. The industry overview component covers all species represented by the industry, as well as the different segments of the industry. Fall semester – 3 labs per week.
Description of Courses—Undergraduate and Technical

ANSC0117: Companion Animal Growth, Development, and Nutrition
Instructor: TBA
Prerequisite: ANSC0116
Students examine the biology of growth and development in companion animals and analyze the requirements for care and management throughout the life cycle. They also examine the biology of nutrition and the nutritional requirements throughout the life cycle, and relate this to information on specific products, supplements, and feeding regimes. The course will enable the student to work with a nutritionist or veterinarian in establishing and implementing feeding and nutritional programs, and to interpret the legal and other limitations to providing foods and nutrition products and services for companion animals. The course covers mainly dogs and cats, with some coverage of other species.
Winter semester – 3 labs per week.

ANSC0118: Animal Products
Instructor: Nigel Firth
Prerequisite: ANSC0115
Students examine in detail the nature of animal products, with an emphasis on handling animal products for high standards of customer satisfaction, food safety, and product quality. The main focus is on meat and poultry products, with some reference to fish, egg, and dairy products. There will also be a considerable emphasis on the identification of retail products and on the uses and preparation methods for these products. Students will participate in tours and field trips to processing plants and retail enterprises. Some of the tours or field trips may be conducted outside scheduled class time.
Fall semester – 3 lecs and 2 labs per week.

ANSC0204: Dairy Herd Health and Nutrition Management
Instructors: TBA
Prerequisites: ANSC0113, ANSC0114
Students participate in an in-depth examination of the health and nutrition requirements of the individual dairy cow, and of the requirements for maintaining high standards of health and optimal nutrition in the dairy herd. The course will enable the student to use herd records and on-site evaluations to troubleshoot health and nutrition problems and to identify solutions to those problems. The course will also enable the student to use a variety of technical and human resources in meeting future challenges in health and nutrition.
Fall semester – 3 lecs and 2 labs per week.

ANSC0205: Optimizing Bovine Reproductive and Genetic Performance
Instructor: TBA
Prerequisite: ANSC0112
One half of the course is devoted to an in-depth examination of bovine reproduction and of the requirements for maintaining high success rates in heat detection and AI procedures. The course will enable the student to use herd records and on-site evaluations to troubleshoot breeding problems and to identify solutions to those problems. The course will also enable the student to use a variety of technical and human resources in meeting future challenges in breeding management. In the other half of the course, students participate in an in-depth examination of dairy genetics and of the tools and systems used for evaluating performance and genetic merit in the dairy industry. The course will enable the student to use herd records and on-site evaluations to identify breeding goals for the herd, and to select sires and dams that will help the herd achieve these goals. The course will also enable the student to use a variety of technical and human resources in meeting future challenges in dairy genetics. Applications to the beef industry will be discussed as well.
Fall semester – 3 lecs and 3 labs per week.

ANSC0206: Managing Dairy Milking Systems and Housing Facilities
Instructor: TBA
Prerequisite: ANSC0204
Students examine in detail the management of the milking system and evaluate current and future options in milking systems technology. They also examine current and future options for housing and equipment, and analyze the ability of those options to meet the financial, environmental, and animal welfare goals of the operation. Tours and field trips give the students an opportunity to view a variety of housing and milking systems. Some of the tours or field trips may be conducted outside scheduled class time.
Winter semester – 3 lecs and 2 labs per week.

ANSC0207: Records Management and Decision-making for Dairy Herds
Instructor: TBA
Prerequisites: ANSC0204, ANSC0205
Students examine record-keeping options for dairy herds and use herd records to analyze key aspects of herd and farm performance. They also use case studies and records summaries to benchmark performance and to analyze the herd’s ability to meet its targets. Establishing and maintaining the records required to meet certification (e.g. HACCP) requirements are also integral components of the course.
Winter semester – 3 labs per week.
ANSC0208: Biology and Care of Aquarium Fish and Reptiles
Instructor: TBA
Prerequisite: ANSC0116
Students examine the biology of growth and development in aquarium fish and reptilian species, and analyze the requirements for care and management throughout the life cycle, including the requirements for nutrition and health care. A considerable portion of the course is devoted to the selection and set-up of aquarium and terrarium systems and to troubleshooting problems. The course will enable the student to ensure high standards of health and nutrition for fish in aquarium systems and for reptiles.
Winter semester – 3 lecs and 2 labs per week. Offered in alternate years; next offered in 2007/2008.

ANSC0209: Biology and Care of Avian and Small Animal Species
Instructor: TBA
Prerequisite: ANSC0116
Students examine the biology of growth and development in avian and small animal species and analyze the requirements for care and management throughout the life cycle, including the requirements for nutrition and health care. The selection and set-up of housing systems are important components of the course. The course will enable the student to ensure high standards of health, nutrition, and care for birds and small animals.
Winter semester – 3 lecs and 2 labs per week. Offered in alternate years; next offered in 2008/2009.

ANSC0210: Introduction to Companion Animal Health
Instructor: TBA
Prerequisite: ANSC0117
Students examine the causes and predisposing factors of diseases common to companion animals, and of the principles of disease management and prevention as they apply to companion animal facilities. The course will enable the student to establish and implement biosecurity and health management protocols, and to interpret the legal and other limitations to providing health care products and services in consultation with the facility veterinarian. The course covers mainly dogs and cats, with some coverage of other species.
Fall semester – 3 lecs and 2 labs per week.

ANSC0211: Companion Animal Facilities Management
Instructor: TBA
Prerequisite: ANSC0210
Students examine the biological and behavioral considerations important in designing companion animal housing and facilities, and explore the options available for ensuring high standards of animal welfare in the facility. The course will enable the student to design and implement protocols for managing the facility and for ensuring compliance with regulatory requirements or industry standards. Students participate in tours and field trips to view a variety of housing and facilities options. Some of the tours or field trips may be conducted outside scheduled class time. The course covers mainly canine and feline facilities, with some coverage of facilities for other species.
Winter semester – 3 lecs and 2 labs per week.

ANSC0212: Companion Animal Genetics and Reproduction
Instructor: TBA
Prerequisite: ANSC0111
Students examine the processes of reproduction and lactation in companion animals, and analyze the requirements for care and management during mating, parturition, and lactation. They also study the common breeds and the genetics of colour and conformation, and examine the requirements for choosing breeders and planning matings that meet the objectives of the breeding program. The course covers mainly dogs and cats, with some coverage of other species.
Fall semester – 3 lecs and 2 labs per week.

ANSC0213: Equine Growth and Nutrition
Instructor: TBA
Prerequisites: ANSC0113, ANSC0114
Students will study the physiological growth and development at every life stage from conception to old age in the horse. The nutrition component focuses on the digestive system of the horse and the requirements for specific nutrients at different stages of growth and development. Analysis of different types of feeds and the formulation of diets based on life stage and level of activity will be conducted. The course will enable the student to troubleshoot nutrition problems in a variety of equine enterprise types.
Fall semester – 3 lecs and 2 labs per week.
ANSC0214: Equine Health, Genetics, and Reproduction
Instructor: TBA
Prerequisite: ANSC0113
Students examine in detail the processes of reproduction and lactation in horses, as well as the requirements for care and management of the mare during breeding, parturition, and lactation. Students also study the growth and development of the foal and the requirements for the care of the foal. The common breeds of horses and the genetics of coat colour, conformation, and performance potential will be discussed. The course will enable the student to evaluate the genetic merit of sires and dams, and to plan matings and genetics strategies to meet the genetic goals of their particular operation. Finally students will obtain a basic knowledge of health care and disease prevention, and be able to address issues related to biosecurity.
Fall semester – 3 lecs and 2 labs per week.

ANSC0215: Equine Facilities Management
Instructor: TBA
Prerequisites: ANSC0213, ANSC0214
Students examine the behavioural and environmental considerations important in designing an equine facility, and explore the options available for ensuring high standards of animal welfare in the facility. The course will enable students to design and implement protocols for managing the facility and for ensuring compliance with regulatory requirements or industry standards. Students participate in tours to view a variety of facility options. Some of these tours may be conducted outside scheduled class time.
Winter semester – 3 lecs and 2 labs per week.

ANSC0216: Equine Health and Fitness
Instructor: TBA
Coordinator: TBA
Prerequisite: ANSC0213
Students examine the anatomy and physiology of the horse with special attention to the respiratory, skeletal, muscular, and cardiovascular systems. The course will enable students to analyze how the horse’s health and soundness is affected by its environment, level of fitness, and condition.
Winter semester – 1 lec and 2 labs per week.

ANSC0217: Companion Animal Behaviour
Instructor: Prof. Tennessen
Prerequisite: cross-referenced as ANSC2003
In this course, students will study the fundamentals of animal learning and how those principles affect success in training and behaviour modification. Attention will be given to understanding and solving behaviour problems (e.g. separation anxiety, dominance aggression, fighting, inappropriate urination, and behavioural stereotypies). The focus is on companion animals—dogs and cats, and to some extent horses. The normal development of behaviour in those species will be covered.
Winter semester – 3 lecs per week.

ANSC2000: Animal Agriculture I (A)
Instructors: Profs. Farid and Fredeen
Prerequisite: AGRI1000
An introductory course dealing with the major animal industries and production systems in animal agriculture today, with emphasis on systems relevant to Atlantic Canada. A key objective of this course is to let students see how real farms and real agribusinesses work. Emphasis will be placed on management and production of beef cattle, sheep, and dairy animals. Additional animal industries that are particularly seasonal in nature, e.g. fur growth and pelting, may be introduced as is appropriate.
Fall semester – 3 lecs and 3 labs per week.

ANSC2001: Animal Agriculture II (A)
Instructors: Profs. Anderson and Rouvinen-Watt
Prerequisite: AGRI1000
A continuation of ANSC2000, emphasizing the management and production of poultry, swine, fur, and alternative species.
Fall semester – 3 lecs and 3 labs per week.

ANSC2002: The Horse: Its Biology and Use (A)
Instructor: L. Jack
Prerequisite: second-year standing or equivalent in any program
This course is an introduction to the behaviour, anatomy, nutrition, and history of horses. What behavioural principles underlie horse training? How is their performance influenced by their conformation? What is unique about their digestive system? How did horses evolve? The course will include discussion of sources and treatment of illness and disabilities, and the biology and control of common parasites; demonstrations of English and Western riding (students will not be taught to ride); visits to the Truro Raceway; study of the importance of shoeing to the working horse; and exposure to the use of horses as draft animals.
Fall semester – 2 lecs and 2 labs per week.
ANSC2003: Companion Animal Behaviour
cross-referenced as ANSC0217
Instructor: Prof. Tennessen
In this course, students will study the fundamentals of animal learning and how those principles affect success in training and behaviour modification. Attention will be given to understanding and solving behaviour problems (e.g. separation anxiety, dominance aggression, fighting, inappropiate urination, and behavioural stereotypies). The focus is on companion animals—dogs and cats, and to some extent horses. The normal development of behaviour in those species will be covered.
Winter semester – 3 lecs per week.

ANSC2004 (ANSC1000): Organic Livestock Production (A) DE
Instructor: S. Fernandez
This course provides information on organic livestock production in general, as well as more detailed analyses of organic beef and sheep, dairy, and swine and poultry production. An in-depth study of organic approaches to livestock health is included. The course is divided into five stand-alone modules: Introduction to Organic Livestock Production, Organic Beef and Sheep Production, Organic Dairy Production, Organic Swine and Poultry Production, and Health Management in an Organic Livestock System. A variety of information delivery methods will be used, including text on the Internet, a printed resource guide, and a CD-ROM with video clips and slide shows. Students will be encouraged to participate in discussion groups and use the organic information resources currently available over the Internet. Evaluation will be based on participation, written assignments, module quizzes, and a final exam.
Winter semester.
DE – only offered as a web-based distance education course.

ANSC3000: Animal Breeding (A)
Instructor: Prof. Glover
Prerequisites: GENE2000, STAT2000
The course covers variation in animal performance and the techniques whereby genetic superiority can be recognized and improved. Goals and programs of improvement are discussed with reference to commercial farm species. The emphasis is on programs in current use but applications of new technologies are included. Laboratories deal primarily with data collection, analysis, and computer applications.
Winter semester – 3 lecs and 2 labs per week.

ANSC3001: Animal Health (A)
Instructor: T. Semple
Prerequisite: MICR2000
This course seeks to impart an understanding of animal health and its importance in livestock production enterprises. Students are taught to recognize signs of health and ill-health and to understand the principles and practices of disease prevention and treatment. Conditions of disease and ill-health common in Atlantic Canada are studied. The need for veterinary collaboration is emphasized, and the circumstances in which this should be sought are discussed.
Winter semester – 3 lecs and 2 labs per week.

ANSC3002: Domestic Animal Behaviour (A)
Instructor: Prof. Tennessen
Prerequisite: BIOL2006 or BIOL3005
This course studies the behaviour of farm animals and presents information that is relevant to the care and management of animals. Topics covered include domestication, animal communication, social behaviour, reproductive and maternal behaviour, development of behaviour, genetics of behaviour, and the influence of management systems and practices on behavioural characteristics. Considerable attention is also given to welfare issues in animal agriculture.
Fall semester – 3 lecs and 2 labs per week.

ANSC3003: Eggs and Dairy Products (A)
Instructor: Prof. Firth
This course deals with the nature and composition of eggs and milk and their products such as cheese and yogurt; hygiene, processing, and storage.
Fall semester – 2 lecs and 2 labs per week.

ANSC3004: Meat Science (A)
Instructor: Prof. Firth
This course covers growth of meat animals and the nature of muscle, bone, and fat; conversion of muscle to meat; quality and grading of fresh meat; hygiene and storage; meat processing, meat products, and by-products.
Winter semester – 2 lecs and 2 labs per week.
Description of Courses—Undergraduate and Technical

ANSC3005: Animal Welfare (A)
Instructor: J. Morrigan
Prerequisite: at least third-year standing
This course deals with the well-being of animals, with emphasis on farm animals. Issues include what we mean by animal welfare, what the animal welfare issues are in modern agriculture and in modern society, and how we use ethology and physiology to assess animal welfare. The course outlines the international efforts to improve on-farm animal welfare. There is a term project in which students attempt to assess animal welfare in a particular farm (or other) environment, and all students will participate in class debates on current issues in animal welfare.
Winter semester – 3 lecs and 2 labs per week.

ANSC3006: Companion Animal Biology
Instructors: Profs. Rouvinen-Watt and Patterson
Prerequisites: GENE2000, BIOL3008
This course focuses on digestive and reproductive physiology, nutritional, genetics, and breeding programs, and the importance of these for management of companion animals. The emphasis is on domestic dogs and cats, with other companion animals included as the topic permits. Laboratory sessions include evaluation of diets and dietary supplements, reproductive and digestive anatomy, simulation of breeding programs, and guest lecturers or field trips to companion animal facilities.
Winter semester – 3 lecs and 2 labs per week.

ANSC4000 Topics in Animal Production I (A)
ANSC4001 Topics in Animal Production II (A)
Instructors: Dept. of Plant and Animal Sciences Faculty
Coordinator: Prof. Tennessen
Prerequisites: ANSC3000, BIOL3008, NUTR3000
These courses are offered both semesters and the content may vary from year to year. The course number reflects whether it is the first or second time a student is enrolled (i.e., the first time a student takes this production course, it will be ANSC4000; the second time, ANSC4001).
Each course consists of 3 four-week modules on applied topics in animal production. These modules will focus on the application of the sciences of genetics, physiology, or nutrition to animal production in the Atlantic Provinces. Occasionally modules may be offered outside regular class time, but this will be indicated prior to sign-up. Students should see the course coordinator for selection and availability of modules prior to enrolling. Some modules may have restricted enrollment.
Fall and Winter semesters – 3 lecs and 3 labs per week.

ANSC4003: Avian Production Systems
Instructor: Prof. Rathgeber
Prerequisites: ANSC2001, NUTR3000
This course will focus on management of commercial poultry from hatching to the production of value-added products. The course material will require the application of the sciences of nutrition, genetics, physiology, and behavior to understand the key aspects of growth, reproduction, and health of commercial poultry species.
Winter semester – 3 lecs and 3 labs per week.
AQUACULTURE

AQUA2000: Introduction to Aquaculture (A)
Instructors: Dept. of Plant and Animal Sciences Faculty
Coordinator: Prof. Enright
Prerequisite: AGR1000
The history and the current status of world aquaculture production are discussed, with emphasis on species with potential in Atlantic Canada. Advances in freshwater or marine finfish and shellfish culture are included. Aquatic plant production is discussed. Business aspects of aquaculture are introduced. The course includes field trips to aquaculture and related facilities.
Fall semester – 3 lecs and 3 labs per week.

AQUA3000: Fish Health (A)
Instructor: Prof. Duston
Prerequisite: BIOL3005
This course outlines concepts of disease with special reference to fish. Diseases of various etiological types are considered, with emphasis on those in the aquaculture environment. The relationships of management and economics to disease in cultured fish are detailed, and public health concerns are addressed. Diagnostic, prophylactic, and treatment methods are outlined and practised.
Winter semester – 3 lecs and 3 labs per week.

AQUA4000: Finfish Production
Instructor: Prof. Duston
Prerequisites: NUTR3000 or NUTR3001, AQUA3000, BIOL3006
Aspects of breeding and genetics, fish management, financial management, economics, marketing, housing systems, and water management are presented in an integrated approach to provide a sound understanding of this aspect of aquaculture. Management of finfish throughout the life cycle is presented. The course includes a weekend field trip to commercial farms; attendance is obligatory.
Fall semester – 3 lecs and 3 labs per week.

AQUA4001: Shellfish Production
Instructor: Prof. Enright
Prerequisites: NUTR3000 or NUTR3001, AQUA3000, BIOL3005
Factors affecting profitable production of shellfish are discussed in the context of developing a sound industry with potential to address future opportunities. A survey of culture techniques used in shellfish production is undertaken.
Winter semester – 3 lecs and 3 labs per week.

ART

ARTS2000: Nature’s Image: A Survey of Landscape Art (H)
Instructor: C. Brown
This course will provide an introduction to the history of art forms depicting landscape, with the major focus being on landscape painting. The course will consist of art history lectures and a studio component in which drawing techniques, collage, and colour theory will be explored. Students will develop skills in composition and will gain an increased appreciation for landscape art traditions.
Fall semester – 3 lecs/studio per week.
BIOL0102: Plant Physiology and Stress Management
Instructor: Prof. Percival
This course is aimed at gaining an insight into various plant physiological, growth, and developmental processes and to develop a fundamental understanding and appreciation as to how various environmental factors influence growth, differentiation, and developmental processes in plants. The course also examines the impact of various abiotic stresses on plant growth and development, yield, and productivity, including acclimation and adaptation techniques. Emphasis will be given on plant diagnosis.
Winter semester – 3 lecs and 2 labs per week.

BIOL0103: Weed Science
Instructor: Prof. Sampson
This course deals with the principles of weed science. Included are discussions on weed recognition and chemical and non-chemical approaches to controlling weeds in various agricultural crops, as well as in lawns and non-crop areas. Selection, safe use, handling, and storage of herbicides are stressed.
Winter semester – 3 lecs and 3 labs per week.

BIOL0200: Entomology
Instructor: Prof. Le Blanc
An introduction to the study of the phylum Arthropoda, with particular reference to the class Hexapoda (Insecta), emphasizing insect pests of the northeast. Anatomy, physiology, taxonomy, behaviour, and ecology of insects are considered during lectures and laboratory work. Discussions on the relationship of insects to humans, basics of insect control methods, and pesticide safety are included.
Fall semester – 2 lecs and 2 labs per week.

BIOL1002 Biology I
Instructor: Prof. Olson
This is the first of a two-semester course sequence exploring various general principles common to the biological sciences. The biological significance of cell structure and function, metabolism, the cell cycle, sexual reproduction, Mendelian genetics and basic gene structure are among the topics to be considered in the lecture sessions. The laboratory reinforces and enhances the learning of selected topics discussed in the lectures.
Fall semester – 3 lecs and 3 labs per week.

BIOL2000: Cell Biology
Instructor: Prof. Wang-Pruski
An introduction to cell biology. Topics include cell metabolism, the structure and function of organelles of the eucaryotic cell, cell growth, cell movement, and the procaryotic cell. Specialized cell functions will also be discussed.
Fall semester – 3 lecs per week.

BIOL2001: Cell Biology Laboratory
Instructor: TBA
This course combines the lectures of BIOL2000 with a laboratory section. Students will participate fully in BIOL2000 and, as well, complete laboratory sessions to complement lecture material. Students may receive credit for either BIOL2000 or BIOL2001, but not both.
Fall semester – 3 lecs and 3 labs per week.

BIOL2002: Plant Physiology
Instructor: Prof. Percival
A study of the different functions of the plant, including growth, photosynthesis, mineral nutrition, water relations and translocation of solutes, and plant orientation, development, and reproduction.
Winter semester – 3 lecs and 3 labs per week.

BIOL2004: Structural Botany
Instructor: Prof. Olson
The basic morphology and anatomy of the seed plants are presented from a developmental perspective. The structural aspects of the various modes of plant reproduction are also included. Emphasis is placed on obtaining an understanding of plant structure that will complement crop physiology, weed biology, and plant pathology.
Winter semester – 3 lecs and 3 labs per week.
BIOL2005: Principles of Plant Pathology (A)
Instructor: Prof. Gray
This course deals with the principles of plant pathology and the control of diseases caused by bacteria, fungi, mycoplasma-like organisms, viruses, and nematodes. Labs deal with basic techniques used in plant pathology, such as fungal, bacterial, and nematode isolation, identification, and inoculation.
Winter semester – 3 lecs and 3 labs per week.

BIOL2006: Mammalian Physiology
Instructor: TBA
Corequisite: CHEM3001
An introduction to the body systems and how they function. The student should develop a basic understanding of physiological processes and how they are regulated and integrated by the nervous and endocrine systems. Topics covered include: homeostasis, the nervous, muscular, endocrine, cardiovascular, respiratory, renal, and digestive systems, and an introduction to environmental physiology.
Winter semester – 3 lecs and 3 labs per week.

BIOL2007: Mycology
Instructor: Prof. Gray
An introduction to the fungi, including members of the Kingdoms Eumycota and Chromista, and the protozoan pseudofungi. The labs in this course will focus on classification of the fungi, but lecture topics will also include fungal physiology, genetics, ecology, industrial mycology, food spoilage, and medical mycology. Students will be required to submit a microfungus collection and a mushroom collection.
Fall semester – 3 lecs and 3 labs per week. Offered in alternate years; next offered in 2007/2008.

BIOL2008: Plant Diversity
Instructor: Prof. Olson
Prerequisite: BIOL1003
This course emphasizes the biology, evolution, and diversification of the major phyla of the Kingdom Plantae. The lectures illustrate the fundamental reproductive unity underlying the diversity of all land plants using examples from both fossil and living species. In addition to exploring the major plant groups and their sub-divisions in the laboratory, students learn to use the appropriate resources to identify specific plants.
Fall semester – 3 lecs and 2 labs per week. First offered in 2008/2009.

BIOL3000: General Entomology (A)
Instructor: Prof. Le Blanc
Preparatory: BIOL1001
An introduction to the science of entomology from an agricultural perspective. Insect anatomy, physiology, and taxonomy are considered; also included are discussions on insect behaviour, reproduction, life cycles, and population ecology. Basics of monitoring techniques and population dynamics are illustrated.
Fall semester – 3 lecs and 3 labs per week.

BIOL3001: Ecology
Instructor: Prof. Nams
Prerequisites: BIOL1002, BIOL1003
An introduction to the principles and general concepts of ecosystem structure and function is presented. The dynamics of populations and community interactions are considered in relation to various biotic and abiotic environmental influences. The laboratory reinforces topics covered in the lectures and readings by emphasizing the importance of field observation and interpretation.
Fall semester – 3 lecs and 3 labs per week.

BIOL3002: Weed Science (A)
Instructor: Prof. Sampson
Prerequisite: BIOL1002
Preparatory: BIOL2002
This course deals with the principles of weed science. Included are discussions on weed recognition, and chemical and non-chemical approaches to controlling weeds in various agricultural crops, as well as in lawns and non-crop areas. The selection, safe use, handling, and storage of herbicides are stressed, along with the environmental impact of the different methods of weed control.
Fall semester – 3 lecs and 3 labs per week.

BIOL3003: Comparative Vertebrate Anatomy
Instructor: Prof. Levy
Prerequisite: BIOL1001
An introduction to comparative anatomy. Emphasis is placed on analyzing vertebrate structure. Comparisons of form and function within the Vertebrata are discussed with an evolutionary perspective. This is supplemented in the laboratory by detailed dissections of representative vertebrates.
Fall semester – 3 lecs and 3 labs per week. Offered in alternate years; next offered in 2008/2009.
BIOL3004: Environmental Physiology (A)
Instructor: Prof. Rouvinen-Watt
Prerequisite: BIOL2006 or BIOL3005
A study of animals in relation to their environment. The influence of environmental factors on body processes and their relationship to productive efficiency in intensive production systems are examined. Major topics include temperature regulation and body homeostasis, biological rhythms, photoperiodism, and environmental and hormonal interrelationships.
Winter semester – 3 lecs and 2 labs per week.

BIOL3005: Physiology of Aquatic Animals (A)
Instructor: Prof. Duston
Prerequisite: BIOL1001
The form, function, physiological integration, and behaviour of major types of aquatic animals is considered. Emphasis is placed on Classes of organisms, using commercially important species as primary examples.
Fall semester – 3 lecs and 3 labs per week.

BIOL3006: Aquatic Ecology
Instructor: Prof. Ronquillo
Prerequisite: ENGN2004
The biology of aquatic species in marine and freshwater environments is discussed. Biological systems involving farmed species are emphasized. Organism interdependencies and interactions are examined. An introduction to the principles of ecology at the community and ecosystem level of integration is included.
Fall semester – 3 lecs and 3 labs per week.

BIOL3007: Insects and Diseases of Landscape Plants
Instructor: TBA
The objective of this course is the study of the common insects and diseases of concern in the urban forest and ornamental trade in Atlantic Canada. For each taxa reviewed, signs, symptoms (distant, close and detailed), life cycle, life habits, hosts, range, monitoring methods, and management are considered through an integrated approach. Group learning may involve case studies of important insects and diseases. Also discussed are symptoms caused by abiotic factors.
Winter semester – 3 lecs and 2 labs per week.

BIOL3008: Growth, Reproduction and Lactation (A)
Instructor: T. Semple
Prerequisite: BIOL2006
A continuation of BIOL2006, emphasizing physiological systems relevant to animal production. Major topics include growth and development as it applies to meat and brood animal production, and the physiology and management of reproduction and lactation in domestic species.
Fall semester – 3 lecs and 2 labs per week.

BIOL4000: Avian Biology (A)
Instructor: Prof. Rathgeber
Prerequisites: ANSC2001, GENE2000, CHEM3001 (or CHEM2005)
This course is a study of topics in biology of special relevance to the commercial use of avian species. Physiological, biochemical, and genetic control and manipulation of such processes as reproduction, growth and development, and immunity are examined. Fall semester – 3 lecs and 2 labs per week. Offered in alternate years; next offered in 2007/2008.

BIOL4001: Animal Cell Culture
Coordinator: Prof. MacLaren
Prerequisite: BIOL2001
The objective of this course is to provide a theoretical and practical understanding of the uses and methods of animal cell culture. Lectures and laboratories will demonstrate the requirements of animal cells for normal growth and differentiation. The use of cell cultures as research models and for clinical, pharmaceutical, and cytotoxicity screening will be discussed, as well as the commercial use of animal cell culture for the production of biological compounds.
Winter semester – 2 lecs and 4 labs per week.

BIOL4002: Conservation Biology
Instructor: Prof. Nams
Prerequisite: 20 degree credits
This course has limited enrollment.
This course will examine the ecological concepts underlying current issues in conservation biology. Topics covered include effects of agricultural habitat fragmentation on wildlife, conservation of biodiversity, stability and resilience of ecosystems, optimum design of nature reserves, and habitat heterogeneity. This is a discussion-style course concentrating on current published scientific papers chosen by the students. Students will also learn to read and critically evaluate scientific papers, and to apply this ability to writing literature reviews.
Winter semester – 3 lecs per week.

BIOL4003: Plant-Microbe Interactions
Instructors: Profs. Gray and Prithiviraj
Prerequisites: BIOL 2005, 15 degree credits.
This course is an advanced study of the interactions between plants and microorganisms, with emphasis on plant pathogenic microorganisms but also with symbiotic and other microorganisms that can provide a benefit to the plant. Students will study the histology of the infection process in relation to plant disease and symbiosis, and the impact that infection has on the physiology of the host. Responses of the plant to infection will be studied, with emphasis on Systemic Acquired Resistance and Induced Systemic Resistance.
Winter semester – 3 lecs and 2 tutorials per week.
CHEMISTRY

CHEM0050: Preparatory Chemistry
Instructor: P. Nelson
Prerequisite: approval of the Registrar
This course is designed for students who satisfy all other requirements for admission but lack the Grade 12 Chemistry course. The course will cover the basic material necessary for entrance into CHEM1000, including review of the periodic table, nomenclature, chemical reactions, aqueous solutions, chemical bonding, and other topics as determined by a review of the class. This is a non-credit course. CHEM0050 is not intended to duplicate or replace Grade 12 Chemistry.
Fall and Winter semesters – 3 lecs and 1 tutorial per week.

CHEM1000: General Chemistry I
Instructor: Prof. Pitts
Prerequisite: successful completion of academic Grade 12 Chemistry or equivalent
This course is designed to help students understand chemical equations, reactions, and calculations. The chemistry of aqueous media is highlighted (properties of water, ionization of weak electrolytes, buffers). In addition to the traditional classroom interaction, students will be exposed to problem-based learning and co-operative learning. Students will be exposed to the proper use of various analytical equipment and apparatus. The laboratory will focus on the development of practical lab skills applicable to the agricultural and environmental industries.
Fall semester – 3 lecs and 3 labs per week.

CHEM1001: General Chemistry II
Instructor: Prof. Pitts
Prerequisite: CHEM1000
This second semester of General Chemistry will include a theoretical understanding of atomic and molecular structures. An understanding of physical equilibria will be extended to practical applications of chromatographic analyses.
Winter semester – 3 lecs and 3 labs per week.

CHEM2000: Organic Chemistry I
Instructor: Prof. Hoyle
Prerequisite: CHEM1001
This course provides an introduction to the structure and reactions of organic compounds. The course is approached from a mechanistic point of view and has particular emphasis on appropriate spectroscopy (IR and MS). The topics covered in this course include chemical bonding, isomerism, acid-base properties and the isolation and purification of organic compounds. The classes of organic compounds covered will include alkanes, alkenes, alkynes, simple aromatics, organohalides, alcohols, and related compounds.
Laboratory work will include introductory techniques of organic chemistry and both HPLC and gas chromatography.
Fall semester – 2 lecs, 1 tutorial and 3 labs per week.

CHEM2001: Organic Chemistry II
Instructor: Prof. Hoyle
Prerequisite: CHEM2000
This course continues building on work begun in CHEM2000. Functional groups included here will be carbonyls (aldehydes, ketones, acids, and their derivatives), more complex aromatics, simple organometallics, and bifunctional organic compounds. The emphasis on mechanistic chemistry will continue, as will the study of appropriate spectroscopy (NMR and UV-Vis). In addition, an introduction to organic syntheses and biomolecules will be undertaken.
Winter semester – 3 lecs per week.

CHEM2002: Analytical Chemistry I
Instructor: Prof. Pitts
Prerequisite: CHEM1001
This course will equip the non-chemistry major with an understanding of the basis of quantitative analytical chemistry, including relevant laboratory technique. Included will be both non-instrumental (gravimetry) and instrumental techniques (UV-visible spectrophotometry, atomic absorption spectrophotometry, HPLC, GC, and potentiometry). The course will focus on proper sample preparation, analysis, data interpretation, and proper laboratory technique. The examples used throughout the course would be from the environmental and agri-food areas.
Fall semester – 3 lecs and 3 labs per week.
CHEM2003: Food Chemistry I (A)
Instructor: Prof. Hoyle
Prerequisite: CHEM2000
An introductory study of the chemistry of food and food components. The emphasis will be on water, fats, proteins, and carbohydrates (and related compounds) with an overview of vitamins, minerals, and additives. Methods of analysis will be discussed in detail and this will be augmented by hands-on laboratory experiences with these analytic procedures.
This course may not be taken for credit by students who have credit for CHEM2004.
Fall semester – 3 lecs and 3 labs per week.

CHEM2004: Introductory Food Chemistry (A)
Instructor: Prof. Hoyle
An introductory study of the chemistry of food and food components. The emphasis will be on water, fats, proteins, and carbohydrates (and related compounds) with an overview of vitamins, minerals, and additives. Methods used for analysis of food components will be discussed in detail.
This course may not be taken for credit by students who have credit for CHEM2003.
Fall semester – 3 lecs per week.

CHEM3000: Biochemistry
Instructor: Prof. Robinson
Prerequisite: CHEM2000
The major emphasis of this course will be to study the characteristics of the building block biomolecules that make up the macromolecules in living cells. The course will also cover how these building blocks are assembled to form the major macromolecules. The importance and function in living cells of selected macromolecules of the major classes will be examined.
Fall semester – 3 lecs and 3 labs per week.

CHEM3001: Biochemical Pathways
Instructor: Prof. Robinson
Prerequisite: CHEM2000
The major focus of this course will be on the biochemical pathways and activities that account for the assimilation, transformation, degradation and synthesis of the major macromolecules in living cells. Catalytic as well as regulatory strategies used by living cells will also be discussed. The biochemical pathways involved in the metabolism of proteins, lipids and carbohydrates will be covered as well as the biochemical importance of the macromolecules DNA and RNA. The final topic will be to examine and understand how metabolism consists of highly interconnected biochemical pathways and how hormones play a major role in regulating varying aspects of cellular metabolism.
Winter semester – 3 lecs and 3 labs per week.

CHEM3002: Radiotracers in Agriculture (A)
Instructor: Prof. Robinson
Prerequisites: CHEM1001, MATH1000
This course has limited enrollment. This course sets forth the concepts of radioactivity necessary for the practical use of radiotracers in agriculture, covering radiation theory; radiation counting; sample preparation techniques for counting; applied tracer techniques in soil, plant, and animal studies; isolation and identification of isotope labels; and localization of labels in molecular structures.
Winter semester – 3 lecs and 3 labs per week.

CHEM3003: Advanced Integrated Chemistry Laboratory I
Instructor: Prof. Hoyle
Prerequisite: CHEM2001
The course will cover advanced laboratory topics in the fields of inorganic, general, and organic chemistry. Whenever possible these topics will be chosen from the fields of environmental science or agriculture. In particular, the use of spectroscopic techniques for the identification of chemical compounds will be applied, where appropriate.
Fall semester – 4 labs per week. Offered in alternate years; next offered in 2007/2008.
CHEM3004: Instrumental Analytical Chemistry II
Coordinator: Prof. Hoyle
Prerequisite: CHEM2002
For one course credit, students will select four different modules (3 weeks each) from the module offerings. At the discretion of the module coordinator, modules may have a tutorial component in place of a laboratory component. Students interested in taking this course should indicate their interest to the Course Coordinator by the end of the sixth week of the semester preceding the semester in which they wish to take module offerings. Maximum and minimum registration in a module will be determined on an individual module basis.
Fall or Winter semester – 3 lecs and 3 labs or tutorials per week.

CHEM3005: Instrumental Analytical Chemistry III
Instructors: Dept. of Environmental Sciences Faculty
Coordinator: Prof. Hoyle
Prerequisite: CHEM3004
Students who have successfully completed CHEM3004 may opt to take another four modules for a credit in CHEM3005. Students interested in taking this course should indicate their interest to the Course Coordinator by the end of the sixth week of the semester preceding the semester in which they wish to take module offerings. Maximum and minimum registration in a module will be determined on an individual module basis.
Fall or Winter semester – 3 lecs and 3 labs or tutorials per week.

CHEM3006: Mammalian Biochemistry
Instructor: Prof. Robinson
Prerequisite: CHEM2000
A study of how basic biochemical principles are applied to gain insight into the molecular functions of the diverse mammalian organ systems. The subject matter is divided into three parts: (1) Body Fluids and Their Constituents, which includes such subjects as blood coagulation, the complement system, the immune system, and their control; (2) Specialized Tissues, such as connective tissue, nervous tissue, and muscle tissue; and (3) Biochemistry of the Endocrine System, with the focus on the principles of endocrine biochemistry and the mechanisms of hormone action. The topics covered include general principles and mechanisms of hormone action, prostaglandins, the thyroid gland, and the gonads, as well as the hypothalamus, hypophysis, and adrenals.
Winter semester – 3 lecs per week.

CHEM3007: Food Chemistry II (A)
Instructor: Prof. Pitts
Prerequisite: CHEM2003 or CHEM2004
This course, which builds on CHEM2003 (or CHEM2004), will provide an in-depth study of minor food components including vitamins, colorants (natural and artificial), nutraceuticals and textural agents. Beneficial and/or deleterious interactions between food components will be examined (Maillard, caramelization, rancidity, and enzymatic reactions). Recent advances in processing technology will be introduced.
This course may not be taken for credit by students who have credit for CHEM3008.
Winter semester – 3 lecs and 3 labs per week.

CHEM3008: Intermediate Food Chemistry (A)
Instructor: Prof. Pitts
Prerequisite: CHEM2003 or CHEM2004
This course, which builds on CHEM2003 (or CHEM2004), will provide an in-depth study of selected food components including vitamins, colorants (natural and artificial), nutraceuticals and textural agents. Beneficial and/or deleterious interactions between food components will be examined (Maillard, caramelization, rancidity, and enzymatic reactions). Recent advances in processing technology will be introduced as time permits.
Offered concurrently with CHEM3007, and may not be taken for credit by students who have credit for CHEM3007.
Winter semester – 3 lecs per week.

CHEM3009: Environmental Chemistry
Instructor: Prof. Hoyle
Prerequisite: CHEM2000
In this course students will undertake an in-depth study of the chemical processes involved in the pollution of the environment. Chemical pollution of the atmosphere, hydrosphere, and lithosphere will each be studied in depth. In each case, chemical solutions to these problems will be considered. Chemical processes such as dissolution, coordination, ion exchange, hydrolysis, ionization, and freezing point depression will be covered.
Winter semester – 3 lecs per week. Offered in alternate years; next offered in 2007/2008.

CHEM4000: Advanced Integrated Chemistry Laboratory II
Instructor: Prof. Hoyle
Prerequisite: CHEM3003
This course will cover specialized chemistry laboratory topics in the fields of inorganic, general, and organic chemistry. Whenever possible, these topics will be picked from the fields of environmental science or agriculture. The laboratory will have a significant project, chosen by the student in consultation with the instructor.
Winter semester – 5 labs per week. Offered in alternate years; next offered in 2007/2008.
COMMUNICATIONS

CMMT0020: Career and Employment Skills
Instructor: B. Crouse
This course is designed to provide an introduction to job searching and hiring strategies. Through class discussion students will explore the world of work today, the hiring process, and the development of a personal career plan. Assignments will include résumé and cover letter writing, a networking exercise, and interview preparation. Restricted to students in the Diploma in Enterprise Management program. This is a Workplace Readiness course required for all options in the Diploma in Enterprise Management program. Winter semester – 3 lecs per week for 4 weeks.

CMMT0021: Introduction to Public Speaking
Instructor: Prof. Sanderson
The objective of this course is to enhance the student’s ability to prepare and deliver different types of presentations: informative, persuasive, and impromptu. Topics covered will include assessing audience needs, developing a strong focus, outlining different styles of presentations, and writing effective introductions and conclusions. Students will learn how to evaluate a presentation and make recommendations on how to increase its effectiveness. Tips for presenting ideas visually will also be discussed. This is a Workplace Readiness course required for all options in the Diploma of Enterprise Management program. Winter semester – 2 labs per week for 4 weeks.

CMMT0101: Communication Skills
Instructor: Prof. Sanderson
This course has limited enrollment. The purpose of this course is to encourage the development of students’ communication skills. The course will concentrate on improving students’ speaking skills plus incorporating audiovisual materials. Creative presentation of ideas through exhibits, slide presentations, and video will be a focus of a number of the sessions. Guest speakers in the area of advertising and marketing will be invited. Evaluation for the course will be based primarily on a number of projects such as a slide/tape presentation. Winter semester – 3 labs per week.

CMMT3000: Communication Theory and Skills (H)
Instructor: Prof. Sanderson
Prerequisite: at least second-year standing
This course is designed to provide students with the opportunity to enhance their communication skills and knowledge. Since a key requirement of today's job market is the ability to communicate effectively, students will be exposed to the theory and the practice of communication. An important component of the course will be the emphasis on the practical application of communication knowledge. Winter semester – 3 lecs and 2 labs per week.

CMMT3001: Teaching English as a Second Language
Instructors: Cambridge Certified Instructors, at International Language Institute
Students must obtain a Letter of Permission from the Registrar of NSAC to take this class as an NSAC credit. Students must then apply, register, and pay fees for this class at the International Language Institute (ILI). In cooperation with the University of Cambridge Local Examinations Syndicate (UCLES) and ILI, NSAC offers an intensive class leading to a Certificate in Teaching English to Speakers of Other Languages (CELTA). The syllabus covers six major areas: language awareness; the learner, the teacher, and the teaching/learning context; planning; classroom management and teaching skills; resources and materials; and professional development. Critical feedback is provided on teaching practice, written assignments, and evidence of professional development through the class. Fall, Winter or Spring semester.
Description of Courses—Undergraduate and Technical

COMPUTER

CSCI0200: Computer Methods
cross-referenced as CSCI1000
Instructor: Prof. Bishop
A course to develop problem-solving and decision-making abilities and computational skills using computer software. Problems of a scientific and managerial nature will be chosen from a variety of agricultural fields. The course will cover word processing, spreadsheets, databases, programming, statistics, communications, graphics, and process control. Industry-leading software will be used.
Fall and Winter semesters – 3 lecs and 2 labs per week.

CSCI1000: Computer Methods
cross-referenced as CSCI0200
Instructor: Prof. Bishop
A course to develop problem-solving and decision-making abilities and computational skills using computer software. Problems of a scientific and managerial nature will be chosen from a variety of agricultural fields. The course will cover word processing, spreadsheets, databases, programming, statistics, communications, graphics, and process control. Industry-leading software will be used.
Fall and Winter semesters – 3 lecs and 2 labs per week.

CSCI2000: Computer Science
Instructor: Prof. Bishop
Introduction to problem-solving methods and algorithm development. Emphasis is on designing, coding, debugging, and documenting programs, using C.
Fall semester – 3 lecs and 2 labs per week.

CSCI3000: Data Structures and Numerical Methods
Instructor: Prof. Bishop
Prerequisite: CSCI2000
This course introduces the student to system analysis and software techniques. Topics covered include objects, stacks, queues, multiple linked lists, and searching and sorting algorithms and their implementation in the C++ programming language. The students use linear algebra and numerical methods in engineering examples while learning to implement properly structured solutions.
Winter semester – 3 lecs and 2 labs per week.

ECONOMICS

ECON0100: Introductory Microeconomics
Instructor: Prof. Stackhouse
An introduction to the theory of the firm. The course examines the theory of demand and supply, distribution of income, forms of business organizations in Canada, and the levels of competition in the agricultural industry. Application of the various theories to explain the agricultural industry is stressed.
Fall semester – 3 lecs per week.

ECON0202: Production Economics
cross-referenced as ECON2002
Instructor: Prof. Yiridoe
Prerequisite: ECON0100
An introduction to the study of economic principles used to analyze production and resource use in agriculture. Areas of emphasis include economic examination of the factor/factor, factor/product, and product/product relationships of the farm production system. Practical examples and lab exercises are used to illustrate and reinforce the concepts presented in the classroom.
Winter semester – 2 lecs and 3 labs per week.

ECON1000: Principles of Microeconomics (A) DE
Instructor: Prof. Dunlop
A course in comprehensive principles of microeconomic theory, covering the market system, producer and consumer theory, environmental and resource economics, and international trade policy. Emphasis in this course is on the application of economics to issues and problems facing many countries and their citizens today. The approach is practical and “real-world,” using microeconomic theory to develop an understanding of the issues and problems being discussed and the policy choices facing governments in dealing with these matters.
Fall and Winter semesters – 3 lecs per week.
DE – also offered as a web-based distance education course.
Description of Courses—Undergraduate and Technical

ECON1001: Principles of Macroeconomics
Instructor: Prof. Grant
Prerequisite: ECON1000
This course introduces the student to basic macroeconomic concepts and to both short-term and long-term macroeconomic analysis. The basic macroeconomic concepts include economy-wide output, price level and inflation, asset prices and interest rates, international exchange rates among currencies, and the international balance of payments. The introduction to short-term macroeconomic analysis, or business-cycle analysis, is based on John Maynard Keynes’ work on the 1929–33 Great Depression. The introduction to long-term macroeconomic analysis is based on Robert Solow’s work on economic growth. Throughout the course macroeconomics is related to the historical experience of farmers and to contemporary macroeconomic forces affecting the agri-food sector.
Winter semester – 3 lecs and 1 tutorial per week.

ECON2000: Intermediate Microeconomics
Instructor: Prof. Yiridoe
Prerequisite: ECON1000
A course in microeconomics at the intermediate level. Topics include the theory of the firm, consumer theory, markets and market structure, and externalities and public goods. All major concepts are presented graphically and some are studied using basic mathematics as well.
Fall semester – 3 lecs and 2 labs per week.

ECON2001: Intermediate Macroeconomics
Instructor: Prof. Grant
Prerequisite: ECON1001
This course extends the Principles of Macroeconomics course to the intermediate level. Short-term, or business-cycle, macroeconomics is progressed from the introductory Keynesian income determination model to the IS-LM model, and then to the Aggregate Demand/Aggregate Supply model. The long-term macroeconomic content advances the introductory economic growth model in considering the relative importance of the factors determining the overall rate of economic growth. Throughout the course macroeconomic theory is related to macroeconomic policy goals, stabilizing the economy in the short term and promoting improvement in economic well-being in the long term.
Fall semester – 3 lecs per week.

ECON2002: Production Economics (A)
cross-referenced as ECON0202
Instructor: Prof. Yiridoe
Prerequisite: ECON1000
An introduction to the study of economic principles used to analyze production and resource use in agriculture. Areas of emphasis include economic examination of the factor/factor, factor/product, and product/product relationships of the farm production system. Practical examples and lab exercises are used to illustrate and reinforce the concepts presented in the classroom.
Winter semester – 2 lecs and 3 labs per week.

ECON3000: Mathematical Economics
Instructor: Prof. Stackhouse
Prerequisites: MATH1000, ECON2000
Introduction to the frequently used mathematical methods of economic analysis. The course provides the student with the basics required in more advanced economics courses. Areas of concentration include elements of mathematical economic models, linear models and matrix algebra, applications of calculus to economic problems, and optimization theory.
Fall semester – 3 lecs, 1 tutorial, and 2 labs per week.

ECON3001: Environmental Economics
Instructor: Prof. Clark
Prerequisite: ECON2000
This course is designed to give students an understanding of how economists view environmental problems. Topics of study will include public versus private goods, externalities, market failure, and the role of property rights in the economic system. The Coase theorem will also be presented. Policy analysis contrasting market-based solutions to environmental problems with conventional solutions will be discussed. Specific topics will then be covered, including environmental policy surrounding water pollution, air pollution, and climate change.
Fall semester – 3 lecs per week.
ECON3002: Agricultural and Food Policy (A)
Instructor: Prof. Dunlop
Prerequisites: ECON1000 and at least second-year standing
This course introduces students to the structure of the agri-food industry and the process of policy and implementation. A critical assessment of the institutions (organizations, programs, and policies) in agriculture is the main focus of the course. Through guest speakers, students' presentations, interactive class discussions, and lectures, students will learn how policies are developed and who is involved in the policy development process. An historical appreciation for agricultural policy in Canada will be pursued with a critical assessment of these policies. In reviewing policy problems affecting the agri-food industry, students will examine possible solutions to these issues. Topics covered include: reasons for government intervention; historical development of agri-food policy in Canada; the policy process; players in agriculture and food policy; structure of provincial, federal, and cost-shared programs; consumers and food policy; resource and environmental policy; international agricultural and food policies; trade agreements; and agribusiness involvement in agriculture and food policy.
Winter semester – 3 lecs and 2 labs per week.

ECON3003: Mathematical Programming
Instructor: Prof. Stackhouse
Prerequisite: ECON3000
An introduction to the theory and application of mathematical programming in the agri-food industry. The role of matrix algebra in determining linear programming solution procedures is developed. The information requirements, organization, and skills of model building are also introduced. The course will make extensive use of computer algorithms that permit students to model real-world systems in the production, resource supply, service, and retail sectors of the agri-food industry.
Winter semester – 4 lecs and 1 lab per week.

ECON3004: Agricultural Markets and Prices (A)
Instructor: Prof. Grant
Prerequisite: ECON2000
An introduction to agricultural market and price analysis as a field of study within agricultural economics. An applied microeconomics approach is taken in studying agricultural supply and demand, price discovery, and market structure for crop and livestock products. In addition to cash (spot) markets, agricultural futures and options markets are studied, including managing agricultural commodity price risk by hedging.
Winter semester – 3 lecs per week.

ECON3005: Econometrics
Instructor: Prof. Clark
Prerequisites: ECON2000, STAT2000
An applied course in statistics and economic theory using the classic linear regression model. Topics covered include a review of probability theory, estimation and specification of single and simultaneous equation models, violations of the assumptions of the classical linear model, hypothesis testing, and tests of significance. Exercises illustrating the statistical concepts developed in the lectures and applications of econometric techniques to agricultural economics problems and economic theory are provided and fully explained in the labs.
Fall semester – 3 lecs and 2 labs per week.

ECON4000: Advanced Microeconomics
Instructor: Prof. Clark
Prerequisites: ECON2000, ECON3000
This course is intended to give students an advanced treatment of Microeconomics. It is strongly recommended for those students wishing to undertake graduate work in economics, agricultural economics, or resource and environmental economics. Topics will include production economics, profit functions, cost functions, supply functions, and factor demand. An advanced treatment of demand theory will also be presented, including Hicksian and Marshallian demands, derived via Slutsky's equation. Both primal and dual approaches will be discussed.
Winter semester – 3 lecs and 2 labs per week.

ECON4001: Agri-food Policy Analysis (A)
Instructor: Prof. Dunlop
Prerequisites: ECON2000, ECON3002
This capstone course will focus on the economic analysis of agricultural and trade policy, drawing on the different areas of study in agricultural economics. Students will learn how to synthesize economic theory with quantitative tools to solve agricultural and food policy problems. Use of the formal analytical methods of policy analysis is the main emphasis of the course. Students will read literature pertaining to policy problems and analysis; attempt their own analysis on policy issues; and critique the existing literature. Topics covered include: influential doctrines in agricultural policy; fundamentals of welfare theory; partial equilibrium analysis of agricultural and trade policy; social choice theory; basics of trade theory; export and import protection; and the political economy of agricultural and trade policy.
Fall semester – 3 lecs per week. Offered in alternate years; next offered in 2008/2009.
ECON4002: Topics in Advanced Farm Management (A)
Instructor: Prof. Yiridoe
Prerequisites: ECON2000 and one of ECON3003, ECON3005, or STAT3000
A module course that introduces students to selected aspects of practical farm decision-making topics, with an orientation toward application of theoretical and analytical principles for identifying, analyzing, and solving farm business management problems. Topics include (but are not limited to) risk theory and risk management, economics of farming systems, and agribusiness project appraisal.
Winter semester – 3 lecs and 3 labs per week.

ECON4003: Resource Economics
Instructor: Prof. Clark
Prerequisite: ECON3000
This course will introduce students to the area of Resource Economics. Topics that will be discussed will include dynamic versus static optimization, renewable versus non-renewable resources, conservation and depletion, and sustainable development. Specific areas that will be covered will include forestry economics, fisheries economics, and global climate change.
Fall semester – 3 lecs per week.

ECON4004: Trade
Instructor: Prof. Dunlop
Prerequisites: ECON2000 and third-year standing
This course will provide students with an understanding of the factors that influence the exchange of products, with particular emphasis on trade interventions and institutions. Students will be introduced to trade theory, which they will use to evaluate trade policy issues. Students will learn how various government policy instruments and institutions affect international and interregional trade. Also, the complex set of rules and regulations governing international trade, such as the WTO, will be analyzed. The consequences of, and linkages among, international trade, the environment, and economic development will also be pursued.
Fall semester – 3 lecs per week. Offered in alternate years; next offered in 2007/2008.

ECON4005: Advanced Macroeconomics
Instructor: Prof. Grant
Prerequisites: ECON1001, ECON3000
This course provides a concise, mathematical coverage of classic issues in macroeconomic theory. The course starts with the classical model of a closed economy. A reconsideration of the labour market leads to the Keynesian model. An alternative treatment of the capital market underlies Tobin's dynamic aggregative model. The role of inflation expectations is explored under the contrasting cases of economic agents having adaptative expectations and perfect foresight. By integrating macroeconomic thinking and mathematical reasoning in the context of non-stochastic models, the course is also preparatory to graduate studies in economics.
Winter semester – 3 lecs per week. Offered as needed.
ENGLISH

ENGL0101: Writing for Business
Instructor: Prof. Sanderson
The objective of this course is to develop the reading and writing skills necessary to write at a technical level and to develop appropriate writing strategies for business documents. The course will focus on the process of writing from the development of a thesis, researching for information, and writing the initial draft through to proofreading and editing. Typical business documents to be discussed include: proposals, letters, e-mails/memos, and reports. Some of the topics include: tailoring writing to the audience, selecting templates for documents, researching and presenting documentation, using word processing packages to create professional documents, and proofreading and editing.
Fall semester – 3 lecs per week.

ENGL1000: Composition (H)
Instructors: Prof. Stiles and L. Little
This course has two primary objectives: to improve students’ basic writing abilities and to offer training in scientific writing—in particular the literature review. The course consists of one lecture and one tutorial per week. Tutorials focus on building skills in composing, revising, editing, grammar, sentence structure, and mechanics; the lectures cover topics such as bias, essay forms, and the issues surrounding paraphrasing and citing. Students are required to write extensively throughout the term. Part of the evaluation is based upon written work done under examination conditions during class.
Fall semester – 1 lec and 1 tutorial per week.

ENGL1001: The Novel (H)
Instructor: Prof. Stiles
In this course, four to six novels will be read, discussed, and analyzed. In the process, students will acquire a vocabulary for talking about literature, and will put to use critical reading and writing skills. They will also learn how the novel can be a window into the historical age in which it is written, illuminating issues such as colonialism, gender relations, culture, race, ethnicity, or the differences between rural and urban life. Novels selected will vary from year to year, but may include those written by Chinua Achebe, Emily Brontë, Kate Chopin, Joseph Conrad, Daniel Defoe, Charles Dickens, Antonine Maillet, Toni Morrison, Gabrielle Roy, Mary Shelley, Oscar Wilde, and others.
Winter semester – 3 lecs per week.

ENGL1002: Nature in English and American Literature (H)
Instructor: Prof. Stiles
This course explores the ways in which nature has been represented in literature. Selected works by a number of authors of fiction, non-fiction and poetry will be examined, including English writers Dorothy Wordsworth, John Clare, William Blake, and William Wordsworth, and American authors Thoreau, Emerson, Hawthorne, Whitman, Melville, and Galway Kinnell.
Fall semester – 3 lecs per week.

ENGL3000: Literature of Atlantic Canada (H)
Instructor: L. Little
Prerequisite: ENGL1000 or ENGL1001 or ENGL1002
This course focuses on the prose and poetry of the Atlantic region of Canada. We will be looking at the works we read in historical, geographical, and social context. We will also be discussing the concept of regionalism in literature. Classes will include lectures, films, videos, presentations, and discussions.
Fall semester – 3 lecs per week.
Description of Courses—Undergraduate and Technical

ENGINEERING

ENGN0100: Surveying
Instructor: TBA
An introduction to surveying principles and recording techniques. Students are given lectures and assignments to assist in understanding the principles employed in surveying, and they practise these during the labs by conducting various surveying exercises. Practice is gained in the proper use of surveying instruments (tape, level, and transit) through exercises involving measurements of horizontal and vertical distances and angles. These include chaining, stadia, benchmark, profile and contour leveling, triangulation and traverse exercises, and construction surveying, with emphasis on their application to farm construction projects.
Fall semester – 2 lecs and 3 labs per week.

ENGN0101: Horticultural Engineering
Instructor: TBA
Small gasoline engine structure and operating theory are studied, with emphasis on engine maintenance and troubleshooting. This course includes basic hydraulic theory, emphasizing the operation of common systems in use today. A wide range of horticultural machinery is studied, as well as the principles of mixing, placing, and curing concrete, fence making, and chainsaw operation.
Winter semester – 2 lecs and 3 labs per week.

ENGN0102: Soil and Water Resources Management
Instructor: Prof. Madani
This course examines the fundamentals of soil and water management with application to agriculture. The course deals with hydrology, erosion, irrigation and drainage systems, water quality related to agriculture, and water table management.
Fall semester – 2 lecs and 3 labs per week.

ENGN0200: Environmental Management
Instructor: TBA
Prerequisite: SOIL0100
Students examine the major environmental issues and risks in agricultural production. The emphasis is on how agricultural activities impact the environment and how environmental issues, regulations, and programs impact the way agricultural activities are carried out. The course will enable the student to identify the legal and other requirements for reducing the environmental risks associated with production activities, and to work with an engineer or environmental specialist in determining ways to minimize environmental risk.
Fall semester – 3 lecs and 2 labs per week.

ENGN1000: Computer Aided Graphics and Projection
Instructor: TBA
Freehand sketching, instrument drawing, and Computer Aided Drafting (CAD) techniques are used to develop proficiency in understanding and communicating in the graphical language. Experience is gained in reading and drawing orthographic, isometric, and oblique projections of objects as well as sectional and auxiliary views. Both Architectural and SI units of linear measure will be used in producing scaled drawings.
Fall semester – 2 lecs and 3 labs per week.

ENGN1001: Design and Graphics
Instructor: TBA
This course will provide students with experience in conceptual design, teamwork, and utilizing CAD. Students will develop skills such as engineering freehand sketching, 3-D visualization, and reading/production of engineering drawings. Communication via the graphical language will culminate in the presentation of design projects and solutions.
Fall semester – 2 lecs and 3 labs per week.

ENGN1002: Statics
Instructor: Prof. Rifai
A one-semester course in applied mechanics covering the topic of the static equilibrium of particles, rigid bodies, machine elements, and structures under the action of forces. Emphasis is placed on the understanding of the fundamental principles of mechanics and their application to the solution of real problems in both two and three dimensions. Vector analysis and free body diagrams are used extensively throughout the course. Specific topics include the equilibrium of particles and rigid bodies, forces in a plane and in space, equivalent force systems, equilibrium of rigid bodies in two and three dimensions, analysis of structures and machine elements, and friction. Additional topics such as distributed forces, centroids, centres of gravity, and moments of inertia will be covered as time allows.
Winter semester – 3 lecs and 3 labs per week.

ENGN1003: Properties and Mechanics of Materials
Instructor: TBA
This course covers the properties of construction materials and machine parts and how these properties affect the performance of the materials in service. This course will also include information on force equilibrium, material stress, and modes of failure. The labs will offer both analytical and shopwork experiences. Load/deformation data for materials will be demonstrated as well as destructive testing. Cutting, fitting, and welding of metals will be practised.
Winter semester – 3 lecs and 3 labs per week.
Description of Courses—Undergraduate and Technical

ENGN1004: Wood Construction Technology I
Instructor: W. Bhola
This is an introductory course in the selection, operation, and maintenance of woodworking hand and power tools. The principles of selection, operation, and maintenance of workshop tools in the modern woodworking shop are studied. Students will be required to present seminars on various fabrication techniques and construction tools. Occupational Health and Safety issues pertaining to wood shop work procedures will be covered.
Winter semester – 2 lecs and 3 labs per week.

ENGN1005: Metal Construction Technology I
Instructor: TBA
This is an introductory course to familiarize students with common metal construction technologies, machines, and tools used in a metal fabrication shop. The principles of welding and welding applications will be emphasized. Students will be required to present demonstrations on the use of various metal hand and power tools, as well as present a seminar on some form of metal fabrication technology. Occupational Health and Safety issues pertaining to metal shop work procedures will be covered.
Fall semester – 2 lecs and 3 labs per week.

ENGN2000: Environmental Impacts and Resource Management (A)
Instructor: Prof. Blanchard
Prerequisites: BIOL1002, CHEM1001
This course is an introduction to environmental engineering and technology, emphasizing a quantitative engineering approach. The course addresses the issues associated with the safe and ecologically appropriate handling, processing, storage, and utilization of organic wastes arising from human activities, including agricultural and bioresource production systems. Topics covered will include: growth models for populations of living organisms, as well as models for depletion and replenishment of natural resources; the concept of mass and energy balances applied to quantify changes in environmental systems; physical, chemical, and biological unit operations for treatment and reduction of solid, liquid, and gaseous wastes; and reduction of pollution impacts on air and water resources.
Labs will include visits to environmental treatment facilities.
Fall semester – 3 lecs and 3 labs per week.

ENGN2001: Agricultural Machinery
Instructor: Prof. Rifai
Engineering principles of farm machinery are studied, including machinery for soil preparation, planting, crop care, and harvesting. Machines and their unit operations are analyzed with respect to function, work rates, material flows, and power usage. The importance of monitoring machine performance relating to work quality and environmental effects of machine operation will be studied. Labs will emphasize safety, basic maintenance, adjustment, calibration, and performance testing.
Winter semester – 3 lecs and 3 labs per week.

ENGN2002: Introduction to Systems Analysis
Instructors: Dept. of Engineering and other NSAC Faculty
Coordinator: Prof. Sibley
Introduction to engineering principles associated with biological systems analysis. Sub-components of the system are identified and interrelationships are defined. The technical management of actual systems will include problem definition, information search, idea generation, and development of practical solutions. Through the use of case studies and guest speakers, students will appreciate the systems approach to identify the role of technological, human, and other resources in the operation of rural enterprises. The course promotes skills in teamwork, relevant case studies, written and oral presentations, and the use of computer-based decision support systems.
Fall semester – 3 lecs and 3 labs per week.

ENGN2003: Food Processing Systems (A)
Instructor: Prof. Blanchard
Prerequisites: BIOL1002, CHEM1001
This course will present an overview of food processing systems. Physical, chemical, and biological properties of foods relevant to processing preservation will be examined. An overview of various food processing unit operations will be presented; general design considerations for food plants to maintain hygienic processing conditions will be examined; and generic examples of food processing plant layout for various classes of food commodities, such as vegetables, fruits, seafood, meats, dairy, and baked goods, will be reviewed.
Winter semester – 3 lecs and 1 1/2 tutorials per week.
ENGN2004: Aquacultural Environment (A)
Instructor: Prof. Blanchard
Principles necessary for understanding and providing optimal aquatic environments for aquaculture production are reviewed. Topics in water habitat management will be emphasized, including: water properties of both fresh- and salt-water systems; water quality and reconditioning techniques; maintenance of dissolved oxygen and removal of metabolic wastes in aquaculture rearing systems; and evaluation of water resource requirements for aquaculture.
Winter semester – 3 lecs and 3 labs per week.

ENGN2005: Dynamics
Instructor: Prof. Rifai
Prerequisites: MATH1001, PHYS1000 or PHYS1002
The dynamics course represents the second class in the study of engineering mechanics. Topics include kinematics, kinetics, work and energy, and linear and angular impulse momenta of a single particle and of rigid bodies in planar motion. There will be some computer applications wherever appropriate.
Fall semester – 3 lecs and 3 labs per week.

ENGN2006: Surveying
Instructor: Prof. Havard
An introduction to surveying principles and the use of levels, transits, and global positioning systems (GPS). Horizontal and vertical measurements for construction, profile, and topographic surveys are introduced and lab exercises are stressed. Emphasis is on map preparation and interpretation, and introduction to AutoCad.
Fall semester – 3 lecs and 3 labs per week.

ENGN2007: Fluid Power Technology
Instructor: TBA
This course covers the subjects essential to understanding the design, analysis, operation, and maintenance of fluid power systems: hydraulic, pneumatic, and water. Emphasis is placed on the practical applications of fluid power and the functioning of system components such as reservoirs, pumps, compressors, motors, valves, filters, lines and hoses, and mechanical and electrical controls in typical fluid power circuits. The principles of fluid flow, pressure and force, energy conservation, and power in the context of using fluid energy to do useful mechanical work are covered. Theory is presented to emphasize how and why fluid power systems operate. General maintenance, safety, and environmental issues associated with fluid power systems are also discussed.
Winter semester – 3 lecs and 3 labs per week.

ENGN2008: Digital Electronics and Computer Interfacing
Instructor: TBA
This course covers the theory and applications of digital electronics technology and the control of digital devices by computers and programmable logic controllers (PLCs). Digital technology has become the dominant method of communication, control, sensing, computation, and amusement in modern society. This course will provide the foundation to better understand current and future digital systems. Digital logic circuits, data forms, and applications are studied. Computers in the laboratory are used to interface with and control a variety of digital devices such as computer numerical controlled (CNC) machines, robotics, cameras, scanners, lab equipment, etc. Students are introduced to Visual Basic programming for interfacing with computer ports and analog input devices. Hands-on projects are completed to control real-world applications such as traffic lights, process control and experimentation equipment.
Winter semester – 3 lecs and 3 labs per week.

ENGN2009: Metal Construction Technology II
Instructor: TBA
Prerequisite: ENGN1005
This is an advanced course in metal construction technologies using power machines (including CNC) and tools used in a metal fabrication shop. Advanced principles of welding and welding applications will be emphasized. Students will be required to present demonstrations on the use of various power machines as well as design and construct a major metal project using the skills learned in both Metal Construction Technology courses.
Winter semester – 2 lecs and 3 labs per week.

ENGN2010: Wood Construction Technology II
Instructor: TBA
Prerequisite: ENGN1004
An advanced course in the operation and maintenance of woodworking hand and power tools, and shop machinery. Students will learn about specialized machinery and advanced joinery technologies. The operation, maintenance, and repair of workshop tools in the modern woodworking shop are studied, with emphasis on re-alignment and setting up for accessories and jigs. Written work safety procedures will be reviewed. Individual projects are undertaken by students with the skills acquired in both Wood Construction Technology courses, utilizing the shop equipment.
Fall semester – 2 lecs and 3 labs per week.
ENGN3000: Electric Circuits
Instructor: Prof. Havard
Prerequisite: PHYS1003
This course covers the fundamentals of electric circuit analysis using Kirchhoff's current and voltage laws, Thevenin's, Norton's, superposition, and source transformation for DC and AC circuits. Circuit components include resistors, capacitors, inductors, voltage, and current sources. PSPICE simulation software, multimeters, and oscilloscope are used in lab exercises to familiarize students with circuits analysis.
Fall semester – 3 lecs and 2 labs per week.

ENGN3001: Engineering Measurements and Controls (A)
Instructor: Prof. Havard
Prerequisite: PHYS1000 or PHYS1002
The course examines the fundamentals for measurement of environmental parameters such as temperature, pressure, humidity, stress, and strain. Laboratory exercises demonstrate the use of electronic instruments and microcomputers. Several methods of control are investigated.
Winter semester – 3 lecs and 3 labs per week.

ENGN3002: Thermodynamics
Instructor: Prof. Havard
Prerequisite: PHYS1000 or PHYS1002
Thermodynamics is a study of energy and energy transfers in the form of work and heat, and the effect these transfers have on the properties of selected substances. First and second law analyses are covered, including entropy, availability, and efficiencies.
Fall semester – 3 lecs and 3 labs per week.

ENGN3003: Technology for Precision Agriculture
Instructor: Prof. Adsett
Prerequisite: ENGN2006 or ENGN100
This course will provide students with a fundamental understanding of the concepts and principles related to precision agriculture. This includes the technology and use of electronics in collecting and analyzing data with emphasis on spatial variability: electronic sensors, monitoring instrumentation, computer equipment, machine controllers. Nutrient management systems, application of GPS-based surveys, precision farming software (e.g. SSToolBox), geographic information system (GIS) software utilization, and GPS hardware are examined.
Fall semester – 3 lecs and 3 labs per week.

ENGN3004: Digital Circuits
Instructor: TBA
This course includes an introduction of Boolean algebra, encoders, decoders, shift registers, and asynchronous and synchronous counters, together with timing considerations. Design of asynchronous circuits, synchronous sequential circuits, and finite state machines is covered. Karnaugh mapping techniques and state tables and diagrams are taught. Programmable logic is introduced. Contemporary computer-aided design and analysis software is used throughout the course.
Fall semester – 3 lecs and 3 labs per week.

ENGN3005: Fundamentals of Chemical Engineering
Instructor: TBA
The main objective of this course is to develop the students' ability to perform mass and energy balances on reactive and non-reactive processes. Introductory topics include systems of units and a study of process variables such as temperature, pressure, and flow rate. Also covered are fundamental properties of multiphase systems: phase equilibrium, vapour pressure, phase rule, Raoult's and Henry's Laws, and colligative properties. Emphasis is placed on developing problem-solving skills.
Winter semester – 3 lecs and 2 labs per week.

ENGN3006: Strength of Materials
Instructor: Prof. Adsett
Prerequisites: ENGN1002, MATH1001, and PHYS1000 or PHYS1002
This course presents an introduction to the basic principles of stress, strain, and stability, and the response of engineering materials to the application of force and force-induced effects. Topics include definition of stress/strain, stress/strain diagrams for ductile and brittle materials, axially loaded members, torsion, shear force and bending moment, stability and buckling, and biaxial stress and strain.
Winter semester – 3 lecs and 2 labs per week.

ENGN3007: Structures and Their Environment (A)
Instructor: TBA
This is a general agricultural structures course that covers an introduction to design process and various topics related to the use of building materials. Ventilation principles are presented. Functional layouts of storage and production buildings are considered. Field trips supplement the lecture material. A term paper is required.
Fall semester – 3 lecs and 3 labs per week.
ENGN3008: Circuit Analysis
Instructor: Prof. Havard
This course covers advanced circuit analysis techniques, starting with sinusoidal excitation. The concepts of phasors and complex impedance are fully developed. Mutual inductance and magnetically coupled coils are used to introduce transformer behaviour and performance. Real and reactive power flow is covered before the introduction of balanced three-phase circuits for power distribution. Symmetrical components are introduced as a means of dealing with unbalanced networks. The concepts of grounding and harmonics are also introduced. Winter semester – 3 lecs and 3 labs per week.

ENGN3009: Materials Handling and Processing (A)
Instructor: Prof. Adsett
Prerequisite: MATH1001
Preparatory: PHYS1000 or PHYS1002
Basic operations in on-farm materials handling and processing are covered. Operations are described mathematically and discussed in relation to material flow rates and energy requirements. Electric power is discussed with respect to on-farm distribution, demand sizing, controls, and safety. Laboratory topics include electric circuits, motors, pumps, grain drying, solid materials conveyors, and milking systems. Fall semester – 3 lecs and 3 labs per week.

ENGN3010: Soil and Water (A)
Instructor: Prof. Madani
Prerequisite: MATH1001
This course covers the hydrologic cycle and its components; basic soil/water/plant/atmosphere relationships; drainage theory and design; and irrigation systems and design. Crop water requirements, water supply, water conveyance, and salinity control are discussed. Emphasis is placed on water table management and agricultural water management. Fall semester – 3 lecs and 3 labs per week.

ENGN3011: Fluid Mechanics
Instructor: Prof. Madani
Prerequisite: ENGN2005 or permission of the instructor
A study of physical properties of liquids and gases, fluid statics, and fluid flow including pressure, manometry, hydrostatic forces, stream lines and tubes, continuity, momentum, Bernoulli equation, energy equation, flow measurement, viscous flow, and dimensionless numbers. Winter semester – 3 lecs and 2 labs per week.

ENGN3013: Aquacultural Engineering (A)
Instructor: Prof. Blanchard
Support facilities, equipment, and systems for aquatic production will be examined. Topics studied will include: selection of component materials and structures suitable for confinement, protection, and growth of aquaculture species; principles of design and selection of equipment for recirculation systems for aquaculture; and the principles of water flow and handling in open and closed conduits. Winter semester – 3 lecs and 3 labs per week.

ENGN3015: Irrigation and Drainage
Coordinators: Profs. Havard and Madani
This course examines basic soil/water/plant/atmosphere relationships. It introduces students to soil and water conservation and management principles. The course covers irrigation and drainage of golf courses, athletic areas, parks, and residential landscapes. Students who are required to take ENGN3010 may not take ENGN3015 for credit. Fall semester – 2 lecs and 3 labs per week. Offered in alternate years; next offered in 2007/2008.

ENGN3016: Engineering Economy
Instructor: Prof. Adsett
This course deals with the economics of decision-making. After introducing fundamental concepts and cash-flow diagrams, interest factors are dealt with in some detail. A variety of discounted cash-flow techniques are covered, including rate-of-return calculations. Inflation, accounting, tax, and risk are also among the topics considered. Winter semester – 2 lecs and 3 labs per week.

ENGN3017: Design Project
Instructor: Prof. Sibley
Prerequisites: ENGN1001, ENGN3006
This self-study course provides a project-based exercise in the engineering design process. Students work in teams and as individuals on defined projects that utilize knowledge and skills in graphics, statics, computing, and mechanics of materials. The projects encompass conceptual design, detailed analysis, engineering drawings, experimentation, physical model fabrication, laboratory testing, and preparation of professional reports. Winter semester – 4 labs per week.
Description of Courses—Undergraduate and Technical

ENGN3018: Technology Modules
Instructor: TBA
This course deals with the operating concepts of CNC machines, plastics forming and construction technology, and transportation technology in a modular format. Approximately 4 weeks will be allocated to the study of each module area. The students will be able to perform operations in each technology area upon completion of the appropriate module. Practical hands-on laboratory and shop experiences are emphasized, as are associated aspects of Occupational Health and Safety. Students will also make presentations to the class regarding specific features and operations of the technologies studied.
Winter semester – 5 lecs per week.

ENGN3019: Communications Technology
Instructor: TBA
This course addresses issues, systems, and methodology in computer-related communications technology. Among the topics studied are desktop publishing, digital photography and image editing, video production, web page design, and presentation software usage. Supplementary classes in graphic design and screen printing will be available as time allows. Emphasis is placed on practical production techniques and individual design situations.
Fall semester – 5 lecs per week.

ENGN4000: Water and Water Quality Management (A)
Instructor: Prof. Madani
Relationship between agriculture and water quality, chemical use, water quality monitoring techniques, animal waste and water quality, non-point source pollution, and best management practices to reduce chemical leaching to surface water and groundwater are discussed. Soil erosion, soil conservation practices, Universal Soil Loss Equation (USLE) and Revised USLE (RUSLE) are covered. Artificial wetland and its relation to agricultural and waste management is also discussed.
Winter semester – 3 lecs and 3 labs per week.

ENGN4001: Water Quality Issues (A)
Coordinator: Prof. Madani
Prerequisite/Corequisite: ENGN4000
Current environmental water quality issues such as contamination of surface and ground water are discussed. Emphasis is placed on providing solutions to the water quality problems. Agricultural water quality models will also be examined.
Winter semester – 3 lecs per week. Offered in alternate years; next offered in 2007/2008.

ENGN4002: Management of Mechanized Agricultural Systems (A)
Instructor: Prof. Adsett
Prerequisite: MATH1001 or PHYS1000 or PHYS1002
Preparatory: MGMT2003
Principles of engineering economics are applied to agricultural investment alternatives, primarily as related to mechanized systems. Field operations from soil tillage to crop harvest are examined with respect to machine performance, power requirement, timeliness, and machinery selection. Effects of soil and climate are included. Laboratory sessions include problem tutorials and visits to selected farms. A term project applies the techniques presented in the course to practical management decisions in production or processing operations of the student's interest.
Winter semester – 2 lecs and 3 labs per week.

ENGN4003: Senior Design Project for Engineers I
Instructor: Engineering Faculty
Coordinator: Prof. Sibley
Senior engineering students gain first-hand experience in applying design principles and practices by undertaking a real-world design project. Students are expected to display a high level of initiative and ingenuity in carrying out the project through its various design stages. As well, students will gain proficiency with an engineering project's written and oral communication requirements by keeping a project log book, preparing written project proposals and reports, and orally presenting their design project in a seminar format.
Fall semester – 1 lec and 5 labs per week.
ENVIRONMENTAL SCIENCES

ENVS2000: Environmental Studies I (A)
Coordinator: Prof. Brewster
Prerequisites: 8 technical or degree course credits
This is the first of a two-semester course sequence that deals with environmental issues from both an agricultural and a socio-economic basis. The scientific principles of each issue will first be outlined and explained, and then the agricultural and socio-economic aspects of the issue will be examined. The topics to be emphasized in this course will include issues associated with population growth, the atmosphere, and the hydrosphere. Students will be expected to show their understanding of the interplay between agriculture and environmental issues by writing a major term paper.
Fall semester – 3 lecs and 1 tutorial per week.

ENVS2001: Environmental Studies II (A)
Coordinator: Prof. Brewster
Prerequisite: ENVS2000
This is the second of a two-semester course sequence that deals with environmental issues from both an agricultural and a socio-economic basis. All aspects of the issues will be integrated together to provide an overall view of each issue. The topics to be emphasized in this course will include issues associated with biodiversity, the lithosphere, waste management, and legal aspects of the environment. Students will be expected to show their understanding of the interplay between agriculture and environmental issues by writing a major term paper.
Winter semester – 3 lecs and 1 tutorial per week.

ENVS2002: Composting and Compost Use (A) DE
Instructor: Prof. Lynch
Composting and the utilization of organic matter produced on the farm provide the basis for soil fertility in organic systems; however, potential benefits derived from compost use are often limited by the supply and quality of composts produced on-farm. The objective of this web-based course is to teach composting primarily by providing students with the opportunity to make their own compost over a period of 13 to 15 weeks. Students learn through five stand-alone modules*: Composting of Organic Materials (how the underlying principles of composting are applied when combining various feedstock materials for composting); Composting Process (how to evaluate and manage an actively working pile and troubleshoot to maintain optimum conditions for composting); On-Farm Composting (efficient and low-cost composting methods for agricultural composting at various scales); Compost Quality (how to evaluate the quality of the finished compost, as well as the quality requirements of various standards, markets, and end uses for compost); and Compost Utilization and Marketing (considerations and requirements for the optimum use of compost in organic greenhouse crop production and organic farming systems, as well as factors which are important in the marketing of compost).
* Note that making compost and completing all five modules will be a requirement for students who are taking the course for credit. Students who are not taking the course for credit may also decide to make compost and complete all five modules; however, this is not a requirement for non-credit students. To provide maximum flexibility for non-credit students, the modules are offered as independent (stand-alone) units. Students may take either ENVS2002 or ENVS4004 but not both for credit.
Fall semester.
DE – only offered as a web-based distance education course

ENVS3000: Environmental Impact
Instructor: Prof. Stratton
Prerequisites: ENVS2000, ENVS2001
An introduction to the study of environmental toxicity and ecotoxicology as they are used to predict the environmental impact of agricultural, industrial, and other xenobiotics and associated processes. The laboratory portion of the course will deal primarily with bioassay techniques.
Fall semester – 3 lecs and 3 labs per week. Offered in alternate years; next offered in 2007/2008.
ENVS3001: Environmental Sampling and Analysis
Instructors: Dept. of Environmental Sciences Faculty
Coordinator: Prof. Nams
Prerequisites: STAT3000, CHEM2000
This course will introduce students to the proper methods of sampling for biological and chemical analyses, as well as for environmentally oriented surveys. Several analytical methods will be introduced for chemical analyses, including spectrophotometry, electrochemistry (pH and ion selective electrodes), and chromatography. Emphasis will be given to the actual collection of samples and their subsequent analysis.
Fall semester – 3 lecs and 3 labs per week.

ENVS3002: Waste Treatment and Site Remediation (A)
Instructor: Prof. Stratton
Prerequisite: ENVS2001
This course will examine the following topics: pollution from wastes, waste disposal and treatment, the use of wastes, wastes as resources, recycling, composting, waste reduction, incineration, biomass from wastes, biogas production, site remediation, and bioremediation. Agricultural wastes will be emphasized throughout the course.
Winter semester – 3 lecs and 3 labs per week.

ENVS3003: Environmental Studies Field Course
Coordinator: Prof. Hoyle
Prerequisites: 30 degree credits, including ENVS2000 and ENVS2001
This course is designed to provide students with an opportunity to pursue a holistic approach to solve real environmental problems. It will be of 12 days’ duration and will be held at (an) environmentally significant site(s). Students will be expected to pre-plan and to perform on-site analyses to identify any environmental problems. An interim report of findings will be required during the course. After completion of the field work, students are expected to write a report of their findings with appropriate recommendations regarding solutions to identified problems.
Students should contact the course instructor prior to October 15 in the preceding Fall semester for scheduling information about the course. Expenses associated with the course are the responsibility of the student.
The course is offered subject to enrollment.
Summer session – 12-day course.

ENVS3004: Principles of Pest Management (A)
Instructor: Prof. Sampson
Prerequisites: BIOL1001, BIOL1002
An investigation of the philosophy of pest management. Topics will include the study of different approaches to pest management and an assessment of the use of single versus integrated pest control options. Costs of pest control from economic, social, and environmental perspectives will be discussed.
Fall semester – 3 lecs and 3 seminar periods per week.

ENVS4000: Pesticides in Agriculture (A)
Coordinator: Prof. Sampson
Preparatories: BIOL2005, BIOL3000, BIOL3002
A course dealing with various aspects of pesticides used in agriculture. The course will look at pesticides from their origin and development to their registration, sale, distribution, and use. Also included are discussions of safety and toxicology.
Winter semester – 3 lecs and 3 discussion periods per week.

ENVS4002: Economic Entomology (A)
Instructor: Prof. Le Blanc
Prerequisite: BIOL3000
An introduction to the study of economic entomology from an agricultural perspective. Principles of insect control (natural, mechanical, physical, cultural, biological, and legal) are covered. Includes chemical and biochemical control, and insecticide development, formulation, and application. This course stresses the theory of integrated pest management (IPM).
Winter semester – 3 lecs and 3 labs per week.

ENVS4003: Applied Weed Science (A)
Instructor: Prof. Sampson
Prerequisite: BIOL3002
Deals with principles of weed science from an ecological perspective. Included are discussions on ecology and management of weeds in traditional agro-ecosystems as well as in low-input sustainable agricultural systems. The roles of biological, cultural, and chemical control in these systems will be stressed.
Winter semester – 3 lecs and 3 labs per week.
EXTENSION EDUCATION

EXTE3000: Extension Education in the Rural Community (H)
Instructor: Prof. Sanderson
Prerequisite: at least third-year standing
The aim of this course is to provide students with a basic understanding of the principles and theories of extension education in rural society. The first part of the course will discuss trends in the rural community which affect the extension education process. Principles and procedures in conducting extension programs will be examined in the second part of the course. Through the utilization of guest lecturers and class presentations, past and present extension efforts in the Maritimes will be analyzed in the final section of the course. Students will be required to prepare a major class presentation.
Fall semester – 3 lecs per week. Offered in alternate years; next offered in 2008/2009.

EXTE3001: Leadership Development and the Social Action Process (H)
Instructor: Prof. Sanderson
Prerequisite: at least third-year standing
Students will be looking at leadership development from a number of angles: current theories, leader identification, and leadership skills. The impact of leadership on the social action process will be analyzed in the context of rural communities. Analysis of the social action process will focus on participatory approaches to rural community development and extension. Students will have the opportunity to enhance personal leadership skills through discussion and practice.
Fall semester – 3 lecs per week. Offered in alternate years; next offered in 2007/2008.

FOOD SCIENCE

FOOD0020: Topics in Agriculture & Food Enterprise Management
Coordinator: Norman Goodyear
Students participate in an examination of the structure of agri-food industry and of the context in which individual enterprises operate. They are required to identify current issues facing the agri-food industry at all levels, and to examine their potential impact on sustainability and opportunities in the Atlantic Canadian industry.
This is a Workplace Readiness course required in the Food Retail and Farming options of the Diploma in Enterprise Management.
Winter semester – 1 lec per week for 12 weeks.

FOOD0100: Food Components, Selection and Preparation, and the Human Diet
Instructor: TBA
Students examine the nature and make-up of food products with an emphasis on the role the major components (carbohydrates, fats, proteins, water, minerals) play in the human diet and human health. The impact of these components on food quality deterioration is also examined. An introduction to the process of food selection and preparation, from the “early morning evaluation” to the end result is a key component of the course. Students examine the different factors (e.g. diet choices, lifestyle, and advertising) that influence consumer food selections, and examine how product and product quality information can be used to assist consumers in making food selections. They also examine preparation methods for meats, fish, shellfish, and produce, and discuss methods that are best suited to different foods or consumer needs.
Winter semester – 1 lec and 2 labs per week.

FOOD0200: Food Safety and Quality Management
Instructor: TBA
Prerequisites: PLSC0203, ANSC0118
This course provides an integrated understanding of the various scientific aspects of food safety (microbiological, chemical, physical) as well as an overview of government legislation pertaining to food safety standards. Various quality systems (HACCP, TQM, ISO standards) are discussed and their relevance to the agri-food industry explored.
Fall semester – 1 lec and 2 labs per week.
FOOD3000: Food Quality Assurance (A)
Instructor: Prof. Pitts
Prerequisite: MATH1000
The various quality philosophies (QC, QA, TQM) will be studied with respect to their industrial application. The course will centre on the use of control charts to monitor processes and to evaluate the quality of both incoming raw materials and the finished product. Students will gain first-hand experience in the design and implementation of ISO 9000 and HACCP systems in the commercial food industry. The application of these principles to other manufacturing processes and/or data acquisition will be discussed. Consideration will also be given to recognizing the quality criteria required by some international customers. Winter semester – 3 lecs and 3 labs per week.

FOOD3001: Functional Foods and Nutraceuticals
Instructor: Prof. Rupasinghe
Prerequisite: CHEM2000
Interest in functional foods and nutraceuticals is growing rapidly and it has emerged as a new frontier of the agri-food and nutrition industry worldwide. This course provides a basic scientific knowledge on bioactive plant compounds (phytochemicals) present in functional foods and nutraceuticals. Emphasis will be given to phytochemical biosynthesis, classification, distribution among food and medicinal crops, analysis, and current scientific knowledge on the potential health benefits of the bioactive phytochemicals. The course also introduces global marketing trends, government regulations, principles of designer food, and value-added food processing concepts in functional foods and nutraceuticals.
Fall semester – 3 lecs and 3 labs per week.

FREN1000: French Language I (H)
Instructor: J. Lynds
Prerequisite: Grade 12 French or equivalent within the last five years
This course is designed to fill the needs of students who have studied French in high school and is intended to review grammar and provide an opportunity to polish and refine language skills. Classes will emphasize basic grammatical structures, pronunciation, listening comprehension, and speaking skills. FREN1000 is designed to provide the student with opportunities to use the language and enhance written, spoken, and comprehension skills. This course is not intended as an introduction to the French language. Students whose first language is French or who are fluent in the French language are not eligible to take this course.
Fall semester – 3 lecs per week.

FREN1001: French Language II (H)
Instructor: J. Lynds
Prerequisite: FREN1000
This course is designed to fill the needs of students who have already studied French, and is intended to review grammar and provide an opportunity to refine language skills. Classes will emphasize basic grammatical structures, pronunciation, listening comprehension, and speaking skills. FREN1001 is designed to provide the student with opportunities to actively use the language. This course is intended not as an introduction to French language but as a review and continuation of the major aspects of FREN1000. It is expected that students have a basis grasp of French grammar and some vocabulary. This course is not suitable for students whose first language is French or who are fluent in the French language.
Winter semester – 3 lecs and 2 tutorials per week.
GENETICS

GENE2000: Genetics
Instructor: Prof. McLean
Study of heredity and variation in plants and animals, including man; the relationships of genetics to evolution and breeding practices.
Fall semester – 3 lecs and 2 labs per week.

GENE3000: An Introduction to Molecular Genetics
Instructor: Prof. Wang-Pruski
Prerequisites: GENE2000 and one course in biochemistry
The objective of this course is to provide students with a general foundation in molecular genetics and recombinant DNA technology. Replication, transcription, protein synthesis, recombinant DNA, and the regulation of gene expression in procaryotes and eucaryotes will be studied in detail. Ethical and legal issues related to the production, testing, and ownership of genetically engineered organisms will be discussed. In the laboratory, students will be exposed to a range of molecular genetic techniques, including isolation and restriction site mapping of bacterial plasmids, bacterial transformation, isolation and restriction enzyme digestion of genomic DNA, and PCR amplification. Students completing this course will be able to read original research papers in the molecular genetic literature, and will be prepared for advanced training in molecular biology, plant breeding, or animal breeding.
Winter semester – 3 lecs and 3 labs per week.

GENE3001: Population and Quantitative Genetics
Instructor: Prof. Patterson
Prerequisites: GENE2000, STAT2000
An introduction to population and quantitative genetics, with particular emphasis on the forces causing genetic change in populations. Applications from natural populations, conservation biology, and plant and animal breeding will be used to illustrate theories of evolution and modern breeding methods. Contemporary ideas about evolution at both the molecular and organismal levels will be explored. Laboratory sessions include discussion of concepts and use of computer simulations to model populations under natural and artificial selection.
Winter semester – 3 lecs and 2 lab/discussion periods per week. Offered in alternate years; next offered in 2007/2008.

GENE4000 (AS465): Molecular Applications to Animal Production
Instructor: Prof. Farid
Prerequisites: CHEM3001 (or CHEM2005), GENE3000
This upper-level course is designed for students interested in the molecular and cellular techniques that are being applied to animal production systems and research. Topics include molecular techniques used in research, DNA fingerprinting, marker-assisted selection, embryo IVF/sexing/nuclear transfer, recombinant protein production, the use of recombinant microbes in ruminants, and stem cell and transgenic animal production.
Fall semester – 3 lecs and one 3-period lab or tutorial per week.

GENE4003: Biotechnology
Instructor: Prof. Wang-Pruski
Prerequisite: GENE2000
Biotechnology includes generation of new medicine, generation of biofuel, new chemicals and materials, removal of pollutants, and production of better and safer foods. The objective of this course is to provide students with general information on the theory and technologies that are currently used in biotechnology. Course topics will include gene identification, transformation and expression regulations, tissue culture and cell culture techniques, and other genomics-related agricultural applications. Nutraceutical and pharmaceutical applications will be addressed.
Winter semester – 3 lecs and 3 labs per week. Offered in alternate years; next offered in 2007/2008.
GEOGRAPHY

GEOG1000: Introductory Human Geography (H)
Instructor: TBA
This course is an introduction to the field of Human Geography. The objectives of the course are to present the spatial point of view on human/land interactions. Lectures, readings, and assignments consider geographical patterns, processes, and problems in rural and urban settings. Some emphasis will be given to the Canadian and Atlantic region contexts.
Winter semester – 3 lecs per week.

GEOG3000: Rural Geography (H)
Instructor: TBA
Prerequisite: GEOG1000
This course focuses on rural geographic problems in Canada and the Atlantic region. Discussion will include, for example, rural land use issues, settlement dynamics, rural resource problems, urban/rural interaction, agricultural change, rural well-being, and rural planning. The geographic perspective emphasizes spatial variability and human/land interactions.
Winter semester – 3 seminar hours per week.

GEOLOGY

GEOL2000: Introduction to Geology
Instructor: Prof. Brewster
Topics covered in this course are: materials of the earth, structure of the earth and plate tectonics, and landscape development. Geological factors important in soil formation will be stressed. Labs include mineral and rock identification, topographic map interpretation, and a field trip.
Winter semester – 3 lecs and 3 labs per week.

HISTORY

HIST1000: Introduction to Canadian History I: 1000–1867 (H)
Instructor: M. MacLeod
This course introduces students to the theory and practice of history through a general historical survey of Canadian history for the period from approximately 1000 CE [Common Era] to about the mid-19th century. Historical theories and methodologies will be introduced in this course. A social and/or cultural approach is emphasized, with focus on Aboriginal peoples and Contact; Acadia and New France; and British North America to Confederation.
Fall semester – 3 lecs per week.

HIST1001: Introduction to Canadian History II: 1867–Present (H)
Instructor: M. MacLeod
This course will examine the problem of modernity, through an exploration of Canadian history from the mid-19th century through to the present. Political, social, and cultural developments and transformations will be emphasized. In addition to the exploration of Canadian history from Confederation to the present, students will be introduced (or, in the case of those who have previously taken Introduction to Canadian History I, reintroduced) to concepts, theories, and methodologies employed in historical study.
Winter semester – 3 lecs per week.

HIST3000: Rural History (H)
Instructor: Prof. Stiles
Prerequisite: HIST1000 or HIST1001
This course will introduce students to selected problems in the study of rural history. Problems to be considered in at least two time periods may include the following: the problem of change in rural society, vis-à-vis industrialization; the intersection of national, ethnic, and other “identity” with rurality; the changing nature of work in rural societies; rural political movements; idealizations or distortions related to the concept of rural; agriculture and other “cultures” in the rural context of the past.
Winter semester – 3 lecs per week.
HORTICULTURE

HORT0100: Landscape Plants I
Instructors: Profs. Morton and Olson
Herbaceous and woody plants are studied with respect to their identification, landscape value and use. Special groups of plants to be studied include plants with fall interest, shade-loving plants, groundcovers, and vines, as well as many other plants suited to Atlantic landscapes. The lab involves the study of plant families, plant morphology, use of plant keys, plant collecting, and preparation of herbarium specimens. A plant collection is required.
Fall semester – 3 lecs and 2 labs per week.

HORT0101: Landscape Plants II
Instructor: TBA
Herbaceous, woody, and aquatic plants are studied with respect to their identification, landscape value, and use. Special plant groups covered in the course include interior plants, culinary herbs, plants with special growth habits, native plants, and bog and marginal plants for aquatic gardens, in addition to many other plants for Atlantic landscapes. The recognition of deciduous woody plants by their winter wood characteristics is included.
Winter semester – 3 lecs per week.

HORT0102: Turfgrass Production and Management
Instructor: Prof. Daniels
A study of cool-season turfgrasses, their characteristics, and proper usage. The establishment, maintenance, and renovation of turfgrass will be studied. Cultural topics covered will emphasize proper fertilizing, watering, and pest control.
Fall semester – 3 lecs and 2 labs per week.

HORT0103: Landscape Horticulture I
Instructor: Prof. Goodwin
An introduction to landscape horticulture. Plant/environment interaction and the fundamental principles governing plant growth are discussed, as well as the functional uses of ornamental plants in the contemporary landscape. Laboratory exercises will concentrate on the basic skills associated with the use of plants in the landscape.
Fall semester – 3 lecs and 3 labs per week.

HORT0200: Landscape Plant Nursery Management
cross-referenced as HORT2009
Instructor: Prof. Mapplebeck
Prerequisite: AGRI1000 or PLSC0100
Preparatory: BIOL2002 or BIOL0102
Nursery crops are those plant materials generally used for outdoor landscape plantings, including trees, shrubs, vines and other plants having persistent woody stems, and all herbaceous perennials. This course will examine the selection, propagation, growing, handling and marketing of these materials. The course uses an entrepreneurial approach with emphasis on the importance of new plant introductions, and plant and landscaping trends analysis. The course also examines the nursery industry from the standpoint of where it fits into the "bigger picture", i.e. the overall "green" industry.
Winter semester – 3 lecs and 2 labs per week.

HORT0201: Greenhouse and Floriculture Crop Management
cross-referenced as HORT2010
Instructor: Prof. Mapplebeck
Prerequisite: AGRI1000 or PLSC0100
Preparatory: BIOL2002 or BIOL0102
Greenhouse and floriculture crop production is one of the most exacting specialties in the many areas of agriculture. It is the only type of crop production where almost complete control of plant growth is achieved, with the modification of environmental conditions. This is obtained through atmosphere modification (increasing CO2 levels); temperature control; control of light, nutrition and water; the application of growth-modifying chemical regulators; and pest control. Greenhouse management can therefore be one of the most interesting and intriguing of the agricultural sciences. This course will examine the greenhouse, its environment, and the production of crops in this environment, plus outdoor cut-flower production.
Fall semester – 3 lecs and 2 labs per week.

HORT0202: Small Fruit Crops
cross-referenced as HORT2007
Instructor: Prof. Ju
The course consists of the study of strawberry, blueberry, raspberry, cranberry, currant, gooseberry, kiwi, elderberry, Saskatoon berry, and grape production. Aspects of propagation through to harvesting and marketing of each crop is discussed. Some aspects of organic production of small fruits are included. Origins, adaptation, and distribution of each crop are examined. New small fruit crop development for nutraceuticals is covered.
Note: Field trips to small fruit farms, small fruit crop nurseries, and research institutes are included during the term.
Fall semester – 3 lecs and 2 labs per week.
Description of Courses—Undergraduate and Technical

HORT0203: Tree Fruit Crops
cross-referenced as HORT2006
Instructor: Prof. Ju
Tree fruit production with emphasis on resource conservation is investigated in relation to the region. Origins, history, biosystematics, adaptation, and culture of tree fruits, including organic systems, are studied. Propagation, pruning, training, harvesting, and marketing of these crops are covered in this course.
Winter semester – 3 lecs and 2 labs per week.

HORT0204: Landscape Plants III
Instructor: Prof. Goodwin
Herbaceous, woody, and aquatic plants are studied with respect to their identification, use, and value in landscape settings. Special plant groups included in the course include woodland plants, sensory plants, container plants, medicinal herbs, xeric plants, submerged and floating aquatic plants, and salt-tolerant plants, in addition to many other plants for Atlantic landscapes. The recognition of woody plants by their winter wood characteristics is included.
Fall and Winter semesters – 2 lecs per week.

HORT0205: Residential Landscape Design and Construction
Instructor: Prof. MacKenzie
Prerequisites: ENGN1000, HORT0100, HORT0103, HORT0209
Residential landscape design and construction are studied. A systematic and practical approach to design is emphasized. Sketching is a component of this course. Students are taught both computer and conventional drafting to facilitate their design work.
Winter semester – 3 lecs and 3 labs per week.

HORT0207: Arboriculture
Instructor: Prof. MacKenzie
Prerequisite: HORT0103
Emphasis is placed on arboriculture theory and practice. Tree problems arising from pest and disease injury, as well as environmental and non-parasitic injury of trees, will be addressed. The course will focus on the tree in an urban environment. Laboratory exercises concentrate on specific arboriculture skills and techniques.
Fall semester – 3 lecs and 3 labs per week.

HORT0208: Landscape Maintenance
Instructor: Prof. Goodwin
Prerequisites: ENGN0101, HORT0102, HORT0103
Provides an overview of site management. Time studies, scheduling of horticultural work, and management techniques are included. Plant healthcare strategies, including pesticides and their application, are discussed, and provincial pesticide applicator exams are written in preparation for licensing. A calendar of landscape maintenance tasks will be developed by the student.
Winter semester – 3 lecs and 2 labs per week.

HORT0209: Landscape Horticulture II
Instructor: Prof. Goodwin
Prerequisite: HORT0100
Prerequisite/Corequisite: HORT0103
A study of herbaceous plants and their uses in landscape. Special plant groups, gardening techniques, and styles will be examined. Both computer and conventional methods of drafting will be utilized in design.
Fall semester – 3 lecs and 2 labs per week.

HORT0210: Landscape Design and Construction
Instructor: Prof. MacKenzie
Prerequisite/Corequisite: ENGN0101
Advanced landscape planning and construction will be discussed. Such topics as site grading, paving, retaining walls, decks, landscape lighting, water features, commercial landscapes, and estimating are included. Students will be required to estimate material and labour requirements for lab projects and create construction drawings and specifications.
Winter semester – 3 lecs and 3 labs per week.

HORT0211: Vegetable Production
cross-referenced as HORT2000
Instructor: Prof. Goodyear
Preparatory: AGRI1000 or PLSC0100
Production technology for the major vegetables grown in the Atlantic region are studied in detail, including botanical and horticultural characteristics, soil and fertility requirements, cultivar selection, pest management, and harvest and storage requirements. Commercial vegetable enterprises are visited.
Fall semester – 3 lecs and 2 labs per week.
HORT2000: Vegetable Production (A)
cross-referenced as HORT0211
Instructor: Prof. Goodyear
Preparatory: AGRI1000 or PLSC0100
Production technology for the major vegetables grown in the Atlantic region are studied in detail, including botanical and horticultural characteristics, soil and fertility requirements, cultivar selection, pest management, and harvest and storage requirements. Commercial vegetable enterprises are visited.
Fall semester – 3 lecs and 2 labs per week.

HORT2001: Principles of Organic Horticulture (A) DE
Instructor: Prof. Goodyear
Preparatory: AGRI1000 or PLSC0100
Study of the principles that form the basis for organic production systems. Special attention is given to soil fertility, organic soil amendments, compost and mulches, crop rotation, plant health, management of diseases and pests, companion planting, and produce storage/handling and marketing. Seminar topics will include making the transition to organic production, and definition and legislation of organic food in Canada.
Fall semester.
DE – only offered as a web-based distance education course.

HORT2003: The British Garden
Instructor: Prof. Goodwin
The history of British landscape development is studied, supported by visits to gardens that exemplify period design. Period garden features and the design philosophy that fostered the evolution of landscape development will be discussed. The maintenance and management of these landscapes will be examined. North American and British landscape maintenance standards and techniques will be compared. Plant identification will be a component of this course. This course involves self-directed study.
The course is offered in England, subject to enrollment. Expenses associated with the course are the responsibility of the student.
Summer semester – 4 weeks intensive.

HORT2004: Introduction to Viticulture (A)
Instructor: Prof. Percival
Prerequisite: BIOL1002 or BIOL0102
Note: Students taking this course must be 19 years of age or older.
This course on viticulture in the Atlantic region will initially examine the taxonomy, morphology, physiology, and biochemistry of grapevine growth and fruit maturation. Emphasis will be placed on the environmental regulation of grapevine growth, development, yield and composition, and management strategies to optimize grape production in cool-climate viticulture production areas. Included will be an examination of the importance of site selection, soil management, grapevine cultivars, rootstocks, clones, production systems, and vineyard establishment. Cultural management practices including pruning, training, canopy management, crop control, and mechanization will be discussed, and an overview of pest pressures and other environmental concerns including winter hardiness will be covered. Lastly, the harvesting and vinification of wine grapes will be examined with the inclusion of “hands-on” laboratory sessions at a commercial vineyard and winery. Successful completion of the course should prepare students for upper-division courses in viticulture and oenology.
Fall semester – 3 lecs and 3 labs per week.

HORT2005: Design & Construction of Turf Facilities
Instructor: Prof. Daniels
Includes the interpretation and implementation of design and construction plans for various facilities such as golf courses and recreational fields. Topics include understanding the basic concepts involved in golf course construction, individual components of a golf course, design and construction of sport turf facilities, and development and maintenance of high-end facilities, including those using synthetic turfgrass. Emphasis will be placed on the special considerations needed to “grow in” a new turf in each of these situations.
Winter semester – 2 lecs and 3 labs per week.

HORT2006 (HORT3002): Tree Fruit Crops (A)
cross-referenced as HORT0203
Instructor: Prof. Ju
Tree fruit production with emphasis on resource conservation is investigated in relation to the region. Origins, history, biosystematics, adaptation, and culture of tree fruits, including organic systems, are studied. Propagation, pruning, training, harvesting, and marketing of these crops are covered in this course.
Winter semester – 3 lectures and 2 labs per week.
Description of Courses—Undergraduate and Technical

HORT2007 (HORT3003): Small Fruit Crops (A)
cross-referenced as HORT0202
Instructor: Prof. Ju
The course consists of the study of strawberry, blueberry, raspberry, cranberry, currant, gooseberry, kiwi, elderberry, Saskatoon berry, and grape production. Aspects of propagation through to harvesting and marketing of each crop is discussed. Some aspects of organic production of small fruits are included. Origins, adaptation, and distribution of each crop are examined. New small fruit crop development for nutraceuticals is covered.
Note: Field trips to small fruit farms, small fruit crop nurseries, and research institutes are included during the term.
Fall semester – 3 lecs and 2 labs per week.

HORT2009 (HORT3005): Landscape Plant Nursery Management (A)
cross-referenced as HORT0200
Instructor: Prof. Mapplebeck
Prerequisite: AGRI1000 or PLSC0100
Preparatory: BIOL2002 or BIOL0102
Nursery crops are those plant materials generally used for outdoor landscape plantings, including trees, shrubs, vines and other plants having persistent woody stems, and all herbaceous perennials. This course will examine the selection, propagation, growing, handling and marketing of these materials. The course uses an entrepreneurial approach with emphasis on the importance of new plant introductions, and plant and landscaping trends analysis. The course also examines the nursery industry from the standpoint of where it fits into the “bigger picture”; i.e. the overall “green” industry.
Winter semester – 3 lecs and 2 labs per week.

HORT2010 (HORT3004): Greenhouse and Floriculture Crop Management (A)
cross-referenced as HORT0201
Instructor: Prof. Mapplebeck
Prerequisite: AGRI1000 or PLSC0100
Preparatory: BIOL2002 or BIOL0102
Greenhouse and floriculture crop production is one of the most exacting specialties in the many areas of agriculture. It is the only type of crop production where almost complete control of plant growth is achieved, with the modification of environmental conditions. This is obtained through atmosphere modification (increasing CO2 levels); temperature control; control of light, nutrition, and water; the application of growth-modifying chemical regulators; and pest control. Greenhouse management can therefore be one of the most interesting and intriguing of the agricultural sciences. This course will examine the greenhouse, its environment, and the production of crops in this environment, plus outdoor cut-flower production.
Fall semester – 3 lecs and 2 labs per week.

HORT3000: Environmental Processes and Natural Landscape Functions
Coordinator: Prof. MacKenzie
The structure, functions, and dynamics of landscapes that are altered by human design are discussed. Key ecological processes and their disruption, landscape modification, and landscape planning and management will be examined. Students are expected to participate in field work, and to engage in self-directed study.
Fall semester – 3 lecs and 3 labs per week.

HORT3001: Landscape Project Management
Instructor: Prof. MacKenzie
Prerequisite: a previous course in landscape design and construction
This is an advanced course in landscape design, estimating, and construction. Principles and processes for cost estimating will be studied, using actual landscape projects and considering local building codes and regulations. Computers will be utilized in the process.
Fall semester – 3 lecs and 3 labs per week.

HORT3006 Landscape Horticulture Work Program II
Instructor: Prof. Goodwin
Students are required to work under contract in the landscape trade during the Spring semester. The type of work experience gained must be different than that gained in a previous work experience program course. Available only to B.Tech (Env. Hort.) students.

HORT3007: Environmental Horticulture Project I
Coordinator: Prof. Mapplebeck
This course requires the student to select an appropriate project plus a faculty advisor in consultation with the course coordinator. A project implementation plan will then be prepared. The projects may vary considerably in nature. Available only to B.Tech (Env. Hort.) students.
Fall or Winter semester – 1 lec per week. Last offered in 2007/2008.
Horticulture 4000: Urban Tree Management
Instructor: Prof. Goodwin
Prerequisite: Hort0207 or a previous course in arboriculture, or permission of the instructor
The focus of this course is on the management of the urban forest. Tree inventory systems, planning the urban forest, rhizosphere management, site reclamation, the valuation of urban trees, and trees and the law will be included. Lab exercises will include tree assessment techniques, tree inventory exercises, use of tree inventory software, new techniques for hazard tree assessment, new techniques for managing pests and diseases in urban trees, and site assessment and remediation. Tree pruning exercises will emphasize preservation of tree structure, quality of cuts, and work efficiency and safety.
Winter semester – 3 lecs and 3 labs per week.

Horticulture 4001: Horticulture (A)
Instructor: Prof. Daniels
Prerequisites: PLSC4001 and three horticultural production courses
The objective is to review and integrate material from prerequisite courses on horticultural crop production, soil, climate, and basic sciences into crop management systems. Students successfully completing this course will qualify to be identified as horticulturists.
Winter semester – 3 lecs per week.

Management of Specialized Turf (A)
Instructor: Prof. Daniels
Prerequisite: Hort0102
This course emphasizes the identification of problems in the areas of established turf grass, with suggested remedial actions. Off-campus sites are visited to provide a variety of situations for classroom study.
Fall semester – 2 lecs and 3 labs per week.

Environmental Horticulture Project II
Coordinator: Prof. Daniels
This course requires the student to select an appropriate project plus a faculty advisor in consultation with the course coordinator. A project implementation plan will then be prepared. The projects may vary considerably in nature. The project could be a site analysis, a design, a maintenance calendar, a construction or maintenance estimate (cost analysis), or a nursery propagation or production study. Available only to B.Tech (Env. Hort.) students.
Fall or Winter semester – 1 lab per week. Last offered in 2007/2008

International Development

Food Systems in the Tropics (A)
Coordinators: Profs. Asiedu and Russell
This course examines tropical food systems in tropical environments. Students will learn about farming systems, tropical crops and livestock, business structures of tropical agriculture, producer organizations, marketing, financing, trade, government involvement in food systems, and the consumer. Field trips to various agri-industry operations will be undertaken.
This intensive two-week course is offered in a tropical country. The country is determined on a year-by-year basis. Additional fees for travel, meals, and accommodations apply.
Spring semester (subject to enrollment).

Agricultural Systems of Central Europe
Coordinators: Profs. Rifai and Gray
This course examines agricultural systems in central Europe with particular reference to Slovakia, the Czech Republic, and Hungary. Students will learn about the geography, history, farming systems, crop and animal husbandry, agricultural equipment and machinery, landscape development, and agricultural economics of central Europe. Field trips to various agri-industry operations will be undertaken.
This intensive two-week course is offered in Slovakia at the Slovak University of Agriculture in Nitra, in the Czech Republic at the University of Agriculture in Prague, and in Hungary at the Svent Istvan University in Budapest. Additional fees for travel, meals, and accommodations apply.
Spring semester – following exams in April.

Tropical Agriculture (A)
Instructor: Prof. Asiedu
This course will introduce the student to food production, storage, and handling systems in tropical and subtropical countries. The sustainability of these systems and issues that limit the use of the environment for long-term food production will be identified. Farming systems and the role of national/international research centres are examined. The instruction will include resource people from several disciplines.
Fall semester – 3 lecs per week.
Description of Courses—Undergraduate and Technical

INTERNSHIP

INTE0100: Internship
Coordinator: **TBA**

Prerequisites: completion of the first year in the Diploma in Enterprise Management, plus workplace readiness courses

The student will be required to work under contract with an approved employer in their chosen field for a period of at least 12 weeks (480 hours). Contract details will be relevant to the student’s area of study and will be negotiated between the student, the employer, and the course coordinator. Assessment will be based on this contract and will be carried out jointly by the employer and the course coordinator.

Spring semester – 12 weeks.

MATHEMATICS

MATH0050: Functions

Instructor: **P. Nelson**

Prerequisite: if required as a result of performance on a mathematics diagnostic test, or approval of the Registrar

This is a one-semester course designed for those who do not have the requisite skills for the first-year mathematics courses but have shown sufficient basic mathematical ability to warrant a one-semester course to make up for the deficiencies. This course will emphasize the study of the basic functions used in the sciences. Topics to be covered include linear, exponential, logarithmic, and trigonometric functions. Emphasis is placed on using a graphing calculator. This is a non-credit course. MATH0050 is not intended to duplicate or replace Grade 12 Pre-Calculus Mathematics.

Fall and Winter semesters – 3 lecs and 1 tutorial per week.

MATH0100: Business Math

Instructor: **TBA**

This course introduces the basic mathematical skills needed to understand, analyze, and solve mathematical problems encountered in business, finance, and investment decision-making. Students are expected to be able to understand and perform arithmetic and algebraic operations.

Fall semester – 3 lecs and 1 tutorial.

MATH1000: Introductory Calculus I

Instructors: **Profs. Madigan** and **Georgallas**

Prerequisite: Grade 12 Mathematics or MATH0050

Topics will include: functions and their inverses, limits, differentiation of polynomial, trigonometric, exponential and logarithmic functions, product and quotient rules, and implicit differentiation; with applications to curve sketching, maxima and minima problems, and velocity and acceleration problems. This course also includes an introduction to antiderivatives and applications of the definite integral to a variety of problems. Students are required to confirm their eligibility for admission to this course by means of a mathematics diagnostic test, to be taken the day following registration. Students not admitted must take MATH0050.

Fall and Winter semesters – 3 lecs and 1 tutorial per week.
MATH1001: Introductory Calculus II
Instructors: Profs. Madigan and Georgallas
Prerequisite: MATH1000
A continuation of the study of calculus with topics including both the definite and indefinite integral; techniques of integration, with applications to areas, volumes, arc length, surface areas, elementary differential equations and their applications. The course may also include parametric equations and polar coordinates, and sequences and series and their applications.
Fall and Winter semesters – 3 lecs and 1 tutorial per week.

MATH2000: Multivariable Calculus
Instructor: Prof. Madigan
Prerequisite: MATH1001
This course covers functions of several variables: vectors, space curves, partial derivatives, optimization, multiple integrals and their applications, vector fields, line integrals, flux integrals, divergence and curl, Stokes Theorem, and the Divergence Theorem.
Fall semester – 4 lecs and 2 labs per week.

MATH2001: Differential Equations
Instructor: Prof. Madigan
Prerequisite: MATH1001
This course introduces the basic theory of differential equations, considers various techniques for their solution, and looks at various applications. Topics include First Order Linear and Non-Linear differential equations; differential equations of higher order; Laplace Transforms; Series solutions; systems of equations; and Fourier Series. Topics from Linear Algebra are included as required.
Winter semester – 4 lecs and 2 tutorials per week.

MATH3000: Applied Linear Algebra
Instructor: Prof. Madigan
This course covers geometric vectors in three dimensions, dot product, lines and planes, complex numbers, systems of linear equations, matrix algebra, matrix inverse, determinants, Cramer’s rule, introduction to vector spaces, linear independence and bases, rank, linear transformations, orthogonality and applications, Gram-Schmidt algorithm, eigenvalues and eigenvectors.
Winter semester – 3 lecs and 2 labs per week.

MATH4000: Agricultural Modelling
Instructor: Prof. Georgallas
Prerequisites: MATH1001 and permission of the instructor
The aim of the course is to teach agricultural students when and how to attempt to express their ideas mathematically, and how to solve the resulting mathematical model and compare its predictions to experimental data. Topics include techniques of creating a model, techniques of solving models, testing and evaluating models, growth models, and a directed study project of an example of a model used in the agricultural sciences.
Winter semester – 3 lecs and 1 tutorial per week.
MANAGEMENT

MGMT0100: Accounting
Instructor: D. Arnfast
An introduction to accounting topics useful to managers. Topics include recording transactions, forms of business organization, cash and accrual bases of accounting, financial statements, internal control, payrolls, bank reconciliation, and types of accounting systems, with an introduction to microcomputer applications.
Fall semester – 3 lecs and 2 labs per week.

MGMT0101: Applied Accounting and Taxation
Instructor: K. McNutt
Prerequisite: MGMT0100
The basic principles and procedures relevant to the accounting function of a business. Topics discussed include recording business transactions, year-end adjustments, and preparation of financial statements. Considerable time will be spent on Canadian income tax and a computerized accounting project.
Winter semester – 3 lecs and 2 labs per week.

MGMT0102: Agricultural Marketing
Instructor: Prof. MacPherson
Preparatory: ECON0100
Current practices involved in marketing farm products produced in the Atlantic Provinces are studied. The conditions affecting these practices and the groups of people who can bring about changes are identified. Special attention is paid to consumer behaviour, supplier behaviour, market structures, price determination, marketing boards, and marketing commissions.
Fall semester – 2 lecs and 3 labs per week.

MGMT0103: Business Law
cross-referenced as MGMT2001
Instructor: J. Nette
Introduces several legal topics relevant to the management of a business. Topics discussed are: legal structure in Canada, Law of Torts, contracts, sale of goods, consumer protection legislation, creditors, employment, forms of business organization, insurance, and real estate.
Fall and Winter semesters – 3 lecs per week.

MGMT0104: Small Business Entrepreneurship
cross-referenced as MGMT1000
Instructor: Prof. MacPherson
This course provides students with an overview of small business management theory and practice presented from an entrepreneurial perspective. Topic areas discussed include identifying and evaluating new business opportunities, financing the business, marketing management, human resources, and financial management. Upon successful completion of the course, students will understand the elements of business planning required for successful small businesses today.
Winter semester – 3 lecs per week.

MGMT0201: Business Project
Coordinator: TBA
Prerequisite: MGMT0020
An opportunity to examine, in detail, enterprise management topics. Projects are organized and carried out by the students under the supervision of various staff members. Projects started in MGMT0020 will be completed in this course.
Fall and Winter semesters – 5 labs per week.

MGMT0202: Managing Retail Operations and Physical Resources
cross-referenced as MGMT2008
Instructor: TBA
Prerequisite: MGMT0100
This course is designed to train students in the daily office, sales, and inventory operations important in managing a small business. The course also covers the requirements for the siting and layout of a retail facility, and the factors important in designing a retail space. The maintenance, safety, and security requirements for the retail operation are also considered.
Fall semester – 3 lecs per week.

MGMT0203: Customer Relations Management
cross-referenced as MGMT2009
Instructor: Prof. Lewis
The objective of this course is to provide students with a practical approach to the provision of exceptional customer service for a small business. Students are expected to identify the various factors that affect the provision of quality service and to identify ways to ensure client satisfaction. The course also provides training in point-of-sales techniques and complaint management.
Fall semester – 3 lecs per week.
Description of Courses—Undergraduate and Technical

MGMT0204: Financial Management (A)
cross-referenced as MGMT2003
Instructor: Prof. Russell
Principles and methods of organizing and analyzing financial businesses are examined. Practical problems associated with financial analysis, planning, capital budgeting, resource use, and credit acquisition are included. The role of the financial manager is identified throughout.
Fall semester – 2 lecs and 3 labs per week.

MGMT0205: Human Resource Management
cross-referenced as MGMT2000
Instructor: Prof. Lewis
An introduction to the human side of business organizations. The course focuses on the challenges of motivation, recruitment and selection, performance evaluation, compensation, and labour-management relations.
Fall and Winter semesters – 3 lecs per week.

MGMT0206: Marketing
cross-referenced as MGMT2002
Instructor: Prof. Lewis
Designed to introduce basic marketing principles and their application to marketing problems. Topics such as promotion, pricing, distribution, and marketing research are examined. The case method of instruction is used extensively. Class participation is a vital component of this course.
Fall semester – 3 lecs and 2 labs per week.

MGMT0207: Advertising and Promotion
cross-referenced as MGMT2006
Instructor: Prof. Lewis
Prerequisite: MGMT0102 or MGMT2006
Students examine the process of planning, implementing, and evaluating advertising and promotional strategies for small businesses. Topics include an evaluation of conventional advertising media and web-based advertising, the preparation of customer profiles and target marketing, the creation of advertising copy, and the evaluation and monitoring of the advertising program. Case studies and class projects are essential elements of the course.
Winter semester – 3 lecs per week.

MGMT0208: Retail Sales Management
cross-referenced as MGMT2007
Instructor: Prof. MacPherson
Prerequisite: MGMT0102 or MGMT2002
Students examine effective sales techniques for a retail business and learn to use records systems for tracking sales performance. They also explore strategies for integrating front-line sales techniques with the overall marketing and promotional strategy for the business. The course will enable the student to track and interpret sales performance for the business, and to work with sales managers or consultants in identifying ways to improve sales performance.
Winter semester – 3 lecs per week.

MGMT1000: Small Business Entrepreneurship
cross-referenced as MGMT0104
Instructor: Prof. MacPherson
This course provides students with an overview of small business management theory and practice presented from an entrepreneurial perspective. Topic areas discussed include identifying and evaluating new business opportunities, financing the business, marketing management, human resources, and financial management. Upon successful completion of the course, students will understand the elements of business planning required for successful small businesses today.
Winter semester – 3 lecs per week.

cross-referenced as MGMT0205
Instructor: Prof. Lewis
An introduction to the human side of business organizations. The course focuses on the challenges of motivation, recruitment and selection, performance evaluation, compensation, and labour-management relations.
Fall and Winter semesters – 3 lecs per week.

MGMT2001: Introduction to Business Law
cross-referenced as MGMT0103
Instructor: J. Nette
An introduction to general principles of law relating to the management of a business. Major areas studied are torts and contracts. Specialized topics include forms of business organizations, sale of goods, conditional sales, real property, mortgages, insurance, and wills.
Fall and Winter semesters – 3 lecs per week.
MGMT2002: Marketing
cross-referenced as MGMT0206
Instructor: Prof. Lewis
Designed to introduce basic marketing principles and their application to marketing problems. Topics such as promotion, pricing, distribution, and marketing research are examined. The case method of instruction is used extensively. Class participation is a vital component of this course.
Fall semester – 3 lecs and 2 labs per week.

MGMT2003: Financial Management (A)
cross-referenced as MGMT0204
Instructor: S. Russell
Principles and methods of organizing and analyzing financial businesses are examined. Practical problems associated with financial analysis, planning, capital budgeting, resource use, and credit acquisition are included. The role of the financial manager is identified throughout.
Fall semester – 2 lecs and 3 labs per week.

MGMT2004: Financial Accounting I
Instructor: E. Arnfast
A study of the basic principles and procedures relevant to the accounting function of a business firm. Topics discussed include recording transactions, making adjusting entries, and preparing financial statements; accounting for a merchandising concern; computerized accounting software; accounting for cash, credit sales, and accounts receivable; inventories and cost of goods sold; and plant and equipment. Fall semester – 3 lecs and 2 labs per week.

MGMT2005: Financial Accounting II
Instructor: E. Arnfast
Prerequisite: MGMT2004
Continues the study of financial accounting with emphasis on special topics and reporting of accounting information. Includes a brief introduction to income tax.
Winter semester – 3 lecs and 2 labs per week.

MGMT2006: Advertising and Promotion
cross-referenced as MGMT0207
Instructor: Prof. Lewis
Prerequisite: MGMT2002
Students examine the process of planning, implementing, and evaluating advertising and promotional strategies for small businesses. Topics include an evaluation of conventional advertising media and web-based advertising, the preparation of customer profiles and target marketing, the creation of advertising copy, and the evaluation and monitoring of the advertising program. Case studies and class projects are essential elements of the course.
Winter semester – 3 lecs per week.

MGMT2007: Retail Sales Management
cross-referenced as MGMT0208
Instructor: Prof. MacPherson
Prerequisite: MGMT0102 or MGMT2002
Students examine effective sales techniques for a retail business and learn to use records systems for tracking sales performance. They also explore strategies for integrating front-line sales techniques with the overall marketing and promotional strategy for the business. The course will enable the student to track and interpret sales performance for the business, and to work with sales managers or consultants in identifying ways to improve sales performance.
Winter semester – 3 lecs per week.

MGMT2008: Managing Retail Operations and Physical Resources
cross-referenced as MGMT0202
Instructor: TBA
Prerequisite: MGMT0100
This course is designed to train students in the daily office, sales, and inventory operations important in managing a small business. The course also covers the requirements for the siting and layout of a retail facility, and the factors important in designing a retail space. The maintenance, safety, and security requirements for the retail operation are also considered.
Fall semester – 3 lecs per week.

MGMT2009: Customer Relations Management
cross-referenced as MGMT0203
Instructor: Prof. Lewis
The objective of this course is to provide students with a practical approach to the provision of exceptional customer service for a small business. Students are expected to identify the various factors that affect the provision of quality service and to identify ways to ensure client satisfaction. The course also provides training in point-of-sale techniques and complaint management.
Fall semester – 3 lecs per week.

MGMT3000: Management Accounting
Instructor: P. MacCormick
Prerequisite: MGMT0204
This course introduces students to the use of accounting information in making effective management decisions. Topics include cost control and analysis, cost/volume/profit analysis, break-even analysis, differential analysis, and capital investment analysis.
Fall semester – 3 lecs and 2 labs per week.
MGMT3001: International Marketing
Instructor: TBA
Prerequisite: MGMT2002
This course provides an introduction to international marketing and the international trading system. Students will be exposed to the unique aspects of international market research, selection, entry, pricing, and communications that differentiate them from their domestic equivalents. In addition, the international trading system will be examined with an emphasis on institutions such as the WTO and the IMF, and international commodity agreements, which directly impact the movement of goods and services. Cases are used extensively in the course and class participation is vital.
Winter semester – 3 lecs per week.

MGMT3002: Consumer Behaviour
Instructor: Prof. MacPherson
Prerequisite: MGMT2002
The course introduces the student to the basics of consumer behaviour and then applies this knowledge to the food marketing system. Topics covered include external influences on consumer behaviour, motivation, perception, learning, and decision-making. Historic and recent trends in product marketing, pricing, and advertising also form part of the course. Cases are used extensively and class participation is vital.
Fall semester – 3 lecs per week.

MGMT4000: Strategic Management
Instructor: Prof. MacPherson
Prerequisites: Students will normally be Agricultural Business majors who have successfully completed the first three years of the program.
This is a capstone course that will integrate all the business disciplines (marketing, finance, accounting, etc.) and prepare the student to formulate and implement strategy in an agribusiness setting. Students will be expected to gain a full understanding of the complexity and interrelationships of modern managerial decision-making and apply this knowledge to real managerial problems. Lectures, case studies, projects, and guest speakers will be utilized.
Fall semester – 3 lecs per week.

MGMT4001: Advanced Entrepreneurship (A)
Instructor: Prof. Russell
Prerequisites: MGMT2002, MGMT2003, and at least third-year degree standing
This course will apply the concepts of entrepreneurship to creating and managing a small business. Students will investigate opportunities for new agribusinesses and develop business plans that consider management structure, financing, production, marketing, and taxation. Lectures, case studies, guest speakers, and project assignments will be utilized.
Winter semester – 3 lecs and 3 labs per week.

MICR2000: Microbiology
Instructor: Prof. Stratton
Preparatory: BIOL1002, BIOL1001
A general introduction to microbiology. Topics include history, morphology, structure, cultivation, reproduction, metabolism, genetics, classification, and control of microorganisms. The importance of microorganisms to soil productivity, foods, industry, veterinary science, public health, and sanitation is discussed. Students are required to have laboratory coats.
Winter semester – 3 lecs and 3 labs per week.

MICR3000: Food Microbiology (A)
Instructor: TBA
Prerequisite: MICR2000
A study of microorganisms involved in the production and processing of food products. Topics will include the use of microorganisms for food production and processing, food spoilage and potential for food poisoning, and sanitation procedures, including government regulations and standards for the food industry. The use of conventional plating as well as rapid assay techniques will be discussed.
Fall semester – 3 lecs and 3 labs per week.

MICR4000: Soil Microbiology (A)
Instructor: Prof. Stratton
Prerequisites: MICR2000, SOIL2000
A study of the biology of the various classes of microorganisms in soil, including bacteria, blue-green algae, fungi, algae, protozoa, and viruses. This course includes details of biochemical transformation of carbon, nitrogen, sulfur, and phosphorus, as well as pesticides and wastes in the environment.
Fall semester – 3 lecs and 3 lab per week. Offered in alternate years; next offered in 2008/2009.
NUTRITION

NUTR3000: Animal Nutrition
Instructor: Prof. Firth
Prerequisite: CHEM2000
A study of the principles of nutrition, including the digestion, absorption, and metabolism of nutrients by domestic animals. Functions of protein, lipids, carbohydrates, vitamins, and minerals are studied.
Fall semester – 3 lecs and 2 labs per week.

NUTR3001: Applied Animal Nutrition (A)
Instructors: Prof. Firth and Prof. Anderson
Prerequisite: NUTR3000
Feedstuff classification, characteristics, and regulations governing their use are described. Methodology for evaluating the relative merits of typical feedstuffs is discussed. The principles of nutrition are applied in the formulation of rations for monogastric, avian, and ruminant species.
Winter semester – 3 lecs and 2 labs per week.

NUTR3002: Fish Nutrition (A)
Instructor: Prof. Anderson
Nutrients required by finfish, shellfish, crustaceans, and molluscs are discussed in context with current and future sources of these nutrients. Digestive physiology and specific feeding problems of aquatic species are addressed. Diet formulations and feeding strategies for maintenance, growth, and reproductive performance of fish are covered.
Winter semester – 3 lecs and 2 labs per week.

NUTR4000: Ruminant Digestive Physiology and Metabolism
Instructor: Prof. Fredeen
Prerequisites: BIOL2006, NUTR3000, CHEM3006
This course is designed to provide an intensive study of food intake and digestion, and nutrient absorption and metabolism, in the ruminant animal. The course details current knowledge and focuses on aspects of future research interest. Students are expected to contribute to discussions and present reviews to the class on various aspects of the subject.
Fall semester – 3 lecs and 2 labs per week. Offered in alternate years; next offered in 2008/2009.

PHILOSOPHY

PHIL3000: Environmental and Agricultural Ethics (H)
Instructor: TBA
Prerequisite: at least third-year standing
This course offers a general introduction to environmental ethics with emphasis on agricultural issues. Students will be introduced to modern ethical theory and to techniques of philosophical reasoning, and will be provided with a general context for overall discussion by examining the origins of the modern world view (the rise of modern science, market economics, and liberalism). Students will be evaluated on class participation and a series of short weekly essays based upon directed readings and field experience. Essay-style midterm and final exams are required.
Winter semester – one 2-hour seminar per week.
PHYSICS

PHYS0050: Introductory Physics
Instructor: P. Nelson
Prerequisite: approval of the Registrar.
An introductory course for entering students who do not have the equivalent of NS Grade 12 Physics. Course topics include one-dimensional kinematics, vector theory, Newton’s Laws, equilibrium, kinetic energy and work, and other topics as determined by a review of the class. This is a non-credit course. PHYS0050 is not intended to duplicate or replace Grade 12 Physics.
Fall and Winter semesters – 3 lecs and 1 tutorial per week.

PHYS1000: Physics for the Life Sciences I
Instructor: Prof. Georgallas
Prerequisite: Grade 12 Physics or PHYS0050
Prerequisite/Corequisite: MATH1000
In this course an understanding of Physics is acquired by exploring the physical principles which underlie complex biological structures. The nature of materials and the forces that act on them is introduced through a series of topic examples taken from evolution, mammalian physiology, plant structure, and others.
Students may take either PHYS1000 or PHYS1002, but not both, for credit.
Fall and Winter semesters – 3 lecs per week, 1 1/2 labs/tutorials per week (alternating weekly).

PHYS1001: Physics for the Life Sciences II
Instructor: Prof. Georgallas
Prerequisite: PHYS1000 or PHYS1002
In this course the physical principles underlying perception throughout the animal kingdom are introduced. The examples chosen emphasize adaptation and strategies (e.g. echolocation and noctuid moths) and represent a wide range of forms (e.g. eyes of the common scallop pecten, electric location by the fish Gymnarchus niloticus).
Winter semester – 3 lecs per week, 1 1/2 labs/tutorials per week (alternating weekly).

PHYS1002: Physics I
Instructor: Prof. Pearson
Prerequisite: Grade 12 Physics or PHYS0050
Prerequisite/Corequisite: MATH1000
Fundamental physical principles that are necessary for the understanding of the agricultural sciences form the core material of this course. Classical physics topics include vector analysis, dynamics, statics, fluid mechanics, acoustics and heat. Concepts derived from modern physics are added in order to complete the classical theories. Weekly student laboratory sessions allow for direct investigation of the theories studied in the course.
Students may take either PHYS1000 or PHYS1002 but not both for credit.
Fall and Winter semesters – 3 lecs, 1 1/2 labs, and 1 tutorial per week.

PHYS1003: Physics II
Instructor: Prof. Pearson
Prerequisite: PHYS1002
A continuation of PHYS1002. The course mainly deals with electromagnetic theory, including such topics as electric charges, fields, potential, magnetic theory, induction, and Maxwell’s Equations. Fundamental wave theory and optics are also studied, together with an introduction to nuclear physics. The laboratory provides an opportunity to investigate the theories in a hands-on environment.
Winter semester – 3 lecs and 3 labs per week.
PLANT SCIENCE

PLSC020: Farm Workplace Skills Module
Instructors: TBA
Coordinator: TBA
Students participate in instruction and exercises aimed at developing basic safe operational skills in the following areas: tractor use; fencing; tillage; skid steerers; calibration of field equipment (e.g. sprayers, seeders, fertilizer and manure spreaders).
This is a non-credit 21-hour module offered during the second year of the program and is required in the Agronomy and Edible Horticulture options of the Plant Science Technology Diploma program. Students must provide their own hard-toed footwear.
Fall semester – 21 hours.

PLSC0100: Utilization of Plant Resources
Instructor: Prof. Goodyear
Using an integrated systems approach, students are introduced to the principles and practices involved in the sustainable production of crop plants. Practical exercises will give the students an opportunity to gain knowledge and skills involved in economic and environmental growing of agronomic and horticultural crops.
Fall semester – 3 lecs and 2 labs per week.

PLSC0200: Plant Propagation
Instructor: Prof. Pruski
Physiological and anatomical basis of plant propagation and techniques of sexual and asexual propagation of agricultural and horticultural crops as well as landscape plant material and herbaceous perennials. Propagation structures, containers, media and sanitation, pedigreed seed production, and in-vitro techniques for micropropagation are also components of this course.
Fall semester – 3 lecs and 3 labs per week.

PLSC0201: Technology Project
Coordinator: Prof. Asiedu
This project provides an opportunity for the student to study in detail a Plant Science topic of special interest. The topic may build on other aspects of the study program. The student pursues studies under a project supervisor. The project plan developed with the advisor must include the purpose of the study, the procedures and materials used, a time schedule for the work involved, the method in which the information will be collected, the way in which comparisons and conclusions will be developed, and the format for the final report. Both a written and an oral report will be required.
Students register in the Fall semester and complete the project in the Winter semester.
Fall and Winter semesters – 2 lecs per week.

PLSC0202: Plant Science Techniques
Coordinator: S. Kilyanek
Prerequisite: completion of first year of Plant Science Technology program
This is a Spring semester course intended for students in the Plant Science Technology program following their first year of study. Students will be required to work under contract in an area of Plant Science with an approved employer for a period of at least 12 weeks (480 hours). Contract content will be relevant to the student’s area of study and will be negotiated between the employer, the course coordinator, and the student. Assessment will be based on this contract and will be carried out jointly by the employer and the course coordinator.
Spring semester – 12 weeks.

PLSC0203: Plant Products Physiology
Instructor: Prof. Asiedu
The principles of plant physiology as they apply to plant products in storage environments. This course deals with management practices associated with the harvesting and storage of crops and the effect of time period and conditions of storage on the quality of the plant products. Post-harvest handling systems and value-added products through minimal processing and packaging are examined. Storage structures are studied and representative types of commercial storages visited.
Winter semester – 3 lecs and 2 labs per week.

PLSC1000: Farm Woodlot Management (A)
Instructor: TBA
This course has limited enrollment.
The importance of forestry to Canada and the Atlantic Provinces is explained. Management procedures and practices for the inventory of standing and felled trees, the establishment of new stands of trees, the tending of stands and plantations, and the harvesting of mature trees are illustrated and explained. Special attention is given to production of fuelwood, sawlogs, Christmas trees, and maple sap; road construction; and wildlife.
Steel-toed boots and hard hats are required by law.
Fall semester – 3 lecs and 3 labs per week.

PLSC2000: Specialty Crops (A)
Coordinator: Prof. Mapplebeck
This course will examine opportunities for specialty crop production, using an entrepreneurial approach. A core group of specialty crops will be examined. Production requirements, production and marketing potential, end use, and value adding will be studied. Students will have optional crop choices to reflect individual interest. A major project is required.
Winter semester – 3 lecs and 2 labs per week.
Description of Courses—Undergraduate and Technical

PLSC2001: Theory and Practice of Plant Propagation (A)
Instructor: Prof. Pruski
Prerequisite: BIOL1002
Prerequisite/Corequisite: BIOL2002
This course is intended to give students an advanced knowledge in the area of plant propagation. It is strongly recommended to those students wishing to undertake graduate work in plant sciences, biotechnology, environmental sciences, and ecology. It is also recommended to managers of greenhouses and nurseries. Topics will include biology of plant propagation, propagation environment, breeding systems, seed and vegetative propagation, cell and tissue micropropagation, and propagation of selected plant species for commercial production.
Winter semester – 3 lecs and 3 labs per week.

PLSC4000: Plant Breeding (A)
Instructor: Prof. McLean
Prerequisites: GENE2000, STAT2000, one crop production subject
An introduction to the principles and practices of plant breeding, including the genetics of agriculturally important traits, germplasm conservation, breeding bio-technology, and the structure of the Canadian seed industry.
Winter semester – 3 lecs and 2 labs per week. Offered in alternate years; next offered in 2007/2008.

PLSC4002: Plant Ecophysiology (A)
Instructor: Prof. R. Lada
Prerequisites: BIOL 2002, one crop production course
This course is designed to stimulate interest, critical thinking, and investigative processes for the understanding of growth, development, distribution, acclimation, and adaptation of crop plants that are influenced by their physiological ecology; the interaction with the climatological, physical, chemical, and biological environments; the ecophysiological responses that are modulated by input and crop management factors. This course will also enhance knowledge on crop stress diagnostics, physiological mechanisms of acclimation and adaptation to various challenging abiotic and biotic stress factors. Agricultural practices and agroecosystem management will be related to the economic and environmental responsibilities. This course will use several “Participatory Learning” techniques.
Fall semester – 3 lecs and 3 labs per week.

POLITICAL SCIENCE

POLS1000: Introduction to Political Science (H)
Instructor: Prof. Cameron
An introductory study of the ideologies of modern movements. Liberal democracy, conservatism, democratic socialism, fascism, and Marxist perspectives will be covered. Analysis of such central concepts as liberty, equality, power, authority, justice, law, constitutionalism, democracy, and authoritarianism will be presented and discussed. This course provides an overview of the various institutions and policies involved in governing. There will be a focus on rural social movements.
Fall semester – 3 lecs per week.

POLS1001: Structure and Function of Government (H)
Instructor: Prof. Cameron
Students will study the legislative, executive, and judicial aspects of the Canadian state, and their interactions. They will look at political processes and policy development. This course will provide students with the basic knowledge of how governments operate at all levels. It will offer insight into how and why political decisions are made about the issues that affect all Canadians: taxation, education, employment, health care, and the debt. There will be a focus on issues of interest to rural Canada.
Winter semester – 3 lecs per week.
RESEARCH METHODS/PROJECT-SEMINARS

RESM4000: Bio-Environmental Systems Management Project-Seminar I (A)
Coordinator: Prof. Sibley
Prerequisite: Bio-Environmental Systems Management (or Agricultural Mechanization) student in third year, or consent of the coordinator
Students will study an operation (information gathering) and review management of technological, human, financial, and environmental resources. A group report and individual oral and poster presentations are required.
Winter semester – 1 scheduled seminar session per week.

RESM4001: Bio-Environmental Systems Management Project-Seminar II (A)
Coordinator: Prof. Sibley
Prerequisite: RESM4000
Restricted to Bio-Environmental Systems Management (or Agricultural Mechanization) students in their final year or consent of the coordinator. This is a continuation of RESM4000 with a study and examination of alternatives to identified problems within the operation. Working with industry representatives, the course will identify solutions to current problems. Written and oral reports are presented to class and industry.
Fall semester – 4 labs per week.

RESM4002: Animal Science Project-Seminar I (A)
Instructors: Dept. of Plant and Animal Sciences Faculty
Coordinator: Prof. Tennessen
Prerequisite: Animal Science major in third or fourth year of the program, or consent of the coordinator.
In consultation with a faculty advisor, Animal Science majors select a research topic. This topic is investigated and presented orally and in a written report. Other topics of current interest are also presented and discussed in the weekly seminar period.
Fall semester – 2 labs per week.

RESM4003: Animal Science Project-Seminar II (A)
Instructors: Dept. of Plant and Animal Sciences Faculty
Coordinator: Prof. Tennessen
Prerequisite: RESM4002
The continuation and conclusion of the project selected in RESM4002.
Winter semester – 2 labs per week.

RESM4004: Research Methods for Economics and Business (A)
Instructor: Prof. Grant
Prerequisite: at least third-year standing, including ECON1000
The lectures cover general methodological issues within business and social sciences research, as well as considering specific research techniques. Students undertaking fourth-year projects within the Department of Business and Social Sciences begin their projects, under faculty supervision, through this course's project development process. Other students may instead write one or more papers on research methodology.
Fall semester – 2 lecs and 2 labs per week.

RESM4005: Project-Seminar for Economics and Business (A)
Instructors: Dept. of Business and Social Sciences Faculty
Coordinator: Prof. Dunlop
Prerequisite: RESM4004
Under the supervision of faculty, students complete the research projects begun in RESM4004. Each student is required to submit the first draft for evaluation by faculty. The student presents a final report and participates in peer evaluation of the presentations of the other students.
Winter semester – 2 seminars per week.

RESM4006: Environmental Sciences Project-Seminar I (A)
Instructors: Dept. of Environmental Sciences Faculty
Coordinator: Prof. Stratton
Prerequisite: students registered for their final year in the Department of Environmental Sciences, or consent of the coordinator
A required course for all B.Sc.(Agr.) students registered in the Department of Environmental Sciences. Each student will choose a research project and faculty advisor in consultation with the course coordinator. Each student will present periodic oral and written reports on their subject of investigation. Other written and seminar topics may be assigned. Topics on communication skills and the presentation of scientific information in various formats will be discussed in the weekly seminar periods.
Fall semester – as arranged.

RESM4007: Environmental Sciences Project-Seminar II (A)
Instructors: Dept. of Environmental Sciences Faculty
Coordinators: Profs. Le Blanc and Nams
Prerequisite: RESM4006
A continuation of RESM4006. Students will continue with their research projects. The course will culminate in the presentation of project results, in several formats. Other written and seminar topics may be assigned.
Winter semester – one seminar per week.
RESM4008: Plant Science Project-Seminar I (A)
Instructors: Dept. of Plant and Animal Sciences Faculty
Coordinator: Prof. Asiedu
Involves the selection of an appropriate project and the preparation of a research plan to investigate the chosen subject. Fundamentals of experimental design and data analysis are covered in lectures. Under the supervision of a faculty advisor, each student will select a topic, conduct a detailed literature review, and prepare an experimental plan for implementation in RESM4009. The research project and faculty advisor are to be chosen in consultation with the course coordinator during Semester VI, and work initiated soon thereafter. This course is required by all students in Year 3 of the Plant Science option. Winter semester – 2 lecs per week.

RESM4009: Plant Science Project-Seminar II (A)
Instructors: Dept. of Plant and Animal Sciences Faculty
Coordinator: Prof. Asiedu
Prerequisite: RESM4008
The continuation and conclusion of the subject selected in RESM4008. This consists of both a written and an oral presentation of the project. Fall semester – 2 lecs per week.

RESM4010: Aquaculture Project-Seminar I (A)
Instructors: Dept. of Plant and Animal Sciences Faculty
Coordinator: Prof. Tennessen
Prerequisite: Aquaculture major in third or fourth year of the program, or consent of the coordinator
In consultation with a faculty advisor, each student will select a research topic. This topic is investigated and presented both orally and in a written report. Other topics of current interest are also presented and discussed in the weekly seminar period. Fall semester – 2 labs per week.

RESM4011: Aquaculture Project-Seminar II (A)
Instructors: Dept. of Plant and Animal Sciences Faculty
Coordinator: Prof. Tennessen
Prerequisite: RESM4010
The continuation and conclusion of the project selected in RESM4010. Winter semester – 2 labs per week.

SOCI1000: Introductory Sociology (H)
Instructor: Prof. Dukeshire
An introduction to the field of modern sociology. Themes addressed in the course are sociological theory and method, social process, social organization, social institutions, social differentiation, and social change. Discussion will include social issues, e.g. rural/urban conflict, an aging society, and family changes. Some emphasis will be given to rural social problems. Fall semester – 3 lecs per week.

SOCI1001: Introductory Sociology II (H)
Instructor: Prof. Dukeshire
The study of social issues uses sociological theory and research to examine social dynamics and social consequences associated with various current concerns. The topics covered will vary from year to year, but may well include problems such as gender and race relations, child and spousal abuse, substance abuse, poverty, work and alienation, and environmental issues. There will be a focus on issues of interest to rural Canada. Winter semester – 3 lecs per week.

SOCI3000: Rural Sociology (H)
Instructor: TBA
Prerequisite: SOCI1000
This course provides a focus on rural sociological themes, particularly in the Canadian and Atlantic region context. Themes addressed include: the theory and nature of rural social change; rural communities and response to forces of change; problems and issues in rural society (e.g. crime, aging, health care); environmental issues and their links to society; and the social implications of economic and political change for rural Canada. Fall semester – one 3-hour seminar per week.
Description of Courses—Undergraduate and Technical

SOILS

SOIL0100: Principles of Soil Science
Instructor: Prof. Miller
Designed to form a basis for the understanding of soil productivity, the course investigates the physical, chemical, and biological properties of soil. Laboratory exercises, using soils from the Atlantic region, illustrate the lecture material and introduce methods of soil analysis.
Fall semester – 3 lecs and 2 labs per week.

SOIL0200: Soil Management
Instructor: Prof. Miller
Prerequisite: SOIL0100
A study of the chemical, physical, and biological properties of soil as they relate to crop production. Soil fertility and fertilizer use, tillage and water management, and biological husbandry are discussed. Labs take the form of problem-solving tutorials in soil management.
Winter semester – 3 lecs and 2 labs per week.

SOIL2000: Introduction to Soil Science (A)
Instructor: Prof. Brewster
Prerequisite/Corequisite: CHEM1001 (or old CS100)
General principles of soil science relating to the origin, development, and classification of soils; and the biological, physical, and chemical properties of soils and their relation to proper soil and crop management, land use, and soil conservation.
Fall semester – 3 lecs and 3 labs per week.

SOIL3000: Soil Fertility and Nutrient Management (A)
Instructor: Prof. Miller
Prerequisite: SOIL2000
Preparatory: BIOL2002
The study of the soil chemical environment as it affects crop production. The course investigates the biogeochemical cycling of nitrogen, phosphorus, potassium, calcium, magnesium, sulphur, and micronutrients in crop production. It considers the use and management of supplemental nutrients in both conventional and certified organic production. Soil pH and other factors that influence soil fertility, directly or indirectly, are also discussed. Labs take the form of problem-solving tutorials on nutrient management.
Winter semester – 3 lecs and 3 labs per week. Offered in alternate years; next offered in 2007/2008.

SOIL3001: Soil Conservation in Agriculture (A)
Instructors: Profs. Miller and Brewster
Prerequisite: AGRI1000
A study of the processes of soil degradation and its prevention or amelioration. A major part of the course concerns the erosion of agricultural soils and its control. Other topics include soil compaction and soil acidification, soil reclamation, use of soil in waste recycling, and the role of soil in water conservation. Lab periods may be used for field trips, tutorials, or seminars.
Fall semester – 3 lecs and 3 labs per week.

SOIL4000: Environmental Soil Chemistry
Instructor: TBA
Prerequisite: SOIL2000
Chemical composition of soils (soil acidity, oxidation-reduction, ion exchange, adsorption-desorption reactions, clay mineralogy and organic matter transformations) in the context of environmental soil chemistry. Labs and seminar-discussions integrate basic soil chemical principles with problems in waste disposal, metal contamination, nutrient leaching, pesticide degradation, etc.
Winter semester – 3 lecs and 3 labs per week. Offered in alternate years; next offered in 2007/2008.
Description of Courses—Undergraduate and Technical

SPANISH

SPAN1000: Basic Spanish I (H)
Instructor: M. Medina
This course will be offered subject to minimum enrollment.
This course is designed to offer an initial competency in spoken and written Spanish. Comprehension, reading, writing, and conversation are encouraged throughout the course. An introduction to basic grammar is offered. Anglophone, francophone, and international students are encouraged to take this course. Students whose first language is Spanish will not be eligible.
Fall semester – 3 lecs per week.

SPAN1001: Basic Spanish II (H)
Instructor: M. Medina
Prerequisite: SPAN1000
This course is designed for anglophone, francophone and international students. It is a continuation of SPAN1000 with emphasis on comprehension, conversation, reading, and writing.
Winter semester – 3 lecs per week.

SPECIAL TOPICS

SPEC2000: Topics in Economics and Business Management (A)
Instructors: Dept. of Business and Social Sciences Faculty
Prerequisites: 10 degree or diploma credits
An opportunity for students throughout the College to study introductory topics defined by an individual student, a group of students, or faculty. The course is conducted by classes, tutorials, assigned readings, assignments and/or other appropriate activities. Topics must be supervised by a faculty member and approved by the department head.
Fall, Winter or Summer semester – as arranged.

SPEC2001: Topics in International Development (A)
Coordinator: Dean of Internationalization
Prerequisite: second-year standing
An opportunity for students to study introductory topics in international development, with a focus on agriculture and rural development. Topics may be defined by the individual student, a group of students, or faculty. The course is conducted by classes, tutorials, assignments, readings, and/or other appropriate activities. Students are encouraged to use international travel or study opportunities as a focus for the course, but this is not required. Topics must be supervised by a faculty member in the proposed area of interest, and approved by the Dean of Internationalization. Students must apply to the Dean of Internationalization at least six weeks before the semester start date.
Fall, Winter or Summer semester – as arranged.

SPEC4000: Special Topics in Animal Science or Aquaculture
Instructors: Dept. of Plant and Animal Sciences Faculty and Staff
Coordinator: Prof. Duston
Prerequisites: two years of full-time study at a post-secondary institution (normally 20 degree credits), and permission of the instructor
This is an opportunity to study a special topic in the area of animal science or aquaculture as defined by an individual student, group of students or faculty. The course is conducted by tutorials, assigned readings, assignments, field trips and/or other appropriate activities. The special topics would normally be supervised by a faculty or staff member associated with the Animal Science program or the Aquaculture program and approved by the department head.
Fall or Winter semester – as arranged.
Description of Courses—Undergraduate and Technical

SPEC4001: Special Topics in Agribiology I (A)
Instructors: Dept. of Environmental Sciences Faculty
Prerequisites: 20 degree credits
An opportunity to study a special topic defined by an individual student, a group of students, or faculty. The course is conducted by tutorials, assigned readings, assignments, and/or other appropriate activities. Special topics must be supervised by a faculty member and approved by the department head.
Fall or Winter semester – as arranged.

SPEC4002: Special Topics in Agribiology II (A)
Instructors: Dept. of Environmental Sciences Faculty
Prerequisites: 20 degree credits
A second special topics course provides additional opportunity for students to individualize their programs with in-depth study of an approved topic. Although the second topic selected may be in a similar area of interest to that studied in SPEC4001, it must be sufficiently distinct to warrant additional study. Special topics must be supervised by a faculty member and approved by the department head.
Fall or Winter semester – as arranged.

SPEC4003: Special Topics in Chemistry and Soil Science I (A)
Instructors: Dept. of Environmental Sciences Faculty
Coordinator: Prof. Hoyle
An optional course for Agricultural Chemistry and Soil Science students who want to study a special topic. Course material will be arranged with Chemistry and Soil Science faculty. The course will be conducted by special tutorials, assigned readings, and independent lab work where appropriate. This course will normally be taken by students in their final year.
Fall or Winter semester – as arranged.

SPEC4004: Special Topics in Chemistry and Soil Science II (A)
Coordinator: Prof. Hoyle
Prerequisite/Corequisite: SPEC4003
An optional course for Agricultural Chemistry and Soil Science students who want to do a second in-depth study of a special topic in their final year. The topic selected by a student may be in an area of interest similar to that studied in SPEC4003 but must pertain to a distinctly different aspect of that field of Chemistry or Soil Science. Course material will be arranged with Chemistry and Soil Science faculty. This course will involve special tutorials, assigned readings, and independent lab work where appropriate.
Fall or Winter semester – as arranged.

SPEC4005: Special Topics in Agricultural Economics and Business I (A)
Instructors: Dept. of Business and Social Sciences Faculty
Prerequisites: 30 degree courses
An opportunity to study a special topic, defined by an individual student, a group of students, or faculty. The course is conducted by tutorials, assigned readings, assignments, and/or other appropriate activities. Special topics must be supervised by a faculty member and approved by the department head.
Summer, Fall, or Winter semester – as arranged.

SPEC4006: Special Topics in Agricultural Economics and Business II (A)
Instructors: Dept. of Business and Social Sciences Faculty
Prerequisites: 30 degree courses
A second special topics course provides additional opportunity for students to individualize their program with in-depth study of an approved topic. Although the second topic selected may be in a similar area of interest to that studied in SPEC4005, it must be sufficiently distinct to warrant additional study. Special topics must be supervised by a faculty member and approved by the department head.
Summer, Fall or Winter semester – as arranged.

SPEC4007: Special Topics in Environmental Studies I (A)
Instructors: NSAC Faculty
Coordinator: Prof. Stratton
Prerequisites: 20 degree, technology or technical credits, including ENVS2000 and ENVS2001, and permission of the coordinator
This is an opportunity to study a special topic in the area of agricultural environmental or environmental horticulture studies as defined by an individual student, group of students, or faculty. The course is conducted by tutorials, assigned readings, assignments, and/or other appropriate activities. Special topics would normally be supervised by a faculty member associated with either the Environmental Sciences or Environmental Horticulture program and must be approved by the coordinator.
Fall or Winter semester – as arranged.
Description of Courses—Undergraduate and Technical

SPEC4008: Special Topics in Environmental Studies II (A)
Instructors: NSAC Faculty
Coordinator: Prof. Stratton
Prerequisites: 20 degree, technology, or technical credits, including ENVS2000 and ENVS2001, and permission of the coordinator
This is an additional opportunity to study a special topic in the area of agricultural environmental or environmental horticulture studies as defined by an individual student, group of students, or faculty. The course is conducted by tutorials, assigned readings, assignments, and/or appropriate activities. Although the second topic selected may be in a similar area of interest to that studied in SPEC4007, it must be sufficiently distinct to warrant additional study. Special topics would normally be supervised by a faculty member associated with the Environmental Sciences or Environmental Horticulture program and must be approved by the Coordinator.
Fall, Winter or Summer semester – as arranged.

SPEC4009: Special Topics in Rural Studies (H)
Instructors: Dept. of Business and Social Sciences Faculty
Prerequisite: at least third-year standing
This is an opportunity to study a special topic, defined by an individual student, a group of students, or faculty. The course will consist of tutorials, assigned readings, writing assignments, and/or other appropriate activities. Special topics must be supervised by a Faculty member and approved by the Business and Social Sciences department head.
Fall, Winter, or Summer semester, as arranged – 3 lecs per week.

SPEC4010: Special Topics in Plant Science I (A)
Instructors: Dept. of Plant and Animal Sciences Faculty
Prerequisites: 20 degree credits or enrollment in the B.Tech program
An opportunity to study a special topic, defined by an individual student, a group of students, or faculty. The course is conducted by tutorials, assigned readings, assignments, and/or other appropriate activities. Special topics must be supervised by a faculty member and approved by the department head.
Fall, Winter or Summer semester – as arranged.

SPEC4011: Special Topics in Plant Science II (A)
Instructors: Dept. of Plant and Animal Sciences Faculty
Prerequisites: 20 degree credits or enrollment in the B.Tech program
A second special topics course provides additional opportunity for students to individualize the program with in-depth study of an approved topic. Although the second topic selected may be in a similar area of interest to that studied in SPEC4010, it must be sufficiently distinct to warrant additional study. Special topics must be supervised by a faculty member and approved by the department head.
Fall, Winter or Summer semester – as arranged.

SPEC4012: Directed Studies in Agricultural Engineering (A)
Instructors: Engineering Department Faculty
Independent studies are developed through literature review or laboratory or field research on topics pertinent to agricultural engineering.
Fall or Winter semester – as arranged.

SPEC4013: Directed Studies in International Development (A)
Coordinator: Dean of Internationalization
Prerequisites: 30 degree credits or final-year standing
Independent study of topics in international development at an advanced level, with a focus on agriculture and rural development. Topics are developed through literature review, assigned readings, and discussion, and may include independent research. Students are expected to present the final project at a public seminar. Students are encouraged to use international travel or study opportunities as a focus, but this is not required. Topics must be supervised by a faculty member in the proposed area of interest, and approved by the Dean of Internationalization. Students must apply to the Dean of Internationalization at least six weeks before the semester start date. This course would normally be taken by undergraduate students in their final year.
Fall, Winter or Summer – as arranged.
STATISTICS

STAT2000: Introduction to Statistics
Instructor: Prof. Astatkie
Graphical presentation of data; descriptive statistics; normal, binomial, t and F distributions; sampling distributions and the central limit theorem; estimation and hypothesis testing of a single mean and the difference between two means; and introduction to correlation, regression and analysis of variance for simple experimental designs. Fall and Winter semesters – 3 lecs, 1 tutorial, and 1 computer lab per week.

STAT2001: Probability and Statistics for Engineering
Instructor: TBA
This calculus-based first course in probability and statistics is designed to interact with the major disciplines within engineering. Topics include descriptive statistics, mathematics of probability, random variables and probability distributions, estimation, hypothesis testing, linear regression and correlation, and introduction to analysis of variance. Problem-solving skills in material related to engineering will be emphasized. Winter semester – 3 lecs, 1 tutorial, and 1 lab per week.

STAT3000: Introduction to Planned Studies: Surveys and Experiments
Instructor: Prof. Astatkie
Prerequisite: STAT2000
This course is a continuation of STAT2000. Topics covered include sampling techniques, simple and multiple linear regression, analysis of variance for completely randomized and randomized block designs, nonparametric tests, and introduction to categorical data analysis. Winter semester – 3 lecs, 1 tutorial, and 1 computer lab per week.

STAT4000: Intermediate Statistical Methods
Instructor: Prof. Astatkie
Prerequisite: STAT3000
Analysis of single-factor experiments, randomized blocks, latin squares, and factorial and two-level fractional factorial designs. Fall semester – 3 lecs and 1 computer lab per week.

VETERINARY TECHNOLOGY

VTEC0034: Externship in Speciality Field
This course is designed to encourage the student to pursue the practical application of special interests in Veterinary Technology that would not be addressed in the externships in general practice or at the Atlantic Veterinary College. The externship is customised to the venue and contracted in a similar manner to the general practice externship. Typical institutions that sponsor this optional externship are: farm animal or equine veterinary practices, intensive care and emergency clinics, specialty veterinary clinics, zoos, humane societies, research facilities.

VTEC0111: Animal Medicine and Nursing I
Instructor: TBA
This is the first in a stream of medicine and nursing courses designed to enable the student to grasp cognitively the principles and practices of veterinary medical, surgical, and related topics. In conjunction with other courses in the Veterinary Technology Program and the related internship and externships, these courses equip the graduate to perform entry-level clinical tasks in the veterinary practice workplace. Topics included in this course are: animal handling and restraint; drug routes; prescription, control and narcotic drugs; vaccines and vaccination; anaesthesiology; surgical preparation; radiography principles and processing; clinical calculations. Fall semester – 3 lecs per week.

VTEC0112: Clinical Exercises I
Instructor: TBA
This is the first in a stream of clinical exercises courses designed to enable the student to practise medical, surgical, and related clinical skills. In conjunction with other courses in the Veterinary Technology Program and the related internship and externships, these courses equip the graduate to perform entry-level clinical tasks in the veterinary practice workplace. Animal care and maintenance duties are extra to the scheduled hours in this course. Task areas included in this course are: animal and facilities maintenance, drug administration, common clinical equipment, anaesthesiology, surgical preparation, radiography. Fall semester – 1 lec and 4 labs per week.
VTEC0113: Veterinary Clinical Pathology I
Instructor: TBA
This is the first in a stream of theory and practical clinical pathology courses designed to enable the student to perform, and cognitively grasp the principles of, essential tasks in the in-house veterinary practice laboratory. In conjunction with other courses in the Clinical Pathology stream, and the related internship and externships, these courses equip the graduate to perform entry-level laboratory diagnostic tasks in the veterinary practice workplace. Task areas and topics included in this course are: microscopy, practical parasitology, urinalysis, the microhaematocrit, haemoglobin and the red blood cell, and initial blood film assessment.
Fall semester – 3 lecs and 3 labs per week.

VTEC0114: Fundamentals in Veterinary Technology I
Instructor: TBA
This is the first in a stream of courses designed to address discrete topics in veterinary technology. These topics may not warrant full-course status; they may require attention at specific times in the syllabus; they may need to be addressed at several levels. Topics in this first fundamentals course are: orientation to the profession and to the program; first-aid training; WHMIS; workplace safety; introduction to zoonotic disease, animal husbandry, cleaning and disinfection, nutrition, animal behaviour, records in veterinary medicine, and veterinary medical terminology.
Fall semester – 5 lecs per week.

VTEC0115: Anatomy–Physiology–Pathophysiology I
Instructor: TBA
This is the first of two courses designed to enable the student to apply the principles of anatomy, physiology, and pathophysiology to animal nursing and medicine. Clinical applications are stressed, and progress through this course is coordinated with other courses in the semester. This course addresses the general topics of cell, tissue, organ, and system plus terms and processes in anatomy, physiology, and disease generally. It then deals with the anatomy, physiology, and typical disease processes in the major body systems. Systems in this course include: musculoskeletal, cardiovascular, respiratory, and urinary/excretory.
Fall semester – 3 lecs and 3 labs per week.

VTEC0121: Animal Medicine and Nursing II
Instructor: TBA
Prerequisites: VTEC0111, VTEC0112
This is the second in a stream of medicine and nursing courses designed to enable the student to grasp cognitively the principles and practices of veterinary medical, surgical, and related topics. In conjunction with other courses in the Veterinary Technology program and the related internship and externships, these courses equip the graduate to perform entry-level clinical tasks in the veterinary practice workplace. Topics included in this course are: anaesthesiology, surgical preparation and assisting, radiography exposure and positioning, clinical calculations, fluid therapy, blood sampling, common infectious diseases of companion animals, feeding in disease states, and introduction to dental disease and treatment.
Winter semester – 3 lecs per week.

VTEC0122: Clinical Exercises II
Instructor: TBA
Prerequisites: VTEC0111, VTEC0112
This is the second in a stream of clinical exercises courses designed to enable the student to perform medical, surgical, and related clinical skills. In conjunction with other courses in the Veterinary Technology program and the related internship and externships, these courses equip the graduate to perform entry-level clinical tasks in the veterinary practice workplace. Animal care and maintenance duties are extra to the scheduled hours in this course. Task areas included in this course are: animal and facilities maintenance, drug administration, general nursing, anaesthesiology, surgical preparation, radiography, fluid therapy, sampling for the laboratory, and dental equipment and supplies.
Winter semester – 1 lec and 4 labs per week.

VTEC0123: Veterinary Clinical Pathology II
Instructor: TBA
Prerequisite: VTEC0113
This is the second in a stream of theory and practical clinical pathology courses designed to enable the student to perform, and cognitively grasp the principles of, essential tasks in the in-house veterinary practice laboratory. In conjunction with other courses in the Clinical Pathology stream, and the related internship and externships, these courses equip the graduate to perform entry-level laboratory diagnostic tasks in the veterinary practice workplace. Task areas and topics included in this course are all prior topics, plus white blood cell development and assessment, total white blood cell counts, the differential count, toxic white cells, QBCÆ evaluation, various blood film stains, UnopetteÆ counting systems, RBC indices, microscopic evaluation of urine, kit immunoassay tests, canine heartworm assays, Mycoplasma hemofelis, and clinical pathology case studies.
Winter semester – 3 lecs and 3 labs per week.
VTEC0124: Fundamentals in Veterinary Technology II
Instructor: TBA
Prerequisite: VTEC0114
This is the second in a stream of courses designed to address discrete topics in veterinary technology that do not warrant full-course status or that require attention in the semester to support other courses. Topics included in this course are: communications in the veterinary practice, veterinary medical records, credentialing and legislation in the veterinary professions, veterinary medical terminology, pharmacology, parasitology, computer applications in veterinary practice, and the economics of veterinary practice.
Winter semester – 5 lecs per week.

VTEC0125: Anatomy–Physiology–Pathophysiology II
Instructor: TBA
Prerequisite: VTEC0115
This is the second of two courses designed to enable the student to apply the principles of anatomy, physiology, and pathophysiology to animal nursing and medicine. Clinical applications are stressed, and progress through this course is co-ordinated with other courses in the semester. This course addresses the anatomy, physiology, and typical disease processes in the remainder of the major body systems. Systems and topics in this course include: digestive, reproductive, nervous, endocrine, organs of special sense, and skin. The principles of inheritance and genetics and embryology are dealt with using examples of common congenital diseases.
Winter semester – 3 lecs and 3 labs per week.

VTEC0131: Internship in Veterinary Technology
Instructor: TBA
This is a capstone course. In this course the learning objectives of all courses in the first two semesters are consolidated and re-tested. Students rotate through clinical, laboratory, and off-campus co-operating hospital experiences, with daily classroom sessions for discussion and testing. In clinical and diagnostic laboratory sessions, students hone skills learned in the first two semesters and acquire some new ones. Completion of this course is a prerequisite for registration in VTEC0133 and for registration in all second-year courses (Semesters 4 and 5). The approximate division of elements of this course is: Clinical 64 hours (2 x 8 hr per week); Clinical Pathology 36 hours (3 x 3 hr per week); Co-operating hospital 16 hours (1 x 4 hr per week); and Cognitive classroom sessions 16 hours (4 x 1 hr per week). Animal care and maintenance duties are extra to scheduled hours in this course. Task areas included in this course are: animal and facilities maintenance, drug administration, anaesthesiology, surgical preparation and assisting, radiography, clinical calculations, fluid therapy, blood sampling, feeding, and introduction to dental disease and treatment.
Spring semester.

VTEC0132: Externship at the Atlantic Veterinary College
Instructor: TBA
This course is an off-campus externship delivered by the Atlantic Veterinary College (AVC). During these four weeks students are on-duty with technical staff for approximately one-half of their time at the Veterinary Teaching Hospital (VTH). Evening and night shifts are a large part of the AVC Externship. Day shifts allow some opportunity for the student to choose specific areas of interest. In addition there are structured learning exercises. There is a significant livestock and equine component to the AVC Externship. Students attend this externship in two or more sections. Attendance is required at all scheduled duty shifts and exercises. Completion of this course is a prerequisite for registration in VTEC0133 and for registration in all second-year courses (Semesters 4 and 5).
PLEASE NOTE: Cost of transportation to AVC and room and board in Charlottetown are the responsibility of the student. Staff of the Veterinary Technology Program will assist the student where possible, but the responsibility for living arrangements is the student's.
Spring semester.

VTEC0133: Externship in General Veterinary Practice
Instructor: TBA
Prerequisites: VTEC0131, VTEC0136
This course is an off-campus learning experience in a general veterinary practice. Students locate these externship practices from a list provided by the VT Program staff, but an unlisted practice contacted by a student may be approved. To be approved the practice must have a significant companion-animal (small-animal) clientele and employ at least one graduate AHT/VT. Students may apply to complete this externship in practices outside of the Atlantic Region. A contract between the student, the practice, and the College must be completed before this externship can begin. Weekly report forms and a final report are completed by practice personnel. Student assignments must be completed before a credit can be entered for this course.
Spring semester.
Description of Courses—Undergraduate and Technical

VTEC0211: Animal Medicine and Nursing III
Instructor: TBA
Prerequisites: VTEC0131, VTEC0132
This is the third in a stream of medicine and nursing courses designed to enable the student to grasp cognitively the principles and practices of veterinary medical, surgical, and related topics. In conjunction with other courses in the Veterinary Technology Program and the related internship and externships these courses equip the graduate to perform entry-level clinical tasks in the veterinary practice workplace. Topics included in this course are: anaesthesiology, pain management, surgical preparation and assisting, radiography, clinical calculations, fluid therapy, emergency procedures, blood sampling, non-infectious diseases of companion animals, feeding in disease states, dental disease and treatment.
Fall semester – 4 lecs per week.

VTEC0212: Clinical Exercises III
Instructor: TBA
Prerequisites: VTEC0131, VTEC0132
This is the third in a stream of clinical exercises courses designed to enable the student to perform medical, surgical, and related clinical skills. In conjunction with other courses in the Veterinary Technology program and the related internship and externships, these courses equip the graduate to perform entry-level clinical tasks in the veterinary practice workplace. Animal care and maintenance duties are extra to the scheduled hours in this course. Task areas included in this course are: animal and facilities maintenance, drug administration, general nursing, anaesthesiology, surgical preparation and assistance, radiography, fluid therapy, sampling for the laboratory, and dental procedures.
Fall semester – 1 lec and 4 labs per week.

VTEC0213: Veterinary Clinical Pathology III
Instructor: TBA
Prerequisites: VTEC0131, VTEC0132
This is the third in a stream of theory and practical clinical pathology courses designed to enable the student to perform, and cognitively grasp the principles of, essential tasks in the in-house veterinary practice laboratory. In conjunction with other courses in the clinical pathology stream and the related internship and externships, these courses equip the graduate to perform entry-level laboratory diagnostic tasks in the veterinary practice workplace. Task areas and topics included in this course are all prior topics, plus theory of blood chemical tests, serum chemistry, large-animal parasites, haematology of alternate species, microbiology and antibiotic susceptibility testing, yeast and other fungi, advanced parasitology techniques, quality control in the laboratory, submissions to external laboratories, and clinical pathology case studies.
Fall semester – 3 lecs and 3 labs per week.

VTEC0214: Fundamentals in Veterinary Technology III
Instructor: TBA
Prerequisites: VTEC0131, VTEC0132
This is the third in a stream of courses designed to address discrete topics in veterinary technology that do not warrant full-course status or that require attention in the semester to support other courses. Case reports from externships are delivered and discussed. Topics included in this course are: veterinary medical terminology, pharmacology and dispensing, parasitology, clinical calculations, computer applications in veterinary practice, bookkeeping in the veterinary practice, and presentations to small groups.
Fall semester – 5 lecs per week.

VTEC0215: Livestock and Equine Principles
Instructor: TBA
Prerequisites: VTEC0131, VTEC0132
Through a mixture of classroom and field trip exercises, this course enables the Veterinary Technology student to recognize common equine and livestock breeds; describe livestock production cycles and methods; and use appropriate terminology. Common diseases of large animals as they relate to the veterinary technician are dealt with. Urgent and emergency clinical signs in large-animal species are stressed. Common clinical procedures in large-animal practice are outlined.
Fall semester – 3 lecs and 2 labs per week.

VTEC0221: Animal Medicine and Nursing IV
Instructor: TBA
Prerequisites: VTEC0211, VTEC0212
This is the last and capstone course in a stream of medicine and nursing courses designed to enable the student to grasp cognitively the principles and practices of veterinary medical, surgical, and related topics. Upon completion of this course and the related course VTEC0502, the graduate is able to perform entry-level clinical tasks in the veterinary practice workplace. Problem-oriented case studies are used as models. All task areas included in prior Animal Medicine and Nursing courses are revisited, and some are elaborated. Students are re-evaluated comprehensively.
Winter semester – 4 lecs per week.
Description of Courses—Undergraduate and Technical

VTEC0222: Clinical Exercises IV
Instructor: TBA
Prerequisites: VTEC0211, VTEC0212
This is the last and capstone course in a stream of clinical exercises courses designed to enable the student to perform medical, surgical, and related clinical skills. Upon completion of this course and the related VTEC0501, the graduate is able to perform entry-level clinical tasks in the veterinary practice workplace. All task areas included in prior Clinical Exercises courses are reviewed, some are elaborated, and students are re-evaluated.
Winter semester – 1 lec and 4 labs per week.

VTEC0223: Veterinary Clinical Pathology IV
Instructor: TBA
Prerequisite: VTEC0213
This is the last and capstone course in a stream of theory and practical clinical pathology courses designed to enable the student to perform, and cognitively grasp the principles of, essential tasks in the in-house veterinary practice laboratory. Upon completion of this course the graduate is able to perform entry-level laboratory diagnostic tasks in the veterinary practice workplace. Students are re-evaluated comprehensively. Task areas and topics included in this course are all prior topics, plus cytology of the reproductive tracts, soft tissues, and body fluids; transfusion medicine; bone marrow evaluation; semen evaluation; cerebrospinal fluid; blood dyscrasias; coagulation factor evaluations; quality control programs; trouble-shooting problems in the laboratory; and clinical pathology case studies.
Winter semester – 3 lecs and 3 labs per week.

VTEC0224: Fundamentals in Veterinary Technology IV
Instructor: TBA
This is the last and capstone course in a stream of courses designed to address discrete topics in veterinary technology that do not warrant full-course status or that require attention in the semester to support other courses. All topics included in prior Fundamentals courses are reviewed, some are elaborated, and students are re-evaluated comprehensively in all areas.
Winter semester – 5 lecs per week.

VTEC0225: Laboratory Animal and Alternate Pet Medicine
Instructor: TBA
Prerequisites: VTEC0211, VTEC0212, VTEC0213, VTEC0214
This course enables the student to apply the principles of clinical nursing to alternate and exotic pets as well as to common laboratory animal species. It also enables the graduate to enter the research facility and, with supplemental training and experience, prepares the graduate for certification with the Canadian Association for Laboratory Animal Sciences. Topics include: specialized animal sources, barriers and containment, bio-hazards, special requirements of various species, handling of and common techniques used on alternate and laboratory animal species, and the ethics of animal research and of wild animal species as pets.
Winter semester – 3 lecs and 3 labs per week.
MASTER OF SCIENCE IN AGRICULTURE

The Master of Science program with a specialization in agriculture is a joint program offered by the Nova Scotia Agricultural College (NSAC) and Dalhousie University. Dalhousie University grants the Master of Science degree in association with NSAC. Graduate students may take graduate courses offered at NSAC and at Dalhousie University. This provides graduate students in the M.Sc. program in agriculture with a wide variety of courses from which to select. Graduate courses offered at NSAC are listed herein. Graduate courses offered at Dalhousie University are listed in the Dalhousie University Graduate Studies Calendar 2007/2008, available on the Dalhousie website at www.dalgrad.dal.ca.

Students accepted for enrollment in the M.Sc. program are registered at NSAC and Dalhousie, and are given a student identification number for each institution in accordance with the systems in place at each institution. Official transcripts for all students are produced by Dalhousie University.

For all academic matters relating to the M.Sc. program, including admission requirements, degree requirements, examinations, evaluations, and theses, students are deemed to be students of both NSAC and Dalhousie University. Students are subject to the academic regulations and rules of the Faculty of Graduate Studies (FGS) as outlined in the Dalhousie University Graduate Studies Calendar 2007/2008. All academic policies are outlined in the Graduate Program Procedures Manual, available from the Research & Graduate Studies Office. The 2007/2008 edition of this manual will be available in August.

For all non-academic matters, including the payment of tuition and other fees, scholarships, bursaries, research and conference funding, athletics, and non-academic discipline, students are deemed to be students of NSAC. Graduate students are referred to the NSAC Community Standards 2007/2008 document (www.nsac.ca/stuserv/handbooks.asp) for further information on the rules and regulations governing the College community. This document describes the regulations/standards that constitute reasonable behaviour and outlines the process by which breaches of these standards are adjudicated. This document also contains the alcohol and drug policy, information on appeal processes, and the NSAC Student Code of Conduct. The NSAC’s Policy for Responsible Computing also applies to graduate students and can be found in the document Policy Governing Access to and Use of NSAC Academic Computing (www.nsac.ca/its/policy.asp).

All students must agree to obey all the regulations of NSAC and all academic regulations of FGS. Additionally, students are advised that this Calendar is not an all-inclusive set of rules and regulations but represents only a portion of the rules and regulations that will govern the student’s relationship with NSAC and Dalhousie University. Other rules and regulations are contained in additional publications (e.g. Graduate Program Procedures Manual) that are available to the student from Dalhousie University Registry and Faculty of Graduate Studies as well as the NSAC Registry and Research & Graduate Studies Office. Students are also advised that the regulations herein are subject to change.

Students in the M.Sc. program may choose to specialize in one of the following areas:

Animal Science
(livestock, fur animals, poultry, shellfish, and finfish)
- Animal Management
- Behaviour
- Breeding
- Molecular Genetics
- Nutrition
- Physiology

Environmental Science
- Agricultural Systems Management
- Ecology
- Entomology
- Pest Management
- Resource Management
- Wastewater Management
- Weed Science

Plant Science
(fruits, vegetables, grains, forages, and specialty crops)
- Cropping Systems Management
- Plant Breeding
- Molecular Genetics
- Nutrition
- Pathology
- Physiology

Soil Science and Agricultural Chemistry
- Food Biochemistry
- Food Product Development
- Food Safety and Quality
- Soil Chemistry
- Soil Conservation and Management
- Soil Fertility

NSAC has unique strengths in the areas of Organic Agriculture; Air, Water, and Soil Quality Management; Fur Animal Research; Aquaculture Production; Pasture Management; and Agricultural Waste Management. There are also opportunities for graduate studies in Agricultural Economics and Engineering. Contact us for details.
ADMISSION REQUIREMENTS
Candidates must hold a Bachelor's degree with a minimum 'B' average or GPA of 3.0 from a university of recognized standing. For entry into the Master's program, candidates must hold a Bachelor's degree with Honours or the equivalent of honours standing as granted by Dalhousie University in the area in which graduate work is to be done or an area that is relevant to the graduate work. A four-year Bachelor's degree may be considered as equivalent of honours if there is significant evidence of independent research capacity (such as a research project as part of a course) or if the degree is officially approved as an honours equivalent.

In those cases where a candidate has a three-year degree and an honours program was not available to them, first-class candidates will be considered for admission into the two-year program or Qualifying Year (programs are described below).

English is the standard language of study at NSAC and Dalhousie University. Thus, candidates whose native language is not English must demonstrate their capacity to pursue a graduate-level program in English before admission. The standard test is TOEFL (Test of English as a Foreign Language). The minimum acceptable score for the written (paper-based) TOEFL is 580, for the computer-based TOEFL is 237, and for the internet-based TOEFL is 92. It is also recommended that potential students taking the non-computer TOEFL test should also take the Test of Written English (TWE) component. Official TOEFL reports are to be submitted to NSAC (institution code 0844). The following other tests will also be accepted with the following minimum scores: MELAB, 90; IELTS, 7; CanTest, average of 4.5 with no band score lower than 4.0; CAEL, 60 overall with no band score lower than 50. The TOEFL requirement is waived if the applicant has completed a degree at an institution where the language of instruction is English.

There are some exceptions to this policy. Please contact the Research & Graduate Studies Office, NSAC, at (902) 893-6502 (mlaw@nsac.ca), if you have any questions regarding the English Language Requirement.

Further information on these tests may be obtained from:

Test of English as a Foreign Language (TOEFL)
TOEFL/TSE Service
PO Box 6151
Princeton, NJ
USA 08541
toefl@ets.org
www.toefl.org

Michigan English Language Assessment Battery (MELAB)
English Language Institute
TCF Building
University of Michigan
401 E. Liberty, Ste 350
Ann Arbor, Michigan
USA 48104-2298
melabelium@umich.edu
www.lsa.umich.edu/eli/testing/melab

International English Language Testing System (IELTS)
University of Cambridge Local Examinations Syndicate
1 Hills Road
Cambridge, UK
CB12EU
ielts@ucles.org.uk
www.ielts.org

Canadian Test of English for Scholars and Trainees (CanTest)
CanTEST Project Office
Second Language Institute
University of Ottawa
600 King Edward Avenue
Ottawa, ON
K1N 6N5
cantest@uottawa.ca
www.arts.uottawa.ca/ilseng/cantest_register.html

Canadian Academic English Language Assessment (CAEL)
CAEL Assessment Testing Office
220 Paterson Hall
Carleton University
1125 Colonel By Drive
Ottawa, ON
K1S 5B6
cael@carleton.ca
www.cael.ca
All applications will be reviewed at NSAC based on the academic qualifications and record of the applicant. Application forms may be requested from the Research & Graduate Studies Office (RGS), Nova Scotia Agricultural College, PO Box 550, Truro, NS B2N 5E3 or downloaded from the RGS website (www.nsac.ca/research/graduatestudies/admissions.asp). Completed applications are sent from the Graduate Coordinator to the head of the department to which the student is applying. The Department Head receives completed applications, arranges for a departmental recommendation on admission for each applicant, and assists the Graduate Coordinator with finding a supervisor and funding support for acceptable M.Sc. candidates. In the event that a supervisor can be found but funding support is not available, the Department may recommend that the student be admitted on a self-funded basis. A recommendation on admission, signed by the Department Head, will be forwarded to the Graduate Coordinator within two weeks of receiving the completed application. Recommendations regarding admission will then be forwarded from NSAC to the Dean of Graduate Studies, Dalhousie University. At this stage, NSAC will contact applicants to inform them that a positive recommendation has been made to the Faculty of Graduate Studies, Dalhousie University (FGS). This does not constitute official acceptance into the graduate program. Final decisions on all admissions are made by FGS, and there are no appeals on admission decisions. Official acceptance is achieved when the recommendation has been approved by FGS and a formal letter of acceptance is issued by the Dalhousie Registrar’s Office. This letter is the only official notification that is sent out. No other forms of communication, including letters from the supervisor or department, constitute official acceptance or rejection. Please note that entry into the graduate program is very competitive and applicants who meet or exceed the minimum requirements are not guaranteed admission. Normally, successful applicants have academic records and qualifications that are well above the minimum required.

Supporting documents included in applications (e.g. transcripts, letters of reference, etc.) will be verified for authenticity. Applicants submitting fraudulent documents may have their names published on the listserv of the Association of Registrars of Universities and Colleges in Canada and may have their acceptance rescinded. Documents submitted as part of the application cannot be returned or photocopied for the student.

Dalhousie University reserves the right to rescind any acceptance of an applicant into the program or to rescind an offer of admission of an applicant into the program. Such rescission will be in writing in accordance with Dalhousie University regulations (see Dalhousie University Graduate Studies Calendar 2007/2008).

Newly-accepted applicants who, for reasons beyond their control, are unable to take up their position on the date for which they were accepted may request a deferral of their start date to a later term. Students may request a deferral of one, two, or three terms, and no student may receive more than one deferral. Students wishing to request a deferral should contact the NSAC Research & Graduate Studies Office as soon as possible. All deferrals are subject to the agreement of the supervisor who has agreed to supervise the student’s program of study and the head of the department to which the student has applied, and the final approval of FGS. Students are advised that funding assistance provided through a research assistantship (e.g. supervisor’s research grant or contract) may be rescinded if the student is unable to register on the date for which they were originally accepted into the program. If a student requests a deferral after registration, it is the student’s responsibility to cancel his or her registration.

Application forms and details may be obtained from:

Research & Graduate Studies Office
Cumming Hall, Nova Scotia Agricultural College
PO Box 550, Truro, NS B2N 5E3
Phone (902) 893-6502, fax (902) 893-3430
www.nsac.ca/research/graduatestudies/admissions.asp

Students who have taken graduate courses before applying for graduate studies, and who have not used these credits for another degree, should apply for appropriate graduate credit at the time of admission. FGS does not guarantee that advanced standing will be granted for courses taken prior to admission to the graduate program. Under no circumstances will advanced standing be approved retroactively.
Academic Deadlines

A complete list of academic deadlines for those students enrolled in the M.Sc. program can be found in the *Graduate Program Procedures Manual 2007/2008* (available on the NSAC website at www.nsac.ca/research/graduatestudies/studenthandbook.pdf). The Graduate Coordinator distributes this manual to all registrants in the M.Sc. program annually at registration.

Starting Dates

Students may choose to begin their Master of Science in Agriculture program in the Fall (September 1), Winter (January 1), or Spring (May 1) session.

Application Deadlines

The final date for the receipt of applications for studies commencing:

- **September 1** is June 1 (non-Canadian students April 1)
- **January 1** is October 31 (non-Canadian students August 31)
- **May 1** is February 28 (non-Canadian students December 31)

If visa processing is lengthy (such as in the People’s Republic of China), applicants should apply at least two months before the deadline, e.g. by January 31 for September admission.

Applicants who wish to apply for financial support (e.g. research assistantship) are strongly encouraged to apply for admission before the stated deadline and to indicate the need for financial support in their application. All applicants are automatically considered for financial support. Candidates should also apply for external awards whenever possible. NSAC reserves the right to rescind financial support (e.g. research assistantships, entrance scholarships) after the letter of initial offer, should the applicant be deemed not to meet admission standards or the academic standards required for scholarship criteria.

Applicants who require a student visa and are not funded by NSAC or an officially-recognized funding agency must provide proof of financial ability with their application. Immigration Canada is increasingly rigorous about requiring proof of sufficient financial support to complete the program of study.

Students with diagnosed learning disabilities who meet the current admission requirements may follow the current admission procedures.

Students with diagnosed learning disabilities who do not meet the current admission requirements or who otherwise wish to have their learning disability considered may apply for special consideration, as may all other students who have extenuating circumstances. The following additional documentation must be submitted by students who wish to apply for special consideration:

- letter(s) of recommendation from the individual(s) most familiar with the applicant’s academic performance and/or potential for success in the program;
- a written, oral or electronic statement from the student—in this brief personal statement, students should describe their learning disability, how this affected their grades, and the type of assistance they would require while at NSAC; and
- a current (within three years) psychological assessment based on standard diagnostic instruments administered by a registered psychologist documenting the presence of learning disabilities. If a current report is not possible, NSAC/Dalhousie University may accept an earlier report along with a current opinion (i.e., within the past year) expressed in a letter by a registered psychologist (or individual supervised by a registered psychologist) that the student has a learning disability. This letter should specify the nature, extent, and rationale for program modifications or accommodations that were deemed appropriate in the student’s last two years of schooling.
Graduate Courses that have not been counted toward a previous degree may be awarded to a graduate course at NSAC/Dalhousie University. Graduate courses based on courses completed previously with a course content equivalent to a graduate course at NSAC/Dalhousie University. The number of credits awarded for the thesis is intended to make the total number of credits equal to the number required for the M. Sc. degree (ten), and is not related to the thesis quality; it is expected that a thesis awarded four credits is of the same quality as a thesis awarded six credits. The one-year program involves a program fee requirement of one year (three terms of full-time study), during which a full-time student is expected to be on campus for three consecutive terms unless otherwise given permission to take courses or undertake research somewhere else. The one-year program fee is followed by continuing fees as required. The usual time for completion for students in the one-year program is 24 to 28 months.

Two-year M.Sc. Program
In addition to the requirements for a one-year M.Sc. program, students must complete at least five additional credits related to their thesis work with a grade of ‘B-’ (70%) or better in each course. These additional credits may be at the undergraduate or graduate level. The two-year program involves two years of program fees followed by continuing fees as required. If admitted to a two-year program, full-time students are normally required to be on campus for six consecutive terms. The usual time for completion for students in the two-year program is 36 months.

GENERAL INFORMATION
Graduate Courses
Graduate courses at NSAC are numbered in the 5000 series. No course can be assigned a graduate number without the recommendation of the Curriculum Committee and the approval of Faculty Council at NSAC and the Curriculum Committee, FGS. The last dates for adding and deleting classes are published in the schedule of Academic Deadlines, as printed in the Dalhousie University Graduate Studies Calendar 2007/2008. For withdrawals within this period, the class and the withdrawal are not recorded on the academic record. After these dates, the student is responsible for the content of the class and receives a grade for it. Students may not transfer from full to part-time status by withdrawing from classes after the deadlines listed in the schedule of Academic Deadlines.

Advanced Placement
Upon admission, a student may be granted advanced placement credits based on courses completed previously with a course content equivalent to a graduate course at NSAC/Dalhousie University. Graduate courses that have not been counted toward a previous degree may be awarded transfer credit (see below). For courses that have been counted toward a previous degree, advanced placement normally does not reduce the overall course requirements in the program, but may replace one or more required courses. Advanced placement must be approved by the supervisor, the Graduate Coordinator and FGS, and must be clearly annotated on the student’s Program Form. Students should be aware that courses approved for advanced placement will not appear on their official transcript of the NSAC/Dalhousie M.Sc. program. Combined advanced placement, letter of permission, and transfer credits cannot exceed 33% of the program’s overall course requirements.

Transfer Credit
A transfer credit allows for courses completed outside of the student’s program, normally at another institution, to be used as part of the student’s degree requirements. Such courses cannot have been used for credit for another degree, and the total of Advanced Placement, Letter of Permission, and Transfer credits cannot exceed 33% of the program’s overall course requirements. Transfer credits should be applied for within the first term following admission and must be approved by the student’s supervisor, the Graduate Coordinator, and FGS. An original transcript and course equivalency is required. Approved transfer credits will appear on the student’s official transcript of the NSAC/Dalhousie M.Sc. program.

Letters of Permission
The maximum number of courses taken outside the NSAC/Dalhousie University Master of Science program shall normally be restricted to 33% of the course requirements. This total of 33% would include courses taken on Letter of Permission, Transfer Credits, and Advanced Placement. Courses approved by Dalhousie University (after examination of course descriptions) can be taken at other universities on Letter of Permission as part of the graduate degree program, provided the course is not available at NSAC or Dalhousie University. Graduate students enrolled in the M.Sc. program in agriculture do not need a Letter of Permission to take courses at Dalhousie University.

Approval of the Letter of Permission is granted by the Dean of Graduate Studies, Dalhousie University. Graduate students must be registered and have paid appropriate fees before Letters of Permission will be approved. Full-time and part-time students are eligible to apply to take a course on a Letter of Permission. Students may not take classes outside of the NSAC/Dalhousie M.Sc. program for graduate credit unless prior approval has been received from FGS. Letters of Permission are not approved retroactively.

Students must achieve a ‘B-’ (70%) grade or better in order to achieve a pass standing at NSAC/Dalhousie University. Grades below ‘B-’ received for courses taken on a Letter of Permission at another institution will be recorded as a failing grade on the student’s record. The normal regulations governing grading policy apply to classes taken

PROGRAMS OF FULL-TIME AND PART-TIME STUDY
One-year M.Sc. Program
Ten graduate credits are required. The thesis will count for a maximum of six credits. The remaining credits (pass grade of ‘B-’ or 70% in each course) must include AGRI5700 (Communication Skills and Graduate Seminar). Students may be granted advanced placement credits upon admission, a student may be granted advanced placement credits based on courses completed previously with a course content equivalent to a graduate course at NSAC/Dalhousie University. Graduate courses that have not been counted toward a previous degree may be awarded transfer credit (see below). For courses that have been counted toward a previous degree, advanced placement normally does not reduce the overall course requirements in the program, but may replace one or more required courses. Advanced placement must be approved by the supervisor, the Graduate Coordinator and FGS, and must be clearly annotated on the student’s Program Form. Students should be aware that courses approved for advanced placement will not appear on their official transcript of the NSAC/Dalhousie M.Sc. program. Combined advanced placement, letter of permission, and transfer credits cannot exceed 33% of the program’s overall course requirements.

Transfer Credit
A transfer credit allows for courses completed outside of the student’s program, normally at another institution, to be used as part of the student’s degree requirements. Such courses cannot have been used for credit for another degree, and the total of Advanced Placement, Letter of Permission, and Transfer credits cannot exceed 33% of the program’s overall course requirements. Transfer credits should be applied for within the first term following admission and must be approved by the student’s supervisor, the Graduate Coordinator, and FGS. An original transcript and course equivalency is required. Approved transfer credits will appear on the student’s official transcript of the NSAC/Dalhousie M.Sc. program.

Letters of Permission
The maximum number of courses taken outside the NSAC/Dalhousie University Master of Science program shall normally be restricted to 33% of the course requirements. This total of 33% would include courses taken on Letter of Permission, Transfer Credits, and Advanced Placement. Courses approved by Dalhousie University (after examination of course descriptions) can be taken at other universities on Letter of Permission as part of the graduate degree program, provided the course is not available at NSAC or Dalhousie University. Graduate students enrolled in the M.Sc. program in agriculture do not need a Letter of Permission to take courses at Dalhousie University.

Approval of the Letter of Permission is granted by the Dean of Graduate Studies, Dalhousie University. Graduate students must be registered and have paid appropriate fees before Letters of Permission will be approved. Full-time and part-time students are eligible to apply to take a course on a Letter of Permission. Students may not take classes outside of the NSAC/Dalhousie M.Sc. program for graduate credit unless prior approval has been received from FGS. Letters of Permission are not approved retroactively.

Students must achieve a ‘B-’ (70%) grade or better in order to achieve a pass standing at NSAC/Dalhousie University. Grades below ‘B-’ received for courses taken on a Letter of Permission at another institution will be recorded as a failing grade on the student’s record. The normal regulations governing grading policy apply to classes taken
Graduate Program

at other institutions (e.g. a ‘C+’ on a graduate class taken elsewhere will be deemed an ‘F’ in the student’s program and will render him/her liable to academic withdrawal). Students who fail a class may not replace that class on a Letter of Permission, except with special permission of FGS.

NSAC will normally reimburse up to a maximum of $500 toward the cost of a course taken on a Letter of Permission, if the course is a required course for the student’s M.Sc. program and the course is not available at NSAC or Dalhousie University. This policy applies to students who pay “program fees”; it does not apply to students who pay “course fees.” To be reimbursed, the student must provide proof of payment for the course and official transcripts showing that the course was passed (i.e., a grade of ‘B-‘ or 70%).

Ancillary Courses
A student may be directed by his/her supervisor or supervisory committee to take undergraduate courses which are ancillary in nature to the student’s specific area of study. Undergraduate courses recommended by a supervisor or the supervisory committee as advisable additional background to the degree program, but not specifically required for that program, are termed ancillary courses and are usually taken in a department other than the one in which the student is registered. These are taken by the student for credit in order to make up deficiencies in background or to acquire important skills of an ancillary nature. The pass grade in ancillary courses taken at NSAC (i.e., NSAC undergraduate courses) is 60%. Ancillary classes must be listed on the Program Form but do not count toward the required number of credits for the M.Sc. degree. Normally students are limited to one ancillary class (6 credit hours) during their program. Students who take ancillary courses at another institution are responsible for the tuition fees at the other institution. Undergraduate courses taken at NSAC will not appear on the student’s official transcript of the M.Sc. program issued by Dalhousie University and will not be included as part of the student’s graduate program. The NSAC Registry will record ancillary courses.

Additional Undergraduate and Audit Courses
As part of their regular fees, graduate students may take two undergraduate NSAC courses for credit and two NSAC courses for audit of their choice in addition to their 10 required program credits. Approval is required from the student’s supervisory committee for the additional undergraduate credit and audit courses.

Students may also take one audit at Dalhousie University (equivalent to six credit hours) in each year of residency of their formal program. Audits at Dalhousie University must be listed on the Program Form and must be relevant to the student’s program of study. Audits cannot be taken on Letter of Permission and will not be approved as part of a Qualifying Program.

Independent Study, Directed Readings, and Special Topics
Students may not register for more than two independent study, directed readings, or special topics courses in any graduate program.

Passing Grade for Required Courses
Classes may be designated by the candidate’s committee as ‘Required’ (pass mark is ‘B-‘) or ‘Ancillary’ (normal undergraduate pass mark unless otherwise specified). Some graduate courses are cross-listed with senior undergraduate courses, in which case the requirements for graduate students are more demanding than those for undergraduates. If a student is permitted to take an undergraduate course (with an appropriate additional work requirement as approved by FGS Curriculum Committee) as part of the graduate course work, the minimum ‘B-‘ grade also applies. Note that there is no withdrawal (WD) grade for graduate students (see grading chart below), except where a student formally withdraws from the program.

Grading Policy
Graduate students must achieve a minimum, or passing, grade of ‘B-‘ in all classes required as part of their degree program. Any lower grade will be recorded as a failure. Note that there is no withdrawal (WD) grade for graduate students (see grading chart below), except where a student formally withdraws from the program.

Dalhousie University’s FGS uses the following grading scheme:

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Numerical (%) Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>90–100</td>
</tr>
<tr>
<td>A</td>
<td>85–89</td>
</tr>
<tr>
<td>A-</td>
<td>80–84</td>
</tr>
<tr>
<td>B+</td>
<td>77–79</td>
</tr>
<tr>
<td>B</td>
<td>73–76</td>
</tr>
<tr>
<td>B-</td>
<td>70–72</td>
</tr>
<tr>
<td>F</td>
<td><70</td>
</tr>
</tbody>
</table>

Academic Transcript
The academic transcript is a reflection of academic progress and therefore reflects both passes and failures. It cannot be altered after the fact. Accordingly, it is essential that students be fully aware of the deadlines for adding and withdrawing from graduate classes. Except for university purposes, transcripts (both official and unofficial) will be issued only on the request of the student and, where appropriate, on payment of the required fee. A student will receive only an unofficial transcript. Upon a student’s request, official transcripts will be sent to other universities, or to business organizations. Graduate students are reminded that their official academic transcript must be requested directly from Dalhousie University. Official transcripts can be requested through Dalhousie’s online system.
Incomplete Courses

A student who fails to complete the required work for a particular class during the normal period of the class will receive a grade of ‘F’ (Fail). However, where circumstances warrant it, a grade of ‘INC’ (Incomplete) may be assigned. Subsequent completion of the work following the end of the class may result in a change of grade by the class instructor, as long as the work is completed before the following deadlines:

- Fall term classes: February 1
- Winter term classes: June 1
- Full academic year classes (e.g. AGRI5710): June 1
- Summer term classes: October 1

After these deadlines, an ‘INC’ grade cannot be changed without permission of FGS.

Where the formal deadline for completion of work is beyond the INC deadline, the instructor can request permission from FGS to extend the INC for an approved period of time.

Where illness is involved, a certificate from the student’s physician will be required. This certificate should indicate the dates and duration of the illness, when possible should describe the impact it had on the student’s ability to fulfill academic requirements, and should include any other information the physician considers relevant and appropriate. To obtain a medical certificate, students who miss examinations, tests, or the completion of other assignments should contact their physician at the time they are ill and should submit a medical certificate to their instructor as soon thereafter as possible. Such certificates will not normally be accepted after a lapse of more than one week from the examination or assignment completion date.

For exceptional circumstances other than illness, appropriate documentation, depending on the situation, will be required. Requests for alternate arrangements should be made to the instructor in all cases. The deadlines for changing a grade from ‘ILL’ to a letter grade are the same as those listed above for changing a grade from ‘INC’ to a letter grade.

All outstanding grades, including ‘ILL’ and ‘INC’, must be addressed prior to registration for the next term. If grades are still outstanding into the next term and no arrangements have been made, the student may be required to re-register in the class.

In Progress Courses

The grade of In Progress may be used only to report the thesis course, research project classes, and those designated as “open to independent completion of study.” Final submission of grades for project and independent study courses is April 30 for fall term courses and August 31 for winter term and regular session (AGRI5710 and AGRI5705) courses.

Academic Standards

When the work of a student becomes unsatisfactory (including insufficient progress), or a student’s attendance is irregular without sufficient reason, withdrawal from one or more courses or academic dismissal from the program may be required.

Failed Courses

A student who fails to obtain the minimum grade (‘B-’) in any course in any year is immediately and automatically withdrawn (academically dismissed) from the program. However, such a student may apply, in writing, to the NSAC Graduate Coordinator for reinstatement. Reinstatement to the program after a failing grade must be supported by the student’s Supervisor, the Graduate Coordinator, and the head of the department in which the student is registered at NSAC, and must be approved in writing by FGS. Note that any academic withdrawal and reinstatement will be recorded on the student’s official transcript.

Length of Program and Extensions

Graduate students have a maximum period of time within which to complete all of the requirements for their graduate program.

Usual time limits for the completion of degrees are:
- One-year M.Sc., full-time: 2 years
- One-year M.Sc., part-time: 4 years
- Two-year M.Sc., full-time: 3 years

Upper time limits for the completion of degrees are:
- One-year M.Sc., full-time: 4 years
- One-year M.Sc., part-time: 5 years
- Two-year M.Sc., full-time: 5 years
- Two-year M.Sc., part-time: 7 years

Students may apply for extensions beyond the upper time limits. A first extension of one year may be granted by FGS on the recommendation of the Graduate Coordinator, along with a satisfactory Progress Report Form completed and signed by the student and the supervisor. A request for a second extension, the Final Extension, must be submitted to the Graduate Coordinator with a Report of Progress in the previous year together with a detailed plan and timetable for completion of the thesis within the following 12-month period. If supported by the supervisory committee, the Graduate Coordinator will forward the recommendation to the Dean of Graduate Studies, Dalhousie University, for approval. The student is then expected to defend and submit the approved thesis within that academic year. Further extensions will only be given for one term to provide for necessary revisions to the thesis following defence. Under no circumstances can a student be registered in a program for more than 10 years.
Withdrawal From Program
A student who decides to withdraw from the graduate program must immediately notify, in writing, his/her supervisor and the Graduate Coordinator. The Graduate Coordinator will notify the NSAC Registrar, the Dalhousie Registrar, and the Dean of Graduate Studies, Dalhousie University. Refund of fees, if applicable, will be calculated from the date this letter is received by the Graduate Coordinator. A withdrawal is not official until it has been approved by FGS and is received in the Dalhousie Registrar’s Office. Under no circumstances will FGS back-date a withdrawal notice.

Academic Dismissal
A student may be required to withdraw from the program for academic reasons (e.g. resulting from class failure, failure of ATC examination, or lack of academic progress), for academic offences such as plagiarism, for irregularities in the presentation of data, for non-academic reasons (e.g. breach of an NSAC or Dalhousie University regulation or Code of Student Conduct), or for failure to maintain registration status. The student will be notified by the appropriate body of the reason for the required withdrawal. The student has the right to appeal the decision to the Graduate Coordinator. Academic work completed at another institution while on Academic Dismissal can not be used for credit at NSAC/Dalhousie.

Readmission of Students
A student who is academically dismissed may apply in writing to the Graduate Coordinator for immediate reinstatement. Upon the recommendation of the student’s supervisor, the Graduate Coordinator and FGS, a student may be immediately reinstated once during the course of their program.

A student who is required to withdraw, who voluntarily withdraws, or whose registration has lapsed may apply for readmission within ten (10) years of initial registration. Readmission is not automatic because of the competition for places with incoming students. A student who is academically withdrawn may not apply for readmission for at least 12 months following the official date of the withdrawal.

Readmitted Students
Students who fail to register and pay tuition fees for any term before the degree requirements have been fulfilled are considered to have withdrawn, and will be required to apply for readmission. Readmitted students (except those who have been withdrawn for academic reasons) must pay fees for the terms in which they were not registered, to a maximum of three terms at the current “continuing fee” rate.

Readmitted students who were academically withdrawn will not be charged make-up fees for the three terms immediately following the official date of withdrawal. Make-up fees will be charged for any term thereafter, to a maximum of three terms, until the student is registered.

Students who have not maintained registration are normally required to have a satisfactory thesis in hand or a timetable for completion, approved by the Graduate Coordinator and signed by the student and thesis supervisor, before they can be readmitted.

Students may be readmitted only once during the course of their program. Application for readmission must meet normal application deadlines, and all outstanding fees must be paid.

OTHER PROGRAM COMPONENTS

Demonstrating
As part of their graduate training all students must spend at least one academic term demonstrating in an undergraduate class. It is hoped that graduate students will participate in a variety of activities through the demonstrating position, such as preparing teaching materials, giving prelab presentations/instructions, monitoring student progress, and marking assignments. The demonstrating will normally occupy six hours per week for the teaching term and will be paid for by the department at the prevailing rate unless payment is disallowed by the terms of a scholarship. Department heads, in consultation with the students’ supervisors, are responsible for ensuring that each graduate student is assigned at least one demonstrating position during their program.

Although departments must ensure that a position is available for every student within their department so that this program requirement can be fulfilled, on occasion students demonstrate in an undergraduate course outside of their academic department. Students must discuss this requirement with their supervisors and the heads of their departments early in their program. A student interested in demonstrating in an undergraduate course outside of his/her academic department must discuss this possibility with his/her supervisor and the instructor of the course in which he/she is interested, and must have the approval of the head of the department in which the course is offered. Students who arrange to complete the demonstrating requirement in courses outside of their academic department must notify their supervisors and the heads of their departments. The department in which the student is registered will not pay for a graduate student to demonstrate in an
undergraduate course that is offered outside that academic department. The demonstrating requirement can be completed in the student’s first or second year of the program. Students may demonstrate in more than one course only with permission from their supervisory committee. Students are responsible for ensuring that the instructor of the course receives, and submits to the Research & Graduate Studies Office, a Teaching Assistantship Letter of Reference form. This form is available on the website at www.nsac.ca/research/graduatesudies/forms/default.asp. The performance of students as demonstrators will be evaluated by those in charge of the course. Departments are responsible for ensuring that sufficient demonstrating positions are available to their graduate students.

Admission to Candidacy (ATC) Examination
A Research Proposal must be prepared by all students as a requirement for Admission to Candidacy (ATC). The proposal should provide a suitably-documented account of the project that the student wishes to undertake for the M.Sc. degree. The research proposal must be no more than 25 single-sided pages (written in 12-point font, double-spaced, with 2.5-cm/1” margins on all sides), including the cover page, table of contents, reference list, figures, tables, appendices and a time-line for completion detailing the completion of all program requirements. Students are to develop the research proposal in consultation with their supervisor and supervisory committee members. Students should consult with their supervisory committee on issues such as the rationale behind the proposed research, important background literature, resources available, practical limitations, and the nature of the ATC examination.

Students may find the NSAC Style Manual to be a useful resource in preparing their research proposal. The aim of the style manual is to give specific guidance to students who require a standard format for writing assignments of various types. While supervisors, scientific journals, and other textbooks will provide a great deal of help, this manual will provide supplemental information to assist students in research, note taking, paper planning, and citation forms. The Style Manual is available from the NSAC Bookstore and the NSAC website at www.nsac.ca/stylemanual/ENGL1000stylemanual2006.pdf.

It is recommended that students have all members of their supervisory committee review, comment on, edit and critique the proposal prior to submitting it for the ATC examination. It should be submitted, together with a research proposal information form (ATC Form Part 1) and the ATC Planning Form, to the Graduate Coordinator, Research & Graduate Studies, who will schedule the ATC examination. The ATC Form Part 1 and the ATC Planning Form are available on the RGS website at www.nsac.ca/research/graduatesudies/forms/default.asp. Sufficient additional copies of the research proposal must be provided to the Graduate Coordinator for distribution to the Supervisory Committee, External Examiner, and Chair of the exam three weeks prior to the ATC examination. One additional copy must be submitted to the Graduate Coordinator for the student’s official file.

Admission to Candidacy is based on presentation of an acceptable research proposal and successful defence of this proposal before an examining committee. The examiners will consider the merit and feasibility of the proposal as well as the student’s knowledge of methodology, literature, and general academic background in areas relevant to the research.

Each student must pass an Admission to Candidacy examination early in their program, normally within the first four to six months in which a student is registered. If the ATC examination is not completed within the first six months of the student’s program, the student must submit a request for an extension with a detailed timeline for the completion of the examination before registration for his/her third term of study will be permitted. The request for the extension and timeline for completion must be approved and supported by the student’s supervisory committee. Students who do not complete the ATC examination within their first year of study will not be permitted to register for their second year of study. Students in a two-year M.Sc. program or part-time program may elect to delay the candidacy examination for up to one year.

The purpose of the ATC examination is:

i) to evaluate the student’s competency to pursue graduate studies in the student’s chosen discipline within the context of the proposed research;

ii) to identify and address any specific weaknesses in the student’s background relevant to the proposed research area; and

iii) to assess the merit, feasibility, and suitability of the proposed research as a graduate-level thesis.

The ATC Examining Committee will include a Chair, one External Examiner, and the members of the Supervisory Committee. The Chair will normally be the head of the student’s academic department of study or his/her designate. The Chair must be a member of the Faculty of Graduate Studies, Dalhousie University. In the event that the Department Head is not available to Chair the exam and a designate from the department cannot be obtained, the Vice-President Academic may act as Chair. The External Examiner may be a qualified scholar from outside NSAC, an Honorary Research Associate or Adjunct Professor of NSAC, or an NSAC Faculty member. In addition to the Chair and External Examiner, the ATC Examining Committee will normally consist of three to four examiners. Larger numbers of examiners are at the discretion of the student and the supervisor. One committee member may be replaced by an alternate examiner if it is impossible to have all members present.

The examination begins with a 15-minute verbal presentation of the proposal by the student, highlighting the goals and objectives of the research, the research strategy/methodology, and the impact, significance, or benefit of the proposed research. The Chair, Supervisory
Committee members, and External Examiner then question the student on the proposal and on concepts relevant to the proposal. The examiners will keep in mind that the ATC proposal is not a detailed description of how the research will be conducted. Thus, examiners’ questions will focus on general knowledge of methodology required for the project and theory relating to it. Examiners will also keep in mind that the ATC is not a comprehensive examination. Questions will arise from the scientific content of the work presented but will not range randomly over the entire field. The student is being examined for competence by evaluating his/her ability to put together a viable research project and to defend the rationale and methodology.

The Chair is expected to intervene on behalf of the student if examiners’ questions are not consistent with the purpose of the ATC examination.

Decision will be by consensus and the alternatives are Pass or Fail. The Chair will vote only if the committee vote is tied. Recommendations and/or conditions may accompany a Pass outcome. If the student requires further background preparation, the student may be required to take additional courses as a condition of passing the ATC examination. Appropriate classes or remedial effort will be assigned for the following academic year. If the research proposal is not deemed to be satisfactory, the student may be required to rewrite the research document. The Graduate Coordinator will verify that these assignments are completed. A student who fails the ATC examination is required to withdraw from the program. A failed ATC examination can be appealed to the Graduate Coordinator within three working days. The student will then be re-examined within two weeks by the Chair, the student’s Supervisor, and three faculty members not on the original examining committee.

Annual Progress Report
Annual Progress Report Forms, available on the Dalhousie website at www.dalgrad.dal.ca/forms/students/#progress, must be completed, submitted and approved each year in order for students to register for their next year of study. This report is due one month prior to the anniversary of the student’s admission date, i.e.:

- December 1 for those students who registered in January;
- April 1 for those students who registered in May; and
- August 1 for those students who registered in September.

Every graduate student must present a written progress report to their supervisory committee each year and arrange a meeting with the supervisory committee to discuss it. At this meeting, the Annual Progress Report Form should be completed. The student must then ensure that the completed Progress Report Form is submitted through the supervisor to the Graduate Coordinator (NSAC Research & Graduate Studies Office) by the set deadline.

Students who are planning to defend their theses and complete their program prior to their anniversary date and who do not believe they will need to register for another year of study are still required to submit an Annual Progress Report that indicates the date of their defence and program completion date. However, should such a student miss the intended defence date, a full Annual Progress Report will be required prior to registration for another term of study. Failure to submit this report may result in delays in registration and funding.

Thesis
A satisfactory thesis embodying contributions to research must be presented and successfully defended in a public oral examination.

Supervisor and Supervisory Committee
All thesis students must have a Supervisor (or co-supervisors) and a Supervisory Committee. The appointment of a supervisor is a prerequisite for admission into the graduate program.

Students are not admitted until their research areas have been identified and faculty members have agreed to supervise them. A faculty member becomes the graduate student's supervisor upon signing the Confirmation of Intention to Supervise form. The student's supervisory committee is to be in place within the first month of the student's initial registration in the program. Students are advised to meet with their supervisory committees early in their program (i.e., as soon as the committees are formed).

Supervisor
A thesis supervisor or co-supervisor must be a member of the Faculty of Graduate Studies, Dalhousie University. Members holding post-retirement appointments or active in research in retirement cannot normally take on new students to supervise, but they can co-supervise with a full-time member of FGS. An Adjunct faculty member may be the academic supervisor of a student provided the student also has an internal advisor to handle the administrative details. This is usually done to support the student within the program rather than for reasons of academic need. The supervisor is the person who will be most directly involved in overseeing the student's research program. The supervisor must obtain written approval from the Department Head for each M.Sc. student he/she intends to supervise. The following potential difficulties should be drawn to the attention of new students: Some restriction of students' freedom to follow their own lines of research may result from dependence upon supervisors’ research grants for a significant portion of their income. When conflicts of interest arise, the Graduate Coordinator and the student's supervisory committee should play a significant role in overseeing the development of the research and in protecting the student against the loss of academic freedom.

The supervisor must meet with the student to select courses before classes commence. If the student is not on campus by this time, the meeting must take place within one or two days of arrival. The responsibilities of the supervisor at the first meeting with a graduate
Co-supervision

Four types of co-supervision are recognized:

(i) where a co-supervisor is added because the other supervisor does not have an appropriate academic qualification (e.g. does not have a Ph.D. or equivalent);

(ii) where a student wishes to draw equally upon the expertise of two supervisors from different disciplines;

(iii) where a new faculty member is introduced to the standards of the department by providing an opportunity to work with an experienced supervisor; and

(iv) where required to conform to Dalhousie University Faculty of Graduate Studies’ practice regarding external supervisors or supervisors not from the student’s department of program. An Adjunct faculty member may be the academic supervisor of a student provided the student also has an internal advisor to handle the administrative details. This is usually done to support the student within the program rather than for reasons of academic need.

Students are advised to meet with their co-supervisors, together, early in their program to clarify the roles, responsibilities and expectations of each co-supervisor and to devise a communication strategy with each co-supervisor (e.g. in some instances students with co-supervisors will be expected to work closely with only one of the co-supervisors on the thesis research project, while in others a student may be expected to meet with both co-supervisors regularly regarding the thesis research).

Supervisory Committee

A Supervisory Committee is recommended by the supervisor in consultation with the student, and should complement the expertise available to the student in completing his/her research program. This committee is responsible for guiding the graduate student through the program. It consists of the Supervisor and other persons with expertise or interests relevant to the student’s field of study. Its composition must be reported to the Graduate Coordinator within the student’s first academic term of study or when the student applies for admission to candidacy, whichever occurs first. All supervisory committees are approved by FGS.

The supervisory committee consists of the supervisor and at least two others. Supervisory committee members may be chosen from outside NSAC; however, where the supervisor is not a full-time faculty member of NSAC, a co-supervisor from NSAC must be appointed. This person is responsible to NSAC for the student’s progress. Also, the majority of committee members must be members of FGS and full-time faculty of NSAC. Additional members of the non-university/college community (such as practising professionals) may be appointed to the supervisory committee where their particular expertise makes it appropriate. The appointment of a non-member of FGS, including any non-regular appointments, requires permission from the Dean or Associate Dean of Graduate Studies, Dalhousie University, for the individual to become a graduate student.
formal member of the supervisory committee. Non-members of FGS must be approved as External Scholars by the Dean of Graduate Studies. Supervisors should contact the Graduate Coordinator for more information on the approval process.

Although the Admission to Candidacy (ATC) examination is the first official meeting of the supervisory committee, supervisory committees are strongly recommended to meet before the ATC examination. It is recommended that the supervisory committee meet with the student before the ATC examination to discuss the student's program (e.g. courses) and proposed research project.

Supervisory committees are to meet at least twice a year during the thesis research period and more often in the writing stages of the student's program. Normally, the agreement of all committee members is required before a thesis is brought forward for examination. Supervisory committees are responsible for reviewing the student's Annual Progress Report form and assisting the student in completing the Annual Progress Report form, which is received and reviewed by the Graduate Coordinator prior to being submitted to FGS.

Supervisors should encourage students to consult other members of their supervisory committee, either individually or as a group, whenever it is useful. Students have the right to call a committee meeting at any time. The committee should also have opportunities to critique the work in progress and make alternative suggestions before it appears in thesis form. Students and supervisors are therefore encouraged to call the committee together to discuss research progress more often than the statutory twice per year described above. (Note: at least one meeting per academic term is recommended.)

Supervisory Committee Member’s Responsibilities

Each member of a supervisory committee is responsible for:

• providing guidance to allow for the student's intellectual growth to become a competent contributor to a field of knowledge. In this context, the supervisory committee must provide constructive criticism and provocative discussion of the student's ideas as the program develops. The committee should ensure that the student is exposed to a wider range of expertise and ideas than can be provided by the advisor alone.
• being reasonably accessible to the student for consultation and discussion of the student's academic progress and research problems, and directing the student, as appropriate, to consult with experts outside the committee.
• ensuring that a “program of study” is established with the student’s involvement and that it is formally approved by the committee, the student, and the Office of Research & Graduate Studies.
• as far as possible, identifying current and anticipated problems that may arise in the student's program and helping to alleviate them.
• meeting regularly to review the student's progress and constructively advance the student's research. The frequency of meetings will vary according to the stage and nature of the student's program.

• confirming and approving annual progress reports to the Office of Research & Graduate Studies and Dalhousie University Faculty of Graduate Studies.
• ensuring that progress reports include concerns or document when the progress being made is unsatisfactory.
• informing the student of the approximate time it will take for submitted written material to be returned with comments, with a normal maximum duration of two weeks.
• reading and commenting on drafts of written material and indicating whether or not a major paper is complete or a thesis ready for submission to the final examination committee.
• confirming to the basic principles of academic integrity and professionalism in the development of a mature and objective relationship with the student.
• respecting and conforming to the scholarly integrity and conflict of interest guidelines of NSAC and FGS.

REGISTRATION

Registration is the process by which the student officially establishes with NSAC (through the RGS Office) courses to be taken in the M.Sc. program and status (full-time, part-time), and pays the appropriate academic fees. Both aspects of the process (course registration/status and fee payment) must be completed before a student can be said to be registered.

Students must register via the web for each term (Fall, Winter and Summer) at both Dalhousie University (www.dal.ca) and NSAC (www.nsac.ca). It is the student's responsibility to register on the day(s) specified for graduate student registration. Students are reminded that they must keep their mailing address up to date. Graduate students may take graduate courses at NSAC and at Dalhousie University. This provides graduate students in the M.Sc. program in agriculture with a wide variety of courses from which to select. Graduate courses offered at NSAC are listed in the NSAC 2007/2008 Calendar, available from the NSAC Registrar or NSAC Research & Graduate Studies Office, and on the NSAC website (www.nsac.ca/research/graduatestudies/courses.asp). Graduate courses offered at Dalhousie University are listed in the Dalhousie University Graduate Studies Calendar 2007/2008 and on the Dalhousie website at www.dal.ca/academic/index.html.

To register, all graduate students in their first year of study must do the following during each of their first three academic terms:

(i) Meet with the Graduate Coordinator for a student interview / registration appointment to complete the relevant forms that indicate the student's presence on campus and intention to study for a graduate degree during the ensuing year. At the student interview,
the student will be required to identify his/her supervisor and proposed supervisory committee members, and provide a list of courses, approved by the student's supervisor or committee as necessary to complete the student's M.Sc. requirements. Thus, students must meet with their supervisors prior to their registration appointment. The Graduate Coordinator will assist the student with online registration procedures at NSAC and Dalhousie University and with the formal completion of the Program Form. The completed forms will be submitted by the Graduate Coordinator to the NSAC Registrar and the Dalhousie Dean of Graduate Studies. Any change in courses after the interview must be approved by the supervisor and the Graduate Coordinator.

(ii) Arrange for medical insurance coverage. All full-time students at NSAC are automatically enrolled in the Student Health and Dental plans when they register for classes. The premium for each plan is an annual one; therefore the process for opting out must be done prior to the specified deadline. The deadline each year coincides with NSAC’s last date to register for a course. More information regarding Student Health and Dental plans can be found at www.gallivan.ca.

(iii) Arrange for payment of fees through Financial Services, 2nd Floor, Cumming Hall.

(iv) Obtain a student ID card from NSAC Student Services, Dairy Building.

(v) Obtain WebAdvisor and E-Mail account login information from the Graduate Coordinator at the time of the initial registration appointment.

(vi) Full-time graduate students are to receive desk space and a mailbox within their department of study. The assignment of desk space and mailboxes is under the authority of the Head of the department. Graduate students are encouraged to contact or meet with the Head of their department to ask about desk space, a mailbox, and any departmental policies that apply to them.

Name of Department Department Head E-mail Address
Business and Social Sciences Dr. Steven Russell srussell@nsac.ca
Engineering Prof. Kevin Sibley ksibley@nsac.ca
Environmental Sciences Dr. Glenn Stratton gstratton@nsac.ca
Plant and Animal Sciences Dr. Tarjei Tennesen ttennesen@nsac.ca

(vii) Students are advised to review the Student/Supervisor Checklist published in the Graduate Program Procedures Manual with their supervisor(s). This will clarify the supervisor’s expectations of the student regarding academic requirements and research requirements, mandatory or necessary additional training requirements, additional publications and presentations, financial assistance for costs other than the research project (e.g. costs associated with publications, presentations, photocopying, printing, etc.), vacations, and work hours. Students are encouraged to discuss the following with their supervisor(s): authorship guidelines, intellectual property ownership, the location of laboratory space and storage space for samples (if necessary for the research project), opportunities to network and attend seminars and workshops, etc.

Graduate students in their second year of the program and beyond will receive a registration package by mail. This package will contain:

- deadline dates by which registration must be completed;
- procedures to be followed to register at NSAC via the online registration system;
- procedures to be followed to register at Dalhousie University via the online registration system;
- procedures for the payment of tuition fees; and
- specific information on procedures to follow to change academic status, program requirements, etc.

Graduate students must maintain their registration on a continuing basis. In addition to courses, and thesis (AGRI 9000), students must register at Dalhousie for REGN 9999 in all three terms. REGN 9999 is listed in the Academic Timetable as “Registration Course–Graduate” on Dalhousie’s website (www.dal.ca). If graduate students allow their registration to lapse, they will be considered to have withdrawn, and will be required to apply for re-admission.

Continuing students who require an extension to their program or have an outstanding Progress Report will not be permitted to register until the extension or progress report has been officially approved by the Faculty of Graduate Studies.

Late registration is permitted until the last day for adding courses. All students must register on or before the deadline for each term. Students who do not register on or before the last day to register must apply in writing to the Graduate Coordinator for permission to register. Late fees are waived only in extenuating circumstances and at the discretion of the Vice-President Administration. Registration after the final deadline is normally only permitted in unavoidable circumstances such as illness or required absence for research at the beginning of the next academic year (in September).

Any student who fails to register and pay tuition fees by the approved deadlines may neither submit a thesis nor obtain any services from NSAC or Dalhousie University during that semester. Continuing students who fail to register by the final deadline will be automatically withdrawn from their program and will have to apply for readmission by the next available admission date.

An individual program of study must be approved for every graduate student. The program of study for each graduate student must be approved by the Graduate Coordinator and submitted for final approval to FGS. The Graduate Coordinator will enter the proposed program (with the total number of credits required, the names and numbers of courses required (including ancillary courses), and any other requirements and conditions) on the Program Form. The student, the
Leaves of Absence will not be approved retroactively. The signed form is to be submitted to FGS within the first term of the student's program of study. Once approved, the Program Form constitutes an agreed contract between the student and NSAC/Dalhousie University for the requirements to complete the M.Sc. program. Any changes to the approved Program Form must be agreed to by the supervisor, the Graduate Coordinator, and FGS by submission of a Program Update form. It is the obligation of the supervisor to inform all supervisory committee members of both the content of the original Program Form and any changes made to the original Program Form.

Concurrent Registration
A student may, with the permission of the Dean of Graduate Studies, register for two concurrent degrees, either at Dalhousie or one at Dalhousie and one elsewhere, for a maximum of twelve months, usually the first academic year of the graduate program. This does not apply to an NSAC/Dalhousie student finishing his/her M.Sc. degree who has been accepted into a Ph.D. program. In that case, the student must first complete the Master's degree and then register in the Ph.D. program in January, May or September as applicable and approved by the department. If the student fails to complete the Master's degree for a particular entry point, the onus is on the department to defer the admission to the next available start date.

Leave of Absence
Students who need to take leave from their program of study because of illness (medical reasons) or a serious problem outside the student's control may apply in writing through the Graduate Coordinator for a Leave of Absence. If NSAC recommends to FGS that the Leave of Absence be granted, and if FGS is also satisfied that the need is justified, such leave will be granted. An official Leave of Absence does not count toward time in the program. Students may not hold stipends or scholarships during a Leave of Absence. During a Leave of Absence, a student cannot study elsewhere for credit at NSAC or Dalhousie University. Leaves of Absence will not be approved retroactively.

Identification Cards
Full-time and part-time students will receive both NSAC and Dalhousie ID numbers. Students will receive NSAC ID cards that will entitle them to Novanet library services. The Novanet consortium comprises ten (10) post-secondary institutions: AST, Cape Breton University, Dalhousie, Kings, MSVU, NSAC, NSCADU, NSCC, SMU, and St FX. Students will have borrowing privileges at all of the above-listed institutions. Contact the NSAC MacRae Library for more information. Please note that because students are registered at Dalhousie University and are also given a Dalhousie ID number, NSAC graduate students can access the
proxy server at Dalhousie University that allows access to the Dalhousie Library databases and electronic journals. Students will need their Dalhousie ID number to access their grades, and to update their personal information on Dalhousie's online access system at www.dal.ca/online.

Notification of Address
Correspondence from Dalhousie University and NSAC will be sent to the most recent address on file at these institutions. Students will be held responsible for complying with all notifications sent from either institution. Non-receipt of material because of failure to report a change of address will not excuse students from program responsibilities.

All students must report their local address while attending the M.Sc. program to the NSAC Research & Graduate Studies Office, upon registration or as soon as possible thereafter, and subsequent changes must be reported promptly. Changes of address must be reported to the Graduate Coordinator and a Change of Address form must be completed. The Graduate Coordinator will notify the NSAC Registry and Financial Services of the change in address.

Students are also required to ensure that Dalhousie University has their current mailing address, by updating their address on Dalhousie’s online system (www.dal.ca/online). Students will need their Dalhousie ID number and a password to enter the system.

E-mail
E-mail is an authorized means of communication for academic and administrative purposes within Dalhousie University and NSAC. All students will be assigned an official e-mail address by both Dalhousie University and NSAC. Both the Dalhousie University and NSAC e-mail addresses will remain in effect while the student remains a student. NSAC now allows students to maintain their @nsac.ca e-mail address after they graduate as a service to our newest alumni. This means that students will be able to access their NSAC e-mail accounts via webmail after graduation just as they did before. These e-mail addresses will be used for communication with students regarding all academic and administrative matters. Any redirection of e-mail will be at the student’s own risk. Each student is expected to check both his or her official NSAC and Dalhousie University e-mail addresses frequently in order to stay current with program communications.

Change of Name
Students who change their name while attending the M.Sc. program must provide proof of name change (e.g., marriage or divorce certificates, official name change form, etc.). Students are to contact the Research & Graduate Studies Office for additional information.

FULL-TIME, PART-TIME, AND OTHER CATEGORIES
A full-time student is a student who has been approved by NSAC and FGS as working full-time on a graduate degree. A student receiving financial assistance may register full-time and hold a job simultaneously only if the job involves no more than 16 hours’ work per week, including the hours worked as a teaching assistant.

A part-time student is a student who has been approved by NSAC and FGS as working part-time on a graduate degree. A part-time graduate student cannot carry more than 8 credit hours per term. International students are not admitted to the M.Sc. program on a part-time basis.

A continuing student is one who has completed the program fee and residency requirements but has not yet finished all the degree requirements (usually the thesis). The student is required to pay a continuing fee on a per-term basis.

A qualifying student is a person with a Bachelor’s degree or its equivalent, and in whom NSAC has expressed an interest as a potential graduate student, but who does not meet all admission requirements for the program. Admission to a qualifying program may be recommended for students in the following circumstances:

(i) The student has the required GPA in a recognized undergraduate degree program but may not have the required background for graduate studies in a specific discipline. The required advanced undergraduate courses that must be completed with B- or higher marks to qualify for admission to the graduate program must be specified.

(ii) The student does not meet the overall GPA requirements for admission to the graduate program. A set of advanced undergraduate courses that, upon satisfactory completion, will raise the GPA to the minimum acceptable level (i.e. GPA of 3.0) must be specified.

Qualifying students can be full-time or part-time. If advanced placement for the graduate classes is anticipated, this information must be specified in the comments section of the application form. Because it is a prerequisite, a qualifying program cannot be used to reduce the length of a subsequent regular graduate program. Qualifying students are not eligible for scholarship or bursary support and must apply for admission to the graduate program in the usual way toward the end of the qualifying period. Qualifying students must pass all classes with no grades below a B- (70%) and an average of at least B (75%), and fulfill any other requirements in order to be considered for admission.

Special students are those students who are permitted to take a graduate class outside the Master's program. Such students, who have not been admitted to the Master's program, may normally take a maximum of two full-credit classes with the permission of the class instructor and the Graduate Coordinator. Because all graduate classes must be taught at a consistent standard to graduate level students, non-program students must have records which meet the minimum entrance
requirements for the graduate program (hence they must be approved by FGS as being admissible to the graduate program). Students are ineligible to apply for Special Student status in a class if they have been rejected from the program on account of academic standing, or have been withdrawn from the program. Students trying to qualify for entry to a graduate program must follow a different route: either a Qualifying Year program, if eligible, or a program of study as a Special Student in an undergraduate faculty. Classes completed as a Special Student may not be used for credits toward the formal graduate program unless approval has been granted by FGS at the time of admission.

A letter confirming a student’s registration and/or scholarship or stipend status can be produced on request. Students should contact the NSAC Research & Graduate Studies Office for information on this service.

FEES
Graduate students pay “program fees” for fixed periods, either as full-time or part-time students, followed by “continuing fees” until all program requirements have been completed. The current fee schedule is available each year in July. It can be obtained from the NSAC Research & Graduate Studies Office or the NSAC website at www.nsac.ca/research/graduatestudies/fees.pdf.

Program Fees for Full-Time Students
Full-time graduate students pay program fees for a specific number of years depending on the program, after which they pay continuing fees until all the program requirements are completed. The one-year M.Sc. program involves a program fee requirement of one year (i.e., students admitted to the one-year program are required to pay three consecutive terms of full-time program fees). The two-year M.Sc. program involves a program fee requirement for the first two years of study. If students have to continue beyond the program fee requirement period to complete their degree, additional (continuing fees) are required.

Program Fees for Part-Time Students
Part-time graduate students pay the same program fees as full-time students, spread over three part-time years of study for every full-time year. If a part-time student completes the requirements for the degree before the full program fees have been paid, the balance of those fees must be paid prior to graduation.

In other words, a part-time student entering the one-year M.Sc. program will pay 9 consecutive terms of part-time fees, and a part-time student in the two-year program will pay 18 consecutive terms of part-time fees. Students who complete their part-time programs in less time will still be required to pay part-time program fees for the outstanding terms before they are approved for graduation.

Continuing Fees
Students who have completed the required program fee period and have paid all their fees, but are still short of completing their program, must pay a continuing fee until all the academic requirements of the program have been completed. Students are assessed continuing fees on a per-term fee basis. Usually, continuing fees are paid by students who are in the process of completing their thesis.

Graduate students must maintain continuous registration until their program requirements are complete, unless they are granted a formal Leave of Absence. Payment of fees is required for students to maintain their status in the program.

Procedures for Payment of Fees
Students will be billed in September for the Fall term; January for the Winter term; and May for the Summer term. Payment in full is due on the last day for registration (as published in the Graduate Program Procedures Manual) in each of the Fall, Winter and Summer terms. Fees not paid by the last day for registration will be subject to interest charges, and the student’s registration may be cancelled. NSAC has the right to deduct tuition fees directly from a student's stipend, NSERC PGS, IPS, or Canada Graduate Scholarship award (or any other outside scholarship paid to NSAC to administer on behalf of the funding agency).

Graduate students may not submit their approved thesis to Dalhousie University for binding nor will they be granted their degree or official transcripts until outstanding fees are paid in full. Any late fees and interest charges that apply to undergraduate students also apply to graduate students.

Students who have outstanding account balances are not permitted to register for a further term unless they have received permission to register from the Vice President Administration. Students with outstanding balances are required to meet with the Vice President Administration to sign an Outstanding Fee Form detailing in what manner the fees are to be paid and from which sources the funds are expected to arrive.
Graduate Program

COURSE SELECTION AND ENROLLMENT

Selecting a Program

Students should meet with their supervisors before classes begin and design a complete program of suitable courses for each year of study. It is the student's responsibility to arrange this meeting. In selecting appropriate courses, the student must bear in mind the following:

- All graduate students must enroll for Thesis Research (AGRI9000) every semester even though they may expect to make little progress in that semester.
- Students in the one-year M.Sc. program are strongly encouraged to take all course work during their first year. However, if necessary, courses may be spread over more than one academic year.
- Graduate credit is obtained only for graduate courses, which are denoted by a 5XXX number.

FINANCIAL SUPPORT

NSAC offers numerous entrance scholarships and research assistantships to eligible graduate students. All applicants to the Master of Science program are automatically considered for scholarship eligibility. The availability of research assistantships varies annually and from one area of research to another. Many research assistantships are posted on the Research & Graduate Studies website at www.nsac.ca/research/graduatestudies/assistantship.asp. We encourage you to check the site regularly for opportunities in an area of research that may be of interest to you.

Several Differential Fee Waivers are awarded to international students annually. All international applicants are automatically considered. Differential Fee Waivers are awarded on the basis of academic merit and financial need.

The M.Sc. program requires that students assist in the teaching of at least one undergraduate course. Not only do students gain teaching experience but they are also reimbursed financially in the form of a Teaching Assistantship.

Stipends (Research Assistantships)

All graduate student stipends will be classified as scholarships regardless of their source. Graduate students are to be informed of the rate of the stipend prior to registration. Once a stipend rate is selected, that rate normally remains in effect for the duration of the stipend payment (usually 24 months). However, the rate of the stipend may be renegotiated if there is any change in the student’s official academic status (e.g. change from full-time to part-time status) or if the student receives a major scholarship (e.g. NSERC PGS/CGS, NSERC IPS, Graduate Research Training Initiative Scholarship, etc.). NSERC scholarship holders are expected to adhere to NSERC’s Award Holders Guidelines (www.nserc.ca). Please note that these guidelines state that NSERC expects award holders to devote the majority of their time to the expeditious completion of their degree program. As a guideline in this context, NSERC strongly suggests that award holders limit the number of hours of employment per 12-month period to 450. Remuneration or supplements paid from other NSERC grants, whether paid as a scholarship or salary, cannot be accepted. Part-time NSERC PGS holders are not permitted to be employed during tenure of the award without NSERC’s prior authorization.

Stipend payments are managed by and distributed from the NSAC Research & Graduate Studies Office. Please contact Marie Law (mlaw@nsac.ca) for paperwork required to initiate stipend payments. Students receiving stipend support will receive payment on a monthly basis at the beginning of each month, via direct deposit to their bank account. For these students, the first payment will be issued 30 days following initial registration (e.g. if the program start date is September 1, the first stipend payment will be issued on October 1, etc.). Graduate students funded under provincial or national scholarships (e.g. Graduate Research Training Initiative Scholarships, Canada Graduate Scholarships, NSERC Postgraduate Scholarships (PGS), NSERC Industrial Postgraduate Scholarships (IPS), etc.) will also receive their scholarships on a monthly basis at the beginning of each month. NSAC has the right to deduct tuition fees directly from the student’s scholarship should the student’s account go into arrears. Students with questions regarding their stipend payments are encouraged to contact Marie Law at the Research & Graduate Studies Office (mlaw@nsac.ca; (902) 893-6502).
Research Costs
A student’s supervisor is responsible for all costs directly associated with the thesis research project. Sometimes, the student must incur costs for the research project (e.g. costs associated with field travel, and purchase of supplies) and in these circumstances, the student is reimbursed for the expense by their supervisor. Students must always receive the prior approval of their supervisor for costs associated with the research project.

To be reimbursed for travel costs, students must complete a Travel Expense Claim Form. Claims are to be submitted monthly, for a full month’s travel costs. Claims received in Financial Services, with appropriate approvals and documentation requirements, are posted daily and included on the next regular travel cheque run. Travel cheques are run at the Department of Finance on Mondays and Wednesdays. Travel claims not meeting guidelines will not be processed in the normal routine and will only be processed when documentation requirements are completed. Forms and detailed instructions are available on the NSAC website at www.nsac.ca/finance/forms.asp. The Travel Expense Claim form must be certified to be accurate by the department administrative assistant and signed by the student and the student’s supervisor.

Students can be reimbursed for a research purchase less than $50 in value via petty cash, provided that the purchase has been authorized by the student’s supervisor and the transaction complies with the Nova Scotia Purchasing Agency regulations. Petty Cash expenses are not to be accumulated. Complete the Petty Cash Form available on the website at www.nsac.ca/finance/forms.asp, attach original receipts (detailed receipts showing the tax breakdown are required; credit card slips are not acceptable), obtain the supervisor’s signature and take the original documents to Financial Services, 2nd Floor Cumming Hall, for reimbursement. Petty Cash should not be used to reimburse travel expenses.

If the student’s supervisor has authorized that the student be reimbursed for a purchase or accumulated receipts totalling over $50, the Cheque Request Form should be used for reimbursement purposes. The Cheque Request Form is available on the NSAC website at www.nsac.ca/finance/forms.asp. The signature of the student’s supervisor is required on this form.

Students are advised to seek the assistance of the administrative assistant within their department of study for the completion of financial forms for reimbursement purposes.

Students are responsible for all costs associated with writing and presenting the thesis.

Students are encouraged to meet with the Head of their department of study to obtain their department’s policies and procedures on photocopying within the department, access to office supplies, if any, available from the department, etc. Students should discuss with their supervisor whether financial assistance is available to assist with miscellaneous costs associated with their program such as photocopy charges (e.g. photocopying of journals at the library, etc), printing charges (e.g. of the ATC research proposal and thesis), and NSAC MacRae Library charges (e.g. Novanet document delivery and interlibrary loan charges). While some supervisors may be able to assist students with printing, photocopying and library charges, others will not have the financial resources to do so. If the student’s supervisor can provide financial assistance toward photocopying and interlibrary loan charges at the NSAC MacRae library, a form is available at the Library Circulation Counter that advises the Library of the amount of support available, the time during which support will be available, and which research account is being used. The signature of the student’s supervisor is required.

Students are to mention that a form is on file when they go to pick up a Novanet or Interlibrary loan item.

Self-support
On the few occasions when a student is accepted to the M.Sc. program with no financial support, NSAC requires that the student submit a letter waiving any responsibility on the part of NSAC for financial support for the duration of the given program. However, this does not negate the possibility that support funding may subsequently be procured during or after the initial year.

Conference Grants
Students planning to present their research at a scientific meeting may apply to the Graduate Coordinator for a grant towards their expenses. Application forms are available from the Graduate Coordinator or on the NSAC website at www.nsac.ca/research/graduatestudies/forms/default.asp. A student may expect only one conference grant (up to a total of $500) during the course of the M.Sc. program, subject to the approval of the Graduate Coordinator, as financing permits. Receipts for expenses are required.
Thesis Regulations

Ethical Review

Research Involving the Use of Animals
Research involving the use of animals must be approved by the NSAC’s Animal Care & Use Committee (ACUC). The two key functions of this committee are:

(i) to ensure that NSAC is in compliance with the Canadian Council on Animal Care (CCAC) with respect to standards and guidelines for the use of animals in research, teaching, and testing, and

(ii) to monitor the numbers of animals used in research, teaching, and testing according to purpose and level of invasiveness. This latter information is compiled with information from other institutions across the country by CCAC to provide accurate reports on the use of animals in research, teaching, and testing.

Approval by the ACUC is required for all animal use, on or off campus, in which NSAC faculty, staff, or students are involved. Any teaching, research, or testing use of animals requires an “Animal Care & Use Protocol,” signed by an authorized representative of the ACUC, prior to assignment of animals to the project. The student's supervisor is responsible for completing and submitting the form.

The CCAC (www.ccac.ca) has mandated that all personnel involved with the use of animals in research, teaching, and testing must be adequately trained in the principles of laboratory animal science and the ethical issues involved in animal use. Graduate students who will be working with animals are required to complete a short course entitled “Experimental Animal User Training” within six months of registering at NSAC. The course is a WebCT computer-based package comprising background reading and a series of multiple-choice questions. Contact Ms. Jack (ljack@nsac.ca; (902) 893-8209) to get a WebCT username and password. The Research & Graduate Studies Office checks that all students working with animals have completed the mandatory training at the time of the Admission to Candidacy examination. Students must submit proof of completion of the required animal training modules with their research proposal for the ATC examination.

Research Involving Human Subjects
All thesis research involving human subjects must be approved by the NSAC Research Ethics Board (REB). Projects which might typically arise at NSAC and which would require REB review are questionnaires, surveys, or interviews of individuals, where the human being is the subject of the investigation and personal opinions and practices are documented. Graduate students are to submit their proposals to the Graduate Coordinator who will, in turn, forward it to the REB Chair. Submission deadlines, procedures, guidelines and forms are available on the Research & Graduate Studies website at: www.nsc.ca/research/researchers/ethics.asp. Students should allow six to eight weeks for processing. If this is the student's first ethics submission to the NSAC REB, then the student must complete the Online Tutorial located at www.pre.ethics.gc.ca/english/tutorial. A copy of the tutorial completion certificate must be submitted with the REB submission to the Research & Graduate Studies Office. A copy of the NSAC letter of ethics approval will be forwarded to Ms. Lindley, Office of Research Services (Room 337, Arts and Administration Building, Dalhousie University, Halifax, NS B3H 4H6) to put in the student's official file at Dalhousie University. For further information contact the Research & Graduate Studies Office, Cumming Hall, NSAC (893-6360 or 893-4413) or Lauranne Sanderson, Chair, Research Ethics Board, Department of Business and Social Sciences, Humanities House (lsanderson@nsac.ca).

Research Involving Biohazards
Researchers, graduate students, and instructors who are conducting, or propose to conduct, research involving biosafety hazards (e.g. infectious agents of animals including bacteria, viruses, prions, fungi, and parasites; infectious agents of plants including bacteria, viruses, viroids, and fungi; recombinant DNA, cell lines, and microbial toxins) must adhere to the standards outlined in the Laboratory Biosafety Guidelines, 3rd ed. 2004, which can be obtained in electronic form from Dr. Glenn Stratton (gstratton@nsac.ca), NSAC Biosafety Officer, Department of Environmental Science, or from:
Office of Biosafety
Population and Public Health Branch
Health Canada
Ottawa, ON
K1A 0L2
Tel: (613) 957-1779
Fax: (613) 941-0596
www.hc-sc.gc.ca

Graduate students and researchers must obtain certification from Dr. Stratton that the laboratory procedures being used comply with the safety precautions necessary for the level of containment required by the research. Researchers who are proposing to work with biosafety hazards are asked to contact Dr. Stratton for specific details regarding the approval process, as certificates are customized for each research project. To streamline the approval process, researchers may send their approved research proposal to Dr. Stratton for consideration. No additional forms are required.

If, during the course of a grant, the research changes enough to require new or modified certification, the NSAC RGS Office must be informed promptly and the appropriate certification must be obtained and forwarded to the RGS Office. Research must comply with federal, provincial, and municipal requirements for the use of hazardous materials and chemical and biological wastes in the workplace, and for their disposal.
Graduate Program

Research Involving Radioactive Materials
Researchers, graduate students, and instructors using or proposing to use radioactive materials must obtain permission and approval from the NSAC Radiation Safety Officer, Department of Environmental Sciences. The NSAC Radiation Safety Officer is Dr. Robin Robinson (robinson@nsac.ca); the Site Radiation Safety Officer is Anne LeLacheur (alelacheur@nsac.ca). The following forms are available from the Radiation Safety Office:
• Application for Internal Permit for Acquisition and Use of Radioactive Materials
• Application for Internal Permit for Use of Radioisotope Using Animals

All researchers, graduate students, and staff using radioactivity must provide proof of completion of a radiation use and safety training program to the NSAC Radiation Safety Office. For information on the radiation use and safety training program offered at NSAC please contact Anne LeLacheur.

Preparation of the Thesis
An acceptable thesis will describe in clear and concise language a contribution to knowledge of sufficient value to merit publication. It must be prepared according to instructions published by the Faculty of Graduate Studies and conform to Dalhousie University's requirements for thesis. The FGS Regulations for the Submission of Theses is available from the NSAC Research & Graduate Studies Office and from the FGS website (www.dalgrad.dal.ca/forms/tdc). All thesis students must obtain a copy of these regulations, and students are responsible for ensuring that their thesis complies with all aspects of these regulations. Failure to do so may cause delays in completion, and may even result in the cancellation of a scheduled defence. Students and supervisors are referred to the CBE Style Manual for Authors, Editors and Publishers as a possible resource for guidelines of thesis style.

The thesis must be written by the student, but advice and constructive criticism from members of the supervisory committee should be sought during its preparation. Students are also encouraged to present a synopsis for discussion and conditional approval before beginning to write, but formal approval by the supervisory committee is not mandatory. Responsibility for the document presented rests with the student. The examining committee, in judging the thesis, is concerned primarily with the quality of the work and evidence of research contributions to knowledge. Students are encouraged to publish the results of their work at any stage of their graduate program but must avoid conflict of copyright or contractual agreement. Students who have concerns regarding conflict of copyright or contractual agreement are urged to discuss these issues with their supervisor or to contact the NSAC Research & Graduate Studies Office for further information.

Thesis Originality and Editing
A thesis must present the student's own work, and all students are advised to read the university's regulations on plagiarism (including self-plagiarism). Dalhousie University's regulations on plagiarism can be found in the FGS Policy on Integrity in Scholarly Activity (available from Dalhousie University).

All students are expected to write their theses (and indeed, all their papers) in excellent English. While editorial correcting occurs as part of the supervisory process (as sections of the thesis are read and commented upon by supervisory committee members), faculty are not expected to have to make excessive correction to the standard of English. A committee member may refuse to read materials if they are not of an adequate standard of writing and expression for a graduate-level program. Supervisors should identify English problems early on and ensure that the student takes corrective measures, such as attendance at writing workshops. Requirements to improve a student's standard of English can be made compulsory if the student's language deficiencies are problematic to the progress and success of the research.

Just as the academic content of the thesis must reflect the student's own work, so must the standard of writing and expression. While students are encouraged to make use of standard spelling and grammatical checkers within their word processing software and to have individuals proofread their papers and draft manuscripts, the use of "professional" editorial services (other than strict proofreading and formatting) is prohibited. The use of editorial services which provide substantive rewriting and/or improvement of the written English within a thesis is a form of academic fraud (similar to plagiarism) because it presents a standard of work that has not been achieved by the student and is therefore giving a false impression of the quality of the student's work. If the use of any professional services is contemplated, students must consult with their supervisor and Graduate Coordinator before taking any action. The Graduate Coordinator will contact the FGS office for advice if needed.

Submission of Thesis for Examination: M.Sc. Thesis
All students must refer to the Schedule of Academic Deadlines in the Dalhousie University Graduate Studies Calendar 2007/2008 for submission deadlines and registration deadlines. Students must be registered for the term in which they present their approved unbound theses to FGS, Dalhousie University, and for the term in which they have their defence. Students will not be permitted to submit their theses or proceed to defence until they have appropriately registered and all fees have been paid. Deadlines for the submission of fully completed and approved theses (following examination and revision) are final in all cases. Failure to meet the deadlines will result in additional registration fees being applied. It is the responsibility of the student to ensure that all regulations have been met. Failure to comply with the regulations can result in delay in graduation.
The Thesis Examining Committee is usually the Supervisory Committee, an External Examiner, and the Department Head, who chairs the examination. The external examiner is recommended by the student’s supervisor in consultation with the student. In selecting the external examiner, the following priority should be used: (a) qualified scholars outside of NSAC (e.g. member of a graduate faculty of another university), (b) Honorary Research Associates and Adjunct Professors of NSAC, (c) NSAC Faculty from a department other than that with which the student is most closely associated, (d) NSAC Faculty from the department with which the student is most closely associated, but not on the student’s supervisory committee. The external examiner must not have been involved with the supervision or direction of the thesis, and must be in a position to render an objective and impartial assessment of the quality of the work. The external examiner may be a non-faculty member (such as a practising professional who does not hold an Adjunct appointment with a university) when it is deemed that they have the appropriate professional and academic qualifications and expertise to assess a graduate thesis. In all cases, the external examiner must be approved by the Vice President Academic, NSAC. The external examiner does not necessarily attend the defence but may instead submit a written report and questions prior to the examination.

The main role of the Chair is to ensure that the procedures are carried out in an appropriate manner, to record the examiners’ written comments and the results of the examination for inclusion in the student’s file, and to inform the NSAC Research & Graduate Studies Office of the outcome.

Supervisors, in consultation with their students, are responsible for completing the Thesis Defence Planning form (www.nsac.ca/research/graduatesudies/forms/default.asp). The Thesis Defence Planning form must be submitted to the Graduate Coordinator at least four weeks prior to the intended defence date. The Thesis Defence Planning form serves to:

- notify the Graduate Coordinator when the student is ready to defend;
- provide administration with the names of three potential External Examiners; and
- provide the Graduate Coordinator with all relevant information regarding the proposed date of the defence, and the availability of supervisory committee members.

Examination Format

The thesis shall be defended orally before the Thesis Examining Committee and any other interested persons who choose to attend. A public announcement of the examination shall normally be posted at least two weeks before the event. A defence consists of a 10- to 20-minute survey by the candidate of the scope of the problem and main achievements in the research. This is followed by questions and comments from the external examiner and the student’s response. After the members of the Thesis Examining Committee and the audience have questioned the candidate, the Thesis Examining Committee deliberates in camera, basing the decision on both the quality of the thesis and the candidate’s ability to defend it.

Examination Results

The outcome is decided by consensus of the members of the Thesis Examining Committee present. Theses are either approved or not approved. The categories are:

- Approved as submitted.
- Approved upon specific corrections being made. A clear timetable for completion of the revisions must be presented to the student, normally with a maximum of one month to complete the revisions. The supervisor is usually asked to monitor the required changes. Usually at least two members of the Examining Committee read the revised thesis to provide final approval.
- Rejected but with permission to re-submit a revised thesis for re-examination. A clear timetable for completion must be presented, normally with a maximum of one year to resubmit. Major revisions may be on grounds of form as well as content. When re-submitted, the thesis will be re-read by an examining committee that includes at least two members from the original Thesis Examining Committee. The thesis shall be sent to an external examiner who may be the original external examiner if the Chair of the examination considers this desirable. The revised thesis shall be defended in the usual way.
- Rejected outright. The rejection may be on grounds of form as well as content. The candidate or supervisor may appeal this decision to the Chair of the examination in writing within five working days of the decision. If the Chair deems the evidence to be sufficiently strong, the Chair of the examination shall initiate the procedure for a re-examination. No more than one appeal may be entertained, and the examination Chair’s decision shall be final.
In all cases, all members of the Examining Committee must submit written examination reports, dated and signed, which shall become part of the candidate’s file. The Chair’s written report shall summarize the outcome of the examination process, the final decision, and any conditions attached. In the case of an outright failure or failure with a right to re-submit by a specific date, the Graduate Coordinator must send a written notification of failure to FGS.

Presentation of Thesis for Graduation

Deadlines
Students are responsible for presenting to FGS one copy of the corrected and approved thesis for a formal check at least one week before the deadline date for submission of approved theses to FGS (the deadline date is published annually in the Dalhousie University Graduate Studies Calendar and the NSAC Graduate Program Procedures Manual).

Binding and Distribution
Following a format approval by the FGS, students are responsible for presenting to the FGS six unbound copies of the corrected and approved thesis. Only good quality photocopies or printed copies will be accepted. In addition, each student is to present a corrected and approved copy of the thesis to the Research & Graduate Studies Office. The Dalhousie Faculty of Graduate Studies will arrange for binding of the six copies of the thesis and its subsequent distribution as follows:
- one copy to the author
- one copy to the student's supervisor
- one copy to the student's department
- one copy to the NSAC Library
- one copy to the Dalhousie University Library
- one copy to the National Library of Canada.

The Dalhousie University Library arranges for the production of a microform copy to be retained in the National Library, Ottawa, and listed in Dissertation Abstracts International or Masters Abstracts International. The National Library can then circulate such copy according to the International Inter-Library Loan Code, with full copyright protection; it also guarantees a permanent record of the thesis. The Dalhousie University Library retains one bound copy in the University Archives.

At the time of submitting the unbound, approved thesis (original and five copies) to the FGS office, the student will present a cheque for $120* payable to the Faculty of Graduate Studies Office, Dalhousie University, to cover the cost of binding. The cost of binding each additional copy of the thesis is $20*. An additional charge will be made (where appropriate) to cover mailing costs.

* Binding cost is subject to change without notice.

CONVOCATION
Graduate students have the option of attending convocation ceremonies at either NSAC or Dalhousie University. Convocation ceremonies are held at NSAC in May and at Dalhousie University in May and October. Students must fulfill all requirements, including the payment of all fees, prior to graduation. Applications to graduate (Intent to Graduate Form) are available at the Research & Graduate Studies Office or on Dalhousie University’s website (www.registrar.dal.ca/forms) and must be submitted to the Graduate Coordinator by July 4 to graduate in October and by November 15 to graduate the following May.

Any graduating student who is unable to appear at convocation is expected to notify the Graduate Coordinator in writing prior to April 15 for Spring convocation (or October 1, for Fall convocation at Dalhousie University). Students whose accounts are delinquent on April 15 will not receive their degree parchment or their transcripts. For October graduation the date is September 1.

When a student has fulfilled all the requirements for the degree (including payment of all program fee requirements and any continuing fees) in advance of the official graduation date, a letter to that effect can be obtained from the Faculty of Graduate Studies Office, Dalhousie University. The Confirmation Letter Request form is located on the FGS website (www.dalgrad.dal.ca/forms/students) under “Forms and Documents of Students.”

GRADUATE CURRICULUM LISTING

Graduate Courses
Graduate courses are intended for students registered in the M.Sc. program and may be taken by undergraduate students only under exceptional circumstances.

Required Regular Courses
These courses are restricted to graduate students.
AGRI5700: Communication Skills and Graduate Seminar
AGRI9000: Graduate Thesis

Recommended Regular Courses
Where an undergraduate student wishes to take one of these graduate courses, the following signatures are required for approval: the instructor(s), the relevant Department Head(s), and the Graduate Coordinator.
AGRI5710: Module Course I
AGRI5630: Intermediate Statistical Methods (STAT4000)
AGRI5720: Applied Statistics and Experimental Design for Agriculture (The prerequisite for this course is AGRI5630 or STAT4000.)
Other Regular Courses

Where an undergraduate student wishes to take one of these graduate courses, signatures of the following are required for approval: the instructor(s), the relevant Department Head(s), and the Graduate Coordinator.

AGRI5270: Economic Entomology
AGRI5350: Animal Research Methods
AGRI5360: Protein Nutrition
AGRI5380: Quantitative Genetics
AGRI5390: Molecular Genetic Analysis of Populations
AGRI5440: Organic Environmental Analysis
AGRI5520: Plant Breeding Methods
AGRI5530: Nitrogen in Crop Production
AGRI5560: Advanced Crop Physiology
AGRI5705: Module Course II
AGRI5740: Advanced Studies in Food Chemistry

Special Topics Courses

Special Topics courses may be taken by undergraduate students only under exceptional circumstances. The following signatures are required for approval: the instructor(s), the relevant Department Head(s), and the Graduate Coordinator.

AGRI5210: Special Topics in Environmental Microbiology
AGRI5220: Special Topics in Weed Science
AGRI5240: Special Topics in Environmental Impact
AGRI5260: Special Topics in Plant Pathology
AGRI5310: Special Topics in Applied Ethology
AGRI5320: Special Topics in Animal Nutrition
AGRI5340: Special Topics in Animal Physiology
AGRI5370: Special Topics in Animal Breeding and Genetics
AGRI5410: Special Topics in Soil Fertility
AGRI5430: Special Topics in Environmental Analysis
AGRI5460: Special Topics in Soil and Water Management
AGRI5470: Special Topics in Analytical Instrumentation for Researchers
AGRI5510: Special Topics in Plant Breeding
AGRI5540: Special Topics in Crop Physiology
AGRI5570: Special Topics in Agricultural Biotechnology
AGRI5610: Special Topics in Animal Product Technology
AGRI5760: Special Topics in Ecology

Cross-referenced Courses

Cross-references with undergraduate courses are shown in brackets ().

AGRI5250: Soil Microbiology (MICR4000)
AGRI5450: Environmental Soil Chemistry (SOIL4000)
AGRI5620: Ruminant Digestive Physiology and Metabolism (NUTR4000)
AGRI5750: Biotechnology (GENE 4003)
AGRI5250 (AG525): Soil Microbiology
cross-referenced as MICR4000
Instructor: Prof. Stratton
This course is designed to provide an intensive study of the microbiology of soils and will emphasize nutrient cycling and biodegradation. Topics covered include the relationships between the abiotic and biotic components of soils; the microbial biochemistry of the carbon, nitrogen, sulphur, phosphorus, and selected micronutrient cycles; heavy metal cycling; and the microbial degradation of industrial wastes and pesticides. The laboratory classes will concentrate on techniques to monitor the microbial biomass in soil and the microbial components of nutrient cycles. These include new advances in bacterial taxonomy and identification and the use of gas chromatography and high-performance liquid chromatography in quantitating nutrient cycling. In addition to a major term paper, a comprehensive laboratory report on the entire term's lab work, and a single take-home examination, graduate students will be required to:
• modify the term paper into a critical review of some aspect of soil microbiology, chosen in consultation with the instructor (the review must be current and in depth; it must be written in manuscript format and will be graded accordingly);
• perform additional laboratory exercises not assigned to undergraduate students, use more replicates, perform a full statistical analysis of data, and provide a report in manuscript format;
• give a seminar to the class on their term paper topic.
Fall semester – to be arranged with the instructor. Offered in alternate years; next offered in 2008/2009.

AGRI5260 (AG526): Special Topics in Plant Pathology
Instructors: Profs. Gray and Singh
This course will be custom-designed to meet the specific needs of graduate students specializing in the area of plant pathology who need further specific knowledge and/or skills.
Fall or Winter semester – to be arranged with the instructor.

AGRI5270 (AG527): Economic Entomology
Instructor: Prof. Le Blanc
Insect pest management in agriculture with emphasis on a selection of non-chemical approaches to insect control, e.g. natural, mechanical, physical, cultural, biological, biochemical, and/or legal control. According to the student's interest, a section on chemical control can be included. This course is consistently in accord with the theory and principles of integrated pest management (IPM) and consequently, the term assignments will incorporate the study of sampling techniques and monitoring methods of insect pests and related beneficial arthropods. Attendance at certain relevant seminars may be required and directed readings may be assigned.

A case history of a major agricultural insect pest will be prepared to satisfy the course requirement. The material will be submitted in term paper format and also delivered in an oral presentation. The case history will include the life cycle, host plants, pest status, damage, losses, control measures, research needs, and IPM programs pertinent to the particular species.
Winter semester – 2 lecs and 1 tutorial per week.

AGRI5310 (AG531): Special Topics in Applied Ethology
Instructor: Prof. Tennessen
Course content will vary. Topics covered will be chosen so as to meet the requirements of individual graduate students. Aspects could include the assessment of farm animal welfare, foraging behaviour, environmental enrichment, social dynamics of livestock, and early rearing environment and the effect on later behaviour.
Fall or Winter semester – to be arranged with the instructor.

AGRI5320 (AG532): Special Topics in Animal Nutrition
Instructors: Profs. Anderson, Fredeen or Rouvinen-Watt
The course is designed to provide an opportunity to study specific aspects of animal nutrition. Aspects could include study of a particular nutrient, a process in nutrition, a nutritional state, or nutrient metabolism of a specific species, with focus on the research method. Students are advised to consult with their supervisors to determine the specific scope of the topic to be studied.
Fall or Winter semester – to be arranged with the instructor.

AGRI5340 (AG534): Special Topics in Animal Physiology
Instructor: Prof. Duston, MacLaren or Rouvinen-Watt
This course is for students with a major interest in animal physiology. The course will consist of discussions, term papers, and presentations. Students will be expected to nominate topics for consideration and to prepare major reviews and class presentations of selected topics.
Fall or Winter semester – to be arranged with the instructor.
Graduate Program

AGRI5350 (AG535): Animal Research Methods
Instructors: Dept. of Plant and Animal Sciences Faculty
This course is designed for students who are, or expect to be, working in Animal Science, or who have an interest in the methodology and ethics of animal research. The course will include consideration of some of the common or promising laboratory and field methods associated with domestic animal research, ethics of animal research, and the analysis, interpretation, and reporting of results. Students will be expected to participate in exercises, to contribute to discussions, and to present reviews on various aspects.
Fall semester – to be arranged with the instructor.

AGRI5360 (AG536): Protein Nutrition
Instructor: Prof. Anderson
A study of the sources, availability, and metabolism of protein and amino acids for the domestic animal. Subjects addressed include sources of protein, factors affecting digestibility of protein, digestion and absorption of protein and nitrogen, urea recycling, individual amino acid metabolism, excretion of nitrogenous wastes in birds and mammals, and protein and amino acid requirements of animals.
Winter semester – to be arranged with the instructor. Offered in alternate years; next offered in 2008/2009.

AGRI5370 (AG537): Special Topics in Animal Breeding and Genetics
Instructors: Dept. of Plant and Animal Sciences Faculty
Provides students with an opportunity to pursue more detailed studies in Animal Breeding/Genetics. Topics will be decided on by the student in consultation with faculty members for the purpose of meeting the student's specific needs as defined by the thesis research. Delivery will be a combination of directed reading and tutorial discussions.
Fall or Winter semester – to be arranged with the instructor.

AGRI5380 (AG538): Quantitative Genetics
Instructor: Prof. Patterson
An introduction to quantitative genetics theory and to statistical techniques used in domestic animal improvement. Computing and statistical techniques will be demonstrated and presented, and relevant literature will be surveyed. Reference will be made throughout to performance recording programs used in Canada and throughout the world.
Winter semester – to be arranged with the instructor.

AGRI5390 (AG539): Molecular Genetic Analysis of Populations
Instructor: Prof. Farid
This course is designed to give graduate students some understanding of the theoretical aspects of population and molecular genetics. Various DNA fingerprinting techniques (e.g. minisatellites, microsatellites, RAPD-PCR, FRILP-PCR and SSCP-PCR, and their applications in population genetic studies) will be discussed. Students will acquire hands-on experience with some of these techniques. Analysis of molecular data to estimate intrapopulation populations (heterozygosity, Hardy-Weinberg equilibrium) and interpopulation parameters (test of heterogeneity of allele frequency distributions, genetic distances, phylogenetic analysis, bootstrapping, F-statistics) will be covered.
Fall or Winter semester – to be arranged with the instructor.

AGRI5410 (AG541): Special Topics in Soil Fertility
Instructor: Prof. Percival
The course is designed to provide an opportunity to study specific aspects of soil fertility. Topics may include the influence of soil biological, chemical, and physical properties and processes on nutrient absorption and plant growth, with emphasis on essential plant nutrients in the soil and methods for evaluation, as well as the use of inorganic and organic amendments.
Winter semester – to be arranged with the instructor.

AGRI5430 (AG543): Special Topics in Environmental Analysis
Instructor: Prof. Hoyle
Students may apply to undertake either a specially designed course in environmental analysis, or to undertake additional work further to Organic Environmental Analysis. This may be facilitated with written consent from the instructor who then assumes personal responsibility for supervising the work.
Fall or Winter semester – to be arranged with the instructor.
AGRI5440 (AG544): Organic Environmental Analysis
Instructor: Prof. Hoyle
This course has limited enrollment.
The course will involve the study of the analytical chemical techniques used in the analysis of environmental samples obtained from the atmosphere, hydrosphere, and lithosphere. Included in this study will be the sampling methods used for air, water, soil, food, and wastes, and modelling of environmental contamination. In addition, government regulations, hazard assessment, and public awareness of these issues will be discussed. In addition to successfully completing examinations, graduate students will be required to:
- write a major paper on an important topical issue;
- present that paper as a seminar before departmental faculty, staff, and students; and
- write a research proposal prior to starting the laboratory project.
Fall semester – to be arranged with the instructor. Offered in alternate years; next offered in 2008/2009.

AGRI5450 (AG545): Environmental Soil Chemistry
cross-referenced as SOIL4000
Instructor: TBA
The course is designed to provide an opportunity to study specific aspects of environmental soil chemistry. Topics may include the chemical composition of soils with special attention to soil biochemistry and soil organic matter with an emphasis on organic matter—clay interactions, soil organic N, P, and S, and soil enzymology. Graduate students will be expected to participate in lecture/discussion sessions and complete required reading assignments. In addition, graduate students will be required to complete research papers and present their findings in in-class seminars.
Winter semester – to be arranged with the instructor. Offered in alternate years; next offered in 2007/2008.

AGRI5460 (AG546): Special Topics in Soil and Water Management
Instructors: Profs. Havard, Madani, and Gordon
This course will discuss the state-of-the-art soil and water management practices in either humid or arid regions, depending on the specific needs of the graduate students. Topics may include: fundamentals of soil and water properties; drainage and water table control; management of farm irrigation and draining systems; salinity control; irrigation water requirements; drainage requirements for humid and arid regions; soil conservation; and computer modelling of irrigation and drainage systems. Guest speakers will be invited to share their experiences with the students.
Fall or winter semester – to be arranged with the instructors.

AGRI5470 (AG547): Special Topics in Analytical Instrumentation for Researchers
Instructors: Profs. Pitts, Hoyle, and Stratton
This course is designed to meet the needs of graduate students who are using analytical instruments in their research. The course will provide the graduate student with specific theoretical knowledge and the necessary practical skills required to properly use these instruments. The student will select either one of the following areas for detailed consideration, or two to three of the following areas for a more general coverage: gas chromatography, liquid chromatography, atomic analysis, DNA or protein electrophoresis, infrared or fluorometric analysis, NMR, mass spectrophotometry, and microscopy.
Fall or Winter semester – to be arranged with the instructors.

AGRI5510 (AG551): Special Topics in Plant Breeding
Instructors: Dept. of Plant and Animal Sciences Faculty
This course is designed to meet the specific needs of graduate students specializing in the area of Plant Breeding who need further specific knowledge and/or skills.
Fall or Winter semester – to be arranged with the instructor.

AGRI5520 (AG552): Plant Breeding Methods
Instructors: Dept. of Plant and Animal Sciences Faculty
Genetic and statistical principles underlying modern plant breeding methods are introduced. Those principles will be reinforced through the use of computer models. Cultivar development techniques for self- and cross-pollinated species are examined in detail. Applications of tissue culture, genetic engineering, and marker-facilitated selection are discussed. This course is open to students who have had introductory courses in genetics, plant breeding, statistics, and molecular biology.
Fall semester – to be arranged with the instructor.

AGRI5530 (AG553): Nitrogen in Crop Production
Instructor: Prof. Martin
Students will study the transformations of N in air, soil, water, and plants, and consider crop requirements for N. Topics include the chemistry of N, the N cycle, N transformations in soil, N metabolism in plants, N transport in plants, N-fixation, N losses in agricultural systems, and an evaluation of N fertilizer in these systems.
Fall semester – to be arranged with the instructor. Offered in alternate years; next offered in 2008/2009.
AGRI5540 (AG554): Special Topics in Crop Physiology (A)

Instructors: Prof. Caldwell, Asiedu, Goodyear, Lada, and Martin

This course is designed to meet the specific needs of graduate students specializing in the area of Crop Physiology who need further specific knowledge and/or skills.

Fall or Winter semester – to be arranged with the instructors.

AGRI5560 (AG556): Advanced Crop Physiology

Instructor: Prof. Caldwell

Physiological processes relevant to crop plant development and production of harvestable yield will be examined.

Fall or Winter semester – to be arranged with the instructor. Offered in alternate years; next offered in 2007/2008.

AGRI5570 (AG557): Special Topics in Agricultural Biotechnology

Instructor: Prof. MacLaren

This course is designed to meet the specific needs of graduate students specializing in the area of Agricultural Biotechnology who need further specific knowledge and/or skills.

Fall or Winter semester – to be arranged with the instructor.

AGRI5580 (AG558): Special Topics in Animal Product Technology

Instructors: Dept. of Plant and Animal Sciences Faculty

This course will review areas important in the technology of foods derived from animals (meat, fish, eggs, milk). Such areas could include chemistry (lipid oxidation, Maillard reactions), physics (changes caused by freezing, sol-gel conversion, colour) and microbiology (spoilage, pathogenic organisms, modified-atmosphere packaging, HACCP). Each student will be expected to present a review of a particular topic.

Fall semester – to be arranged with the instructor.

AGRI5620 (AG562): Ruminant Digestive Physiology and Metabolism

cross-referenced as NUTR4000

Instructor: Prof. Fredeen

Prerequisites: NUTR3000, CHEM3006

This course is designed to provide an intensive study of food intake and digestion, and nutrient absorption and metabolism, in the ruminant animal. The course details current knowledge and focuses on aspects of future research interest. Students are expected to contribute to discussions and present reviews to the class on various aspects of the subject.

Fall semester – 3 lecs and 2 labs per week. Offered in alternate years; next offered in 2008/2009.

AGRI5630 (AG563): Intermediate Statistical Methods
cross-referenced as STAT4000

Instructor: Prof. Astatkie

Prerequisite: STAT3000, or permission of the instructor

Analysis of single-factor experiments, randomized blocks, latin squares, and factorial and two-level fractional factorial designs.

Fall semester – 3 lecs and 1 computer lab per week.

AGRI5700 (AG570): Communication Skills and Graduate Seminar

Instructors: TBA

Through practical assignment, students will be able to test and develop their communication skills. Topics will include review, criticism, and writing of journal papers, grant applications, posters, seminars, lectures, and interviews. This course is required for students enrolled in the M.Sc. in Agriculture program.

Fall and Winter semesters – 3 lecs per week.

AGRI5705 (AG573): Module Course II

Coordinator: Prof. Caldwell

Prerequisite: AGRI5710

This course normally consists of three modules. Each module consists of one month of lectures or assignments dealing with a topic in the lecturer’s area of expertise. Research interests of incoming students are taken into account each year when module topics are solicited. Students should not apply to take a module unless they have at least a second-year undergraduate background in the focus area. A formal evaluation is made at the end of each module.

Fall/Winter semester: Students registering for the module course in September must complete three modules between September and April (8 months).

Winter/Summer semester: Students registering for the module course in January must complete three modules between January and August (8 months).
AGRI5710 (AG571): Module Course I
Coordinator: Prof. Caldwell
This course normally consists of three modules. Each module consists of one month of lectures or assignments dealing with a topic in the lecturer's area of expertise. Research interests of incoming students are taken into account each year when module topics are solicited. Students should not apply to take a module unless they have at least a second-year undergraduate background in the focus area. A formal evaluation is made at the end of each module.
Fall/Winter semester: Students registering for the module course in September must complete three modules between September and April (8 months).
Winter/Summer semester: Students registering for the module course in January must complete three modules between January and August (8 months).

AGRI5720 (AG572): Applied Statistics and Experimental Design for Agriculture
Instructor: Prof. Astatkie
Prerequisite: STAT4000, AGRI5630, or equivalent
This course is designed to provide practical skills in statistical methods and experimental designs, and an appreciation of situations when more complex models and methods are required. Topics include linear and nonlinear regression, split-plot designs, repeated measures, and response surface methods. Students will be expected to successfully complete practical exercises and a project involving real experimental problems and data sets. Students will also be expected to acquire proficiency in at least one advanced statistical software package.
Winter semester – 3 lecs per week.

AGRI5740 (AG574): Advanced Studies in Food Chemistry
Instructor: Prof. Pitts
Prerequisite: one undergraduate food science course or equivalent
This course is designed to allow graduate students to explore in detail various aspects of the chemical nature of agri-food products. This may include but is not limited to a study of naturally occurring components (functional foods and nutraceuticals), nutritional changes during value-added processing, and product formulation. The exact focus of the course will depend on the expressed interest of students in the course. Fall or Winter semester, to be arranged with the instructor – 1 lec and 1 discussion per week.

AGRI5750: Biotechnology
cross-referenced as GENE 4003
Instructor: Prof. Wang-Pruski
Prerequisite: GENE2000 or equivalent
This course is to provide students with general information on the theory and technologies that are currently used in biotechnology. Course topics will include gene identification, transformation and expression regulations, tissue culture and cell culture techniques, and other genomics-related agricultural applications. Nutraceutical and pharmaceutical applications will also be discussed.
Winter semester. Offered in alternate years; next offered in 2007/2008.

AGRI5760 Special Topics in Ecology
Instructor: Prof. Nams
Prerequisite: Permission of the instructor
This course will be designed to meet the specific needs of graduate students specializing in the area of ecology who need further specific knowledge and/or skills.

AGRI9000 (AG900): Graduate Thesis
Students register for this course when they are engaged in research work for credit towards the M.Sc. in Agriculture degree.
Fall and Winter – for duration of program.
Scholarships, Bursaries and Academic Prizes

Specific inquiries regarding scholarships and bursaries should be directed to the College’s Awards Office located in the Main Level of the Student Services Centre, 11 River Road on campus, by phone at (902) 893-6729, by fax at (902) 893-6545, or by e-mail at bcrouse@nsac.ca.

The College’s Scholarship Committee reserves the right to authorize changes at any time to the selection criteria and awarding of scholarships, bursaries, and prizes.

DEFINITION OF TERMS

Award
An award is a general term used to mean any presentation made to a student.

Governor General’s Medal
The Governor General’s Medals are awarded to the students with the highest academic standing graduating each year in the Technical, Bachelor’s (B.Sc.(Agr.) and B.Tech), and M.Sc. programs.

Scholarship
A scholarship is an award to a student based primarily on academic performance, although other criteria may be considered based on the donors’ requirements.

Bursary
A bursary is a monetary award to a student where the primary criterion is not academic performance.

Prize/Gift
A prize or gift is an award given to a student based on the selection of the donor.

International Student
For scholarship purposes, all students paying the international tuition differential are eligible for scholarships for International students.

The following guidelines determine year of study in the B.Sc.(Agr) program:
- 8 courses successfully completed – 2nd year
- 19 courses successfully completed – 3rd year
- 28 courses successfully completed – 4th year

* Note: Where the selection criteria are not specified in the descriptions of the various scholarships, bursaries, and prizes that follow, the above guidelines apply.

** Note: Selection of scholarship and bursary winners is primarily based on the work of the previous year with consideration also given to the cumulative average of the work done at NSAC. Generally students must be enrolled on a full-time basis in a program of study to be considered for scholarship and bursary selection; preference will usually be given to students completing 8 courses per year with no fewer than 3 courses per semester.

*** Publicity Disclaimer: It is the policy of NSAC to publish the names, home town, photo and under some circumstances the addresses of recipients of scholarships, prizes, awards, and bursaries. Those students who do not wish this information published must notify the Awards Office at the time of their acceptance of the award.

**** Scholarship Selection: Scholarship selections are made by either NSAC, the NSAC Scholarship Committee, or Donors or their Administrators.
Scholarships, Bursaries and Academic Prizes

To Receive Application Forms
Application forms for most of the awards offered through NSAC are available by visiting our website www.nsac.ca/csa. Simply double-click on any title to print off a copy. If unable to do this, please contact the NSAC Awards Office (see previous page) to get forms sent out to you.

Staggered Application Deadlines
To help with the processing of applications received for the fall selection process, there is a staggered schedule of application deadlines. Please note application deadlines may be September 20, September 24, September 27, or October 5. These dates are indicated in the award descriptions. To be sure you don’t miss out on application deadlines, please note application deadline dates for awards you are applying to.

Application Selection Process
When applying for scholarships, bursaries, or awards at NSAC please note that the selection review is not a quick process. In most cases applications must be reviewed by the NSAC Scholarship Committee from mid-September to mid-October. The complete list of winners will be posted one week prior to Autumn Assembly. Awards won through the Autumn Assembly selection process are credited to student accounts in January, unless special written requests are made. Students should budget accordingly.

Scholarship Renewal Criteria
1. Renewable scholarships are renewed automatically at their initial value provided the student has maintained an average of 80% or greater (unless otherwise specified) for every year of study for which the scholarship was renewable. Renewable scholarships are renewed annually on a continuous basis, based on the work of the previous year (once forfeited cannot be re-instated).
2. Scholarships are renewed based on an 80% average for the full year of study (80% is not required in each semester). A year of study is normally defined as September 1 to August 31; students who do not follow the normal year of study will be considered by the Scholarship Committee on an individual basis.
3. To be eligible for scholarship renewal, students must maintain registration in at least 80% of the number of courses for the normal course load per semester for both the previous and the current year.
4. For scholarship purposes, averages are calculated to the nearest whole number (if an average falls exactly between two whole numbers, the average is rounded up).
5. The average is determined by all marks earned by the student in the previous year; non-credit courses (CHEM0050, MATH0050 and PHYS0050) are included in the calculation of the year’s average for degree students.
6. To be eligible for scholarship renewal, a student may not have any failed courses (including Drop Fails).
7. A student who does not satisfy all the above criteria due to medical or other extenuating circumstances may appeal in writing to the Awards Office.

Note: The above criteria generally apply to all renewable scholarships (e.g. NS Department of Agriculture scholarships, Harrison McCain Scholarships, NSAC Entrance Scholarships for CEC Students, Atlantic Scholars Awards, NS Power, Isgonish IODE).

Procedure for Appeals of Scholarship Renewal Decisions
Students may appeal scholarship renewal decisions based on extenuating circumstances. Generally, reasons must be severe and must be documented. Other grounds may be considered at the discretion of the Scholarship Committee.

Appeals will generally be considered from students who have the following grounds for appeal:
1. medically documented/supported personal illness or psychological/physical trauma
2. documented/supported traumatic circumstances in immediate family such as death or serious illness.

Students must submit a letter in writing to the Chair of the Scholarship Committee requesting a review of a scholarship renewal decision. The letter should clearly demonstrate the extenuating circumstances. Documentation supporting any claims must also be included. All information contained in the letter will be kept confidential within the Committee. Students will be informed of the Committee’s decision by letter. All decisions of the committee are final.
2007 Nova Scotia Agricultural College Entrance Scholarships at a Glance

<table>
<thead>
<tr>
<th>Scholarship Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$36,500 Atlantic Scholars Awards*</td>
<td>Five renewable scholarships (full tuition and residence at shared-room rate) to top students from Atlantic Canada with minimum average of 85% on required courses. Application deadline is March 15. Value of scholarships dependent on number of courses taken and whether residence portion is accepted. (Values given are based on 2006/2007 fees.)</td>
</tr>
<tr>
<td>$16,000 Three Harrison McCain Scholarships</td>
<td>Three Harrison McCain Scholarships are awarded to Canadian students entering first year of any program with minimum 80% average. Selected based on academic performance, financial need, recognized initiative in funding own education, and leadership qualities. Application deadline is March 1.</td>
</tr>
<tr>
<td>$2,500 Scholarships to all students admitted with averages in required courses of 90% or greater.</td>
<td>No application required. Note: For scholarship purposes, averages are calculated to the nearest whole number.</td>
</tr>
<tr>
<td>$1,500 Scholarships to all students admitted with averages in required courses between 85% and 89%</td>
<td>No application required.</td>
</tr>
<tr>
<td>$1,000 Scholarships to all students admitted with averages in required courses between 80% and 84%</td>
<td>No application required.</td>
</tr>
</tbody>
</table>

Scholarships from $1,000 to $5,000 to outstanding International students enrolling full-time in a program of study. See details on page 149.
Other Scholarships Ranging in Value from $500 to $2,000
Both application-based and non-application based scholarships, with various application deadlines, are selected and awarded in the fall. See details on the various entrance scholarships on the following pages.

Guaranteed Entrance Scholarships to NSAC
All Canadian students with averages* of 80% or greater will receive an entrance scholarship from NSAC. Scholarships are awarded based on the high school averages of the courses required for admission.

- $2,500 Scholarships to all students admitted with averages of 90% or greater
- $1,500 Scholarships to all students admitted with averages between 85% and 89.4%
- $1,000 Scholarships to all students admitted with averages between 80% and 84.4%

* For Entrance Scholarship purposes the determining average is based on either:
 1. the average of the required courses for admission to the respective program of study from first-term or final Grade 12 marks, or
 2. the average of the final marks of the required courses for admission from first semester Grade 12 and the final marks of the remaining required courses from Grade 11.

Guaranteed Entrance Scholarship Eligibility:
- for high school students only
- must be entering full-time study
- automatic consideration
- no application required
- tenable for one year
- students entering the first year of study in any undergraduate or technical program, with the following exception: students receiving Atlantic Scholars Awards or NSAC/CEC Entrance Scholarships.

Notes: For scholarship purposes, averages are calculated to the nearest whole number (if an average falls exactly between two whole numbers, the average is rounded up). Scholarships are awarded in two installments; to receive the second installment, full-time study must be maintained.

Atlantic Scholars Awards
NSAC annually awards five renewable entrance scholarships to students entering a full-time program of study either directly from high school or with no advanced standing from other post-secondary study. Atlantic Scholars Awards will provide tuition (for the respective program of study) and residence costs (at shared-room rate, for as long as the recipient chooses to live in residence). The scholarship does not cover meals, books, and student fees. In order to qualify for the value of the shared-room portion of room and board fees, the recipient must reside in residence for the full academic year, each year the scholarship is held. Students entering either technical or degree programs at the university are eligible. Only those applicants who have achieved a minimum average of 85% on the courses required for admission shall be considered. Selection criteria include academic performance (on courses required for admission), geographic distribution (in most years at least one student from each of the Atlantic Provinces will be awarded a scholarship), extracurricular activity, and a recommendation from an official representative (e.g. Guidance Counsellor) of the high school or other previously attended post-secondary educational institution. The Atlantic Scholars Awards are tenable for a maximum of four years. These scholarships are renewed by maintaining an annual average of 85%. See information on criteria for renewable scholarships in the Renewal Criteria section. Recipients of Atlantic Scholars Awards are not eligible to receive other guaranteed entrance scholarships. Recipients of renewed Atlantic Scholars Awards are also not eligible for internally selected In-Program scholarships. The Atlantic Scholars Awards are valued at approximately $9,100 for the first year and have a potential total value over four years of $36,500. The actual value is dependent on the number of courses taken and whether the residence portion is accepted. Applications must be submitted to the NSAC Awards Office no later than March 15.

Atlantic Canada Bursaries
NSAC provides $1,000 bursaries to assist students in need of financial assistance. To be eligible students must be in good standing, must have spent at least one term of full-time study at NSAC, and must be registered on a full-time basis for both semesters for the full academic year. Applications will be reviewed December 7.

Doug Bailey Memorial Bursary
 Farmers Dairy awards a $2,000 bursary to a student in any year of any program at NSAC who is a family member of a Farmers Dairy shareholder or employee. The bursary is named in memory of Doug Bailey, a former President and CEO. Selection criteria include leadership, extracurricular and community activities, financial need, and a sound academic record. Applications must be submitted to the NSAC Awards Office no later than September 20.
Bible Hill Garden Club Bursary
The $300 Bible Hill Garden Club Bursary is awarded to an NSAC student from the Truro area. Preference is given to students in at least the second year of study in Horticulture, preferably Environmental Horticulture. Selection criteria include academic performance and financial need. Applications must be submitted to the NSAC Awards Office by October 5.

Canadian Association of Agri-Retailers Bursary
The $1,000 Canadian Association of Agri-Retailers Bursary is awarded annually to an NSAC student in any year of any program whose course work, summer employment, home background, and career plans reflect an interest in Agronomy and the Crop Input industry. Selection criteria will include interest and involvement in Agronomy/field crops and the crop input industry, and financial need. Applications must be submitted to the NSAC Awards office no later than September 20.

Canard Conservation Undergraduate Scholarship
The $500 Canard Conservation Undergraduate Scholarship is awarded to a first- or second-year B.Sc.(Agr.) student from Kings County, NS, who is planning course and/or project work related to the environment. Selection criteria include: academic performance, demonstrated interest in the environment, and career plans. Applications must be submitted to the NSAC Awards Office no later than May 15.

Randy Carey Memorial Scholarship
A $1,000 scholarship is awarded annually to a student from the Annapolis Valley entering a degree/diploma program at NSAC who is interested in pursuing a career in agriculture. As a memorial to Randy Carey, who worked for Stirling Fruit Farms for much of his career, preference will be given to students with interests in the Horticulture industry. Selection criteria include farm background, career plans, and academic performance. Applications must be submitted to the NSAC Awards Office by May 15.

Chicken Producers of Nova Scotia Bursary
The $1,000 Chicken Producers of Nova Scotia bursary is awarded to an NS student at NSAC who shows a demonstrated interest in pursuing the study of poultry. Preference will be given to applicants with a farming background. Students in all years of study are eligible. A student may not receive this scholarship more than once. Applications must be submitted to the NSAC Awards Office no later than September 20.

George & Lottie Cook Memorial Scholarship
The $500 George and Lottie Cook Memorial Scholarship is awarded annually to an NS student enrolled in the first or second year of any program of study at NSAC. Selection criteria include academic performance and financial need. Applications must be submitted to the NSAC Awards Office no later than October 5.

Co-op Atlantic Bursaries
Co-op Atlantic offers three $500 bursaries to students entering the technical program. Selection is based on financial need, potential for community leadership and/or co-operative endeavour, and the recommendation of a local co-operative or district Federation of Agriculture. These bursaries are renewable for a second year when the recipient forwards to the donor first-year marks and confirmation of enrollment. Applications must be submitted to the NSAC Awards Office no later than September 20.

Dykeview Farms Ltd. Scholarship
Dykeview Farms Ltd. offers a $1,000 scholarship open to students from Northeast Kings Education Centre. Selection is based on financial need, community involvement and academic performance. Contact the NEKEC Guidance Office or NSAC Awards Office for application instructions. Application deadline is May 2.

Great Village Garden Club Bursary
The $250 Great Village Garden Club Bursary is awarded to a student in any year of any program who has not qualified for other scholarships or awards. No application is necessary.

Kings County Federation of Agriculture Bursary
The $500 Kings County Federation of Agriculture Bursary is awarded to a resident of Kings County, NS, entering the first year of full-time study at NSAC. Selection criteria include financial need, academic performance, and contribution to and participation in the agricultural industry of Kings County. The selection will be made by the donor. Applications are available from and must be received by May 30th at: Kings County Federation of Agriculture, PO Box 14, Kentville, NS B4N 3V9
Kings Mutual Insurance Scholarship
In memory of Past Directors, the Kings Mutual Insurance Company awards three $1,000 scholarships to NS students, in any year of any program of study, at NSAC. At least one of the scholarships annually will be available to a student in a Technical program of study. Selection criteria include: financial need, academic performance, and demonstrated interest in a career in the Agri-food industry as reflected by summer employment and/or extracurricular involvement. This scholarship is not available to students receiving other scholarships totalling $1,000 or more. Applications must be submitted to the NSAC Awards Office no later than September 27.

Harrison McCain Scholarship
Valued at $16,000 over four years, or $8,000 over two years for students entering two-year programs of study ($4,000 per year), three Harrison McCain Scholarships will be awarded to three students entering the first year of any program of study at NSAC. This scholarship is open to Canadian high school graduates who are maintaining an 80% average in their senior year of high school. Selection is based on academic performance, financial need, leadership qualities, and a recognized initiative in funding their own education. The scholarship is renewed based on the recipient maintaining full-time study (at least four courses per semester) and carrying an academic average of 60% in year one, 70% in year two, and 75% in year three. The Harrison McCain Scholarship is tenable at NSAC for a maximum of four years of study and is not transferable. Applications are due at the NSAC Awards Office no later than March 1.

Newfoundland and Labrador Federation of Agriculture Scholarships
To encourage local students to pursue careers in the Agri-products industry, the Newfoundland and Labrador Federation of Agriculture awards two $1,000 scholarships to Newfoundland and Labrador students (preferably one from the East Coast and one from the West Coast) entering studies at the NSAC. Selection criteria include academic performance and financial need. Applications must be submitted to the NSAC Awards Office no later than September 27.

Newfoundland and Labrador Provincial Scholarships
The Newfoundland and Labrador government, through its Department of Education, awards three scholarships of $1,000 each to Newfoundland and Labrador students entering a degree program at NSAC. Selection will be based on academic performance. No application is required.

NSAC Entrance Scholarships to Cobequid Educational Centre Students
The Nova Scotia Agricultural College Entrance Scholarship for students from the Cobequid Educational Centre will cover the full first-year tuition for the technical or degree program which the student has chosen. The first-year value of the scholarship is approximately $5,500 for degree students and $4,080 for technical students. Eligibility: The top three students graduating from CEC and entering the first year of study in any NSAC program will be awarded the NSAC Entrance Scholarships for CEC Students. Selection will be based on the average from the required courses combined with the school’s final rankings. A minimum average of 80% in the courses required for admission will be required. Renewability: The NSAC Entrance Scholarships for CEC Students will be renewed at the value of $1,500 per year. To be eligible for renewal the student must maintain an 80% average at NSAC and satisfy the criteria for scholarship renewal. Presentation: The NSAC Entrance Scholarships for CEC Students will be announced at CEC’s graduation and will be formally presented at NSAC’s Autumn Assembly in October.

*In the case where one of the top three students from the Cobequid Educational Centre entering studies at the Nova Scotia Agricultural College receives an Atlantic Scholars Award, that student would not be eligible to receive the NSAC Entrance Scholarships for CEC Students. The scholarship would then be awarded to the student with the next highest average coming from the Cobequid Educational Centre. Recipients of NSAC Entrance Scholarships for CEC students are not eligible also to receive one of the guaranteed entrance scholarships.

Nova Scotia Agricultural College Alumni Association Scholarships
The NSAC Alumni Association awards two $1,000 scholarships to first-year students. Selection will be based on academic performance. No application is required.

Nova Scotia Federation of Agriculture 100th Anniversary Scholarship
In recognition of the 100th Anniversary of the Nova Scotia Federation of Agriculture in 1995, a $1,000 scholarship is awarded to an NS student with a farm background who has a solid academic record and financial need. Students studying in any year of any program who have not qualified for other significant awards are eligible. Applications must be submitted to the NSAC Awards Office no later than September 27.
Scholarships, Bursaries and Academic Prizes

I. ENTRANCE SCHOLARSHIPS AND BURSARIES

 Nova Scotia Power Inc. University Scholarship
The $1,500 Nova Scotia Power Inc. university entrance scholarship is awarded to an NS student entering on a full-time basis the first year of an undergraduate degree program at NSAC. The scholarship is tenable for up to four years (renewed by maintaining an 80% average in the previous year; other criteria may be considered for renewal). Selection criteria include academic performance and demonstrated involvement in extracurricular activities. Applications must be submitted to the NSAC Awards Office no later than September 27.

 Nova Scotia Veterinary Medical Association Bursary
The $500 Nova Scotia Veterinary Medical Association Bursary will be awarded to an NS student in the first year of the Veterinary Technology program. Selection criteria include financial need and academic performance. Applications must be submitted to the NSAC Awards Office no later than October 5.

 RBC Centennial Entrance Scholarship
In recognition of NSAC’s 100th anniversary in 2005, RBC Financial Group has established a $1,000 entrance scholarship to be awarded annually to a student entering any program at NSAC who has not qualified for the Guaranteed Entrance Scholarships available to students coming directly from high school. Students considered for this scholarship would include students with disabilities, mature students, and transfer students. Selection criteria include academic performance, involvement in extracurricular and community activities, and career plans. Applications must be submitted to the NSAC Awards Office no later than September 20.

 RBC Financial Group Entrance Scholarship
RBC Financial Group, through the RBC Foundation, is sponsoring a $1,000 Entrance Scholarship to be awarded to a student from a farm family entering the first year of the B.Sc.(Agr.) program at NSAC. Selection criteria include academic performance, extracurricular involvement, and career goals. Secondary consideration may also be given to geographic location. Applications must be submitted to the NSAC Awards Office no later than May 19.

 Ted Rose Memorial Bursary
The $500 Ted Rose Memorial Bursary will be awarded to a student who plans to operate a livestock farm eventually. Selection criteria include a documented commitment to animal welfare, financial need, and sound academic performance. Applications must be submitted to the NSAC Awards Office by October 5.

Scholarships for International Students
Scholarships from $1,000 to $5,000 will be awarded to selected International students enrolled for the full year in a program of study at NSAC. The maximum award will be half the tuition for the year of study. All students paying the International tuition differential are eligible for consideration. The awards are merit-based and normally require registration in 80% of the normal course load for the program of study in both the previous and current year of study.

 Entrance scholarships will be awarded to outstanding applicants who have a minimum of 80% or equivalent admission average on the courses required for admission. The number and value of awards will be dependent on the number of International students eligible for consideration. No application is required.

 School Milk Foundation of Newfoundland & Labrador Scholarships
Two $1,000 scholarships are sponsored by the School Milk Foundation of Newfoundland and Labrador for students from that province entering or continuing in any program of study at NSAC. Preference will be given to students beginning a program of study at NSAC. Selection criteria include career plans that illustrate a genuine interest in an area of agriculture, outstanding community leadership, and academic performance. Applications must be submitted to the NSAC Awards Office no later than May 10.

 Sport Leadership Award
The $1,000 Sport Leadership Award recognizes a high school varsity athlete enrolling full-time in a program of study and planning to participate in a sport at the varsity level at NSAC. Applicants must be maintaining a minimum 75% average in the courses required for admission to NSAC to be eligible. Recipients of other major entrance scholarships are not eligible. Selection criteria include financial need, sport skills, and leadership. The Sport Leadership Award may be renewable up to a maximum of three times conditional on the recommendation of the varsity coach(es) in the sport(s) of participation, provided the student has maintained a minimum yearly average (65% after year one, 70% after year two, and 75% after year three) in full-time course study (80% of normal load) and has continued to play at least one NSAC varsity sport. Applications, accompanied by two letters of reference (including one from a high school coach to comment on excellent sport skills, athletic ability, team leadership, coachability, and positive attitude) and a resumé, must be submitted to the NSAC Awards Office by March 15.
Stewiacke Valley Garden Club Bursary
The $250 Stewiacke Valley Garden Club Bursary is awarded to a student from the Stewiacke Valley area of Nova Scotia studying at NSAC. Selection criteria include involvement in extracurricular and community affairs, financial need, and academic performance. Applications must be submitted to the NSAC Awards Office by October 5.

Taste of Nova Scotia Quality Food Program Scholarship
The Taste of Nova Scotia Quality Food Program offers a $1,000 scholarship to an NS student in any year of any program at NSAC whose course, project work, summer employment, and career plans reflect a commitment to rural communities. Selection criteria include interests in rural entrepreneurship and/or rural development as reflected through course and project work; and financial need. Applications must be submitted to the Awards Office no later than September 27.

F. W. Walsh Memorial Scholarship
In memory of the outstanding agriculturalist F. Waldo Walsh, this $500 scholarship is awarded to a student who is admitted to the first year of a degree program at NSAC. Selection is based primarily on academic performance. Financial need and participation in school and community affairs will also be considered. Applications must be submitted to the NSAC Awards Office no later than October 5.

Wentworth Valley Garden Club Bursary
The $250 Wentworth Valley Garden Club Bursary is awarded to a student from the Colchester or Cumberland County area of Nova Scotia studying in a program related to Horticulture at NSAC. Selection will be based primarily on financial need with sound academic performance secondary. Applications must be submitted to the NSAC Awards Office by October 5.

Woodside Memorial Scholarships
In memory of Harold and Mary Woodside, formerly of Alderbrook Farm, Margate, PEI, a $500 scholarship is awarded to a first-year student from PEI. Selection criteria include academic performance, financial need, future plans and career ambitions, and participation in sports, school, and community activities. Applications must be submitted no later than September 27.
II. CONTINUATION SCHOLARSHIPS AND BURSARIES

The following scholarships and bursaries are available exclusively to students returning to studies beyond the first year of the various programs at the Nova Scotia Agricultural College. Students are encouraged as well to check the scholarship listings in Section VII (Other Continuing External Scholarships and Bursaries).

Animal Nutrition Association of Canada (Atlantic Division) Scholarship
The Atlantic Division of the Animal Nutrition Association of Canada (formerly known as the Canadian Feed Industry Association) awards a $700 scholarship to a student who is entering the third year of the B.Sc.(Agr.) program. Selection criteria include academic performance and leadership in student and community affairs. This scholarship is not available to students receiving other scholarships of higher value. No application is required.

Billie Archibald Memorial Scholarship
The $1,000 Billie Archibald Memorial Scholarship is awarded to a student from Musquodoboit Rural High School who is enrolled in the first or second year of any program at study at NSAC. Selection criteria is based on academic performance, financial need, and community leadership. Preference will be given to applicants with a farming background. A student may not receive this scholarship more than once. Applications must be submitted to the NSAC Awards Office by September 20.

Ralph H. Armstrong Memorial Bursary
The family and friends of the late Ralph Hallett Armstrong award a memorial bursary of $500 to a student who has successfully completed at least one year of study at NSAC. Former or current 4-H club members from Kings or Annapolis County in Nova Scotia are eligible to apply. Selection is based on financial need and involvement in school, athletic, and/or community organizations. Applications must be submitted to the NSAC Awards Office no later than September 24.

Atlantic Council of Crop Life Canada Bursaries
Two $500 bursaries will be awarded to technical students from agricultural backgrounds who plan to pursue employment in the agricultural sector following studies at NSAC. Preference will be given to students whose backgrounds, course and project work, summer employment, and career plans reflect an interest in the crop protection industry. The Atlantic Council of Crop Life Canada is the organization of distributors, dealers, and suppliers of crop protection products in Atlantic Canada. As part of the application, students will write a brief essay (maximum of 500 words) on their background and their future plans, and how their course of study is serving to prepare them for a future in the industry. Applications must be submitted to NSAC Awards Office no later than September 24.

Atlantic Farm Mechanization Show Undergraduate Scholarships
The Atlantic Farm Mechanization Show awards two $1,000 scholarships to students from the Atlantic Provinces who have completed at least one year of study at NSAC in the Engineering Diploma program or the Bio-Environmental Systems Management option of the B.Sc.(Agr.) program. The awarding of the scholarship is based on academic performance and the demonstrated potential for a career in the area of mechanization of agriculture. No application is required.

Atlantic Fertilizer Institute Bursary
The Atlantic Fertilizer Institute awards a $500 bursary to a second-year Technical student. Selection criteria include farm interests, leadership qualities within the university community, and academic performance. Applications should be submitted to the NSAC Awards Office no later than September 24.

Atlantic Fertilizer Institute Scholarship
The Atlantic Fertilizer Institute awards a $1,000 scholarship to a student from the Atlantic Provinces who is entering the second year of the B.Sc.(Agr.) program. Preference will be given to students with farming interests who are studying in an option relating to the production of crops. Selection criteria include academic performance, participation in student life, contribution to the university community, and financial need. Applications must be submitted to the NSAC Awards Office no later than September 24.

Atlantic Land Improvement Contractors Association Bursary
The Atlantic Land Improvement Contractors Association Bursary of $800 is available to Engineering degree students with a demonstrated ability and interest in soil, water, and land improvement. No application is required.
Atlantic Provinces Hatchery Federation Bursary
The Atlantic Provinces Hatchery Federation awards a $500 bursary to a student from the Atlantic Provinces who is enrolled in subjects that reflect an interest in poultry. A letter of application must be received by September 27 at the following address: Gerry Kennie, President, Atlantic Provinces Hatchery Federation, 43 Minas Warehouse Road, Suite 3, New Minas, NS B4N 5A5

Doug Bailey Memorial Bursary
Farmers Dairy awards a $2,000 bursary to a student in any year of any program at NSAC who is a family member of a Farmers Dairy shareholder or employee. The bursary is named in memory of Doug Bailey, a former President and CEO. Selection criteria include leadership, extracurricular and community activities, financial need, and a sound academic record. Applications must be submitted to the NSAC Awards Office no later than September 20.

A.B. Banks Memorial Scholarship
The $600 A.B. Banks Memorial Scholarship is awarded to the second-year B.Sc.(Agr.) student enrolled in the Animal Science option with the highest average from the first year of study. No application is required.

Bible Hill Garden Club Bursary
The $300 Bible Hill Garden Club Bursary is awarded to an NSAC student from the Truro area. Preference is given to students in at least the second year of study in Horticulture, preferably Environmental Horticulture. Selection criteria include academic performance and financial need. Applications must be submitted to the NSAC Awards Office by October 5.

David W. Brown Memorial Bursary
The ACA Co-operative Limited/Eden Valley Farms Limited awards two $500 bursaries to students entering a second year of study at NSAC. Selection criteria include financial need, academic performance, and interest in farming and in the poultry industry in particular. Applications must be submitted to the NSAC Awards Office no later than September 24.

Heather Butcher Memorial Bursary
In memory of Heather Butcher, friends have established a bursary fund which will provide a $300 bursary to a student who has completed at least one year in a degree program at NSAC. Selection criteria include leadership and participation in student and community affairs, financial need, and academic performance. Applications must be submitted to NSAC Awards Office no later than October 5.

Merle Cail Memorial Scholarship
The $1,000 Merle Cail Memorial Scholarship is awarded annually to a senior undergraduate student or a graduate student at NSAC whose course or project work reflect an interest in organic agriculture. Selection criteria include academic performance, financial need, and commitment to organic agriculture. Application forms accompanied by one letter of recommendation must be submitted to the NSAC Awards Office no later than September 20.

Canada Millennium Scholarship Foundation’s National In-Course Awards
The Canada Millennium Scholarship Foundation’s national in-course awards program will provide a minimum of a $4,000 scholarship to a student at NSAC who has completed either one year of a technical program or two years of a degree program. To be eligible, students must be Canadian citizens or permanent residents enrolled full-time and pursuing a first degree or diploma, with at least a 77% cumulative average. Students applying after their first year may not have received more than $3,500 to date in scholarships based solely on merit; and students applying after their second year may not have received more than $3,500 in scholarship money based solely on merit in any one year with a total of no more than $5,000 to date. Selection criteria will include leadership and demonstrated capacity to motivate others, commitment to serving and improving the student’s community, innovation and talent for implementing new ideas, and academic achievement. The student selected from NSAC will also be considered for renewable awards of $4,000 and $5,000 on a national basis. See the NSAC Awards Office for further details. The application deadline is June 15. www.millenniumscholarships.ca

Canadian Association of Agri-Retailers Bursary
The $1,000 Canadian Association of Agri-Retailers Bursary is awarded annually to an NSAC student in any year of any program whose course work, summer employment, home background, and career plans reflect an interest in Agronomy and the Crop Input industry. Selection criteria will include interest and involvement in Agronomy/field crops and the crop input industry, and financial need. Applications must be submitted to the NSAC Awards Office no later than September 27.

Canard Conservation Undergraduate Scholarship
The $500 Canard Conservation Undergraduate Scholarship is awarded annually to an NSAC student in any year of any program whose course work, summer employment, home background, and career plans reflect an interest in Agronomy and the Crop Input industry. Selection criteria will include interest and participation in student and community affairs, financial need, and academic performance. Applications must be submitted to the NSAC Awards Office no later than May 15.
James Card Bursary
At least three awards with a total value of $4,000, sponsored by James Card, will be awarded annually to students in financial need. Preference will be given to International students. Applications will be reviewed December 7.

Gerard Chiasson Memorial Bursary
The Inverness County Federation of Agriculture awards a $500 bursary to a Cape Breton student who has completed at least one year of study at NSAC. The bursary is awarded in memory of Gerard Chiasson, a past president of the NS Federation of Agriculture who was also active in other local farm and community organizations. Selection criteria include financial need, involvement in community activities, and leadership experience. In the event that two or more students possess otherwise equal qualifications, preference will be given to a student from Inverness County. Applications must be submitted to the NSAC Awards Office no later than September 20.

Chartwells Scholarships
Compass Group Canada awards $4,000 in scholarships to outstanding students with high academic performance who, for one reason or another, have not qualified for other significant awards. Preference will be given to students living in residence. No application is required.

Chicken Producers of Nova Scotia Bursary
The $1,000 Chicken Producers of Nova Scotia bursary is awarded to an NS student at NSAC who shows a demonstrated interest in pursuing the study of poultry. Preference will be given to applicants with a farming background. Students in all years of study are eligible. A student may not receive this award more than once. Applications must be submitted to the NSAC Awards Office no later than Sept 20.

Class of 1950 Bursary Fund
The Class of 1950, in commemoration of their fiftieth anniversary of graduation from NSAC, provide an annual $1,000 bursary to assist NSAC students in financial need. Applications must be submitted to the Awards Office by October 5.

Donald E. Clark Memorial Scholarship
In memory of Donald E. Clark, former Professor and Head of the Engineering Department, one or more scholarships (with total value of $600) are awarded to final-year students in the Engineering Department. Selection criteria include academic performance, interest, and aptitude in the engineering field. No application is required.

Colonel Charles Coll Memorial Scholarship
In memory of Colonel Charles H. Coll, a $250 scholarship is awarded to a student in the final year of an Animal Science option. Selection criteria include academic performance, involvement and interest in poultry, and achievement and contribution to 4-H. No application is required.

Charles M. Collins Memorial Scholarship
A $1,000 scholarship will be awarded annually to a student at NSAC who is enrolled in a program of study relating to Horticulture. The scholarship is in memory of Charles McKittrick Collins, who taught Horticulture at NSAC for twenty-five years and supervised the landscaping and maintenance of the campus grounds, and for whom the Collins Horticultural Building was named in 1975. Preference will be given to students studying in the Bachelor of Technology program in Environmental Horticulture who have not qualified for other significant awards. No application is required.

George & Lottie Cook Memorial Scholarship
The $500 George and Lottie Cook Memorial Scholarship is awarded annually to an NS student enrolled in the first or second year of any program of study at NSAC. Selection criteria include academic performance and financial need. Applications must be submitted to the NSAC Awards Office no later than October 5.

Co-op Atlantic Scholarship
Co-op Atlantic awards a $1,000 scholarship to a student at NSAC who is from the Atlantic Provinces and is entering the third year of a degree program. Selection criteria include academic performance, financial need, and knowledge and appreciation of co-operatives. The award is tenable for two years. Applications must be submitted to the NSAC Awards Office no later than September 20.

The Renée Covill Scholarships
Five $2,500 scholarship will be awarded to Atlantic Canadian students at NSAC studying in a program leading to a Bachelor’s degree with a major in Plant Science (Agronomy or Horticulture) or Environmental Horticulture. Preference will be given to students who have course and project work that reflect a commitment to environmental issues and career interests in growing plants (including farming). Selection criteria are academic performance, financial need, and career plans. Applications must be submitted to the NSAC Awards Office by September 20.

Dorothy Creelman Cox Memorial Scholarship
A $150 scholarship is awarded to a female student entering the second year of the B.Sc.(Agr.) program in the Plant Science option. Selection is based on academic performance in the first year. No application is required.
Scholarships, Bursaries and Academic Prizes II. CONTINUATION SCHOLARSHIPS AND BURSARIES

Dr. Kenneth Cox Memorial Scholarship
In memory of Dr. Kenneth Cox, former Principal, this $100 scholarship is awarded to a student entering the final year of the B.Sc.(Agr.) program. No application is required.

Dairy Farmers of Nova Scotia Bursary
The Dairy Farmers of Nova Scotia awards a $1,000 bursary to an NS student doing project or course work related to the dairy industry. Students in the third or fourth year of the B.Sc.(Agr.) program (any option) or graduate students undertaking course or project work related to the dairy industry are eligible. Selection criteria include proven interest and experience in the dairy industry, the potential beneficial impact of study on the Nova Scotia dairy industry, and academic performance. Applications must be submitted to the NSAC Awards Office no later than September 24.

Dartmouth Horticultural Society Bursary
The $500 Dartmouth Horticultural Society Bursary is awarded to a student in the final year of studies at NSAC. Selection criteria include financial need, interest and experience in the agri-food industry, and academic performance. Although students in all programs are eligible, preference will be given to a student in a Plant Science/Environmental Horticulture program from the Dartmouth area. Applications must be submitted to the NSAC Awards Office by October 5.

Eastern Veterinary Technicians Association Bursary
The Eastern Veterinary Technicians Association awards a $100 bursary and a stethoscope (value $100) to a second-year student in the Veterinary Technology program. This bursary will be awarded to the student who best demonstrates proficiency in veterinary clinical skills during the first year and externship at the Atlantic Veterinary College. No application is required.

Ernest L. Eaton Memorial Scholarships
Two $500 scholarships, one for a male and one for a female, are awarded to non-Nova Scotian students entering the third year of the B.Sc.(Agr.) program. Selection is based on the student's averages in the second year of their program. No application is required.

Egg Producers of Newfoundland & Labrador Scholarship
The Egg Producers Association of Newfoundland and Labrador (formerly known as the Newfoundland Egg Marketing Board) awards a $1,000 scholarship to an NL student entering the third or fourth year of the B.Sc.(Agr.) program. Applications must be submitted to the NSAC Awards Office no later than September 27.

Farm Credit Canada Scholarship
The Atlantic Region of Farm Credit Canada awards a $1,000 scholarship to a Canadian student entering the fourth or final year of the B.Sc.(Agr.) program in the Agricultural Economics or Agricultural Business options. Selection criteria include academic performance, interest and competence in farm management and in the subjects associated with the economics of the farm business, interest and involvement in university and home community as demonstrated by participation in organizations & affairs, farm experience, and financial need. No application is required.

Farm Focus Bursary
The $200 Farm Focus Bursary is awarded to a student entering the second year of study. Selection is based on financial need and academic performance. No application is required.

Ena Fenton Memorial Scholarship
Sponsored by the Bedford Horticultural Society, the $500 Ena Fenton Memorial Scholarship is awarded to a second-year student from the Bedford-Sackville-Waverley district of NS, studying Horticulture or Environmental Studies at NSAC. In years when no student from Bedford, Sackville, Waverley applies for the scholarship, consideration will be given to other students from HRM (excluding Halifax and Dartmouth). Selection will be based on financial need, career plans, and academic performance. Applications must be submitted to the NSAC Awards Office by October 5.

Great Village Garden Club Bursary
The $250 Great Village Garden Club Bursary is awarded to a student in any year of any program who has not qualified for other scholarships or awards. No application is required.

Chuck Harrison Memorial Bursary
In memory of Chuck Harrison, Class of 1970, a $200 bursary is awarded to a final-year Agricultural Business Technician student. Selection criteria include leadership and involvement in athletic and other activities at NSAC, and a sound academic record. No application is required.

Bonnie R. Haviland Memorial Bursary
The $1,000 Bonnie R. Haviland Memorial Bursary will be awarded annually to a student entering the second year of the Veterinary Technology program whose performance in the program has demonstrated a caring attitude and a commitment to others. To be eligible, students must have done well in their first year and not won other scholarships of greater value. No application is required.
Isgonish Chapter Silver Anniversary IODE Bursary
The $400 Isgonish Chapter Silver Anniversary IODE Bursary is awarded to a student entering the third year of the B.Sc.(Agr.) program in the Aquaculture major. Selection criteria include financial need, academic performance, and participation and leadership in extracurricular activities. The bursary is renewable by maintaining an 80% average. One award will be presented either to a third-year student or to a fourth-year student as a renewal to the previous year’s recipient. Applications must be submitted to the NSAC Awards Office by September 24.

Randy & Gladys Keddy Memorial Bursary
The $1,000 Randy & Gladys Keddy Memorial Bursary will be awarded to a second-year Technical or third-year Degree student whose background, program of study, course and project work, and summer employment show a genuine interest in working in the agricultural industry following graduation. Selection criteria include career goals, solid academic performance, and financial need. Students receiving other scholarships valued at $1,000 or greater will not be eligible for this scholarship. Given similar or equal qualifications of candidates, preference will be given to students from the Annapolis Valley of Nova Scotia with farm backgrounds. Applications are due at the NSAC Awards Office by September 20.

Kings Mutual Insurance Scholarships
In memory of Past Directors, the Kings Mutual Insurance Company awards three $1,000 scholarships to NS students, in any year of any program of study at NSAC. At least one scholarship will be awarded to a technical student. Selection criteria include financial need, academic performance, and demonstrated interest in a career in the Agri-food industry as reflected by summer employment and/or extracurricular involvement. This scholarship is not available to students receiving other scholarships totalling $1,000 or more. Applications must be submitted to the NSAC Awards Office no later than September 27.

P. Max Kuhn Scholarship
The $2,500 P. Max Kuhn Scholarship will be awarded annually to an NS student with a farm background who is enrolled full-time in any year of any program and whose course and project work and summer employment demonstrate an interest in working in the agriculture industry after graduation. Selection criteria include financial need and academic performance. Preference will be given to students who have completed at least one year of study. The student may receive this scholarship only once. Applications must be submitted to the NSAC Awards Office by September 20.

Landscape Nova Scotia Bursary
Landscape Nova Scotia awards a $500 bursary to an NS student studying Environmental Horticulture. Selection criteria include academic performance and financial need. No application is required.

Lunenburg/Queens Federation of Agriculture Scholarship
The $300 Lunenburg/Queens Federation of Agriculture Scholarship is awarded to a student from Lunenburg or Queens County in NS who has completed at least one year of study at NSAC. Selection criteria include academic performance, farm or agricultural background or experience, and plans to pursue a career in the agricultural industry. Applications must be submitted to the NSAC Awards Office no later than September 27.

Angus and Tena MacLellan Memorial Scholarship
This $600 scholarship is awarded to a student entering the third or fourth year of a degree program. Angus and Tena MacLellan farmed in Clovenville, Antigonish County, Nova Scotia. No application is required.

Dr. Herbert F. MacRae Memorial NSAC/Macdonald College Exchange Award
This $1,000 award is designed to support student and staff exchange between NSAC and Macdonald College of McGill University. Students considering a semester or a year of study at Macdonald College as part of the requirements of a program of study at NSAC, or students transferring to a program of study at Macdonald College, should inquire at the Awards Office for details.

Joseph E. Mapplebeck Memorial Bursaries
In honour of Joseph E. Mapplebeck, who farmed for 50 years in Kings County, NS, and in recognition of his appreciation for the importance of a good education, family members have established two $500 bursaries to be made available to technical students at NSAC. Eligible candidates will have successfully completed the first year of a technical program and demonstrate financial need. A letter of recommendation from a Faculty member must accompany this application. At least one of the two awards will be made available annually to a student in the Plant Science Technology program. Applications must be submitted to the NSAC Awards Office no later than September 24.

H.A.L. McLaughlin Memorial Scholarship
In memory of H.A.L. McLaughlin, who taught horticulture at the NSAC from 1953 to 1971, this $300 scholarship is awarded to a student in Horticulture. No application is required.
A.C. Neish Memorial Trust Scholarship
The A.C. Neish Memorial Trust awards a $1,700 scholarship to an NSAC student entering the final year of the B.Sc.(Agr.) program. Selection criteria include outstanding academic performance and qualities of leadership as indicated by participation and achievement in both academic and non-academic activities. Applications must be submitted to the NSAC Awards Office no later than September 24.

NSAC Athletic Bursaries
Five awards will be presented to returning student athletes at NSAC. Selection criteria include financial need, involvement in/member of a university varsity team, recommendation from a coach, and satisfactory academic performance. Applications must be submitted to the NSAC Awards Office no later than October 5.

Nova Scotia Animal Breeders Co-operative Limited Scholarship
The Nova Scotia Animal Breeders Co-op awards two $1,250 scholarships (one to a degree student and one to a technical student) to returning NS students studying in an animal-related program whose home farm backgrounds, course and project work, and career interests reflect an interest in the dairy or beef industry. To be eligible, students will not have received other major scholarships. Applications must be submitted to the NSAC Awards Office no later than September 24.

NSERCA/Investment Council of Canada Bursaries
The $1,000 NSIA Scholarship is awarded to an NS student entering the third year of the B.Sc.(Agr.) program at NSAC. In awarding the scholarship, the selection committee will take into consideration academic performance, participation in school and community activities, degree of interest in agrology and pursuing a career in the agri-food industry, and financial need. Applications must be submitted to the NSAC Awards Office no later than September 20.

Nova Scotia Institute of Agrologists 50th Anniversary Scholarship
In recognition of the 50th anniversary of the Nova Scotia Institute of Agrologists in 2003, a $1,000 scholarship will be awarded to an NS student entering the second, third, or fourth year of the B.Sc.(Agr.) program at NSAC. Selection criteria include academic performance, extracurricular activities, and interest in the profession of agrology as demonstrated through career plans. Applications must be submitted to the NSAC Awards Office no later than September 20.

Nova Scotia Institute of Agrologists 100th Anniversary Scholarship
In recognition of the 100th anniversary of the Nova Scotia Institute of Agrologists in 1995, a $1,000 scholarship is awarded to an NS student entering the final year of the B.Sc.(Agr.) program. Selection criteria include academic performance, participation and achievement in both academic and non-academic activities. Applications must be submitted to the NSAC Awards Office no later than September 24.

Nova Scotia Federation of Agriculture Bursaries
The Nova Scotia Federation of Agriculture awards two $500 bursaries to second-year NS students (one Technical and one Degree). Selection criteria include financial need and academic performance. No application is required.

Nova Scotia Federation of Agriculture 100th Anniversary Scholarship
In recognition of the 100th Anniversary of the Nova Scotia Federation of Agriculture in 1995, a $1,000 scholarship is awarded to an NS student with a farm background, who has a solid academic record and financial need. Students studying in any year of any program who have not qualified for other significant awards are eligible. Applications must be submitted to NSAC Awards Office no later than September 27.

Nova Scotia 4-H Council Award
A $200 scholarship will be awarded to a second-year NS student in any program. Selection criteria include academic performance, financial need, and participation in 4-H club activities. Applications must be submitted to the NSAC Awards Office no later than September 24.

Nova Scotia Institute of Agrologists 50th Anniversary Scholarship
The Natural Sciences and Engineering Research Council of Canada sponsors a program of summer research awards to encourage outstanding undergraduate students to undertake graduate studies and pursue research careers in the natural sciences and engineering disciplines at NSAC. The purpose of the award is to supplement the salary of a student who is working on an individual research project, designed in conjunction with a faculty member who holds an NSERC research grant. The award is for a minimum of sixteen weeks on a full-time basis in research and development in natural sciences and engineering. To be eligible, students must be Canadian citizens or permanent residents, registered full-time as undergraduate students in a natural science or engineering discipline, and have completed at least one year of study with a minimum 70% cumulative average. Applications must be submitted to the Office of Graduate Studies and Research by February 17.

Don Palfrey Memorial Scholarship
A $1,000 Don Palfrey Memorial Scholarship will be awarded annually in recognition of the many years of service and contributions to weed science in Nova Scotia by Don Palfrey. The scholarship will be awarded to an undergraduate student who is carrying out a senior-year research project in the area of pest management, with preference given to students involved in weed science, either through academic work or summer employment. Applications are due at the NSAC Awards Office no later than September 20.
Robert Parent Memorial Scholarship
In memory of Robert Parent, Class of 1921, this $1,000 scholarship will be awarded to an outstanding student studying in any year of any program who has not qualified for other significant awards. No application is required.

Passionate Plants Person Award
The $500 Passionate Plants Person Award, established by the Atlantic Rhododendron & Horticulture Society, is awarded to a second-year NS student in the Environmental Horticulture diploma program. The recipient will also receive a one-year membership with ARHS. Preference is given to students whose passion for plants is infectious and who will most impact the way we regard and understand plants in both public and private environments. The student should also demonstrate communication and leadership abilities and financial need. Applications must be submitted to the NSAC Awards Office by October 5.

Pork Nova Scotia Prize
Pork Nova Scotia sponsors a $350 prize to an NS student with an interest and/or background in swine production. Selection criteria include demonstrated interest in the swine industry (through course or project work), academic performance, and financial need. Applications should be submitted to the NSAC Awards Office no later than September 27.

Prajna Athletic Bursaries
Two $200 awards (one to a male student and one to a female student) will be presented to returning students at NSAC. These awards were established by Dr. Andre Lirette, a former Professor in the former Animal Science Department at NSAC. To be eligible, students must maintain sound academic performance and have been involved in either a varsity team or on an intramural/recreational team at NSAC. Selection criteria include financial need, leadership, and contribution to student life. Applications must be submitted to the NSAC Awards Office no later than October 5.

PEI Swine Breeders’ Association Bursary
The PEI Swine Breeders’ Association provides a $500 bursary to a PEI student who has successfully completed at least one year of study in an animal-related program at NSAC. Selection criteria include financial need, demonstrated interest in swine, and involvement in community, 4-H, and student affairs. A student may not receive this bursary more than once. Applications must be submitted to the NSAC Awards Office no later than September 27.

Prince Edward Island Institute of Agrologists Scholarship
The $1,000 PEI Institute of Agrologists scholarship is awarded annually to a student from PEI in the third or fourth year of the B.Sc.(Agr.) program who is intending a career as a professional agrologist. In awarding this scholarship the Selection Committee will take into consideration academic performance, university and community involvement, and financial need. A student may receive this award only once. Applications must be submitted to the NSAC Awards Office on or before September 24.

Stuart Rath Junior A Bearcat Hockey Education Award Fund
Awards ranging from $250 to $500 per course are available to members of the Truro Junior A Bearcats Hockey Club who are studying at NSAC. Selection is based on academic performance, community service, and the recommendation of the team coaches. Students in second semester and second year must successfully complete the course work in the previous semester to be eligible for continued support. No application is required.

Cliff Retson Memorial Bursary
In memory of Cliff Retson, Class of ’34, a $600 bursary is awarded to an International student studying at NSAC. Students in any year of any program are eligible. Selection criteria include financial need, academic performance, and interest in and involvement in multicultural activities on campus. Applications must be submitted to the NSAC Awards Office no later than September 27.

Ira L. Rhodenizer Memorial Scholarship
In memory of Ira L. Rhodenizer, the Nova Scotia Federation of Agriculture awards a $300 scholarship to a second-year NS student. Selection criteria include academic performance, involvement in student affairs, and participation in the 4-H program. Applications must be submitted to the NSAC Awards Office no later than September 24.

Dr. Robert G. Rix Bursary
This bursary of $300 is awarded to a deserving student. No application is required.

J. Arnold Roberts Memorial Scholarship
In memory of J. Arnold Roberts, a $1,000 scholarship will be awarded to an outstanding student from Atlantic Canada studying in any year of any program who has not received scholarships of greater value. No application is required.
Howard W. Roper Memorial Bursary
In memory of Howard W. Roper, a $500 bursary will be awarded annually by the Nova Scotia/Newfoundland Branch of Holstein Canada to a second-year Technical student at NSAC. Applicants must be residents of Nova Scotia or Newfoundland and Labrador and members of Holstein Canada, or members of families with Holstein Canada membership. Selection criteria include involvement in the dairy industry, extracurricular involvement through athletics and clubs on campus, involvement in farm organizations, financial need, and satisfactory academic performance in the first year of study at NSAC. Applications must be submitted to the NSAC Awards Office no later than September 27.

Ted Rose Memorial Bursary
The $500 Ted Rose Memorial Bursary will be awarded to a student who plans to operate a livestock farm eventually. Selection criteria include financial need, sound academic performance, and a documented commitment to animal welfare. Applications must be submitted to the NSAC Awards Office by October 5.

Rotary Club of Truro International Student Bursary
This $1,000 bursary will be awarded annually by the Rotary Club of Truro to an International student studying at NSAC. All undergraduate and graduate students paying the international tuition differential are eligible for consideration. Preference will be given to students registered in a program of study and registered full-time, with additional preference given to students studying for the full year (i.e., at least four courses per semester for undergraduate students). Special consideration will be given to students who came from a developing country and plan to return and apply their education from NSAC. Selection criteria include financial need and potential impact of the bursary on the student's lifestyle while at school, and future plans. Applications must be submitted to the NSAC Awards Office no later than September 20.

Rhonda Rae Rumbolt Memorial Scholarship
In memory of Rhonda Rae Rumbolt, a $2,000 scholarship is awarded to a final-year B.Sc.(Agr.) student. Selection criteria include outstanding leadership and involvement in the university community as displayed by participation in extracurricular activities, combined with a strong academic record. Applications must be submitted to the NSAC Awards Office no later than September 24.

Rick Russell Memorial Bursary
In memory of Rick Russell, a long-time woodsmen coach and Animal Science Technician graduate, a $500 bursary will be awarded to a woodsmen athlete in the second, third or fourth year of study in any program at NSAC. The selection criteria include financial need, involvement and leadership in the woodsmen program, and satisfactory academic performance. No application is required.

Scholarships for In-program Students
At the discretion of the Scholarship Committee, scholarships of variable amounts will be awarded to students who perform well in their studies at NSAC. The minimum requirement is an 80% average in work of the previous year and no failed courses (including Drop Fails), with preference given to students who have, in addition, maintained a cumulative average of 80%. The average is determined from the full year of study, which is normally defined as September 1 to August 31. The average is determined by all marks earned by the student in the previous year—non-credit courses are included in the calculation of the year's average for degree students. For scholarship purposes, averages are calculated to the nearest whole number (if an average falls exactly between two whole numbers, the average is rounded up). To be eligible, students must maintain registration in at least 80% of the number of courses for the normal course load per semester for both the previous and current years. In the event that a recipient is not able to complete the full year, on completion of the first semester on a full-time basis he/she would be entitled to receive half the award announced at Autumn Assembly. Students who were registered for the full year in the previous year will be eligible for in-program scholarships for the one remaining semester in the current year if they only have one semester to complete their program requirements.
Scholarships for International Students
Scholarships from $1,000 to $5,000 will be awarded to selected International students enrolled for the full year in a program of study at NSAC. The maximum award will be half the tuition for the year of study. All students paying the International tuition differential are eligible for consideration. The awards are merit-based and normally require registration in 80% of the normal course load for the program of study in both the previous and current years of study.

In-program scholarships will be offered to outstanding transfer students (an 80% or equivalent average from other post-secondary study is required for consideration) or to returning NSAC students who have a minimum average of 80% in the work of the previous year at NSAC with no failed courses (including Drop Fails). Preference is given to students who have, in addition, maintained a cumulative average of 80%. The number and value of awards will be dependent on the number of International students eligible for consideration. No application is required.

Shur-Gain Division/Maple Leaf Foods, Inc. Scholarship
Shur-Gain Division/Maple Leaf Foods, Inc. awards a $1,000 scholarship to a final-year B.Sc.(Agr.) student in the Animal Science option. Selection criteria include academic performance, leadership qualities, and participation in student & community affairs. Applications must be submitted to the NSAC Awards Office no later than September 24.

G.G. Smeltzer Memorial Bursary
The $1,000 G.G. Smeltzer Memorial Bursary is awarded to a third- or fourth-year student from Atlantic Canada studying in the B.Sc.(Agr.) program majoring in Plant Science (Agronomy specialization). Selection criteria include a genuine interest in the area of field crops reflected through course and project work and summer employment, and financial need. No application is required.

Smucker Foods of Canada Scholarship
The $1,200 Smucker Foods of Canada scholarship will be awarded to an outstanding student in any year of any program who has not received other significant awards. No application is required.

Stewiacke Valley Garden Club Bursary
The $250 Stewiacke Valley Garden Club Bursary is awarded to a student from the Stewiacke Valley area of Nova Scotia studying at NSAC. Selection criteria include involvement in extracurricular and community affairs, financial need, and academic performance. Applications must be submitted to the NSAC Awards Office by October 5.

Syngenta Pest Management Awards
Syngenta Crop Protection awards three $500 scholarships to students at NSAC whose course and project work reflect an interest in the Maritime potato industry. Applicants will be required to submit an essay (300–500 words) expressing an opinion on a topic relating to the crop protection industry; suggested topics include the future of genetically modified plants/crops, or the future of crop protection products in Maritime agriculture (the fit and relevance of the agri-chemical industry to today’s agri-food industry). Selection criteria include academic performance, interest in the Maritime potato industry, and potato farm experience or background. Applications must be submitted to the NSAC Awards Office no later than September 24.

Taste of Nova Scotia Quality Food Program Scholarship
The Taste of Nova Scotia Quality Food Program offers a $1,000 scholarship to an NS student in any year of any program at NSAC whose course and project work, summer employment, and career plans reflect a commitment to rural communities. Selection criteria include interests in rural entrepreneurship and/or rural development as reflected through course and project work, and financial need. Applications must be submitted to the NSAC Awards Office no later than September 27.

Bruce Trenholm/Atlantic ’86 Scholarship
A $500 prize is awarded to an Atlantic Canada student entering the final year of any program who has a Holstein farm or 4-H (Holstein calf project) background. Selection criteria include academic performance and career goals. Applications must be submitted to the NSAC Awards office no later than September 27.

Vice-President’s Scholarship
This $300 scholarship is awarded to a final-year B.Sc.(Agr.) student. No application is required.
Florence (Pino) Ward Memorial Awards
Three to five bursaries with a total value of $2,000 will be awarded annually, in memory of Florence (Pino) Ward, to NSAC students in financial need. Recipients will have completed at least one year of study in a technical, B.Tech, or B.Sc.(Agr.) program. Preference will be given to students with sound academic background who have come to NSAC for technical training to enhance their employability but whose financial constraints are limiting their ability to continue their studies. In the event that two or more candidates otherwise qualify for one of the awards, preference will be given to students from Boutilier’s Point, Halifax County, or Advocate, Cumberland County. Application forms must be submitted to the NSAC Awards Office no later than October 5.

Michael Whidden Memorial Award
The $2,000 Michael Whidden Memorial Award will be awarded to a student who has provided leadership on NSAC’s Woodsmen Team, and has maintained a sound academic performance. No application is required.

Eric Williams Memorial Scholarships
Two $1,000 scholarships sponsored by the Dairy Farmers of Newfoundland and Labrador are awarded to students from Newfoundland and Labrador who have completed at least one year of study at NSAC in any program (generally, one to a technical student and one to a degree student). Selection will be based on academic performance. No application is required.

Wild Blueberry Producers Association of Nova Scotia Scholarship
The Wild Blueberry Producers Association of Nova Scotia awards a $750 scholarship to a Plant Science student entering the third or fourth year of the B.Sc.(Agr.) program. Selection will be based on academic performance and financial need. Preference will be given to someone with interest and experience in small fruits. Applications must be submitted to the NSAC Awards Office no later than September 27.

Raymond Webber Memorial Scholarship
Landscape Nova Scotia and the New Brunswick Horticultural Association jointly award a $600 scholarship to the most promising Environmental Horticulture Technology second-year student. Selection criteria include academic performance and practical work skills. No application is required.

Wentworth Valley Garden Club Bursary
The $500 Wentworth Valley Garden Club Bursary is awarded to a student from the Colchester or Cumberland County area of Nova Scotia studying in a program related to Horticulture at NSAC. Selection will be based primarily on financial need, with sound academic performance secondary. Applications must be submitted to the NSAC Awards Office by October 5.
III. GRADUATE SCHOLARSHIPS AND BURSARIES

The following scholarships are available exclusively to graduate students studying at the Nova Scotia Agricultural College.

Stuart & Ruth Allaby Graduate Studies Scholarship
The $1,000 Stuart and Ruth Allaby Graduate Studies Scholarship is awarded annually to an M.Sc. student at NSAC concentrating on animal research. No application is required.

Atlantic Farm Mechanization Show Graduate Scholarship in Engineering
The $1,000 Atlantic Farm Mechanization Show Graduate Scholarship in Engineering is awarded annually to an M.Sc. student at NSAC conducting research in engineering. No application is required.

Doug Bailey Memorial Bursary
Farmers Dairy awards a $2,000 bursary to a student in any year of any program at NSAC who is a family member of a Farmers Dairy shareholder or employee. The bursary is named in memory of Doug Bailey, a former President and CEO. Selection criteria include leadership and extracurricular and community activities, financial need, and a sound academic record. Applications must be submitted to the NSAC Awards Office no later than September 20.

Merle Cail Memorial Scholarship
The $1,000 Merle Cail Memorial Scholarship is awarded annually to a senior undergraduate student or a graduate student at NSAC whose course or project work reflect an interest in organic agriculture. Selection criteria include academic performance, financial need, and commitment to organic agriculture. Application forms accompanied by one letter of recommendation must be submitted to the NSAC Awards Office no later than September 20.

Canard Graduate Conservation Fund Scholarship
The Canard Conservation Fund provides a $2,000 scholarship to a graduate student at NSAC conducting research work on environmental issues. Selection criteria include research aptitude and experience, relevance of the applicant’s research to conservation issues, and sound academic performance. Only full-time students will be eligible, and preference will be given to students in the second year of study in the M.Sc. Program. Applications should include an essay on the importance of the research to conservation issues, a résumé, and an official transcript. Applications must be submitted to the NSAC Awards Office no later than July 27.

Chartwells Graduate Student Scholarship
One $5,500 scholarship will be awarded to a student entering the M.Sc. degree program at NSAC on a full-time basis. The scholarship will be awarded on the basis of academic performance. Recipients of NSAC Graduate Entrance Scholarships and students on employment leave with salary continuation are not eligible. No application is required.

Chicken Producers of Nova Scotia Bursary
The $1,000 Chicken Producers of Nova Scotia Bursary is awarded to an NS student at NSAC who shows a demonstrated interest in pursuing the study of poultry. Preference will be given to applicants with a farming background. Students in all years of study are eligible. A student may not receive this scholarship more than once. Application must be submitted to the NSAC Awards Office no later than September 20.

Dairy Farmers of Nova Scotia Bursary
The Nova Scotia Milk Producers Association awards a $1,000 bursary to an NS student doing project or course work related to the dairy industry. Students in the third or fourth year of the B.Sc.(Agr.) program (any option) or graduate students undertaking course or project work related to the dairy industry are eligible. Selection criteria include proven interest and experience in the dairy industry, the potential beneficial impact of study on the Nova Scotia dairy industry, and academic performance. Applications must be submitted to the NSAC Awards Office no later than September 24.

The Gordon B. Kinsman Memorial Graduate Scholarships
Two $1,500 Gordon B. Kinsman Memorial Graduate Scholarships will be awarded to graduate students in Horticulture at NSAC. At least one of the scholarships each year will be awarded to a student conducting research work related to the blueberry industry. Applications must be submitted to the NSAC Awards Office no later than July 27.

Graduate Research Training Initiative (GRTI) Scholarships
This program provides scholarships to high-calibre students who are engaged in a research-based graduate program at NSAC and who are conducting research that will benefit Nova Scotia’s agriculture and agri-food industry. This initiative is intended to ensure a reliable supply of highly-qualified personnel to meet the future needs of Nova Scotia’s agri-food industry. The value of the awards is $15,000 per year for up to two years for full-time students, and $7,500 per year for up to two years for part-time students. Further information is available on the website: www.nsac.ca/research/graduatestudies/scholarship.asp

Robert P. Longley Memorial Graduate Scholarships
Two $7,000 scholarships will be awarded to NS residents entering the M.Sc. degree program on a full-time basis at NSAC. The scholarships will be awarded on the basis of academic performance (cumulative GPA from undergraduate degree). Recipients of NSAC Graduate Entrance Scholarships and students on employment leave with salary continuation are not eligible. No application is required.
NSAC Association of Graduate Students Bursary
This award is valued at $400. Any graduate student of NSAC (any year; full-time or part-time) is eligible to apply. Selection is based on financial need. Applications must be submitted to the Awards Office no later than October 5.

NSAC Graduate Entrance Scholarships
The Nova Scotia Agricultural College offers up to five scholarships of $5,000 to students approved (or conditionally approved) for admission to the NSAC/Dalhousie M.Sc. Program. Students who have applied for admission to the graduate program at NSAC by the end of June each year will be considered for these awards. Only those applicants entering graduate studies on a full-time basis who have achieved a minimum admission average of 80% (cumulative undergraduate average) or equivalent will be considered. Although academic performance will be the prime selection basis, consideration will also be given to the diversity of backgrounds of candidates (including gender, country of origin, institution of origin, minority groups, supervisors, and programs of study). No application is required.

NSAC International Student Fee Waivers
The NSAC awards several differential fee waivers to International students admitted to the M.Sc. program. Differential fee waivers are available to students in their first year of the program only. Selection is based on academic merit and on financial need. No application is required.

NSERC Postgraduate Scholarships
The Natural Sciences and Engineering Research Council of Canada provide postgraduate scholarships to high-calibre scholars who are engaged in master’s or doctoral programs in the natural sciences and engineering disciplines at universities in Canada. To be eligible, students must be Canadian citizens or permanent residents of Canada who hold, or expect to hold at the time to take up the award, a degree in science or engineering from a university whose academic standing is acceptable to NSERC, who will pursue full-time graduate study and research at the master’s or doctoral level in the natural sciences or engineering in the following year, and who have an 80% average in each of the last two completed years of study. The value of the awards is $17,300 per year for students studying at the master’s level and $19,100 per year for students studying at the doctoral level. The awards are tenable for a maximum of two years. Applications must be received at the office of Research and Graduate Studies by November 1.

The Allan A. Saunders Memorial Graduate Scholarship
The $3,000 Allan A. Saunders Memorial Graduate Scholarship is awarded annually to a graduate student at NSAC who is conducting research relating to the dairy industry. Applicants who have completed their undergraduate degree at NSAC and wish to pursue their master’s degree at another post-secondary institution will be considered. Selection criteria include academic performance, dairy farm background and/or demonstrated interest in the dairy industry, and financial need. Applications are due at the NSAC Awards Office no later than July 27.

Dr. Chesley E. Smith Memorial Graduate Scholarship
The $500 Dr. Chesley E. Smith Memorial Scholarship is awarded annually to a graduate student at NSAC. All full-time M.Sc. students will be considered. Preference will be given to students whose course and project work reflect an interest in Plant Science or Agronomy. Selection criteria include academic performance and financial need. Applications must be submitted to the NSAC Awards Office no later than July 27.

Syngenta Crop Protection Canada Graduate Scholarship
The $1,000 Syngenta Crop Protection Canada graduate scholarship will be awarded annually to an M.Sc. student at NSAC conducting research pertaining to sustainable agriculture. For the purposes of this award, “sustainable agriculture” will be described as a balance between social, environmental, and economic priorities. Project areas eligible for support will focus on environmental quality and resource management, land management, integrated pest management, introduction of new technologies, economic viability, and rural community sustainability. Selection criteria include academic performance and research goals consistent with sustainable agriculture. Applications must be submitted to the NSAC Awards Office no later than July 27.

Graduate students are encouraged to look through the scholarship descriptions listed in Section II (Continuation Scholarships and Bursaries), Section V (Scholarships and Bursaries for Continuing Studies Beyond NSAC) and Section VII (Other Continuing External Scholarships and Bursaries) for awards available to students in any year of any program. M.Sc. students are eligible for consideration for awards targeted to any year of any program.
IV. MEDALS AND PRIZES

Canadian Agricultural Economics Association Prize
The Canadian Agricultural Economics Association presents a book prize at Spring Convocation to a graduating student from the Agricultural Economics or Agricultural Business option of the B.Sc.(Agr.) program. This award is selected on the basis of overall performance. No application is required.

Canadian Society of Animal Science Prize
The Canadian Society of Animal Science presents a book prize at Autumn Assembly to a student in the fourth year of the Animal Science or Aquaculture options of the B.Sc.(Agr.) program. This award is selected on the basis of outstanding scholarship. No application is required.

Canadian Society of Soil Science Book Prize
The Canadian Society of Soil Science annually awards a book prize, valued at approximately $100, to an undergraduate student whose course and project work reflect an interest in Soil Science. Students in any year of the B.Sc.(Agr) program are eligible. No application is required.

K. de Geus Memorial Prize for Plant Science
In memory of the late K. de Geus, a prize is awarded to a technical graduate. Selection is based on high standing in course work and preference is given to students in the horticultural field. No application is required.

Noel Enman Memorial Award
Established in 1984, the Noel Enman Memorial Award is presented annually in memory of NSAC alumnus Noel Enman (1961–1983) to a technical graduate whose personality and fellowship have contributed to student life and activities, thereby gaining the respect of the students and faculty at NSAC. Nominations should be submitted through the office of the Dean of Student Services by February 14. The award is presented at the graduation class banquet prior to Convocation.

Farm Credit Canada Business Planning Awards
Sponsored by Farm Credit Canada, the purpose of this award program is to encourage agricultural students to apply their knowledge and create “real-life” farm business plans for their operations (home, existing, or start-up). The awards are open to students in the final year of Agricultural Business Technician, Agricultural Technology, and Farming Technology programs who complete farm business plans during business project courses (MGMT0201 Business Project, MGMT0300 Farm Project, MGMT0302 Technology Project). Degree students who do Farm Business plans as part of their requirements for RESM4004 and RESM4005 will also be considered. Projects will be evaluated on the following basis: 60% on content, including realistic basis and accurate calculations; 30% on writing; and 10% on format and presentation. A student who has received an FCC Farm Business Planning Award is not eligible for a second one. Two cash prizes will be presented at Convocation (one of $2,500 and one of $1,500). No application is required.

H.J. Fraser Memorial Prize for English
In memory of the late Professor H.J. Fraser, a prize is awarded to a second-year student who has achieved excellence and provided significant contribution to the discussion in a first-year English course at NSAC. No application is required.

Dr. Gerry W. Friars Undergraduate Research Prize
The $250 Dr. Gerry W. Friars Undergraduate Research Prize is awarded at Convocation to the student who is judged to have completed the best written research report as part of his/her fourth-year project requirements. Dr. Friars, an NSAC Alumnus from 1948, was introduced to scientific research by an undergraduate research project. This was the beginning of a career in research and teaching. No application is required.

Governor General's Medals
The gold Governor General’s Medal is awarded to the M.Sc. graduate from the current year with the highest compiled score of the thesis, thesis defence, graduate course record, and teaching performance. A silver Governor General’s Medal is awarded to the Bachelor’s graduate (B.Sc.(Agr.) or B.Tech) who achieves the highest cumulative academic standing in the program. A bronze Governor General’s Medal is awarded to the technical graduate who achieves the highest academic standing in the program. To be eligible, students must have completed at least half of their program at NSAC. No application is required.

Ketchum Manufacturing Company Limited Prize
The $100 Ketchum Manufacturing Company Limited Prize is awarded to a graduate of the Animal Science option. No application is required.
Novartis Award
The Novartis Award is presented at Convocation to the top all-round student graduating from the Veterinary Technology program who has particularly excelled in the area of parasitology. No application is required.

Patterson Law Prize
Patterson Law offers a $500 prize to any full-time student enrolled at the Nova Scotia Agricultural College who has lived or worked on a farm. Applicants are required to submit an essay (500–1,000 words), regarding any major issue facing the farming community. The student who receives the award will be chosen on the basis of the quality of the essay written. Essays will be evaluated on the basis of insight into issues, quality of writing and readability, and organization. Applications must be submitted to the Awards Office no later than September 20.
V. SCHOLARSHIPS AND BURSARIES FOR CONTINUING STUDIES BEYOND NSAC

APENS Award and Scholarship
The Association of Professional Engineers of Nova Scotia (APENS) provides awards valued at $500 and a scholarship valued at $2,000. One APENS Award is presented each year at each of the Associated Universities to that student, graduating with an Engineering Diploma, who best demonstrates the promise of using outstanding abilities to serve society in an ethical manner as a Professional Engineer. Selection criteria include: qualities of ethical conduct, extracurricular activities, industry and intelligence, scholastic achievement, service to fellow students, and application of technical skills in an unselfish manner to the benefit of society and the promotion of the engineering profession. The APENS Scholarship is awarded to one of the APENS Award recipients graduating from the Associated Universities who exhibits academic excellence.

Cobequid Dog Club Scholarship
The Cobequid Dog Club awards a $400 scholarship to an NS student from NSAC who is admitted to a veterinary college. No application is required.

Harney Estate Scholarships
Dr. Patricia Harney, NSAC Diploma Class of ‘48 and OAC Professor in Horticultural Sciences, has made generous provision through her estate to support NSAC students who wish to pursue research-focused graduate studies in agriculture at the University of Guelph or at Macdonald College, McGill University. These scholarships are to be granted to students based on high academic records who are committed to research excellence. Two $5,000 renewable scholarships from this fund serve to preserve the long-standing links between NSAC, Macdonald College, and Guelph. This award is tenable for two years for a master’s degree program and three years for a Ph.D. program. Renewability will be based on maintaining scholarship standing in the program (will require A- or 80%). See the NSAC Awards Office for further information.

To be eligible, NSAC graduates must be accepted or registered at Macdonald College or the University of Guelph for graduate work in agriculture. While registered at the University of Guelph or Macdonald College, the recipient may, with appropriate permission, pursue research at NSAC. Scholarship funds will be disbursed to the recipient through the institution in which the student registered. Initial review of applications takes place March 31, following which applications will be reviewed as received, conditional on funds remaining.

Dr. Allan and Barbara MacKay Scholarship
The $1,000 Dr. Allan and Barbara MacKay scholarship will be awarded annually to a student from NSAC admitted to the Atlantic Veterinary College. In recognition of his long association with the practice of veterinary medicine in Nova Scotia and with NSAC, Dr. J. Allan MacKay, NSAC class of 1943, has established this scholarship which will be presented to NSAC’s Autumn Assembly. No application is required.

Edith Main Memorial Bursary
In memory of Edith Main, the auxiliary to the Nova Scotia Veterinary Medical Association awards a $100 bursary to an NS student who has attended NSAC and has been admitted to a Canadian veterinary college. No application is required.

Nova Scotia Fur Institute Scholarship
The Nova Scotia Fur Institute awards a $2,500 scholarship to a graduate in Animal Science from NSAC who is pursuing graduate studies in fur production at an approved university. Selection will be based primarily on academic performance. A letter of application, with transcript and resume, must be submitted no later than March 31 to: Chairman, Nova Scotia Fur Institute, Nova Scotia Agricultural College, PO Box 550, Truro, NS B2N 5E3.

Nova Scotia Power Inc. Centennial Scholarships in Engineering
In 1967 Nova Scotia Power instituted four permanent scholarships as a continuing Centennial project. These scholarships are tenable only at Dalhousie University, Faculty of Engineering, and are open to students completing engineering studies at the following associated universities: Acadia, Dalhousie, Mount Allison, St. Francis Xavier, Saint Mary’s, Cape Breton University, and the Nova Scotia Agricultural College. The scholarships are for a term of two years at $1,500 per year and are applicable to Electrical, Mechanical, Chemical, Civil, and Industrial disciplines. Applicants must be Canadian citizens and residents of Nova Scotia for at least three years, two years of which are immediately prior to graduation. A selection board considers the academic excellence, personality, and involvement in extracurricular activities of applicants recommended by the Agricultural Engineering Department at NSAC. Continuance of the scholarships will be conditional on the attainment of a satisfactory academic record. Application deadline is April 30.
VI. OTHER ENTRANCE EXTERNAL SCHOLARSHIPS AND BURSARIES

(Although not exclusive to NSAC students, the following scholarships/awards are available to students entering NSAC.)

African Nova Scotian Student University Entrance Scholarships
Valued at $4,500, these scholarships are available to African Nova Scotian students who successfully complete Grade 12 in the public school system of NS within the current year and who have been accepted and will attend a university in the academic year immediately following Grade 12. Applicants must be enrolled in a full-time degree program and have obtained an average of 75% in select courses. Application deadline is May 30.
acs.ednet.ns.ca/scholarships.shtml

Wallace Anderson Memorial Scholarship Fund
The scholarship is for manual Deaf student(s) living in southwestern New Brunswick who wish to further their educational goals on a full-time or part-time basis. Application forms must be submitted no later than April 30 to: Saint John Deaf and Hard of Hearing Services Inc., c/o Scholarship Fund Committee, sjdhhs@nb.sympatico.ca

Aquaculture Association of Canada Scholarship
Six $1,000 scholarships will be awarded annually to AAC student members enrolled in a post-secondary institution in an aquaculture-related program. Selection is based on scholastic ability (transcript of marks required); interest and involvement in aquaculture (e.g. summer employment); publication record, if any; and a 250-word essay on where the applicant sees him/herself contributing to sustainable aquaculture development in the future. Contact the NSAC Awards Office or check the website for further details. Application deadline is November 15.
www.aquacultureassociation.ca

Association of Nova Scotia Housing Authorities Awards
Several $1,000 renewable awards are awarded to NS residents who live in housing units administered by a Nova Scotia Housing Authority, and need financial assistance to enable them to continue their education at a post-secondary level (e.g. university, community college, trade school or technical school). Awards are tenable at any legally recognized educational institution chosen by the applicant and approved by ANSHA. The application deadline is May 1 each year. Information and application forms are available at: ANSHA Student Awards Committee, Box 753, Amherst, NS B3H 4B9

Atlantic Canada Marine Biodiversity Essay Contest
The Centre for Marine Biodiversity has an annual Atlantic-wide essay contest open to all Grade 12 students in NL, NS, NB, and PE. The contest is intended to increase awareness of the biological diversity within Canada’s vast ocean territories. The essay subject for this year is “Discuss the observed and predicted effects of climate change on the marine biodiversity of Arctic ecosystems.” Students are asked to address various topics in the essay. The application deadline is March 1.
www.marinebiodiversity.ca/en/home.html

Alexander Graham Bell Association for the Deaf Scholarship Awards
The Alexander Graham Bell Association for the Deaf administers a number of scholarships varying in amounts from $500 to $1,000. Scholarships are open to qualified American and Canadian students who were born with a profound or severe hearing impairment, or those who have lost their hearing before acquiring language skills and have been accepted into a regular full-time college or university program. Interested students must request an application in writing before December 1 of the year previous to the one in which they intend to study.
www.agbell.org

Arlene Burris Memorial Scholarship
The Arlene Burris Memorial Scholarship is awarded to a person studying in any field that will prepare him or her to work with children who are deaf or hard of hearing, or to an individual who is deaf or hard of hearing pursuing post-secondary studies. Application deadline is May 1. For more information please contact Programs for Students who are Deaf or Hard of Hearing, Atlantic Provinces Special Education Authority, (902) 424-8500 or dhh@apsea.ca.

Canada Millennium Scholarship Program
The Canada Millennium Scholarship Foundation’s Excellence Award Program provides scholarships to high school graduates entering their first year of full-time studies leading to a first post-secondary degree certificate or diploma. The excellence award program serves to recognize, support, and encourage talented Canadians who make positive and significant contributions to the betterment of communities across the country, who demonstrate capacity for leadership and are committed to the pursuit of academic excellence and innovation. Application forms are available on the website and at the NSAC Awards Office. The deadline for receipt of applications is January 15.
www.millenniumscholarships.ca
Canadian Forces Personnel Assistance Fund
Assistance is in place to assist serving and former members and their dependents with costs of post-secondary education. To obtain the loan in time for the semester beginning in September, submissions should arrive at CFPAF by June 30. Otherwise, applications will be accepted throughout the year until funds are exhausted.
www.sisip.ca/en/cfpaf_e/programs_e.asp#education

Canadian Hard of Hearing Association Scholarship
This scholarship program offers financial assistance and recognition to hard of hearing and deafened students registered in a full-time program at a recognized Canadian college or university, in any area of study, with the ultimate goal of obtaining a diploma or degree. Two $1,000 awards are available to first year or returning students. Application deadline is January 31.
www.chha.ca/chha/scholarships-index.php

Co-op Alton McEwen Scholarship
Two university entrance awards of $1,000 are open to employees and dependents of members of Co-op Atlantic. This is a four-year renewable scholarship. Selection criteria include academic performance, demonstrated leadership ability, and interest in co-operation and co-operatives. The deadline is May 31.
www.co-oponline.com/english/at_work/scholarships.html

Co-Operators 4-H Scholarship
The Co-Operators 4-H Scholarship is a $1,000 award presented to a student who is entering any year in a university, college, or other post-secondary educational institution. Candidates must be 16 years of age as of Jan 31 and must have been 4-H members for at least two years, and have been registered as 4-H members within the last five years. Selection will be based on personal background, goals and ambitions, community involvement, interest, and knowledge of accident prevention on the farm or in the home. A presentation to the selection committee and an interview are required. Candidates must submit the following by April 15 to the Provincial 4-H Office: application form, one reference letter, and a presentation in any medium (essay of 500–1000 words, double-spaced, typed or very neatly and clearly printed or written; video; speech; poster; etc.) with a theme of Farm Safety or Safety in the Home, focusing on accident prevention. Application details are available from the Provincial 4-H Office.
www.gov.ns.ca/4h/glkit/scholar.shtml

Donald E. Curren Scholarship
The Donald E. Curren Scholarships are open to mobility-impaired students who have been accepted by a university in the Atlantic Provinces, with preference given to applicants who are paraplegic or quadriplegic. Recipients must be Canadian citizens or landed immigrants and reside in the Atlantic Provinces. The deadline for applications is July 31.
www.nsnet.org/cpans/schol.html

Epilepsy Association of NS Memorial Scholarship/Bursary & the James Russell Kline Memorial Bursary
The EANS offers three $500 bursaries. To be eligible, applicants must be Canadian citizens or landed immigrants resident in NS for at least 12 months who are under a physician’s care for treatment of epilepsy, 18 years old by August 1 in the year of application, and accepted into a recognized post-secondary school. See the NSAC Awards Office for further details and application form. The deadline is May 15.
www.epilepsyns.com

Epilepsy Canada Scholarships
This initiative, which is funded by Lundbeck Canada Inc., will help 30 young people with epilepsy across Canada continue their college or university studies. Each of these students will receive an award worth $1,000 applicable to the 2006 academic year. The scholarship award program is open to all young people between the ages of 16 and 29 who are under the care of a Canadian physician for the treatment of epilepsy. The deadline is February 25.
www.epilepsy.ca/eng/left_menu/scholarship.html

Farm Credit Corporation 4-H Scholarship
Farm Credit Corporation awards ten $1,000 scholarships (one per province) to students across Canada who had been registered 4-H members in the last five years and who are in any year of any program of post-secondary study. Applicants must submit a completed application which includes general information, career plans, association involvement, and extracurricular involvement. In addition, applicants must submit a detailed plan for a community project that will either improve safety or reduce hunger in their community. Project plan should be a maximum of 3 typed pages in length. Project plans will be judged on completeness of plan, creativity, originality, spelling, and grammar. Applications must be received by the Canadian 4-H Council by February 28.
www.4-h-canada.ca/programs
Scholarships, Bursaries and Academic Prizes

Terry Fox Humanitarian Award Program
This program provides scholarships to students entering or attending post-secondary educational institutions within Canada. The successful applicants are recognized for dedication to community service, humanitarianism, perseverance and courage in the face of obstacles, and the pursuit of excellence in fitness and academics. The scholarship is a renewable award, subject to satisfactory progress. The value of each award is $4,000 per year for a maximum of four years or until the first degree is obtained. The deadline for applications is February 1.

www.terryfox.org

Fredericton Scottish Rite Award
This $500 award is given to students graduating from School Districts 10, 12, 13, 17, and 18 who have intellectual disabilities. The application deadline is April 15. For more information contact: Fredericton Scottish Rite Award, c/o Fredericton Association for Community Living, 1079 York Street, Fredericton, NB E3B 3S4.

www.gnb.ca/0048/english/schindex.htm

Walter and Wayne Gretzky Scholarship Foundation for the Blind Youth of Canada
Scholarships of $3,000 to $5,000 are available to applicants who are blind or severely visually impaired, graduating from a secondary school, and planning to pursue a full-time post-secondary course of study. The applicants must be Canadian citizens or have held landed immigrant status for one year prior to the date of application. The selection committee will endeavor to select winners from the various regions of Canada. Applications must be received by May 31.

www.cnib.ca/eng/awards/wgs/

Harvest Trust 4-H Scholarships
Harvest Trust awards one $1,000 scholarship per province to students entering a Degree program in Agriculture who have been 4-H members within the last five years and active in the 4-H program for at least two years. Selection criteria include personal background, goals and ambitions, financial need, community involvement, and interest in and knowledge of agricultural issues. Applicants must submit an essay (500–1000 words) addressing one of the following topics:
1) We are living in a global economy. What can individual producers do to ensure Canadian products can compete in the competitive export markets?
2) How can producers become more pro-active in the marketing of agricultural products?
3) What action must producers and producer organizations take to ensure sustainable agriculture?
4) What effects do sustainable agriculture, animal welfare, and environmental protection have on consumer attitudes and consumer consumption patterns?
For application details contact the Provincial 4-H Office. Application deadline is April 15.

www.farmcentre.com/english/courses/ss.asp

Imperial Tobacco Scholarship Fund for Disabled Students
This program is used to help Canadian disabled students attend university. The award is $5,000 for each student who is chosen (a minimum of 10 awards are offered each year). Persons applying for the award must be Canadian citizens or have lived in Canada for at least two years as legal permanent citizens. All applicants must be entering or currently enrolled in a first undergraduate program at a Canadian post-secondary institution. Recipients may re-apply. The deadline to apply is June 1.

www.ldrc.ca/scholarships

Jamie Irving Memorial 4-H Scholarship
The $1,000 Jamie Irving Memorial 4-H Scholarship is presented to a PEI student with a 4-H background entering a recognized post-secondary institution. Selection criteria include 4-H background, community involvement, goals and ambitions, an interview, and an essay. Application deadline is April 15.

www.pei4h.pe.ca/scholarship.html
Maritimes & Northeast Pipeline Liaison Scholarships & Academic Achievement Awards
The Assembly of Nova Scotia Mi’kmaq Chiefs and Maritimes & Northeast Pipeline (M&NP) are committed to the development of future generations of Mi’kmaq students through academic and personal development. They have made available $1,000 scholarships for full-time/part-time students enrolled in university, college, vocational or technical institute, and $500 Academic Achievement Awards for students graduating from high school, Adult High School, or academic upgrading. To be eligible, students must be registered with a Nova Scotia Mi’kmaq band, enrolled either full-time or part-time and expect to return the following year to their field of study, and graduating from high school or a university program. Application deadline is June 16 for scholarships and July 21 for academic achievement awards.
www.mns.firstnet.ca or www.mnpp.com

Mattinson Endowment Fund Scholarship for Disabled Students
This program is to encourage Canadian students with a disability to obtain a first university degree. The award is $2,500; the number awarded each year will be based on the funding available for that year. Applicants must be Canadian citizens or have lived in Canada for two years as legal permanent citizens. All applicants must be entering or currently enrolled in a first undergraduate program at a Canadian post-secondary institution. Recipients may re-apply. The application deadline is June 1.
www.aucc.ca/scholarships/open/mattinson_e.html

Monsanto Canada Inc. Scholarships
Monsanto Canada Inc. awards sixty $1,500 scholarships to high school students from across Canada entering the first year Agriculture (any discipline), Forestry, Agri-Science, or Management (Marketing/Finance) programs (degree or diploma) at a Canadian educational institution. Students from agricultural or forestry family farms are eligible. Selection criteria include academic performance and leadership in the community. Application forms are available on the website. For more information, call 1-800-667-4944. Applications must be post-marked no later than July 15.
www.farmcentral.com

National Bank of Canada Bursary and Summer Employment Program
National Bank of Canada is proud to announce its 15th annual Bursary and Summer Employment Program for University and CEGEP Students with Physical or Sensory Disabilities to help them pursue their studies and gain work experience in a field related to their studies. Under the program, the bank awards two $2,000 bursaries together with a paid 12-week summer job for university students and one $1,000 bursary together with a paid 10-week summer job for CEGEP students. Program information and application forms are available on the website. Application deadline is March 5.
www.nbc.ca/bursary

New Brunswick Fruit Growers’ Association Scholarship
The $300 New Brunswick Fruit Growers’ Association Scholarship is awarded to an NB resident entering a program of study in horticulture or related courses at an agricultural college or university with the purpose of returning to, or working in, the New Brunswick tree fruit industry. Selection criteria include academic performance, involvement in community activities, volunteer work, farming or orchard experience, interests in the fruit-growing industry, and future career plans. Applications must be submitted no later than September 30 to: NBFGA, Scholarship Committee, 1115 Regent Street, Suite 206, Fredericton, NB E3B 3Z2
www.farmcentre.com/english/courses/ss.asp

NS Department of Agriculture 4-H Scholarships
The Nova Scotia Department of Agriculture awards four $1,000 scholarships to students with NS 4-H backgrounds entering a bachelor’s program at a recognized university. At least one scholarship will be presented to students enrolling in their first year of an agricultural or veterinary science program. Applicants must submit an essay (2,500–4,000 words) on the topic: “The Importance of Nova Scotia’s Agriculture” and a transcript of their marks with their application by April 15.
www.gov.ns.ca/nsaf/4h/glkit/scholar.shtml

Nova Scotia 4-H Council Scholarship
The Nova Scotia 4-H Council awards a $1,000 scholarship to a student with an NS 4-H background who is entering post-secondary study. Applicants must submit a 1,500-word essay on “How I Have Benefited from My 4-H Career” with their application by April 15.
www.gov.ns.ca/nsaf/4h/glkit/nscoun.pdf
Scholarships, Bursaries and Academic Prizes

Nova Scotia Fruit Growers’ Association Scholarship
The Nova Scotia Fruit Growers’ Association awards a $500 bursary to a student entering or already in a post-secondary education program in the field of Tree Fruit Production or a related science program which might include the following: Biology, Chemistry, Food Science, Plant Science, Environmental Science, or Business or Agri-Business. Selection criteria include academic achievement, participation in school and community activities, and interest in the tree fruit industry. Applications, including a resumé, university/college acceptance letter or transcript, and an essay outlining career and life goals, must be received no later than May 31 by: Education Committee, NS Fruit Growers’ Association, Blair House, 32 Main Street, Kentville, NS B4N 1J5.

www.farmcentre.com/english/courses/ss.asp

Nova Scotian Institute of Science Mentorship Program
This mentorship program is aimed at university students (undergraduate and graduate) seeking guidance regarding their career opportunities in science. For more information or to arrange for a mentor, email sean.tibbetts@nrc-cnrc.gc.ca.
www.chebucto.ns.ca/Science/NSIS/index.html

Partnership for Access Awareness Nova Scotia (PAANS) Scholarships
Partnership for Access Awareness Nova Scotia (PAANS), with the assistance of the Collaborative Partnership Network (CPN), sponsors scholarships to students with disabilities who are planning to pursue further studies. To qualify, a student must have a permanent disability, be a permanent resident of NS, be entering or returning to a Canadian post-secondary institution which is recognized by the Association of Universities and Colleges of Canada, and not be involved in the selection process nor related to any PAANS scholarship selection committee member. Application deadline is April 28.
www.accessawareness.nsnet.org

Bruce Pettipas Memorial Agricultural Scholarship
The Maritime Beef Testing Society, Nappan, NS, offers a $500 bursary to a student from the Maritime Provinces entering the first year of a degree or technical program at a recognized Maritime university or college, or any agricultural institution requiring tuition. Preference will be given to those persons entering an Agricultural degree program and those persons majoring in an Animal Science program. Contact the NSAC Awards Office for application form and other details. Application deadline is May 1.

Phoenix Rotary Equipment Conservation Tillage Essay Contest
This contest is open to high school seniors and college students. Essays must be 700 to 1,000 words long and must pertain to some aspect of conservation tillage (e.g. no-till, zero-till, direct seeding, mulch-till, or ridge-till). Judging will be based on demonstrated knowledge of no-till practices as well as coherence, clarity, creativity, details, examples, grammar, vocabulary, and spelling. The application deadline is in November.
www.phoenixrotary.com

Prince Edward Island 4-H Council Scholarship
The PEI 4-H Council awards a $1,000 scholarship to a student with a PEI 4-H background who is entering post-secondary study. Selection criteria include knowledge of 4-H history, community involvement, goals and ambitions, an essay, and an interview. Further information is available from PEI high school guidance counsellors. The deadline is April 15.
www.pei4h.pe.ca

P.E.I. Mutual Education Trust Fund Centennial Scholarship
Twenty $450 entrance scholarships are available to PEI students who are attending any post-secondary institution. Selection criteria are based on academic performance and financial need. Students are encouraged to check with high school guidance counsellors. The deadline is May 31.
www.edu.pe.ca/agriculture/entrancescholar.html

Provincial Artisans (Fredericton) Inc. Bursaries
Several annual bursaries totalling $10,000 are being funded by Provincial Artisans (Fredericton) Inc. To qualify for these awards a student must have a disability, be entering or currently enrolled in a post-secondary institution, and be a resident of New Brunswick. The application deadline is May 31.
www.provart.net

Rotary Club of Truro Post-Secondary Entrance Educational Bursary
The Rotary Club of Truro offers two $1,500 post-secondary entrance educational bursaries to students wishing to pursue post-secondary studies at a college or university. The bursaries are tenable only at recognized post-secondary institutions and are awarded to students who reside in the geographic area served by the Rotary Club of Truro, Nova Scotia. These are non-renewable bursaries. Selection criteria include academic standing, community involvement, and need. Application deadline is May 1.
Royal Canadian Legion Bursaries/Scholarships
These awards are available to Grade 12 students entering first-year studies at university, community college or trade school. The following bursaries/scholarships are offered: Nova Scotia/Nunavut Command Bursary; Jack Moore Memorial Dominion Command Bursary; LAC Bursary; Wales Scholarship (for disabled students); Elsie Jean Lambert Scholarship; Halifax Poppy Fund Bursary. Applications can be found at NSAC Awards office or on the website. All forms must be submitted in the same envelope by July 15.
www.ns.legion

Sport Nova Scotia Excellence in Action Scholarships
The Excellence in Action Scholarship was created by Sport Nova Scotia and the Medical Society of Nova Scotia, in an effort to support and recognize the training and competition efforts of Nova Scotia athletes with a disability who are entering a degree or diploma program at a post-secondary institution. Application deadline is September 1.
www.sportnovascotia.ca

Judge Brian Stevenson Scholarship Fund
The fund will make scholarship awards from $300 to $500 available to legally blind Canadians with strong career aspirations who are pursuing post-secondary studies. The forms must be completed in full and returned before September 30. Application forms are available from CNIB Divisional Offices. For more information contact: Judge Brian Stevenson Scholarship Committee, W. Ross Macdonald School, 350 Brant Avenue, Brantford, ON N3T 3J9; phone (519) 759-0730.
www.gnb.ca/0048/english/schindex.htm

TD Canada Trust Scholarships
Twenty TD Canada Trust Scholarships are awarded honouring Canadian high school students for outstanding community leadership. The scholarships, worth $50,000, include full tuition to a Canadian university or college, an extra $3,500 a year for living expenses, and summer employment at TD Canada Trust for up to four years.
www.tdcanadatrust.com/scholarship/index.jsp

TD 4-H Agriculture Scholarships
TD Bank Financial Group and the Canadian 4-H Council sponsor up to ten $2,000 scholarships for 4-H members in their last year of high school who are planning to enroll in post-secondary education in a discipline related to agriculture or agri-business. Applications including a transcript of marks must be received at Canadian 4-H Council by October 3.
www.4-h-canada.ca/scholarships.html

Carol Thomson Memorial Fund
This award is to recognize a student with a learning disability seeking to use his or her potential to its maximum. One scholarship, valued at $1,000, is awarded annually. The student must be attending a Canadian post-secondary institution. The deadline to apply is May 15.
www.ldac-taac.ca/Scholarships/thomson_criteria-e.asp

Toyota Earth Day Scholarship Program
Earth Day Canada and Toyota Canada offer a new and unique scholarship program that celebrates and rewards environmentally-minded students. Students must be entering first-year, full-time post-secondary studies in any chosen discipline. The program offers ten awards of $5,000 or other educational expenses. The application deadline is January 31.
www.earthday.ca/EDy2k/Home/homefrm1.html

Young Canada Works
Each year Young Canada Works (YCW) creates approximately 2,650 jobs for students and young graduates. YCW supports four summer job programs for students and two internship programs for unemployed or underemployed college and university graduates. The application deadline is February 18. Youth and employers can find more information and can apply on the website.
www.pch.gc.ca/special/ycw-jct/html/welcome_e.htm

Youth Entrepreneur Scholarships
The Nova Scotia Office of Economic Development wants to recognize NS students who create their own summer jobs, and sometimes employ others too, by starting their own business. If you’re a student entrepreneur, or plan to be one this summer, you should consider YES. On top of making your own money with your business, you could earn a $1,000 YES Scholarship. For further details, check the website or e-mail yes@gov.ns.ca.
www.gov.ns.ca/econ/yes/default.asp

Wales Scholarship
The Wales Scholarship is a $6,000 annual scholarship fund provided by the Province of NS to commemorate the wedding of the Prince and Princess of Wales. The annual fund is administered by the Nova Scotia/Nunavut Command of the Royal Canadian Legion. To be considered, a student must be a disabled Nova Scotian, starting or continuing post-secondary education in NS, and ineligible to receive assistance under the Employability Assistance for People with Disabilities (EAPD) program. Application deadline for awards for the upcoming academic year is July 15.
www.nsabcu.ednet.ns.ca/scholarships.shtml
Robert Walker Memorial Scholarship
Established in 1975 as a memorial to Robert Walker, who lost his life in a farm accident, scholarships are awarded to NB students entering a first year of post-secondary study. Applicants must have been active 4-H members in the Southern District in New Brunswick with a farm background. Application information is available from NB Department of Agriculture, Fisheries and Aquaculture, 701 Main St., Box 5305, Sussex, NB E4E 7H7; phone (506) 432-2150; fax (506) 432-2044. www.nb4h.com/lewelcome/escholarship/escholarship.htm

Wanderer’s Amateur Athletic Scholarship
This award is open to students who have had an injury leading to paraplegia or quadriplegia, who have been accepted at a post-secondary institution in the Atlantic Provinces. Applicants must be Canadian citizens or landed immigrants residing in Atlantic Canada prior to applying. The deadline is July 31. For information e-mail Halifax@canparaplegic.org. www.nsnet.org/cpans/schol.html

Western District (NB) Grain Growers Scholarship
This $300 scholarship is awarded to a student currently registered in the 4-H Program in the Western District of New Brunswick, entering post-secondary study in the fall. Selection criteria include financial need, academic record, and 4-H involvement. Application information is available from the NB Provincial 4-H office.

Garfield Weston Merit Scholarship for Colleges
The Garfield Weston Merit Scholarship for Colleges program provides up to 25 national awards which comprise of a tuition waiver for NSAC and an $8,000 stipend both renewable for two years of study and access to summer program funding. There are also 18 regional entrance awards valued at $4,000 and up to 15 provincial entrance awards valued at $2,500 for use at any accredited community college in Canada. Applicants must be either Canadian citizens or permanent residents and be entering a recognized diploma program leading to a first diploma or certificate to be eligible at an approved Canadian post-secondary educational institution. At NSAC, students entering two-year Technical programs (Diploma in Enterprise Management, Environmental Horticulture Technology, Plant Science Technology, and Veterinary Technology) are eligible. The application deadline is April 3. www.gwmsc.ca

F.J.L. Woodcock/Sir Arthur Pearson Association of War-blinded Scholarship Fund
Students who have not more than 20/70 vision after corrections and who are continuing either their vocational or academic education at the post-secondary level are eligible to apply for a scholarship. Students should have a high degree of motivation, a reasonable level of achievement, and a need for assistance. Completed applications must be received at the SAPA National Office by April 29. www.cnib.ca/eng/awards/sapa/

Zonta Club of Truro Bursary
The Zonta Club of Truro, NS area has established a $1,000 bursary open to women of mature status who are attending or plan to attend a program of post-secondary education. A woman of mature status is defined as one who has been out of secondary school for five or more years. The bursary’s purpose is to provide incentive for further education to mature women who need financial assistance. Program of further education needs to be at least two semester duration. Selection criteria include having qualifications for admission to the chosen program, having a defined education goal, having made arrangements for looking after family/dependent responsibility, and being highly motivated to change lifestyle (volunteered in chosen field). See the NSAC Awards Office for further application details. The deadline is May 31.

Zonta Club of Truro High School Bursary
The Zonta Club of Truro, NS, area offers two $1,000 bursaries to women graduating from Grade 12 in the five high schools of the former Colchester–East Hants District School Board. Selection criteria include reason for selecting chosen program of study and financial need. See the NSAC Awards Office for application details. The deadline is May 31.
VII. OTHER CONTINUING EXTERNAL SCHOLARSHIPS AND BURSARIES
(Although not exclusive to NSAC students, the following scholarships/awards are available to students studying at NSAC.)

Agriculture and Agri-Food Canada Scholarship Program
The objective of this program is to provide incentives to encourage more students to pursue graduate degrees in disciplines related to agriculture and agri-food so as to promote the development of sufficient expertise in the agri-food sector. Graduate studies may be in agri-food marketing and trade; agri-biotechnology; environmentally sustainable agricultural production systems; food technology; industrial uses of agricultural commodities; and information technology related to agriculture and agri-food. Scholarship amounts are $15,000 at the master’s level with a possibility to renew for one additional year, and $17,000 at the Ph.D. level. Nominations must be received by July 2.

Animal Nutrition Association of Canada Graduate Scholarship
$1,000 ANAC Graduate Scholarships are awarded to Canadian university graduate students (including landed immigrants) enrolled in Animal Science or a related field of study, with a specific interest (research project/course selection) in animal nutrition. Applications must include a completed ANAC scholarship application form; a resumé; a reference from the applicant’s university department advisor and/or department head; a one-page report detailing how new developments in the field of animal nutrition might challenge, benefit, or change the focus of the feed industry either regionally (East/West) or across Canada; and a list of nutrition-related courses completed (with final grade) and currently enrolled in (this can be in the form of an official transcript, or a list signed by the applicant’s academic advisor). See the NSAC Awards Office for further details. The deadline for the Eastern competition (for applicants from universities east of the Ontario/Manitoba border) is January 31.

Aquaculture Association of Canada Scholarship
Six $1,000 scholarships will be awarded annually to AAC student members enrolled in a post-secondary institution in an aquaculture-related program. Selection is based on scholastic ability (transcript of marks is required), interest and involvement in aquaculture (e.g. summer employment); publication record, if any; and a 250-word essay on where the applicant sees him/herself contributing to sustainable aquaculture development in the future. See the NSAC Awards Office for further details. The application deadline is January 31.

Association of Nova Scotia Housing Authorities
Several $1,000 renewable awards are awarded to NS residents who live in housing units administered by a Nova Scotia Housing Authority, and need financial assistance to enable them to continue their education at a post-secondary level (e.g. university, community college, trade school, or technical school). Awards are tenable at any legally recognized educational institution chosen by the applicant and approved by ANSHA. Application deadline is May 1 each year. Information and application forms are available from: ANSHA Student Awards Committee, PO Box 753, Amherst, NS B3H 4B9.

Dr. Kim Beck Memorial Scholarship
The Turkey Farmers of New Brunswick Marketing Board awards a $500 scholarship in memory of Dr. Kim Beck. The scholarship will be awarded annually to an NB resident who is enrolled in a post-secondary agricultural program. Selection will be based on academic achievement, financial need, involvement in agriculture, and interest in the poultry or food industry. Applications are available at the NSAC Awards Office, or e-mail nbchickens@brunnet.net. Applications must be received by October 31.

Dalton Camp Award
The Dalton Camp Award offers a $5,000 prize to the winner of an essay contest on the theme of the media’s contribution to democracy in Canada. The application deadline is March 31.

Canadian Association of Diplomas in Agriculture Programs (CADAP) Bursaries
The Canadian Association of Diplomas in Agriculture Programs (CADAP) is an organization of post-secondary educational institutions offering diploma programs in agriculture. Its membership consists of institutions from across the country with a variety of programs emphasizing the agriculture of their region. To enable students from member institutions to benefit from this diversity in programs, the geographical variation, and the differing cultural backgrounds, CADAP will be offering, annually, $1,000 bursaries for two students from different CADAP institutions to participate in an exchange between member institutions. Duration of the exchanges will be one or two semesters or practical experience work sessions of at least 12 weeks. Students wishing to participate should make their interests known to the NSAC Vice-President Academic by December 15.

www.anac-anac.ca/index.html
www.aquacultureassociation.ca
www.anac-anac.ca/index.html
www.friends.ca/DCA
Canadian Cattlemen’s Association, the Calgary Stampede, and the International Stockmen’s Education Foundation Award to Participate in the International Livestock Congress, Calgary, AB
As part of the congress, the three host groups will support deserving students from across North America and the world to attend the meeting, meet other students working in the field, and network with industry leaders, many of whom they will be dealing with in the future. The students must be graduate students or at least fourth-year undergraduate students, with research interest directly relating to cattle or beef and the desire to pursue a career that relates directly to agriculture. Participating students are also asked to submit a report after the congress on how attending benefited their research interests. Nomination must come from NSAC. Please see NSAC Awards Office for further information. The application deadline is May 1.

Canadian Co-operative Association Scholarships
Graduate and undergraduate students are invited to apply for scholarships supporting research in co-operatives and co-operation which will contribute to the co-operative movement in Canada or abroad. Application deadlines are March 1 and June 30.
www.coopscanada.coop/Links/awards.html

Canadian Federation of University Women (Truro Branch) Scholarship
Scholarships are awarded to mature women over the age of 25 attending a degree-granting university or college on a full-time basis. Applicants must be Canadian citizens and residents of the town of Truro or the County of Colchester in Nova Scotia. The applicants must have been out of school for at least five years before embarking on their present program of study. A candidate is eligible to apply during any year of a degree-granting program. If still eligible, an applicant may re-apply for this scholarship if the application during the previous year was unsuccessful. The application deadline is May 15.

Canadian Forces Personnel Assistance Fund
Assistance is in place to assist serving and former members and their dependents with costs of post-secondary education. To obtain the loan in time for the semester beginning in September, submissions should arrive at CFPAF by June 30. Otherwise, applications will be accepted throughout the year until funds are exhausted.
www.sisip.ca/English/CfpaF_e

Canadian Golf Superintendents Association Scholarships
The Canadian Golf Superintendents Association supports CGSA member students who are attending educational programs as a means of enhancing their knowledge and skills for the turf grass profession. The Scholars Fund is available to those currently enrolled in at least the second semester of a recognized turf grass program of two years’ duration or longer. Selection criteria include academic performance, financial need, and the content of the application which demonstrates the applicant’s interest in the field of turf grass as a career. Applications are due by November 30 at: Canadian Golf Superintendents Association, 5580 Explorer Dr., Suite 509, Mississauga, ON L4W 4Y1.
www.golfsupers.com

Canadian Hard of Hearing Association Scholarship
This scholarship program offers financial assistance and recognition to hard of hearing and deafened students registered in a full-time program at a recognized Canadian college or university, in any area of study, with the ultimate goal of obtaining a diploma or degree. Two $1,000 awards are available to first-year or returning students. The application deadline is January 31.
www.chha.ca/chha/scholarships-index.php

Canadian Meat Science Association Scholarships
The Canadian Meat Science Association (CMSA) awards two $2,000 scholarships per year to graduate students studying meat science in Canada. The purpose of the two scholarships is to promote quality education and the development of meat science research in Canada. The awards are presented in February. The application deadline is October 1.
cmsa-ascv.ca

Canadian Western Agribition Scholarships
Several $1,000 scholarships are awarded to students who have participated in Canadian Western Agribition as exhibitors. Applicants must have completed at least one year of post-secondary study to be eligible. The application deadline is July 1.
www.uregina.ca/awards/scholarships/
Entomological Society of Canada Postgraduate Awards
The Society offers two $2,000 postgraduate awards to students in study and research leading to a postgraduate degree in entomology (one to an M.Sc. student and one to a Ph.D student). Awards will be made on the basis of high scholastic achievement and scientific merit. Applicants must be enrolled as full-time graduate students at Canadian universities and be pursuing scientific studies on insects or other related terrestrial arthropods.

Florence M. Christie Memorial Bursary for Women
The Greater Saint John Community Foundation awards annual $1,500 scholarships to women of Saint John, NB. Applicants must be mature female students (i.e., out of high school at least one year), with demonstrated financial need, entering or returning to full- or part-time studies at a post-secondary institution in September. The bursary must be applied to tuition. High academic standing is not a requirement. The application must include the completed application form, a statement of income and expenses, three letters of reference, a transcript of marks, volunteer experience/school participation, and future goals. The application deadline is March 28.

Dairy Farmers of New Brunswick Scholarship
Dairy Farmers of New Brunswick offer a $750 scholarship to an NB resident who is enrolled in any year of an approved technician or technology diploma or certificate program relating to agriculture. The application deadline is June 15. Further information and application form are available from nbmilk@nbmilk.com.

Dairy Farmers of New Brunswick Memorial Scholarship
Dairy Farmers of New Brunswick offer a $750 scholarship to an NB resident who is enrolled in a recognized post-secondary agricultural program and accepted into first year of an approved agricultural program. The application deadline is June 15. Further information and application form are available from nbmilk@nbmilk.com.

Datatel Scholars Foundation Scholarship
Datatel provides scholarship support for students currently attending an eligible Datatel client college or university. NSAC is a client of Datatel. The application packages will include personal statement essays which should summarize educational goals and objectives, where the applicants have been as individuals, and where they hope their education will take them. They should also indicate the difference a Datatel scholarship would make in their lives and to those around them. Scholarship amounts range from $1,000 to $2,400, based on the undergraduate tuition at the college or university the applicant attends. The application deadline is January 31.

Robert Felix Memorial Scholarship
The Tree Research & Education Endowment Fund (the TREE Fund) is sponsoring four $3,000 scholarships through the Robert Felix Memorial Scholarship Program. This scholarship program has been developed to promote and encourage academic excellence and the pursuit of higher education in Canada. The program is targeted to Canadian university undergraduate programs and college diploma programs in any field of study. Candidates must have completed the first year of a first university degree or college technical diploma program, be enrolled on a full-time basis, have attained high academic standing, and be in need of financial assistance.

NSAC is able to nominate two students for these nationally awarded scholarships. There are 36 $5,000 scholarships at the university level and 24 $3,500 scholarships at the college level. Both are renewable for three years or until completion of a first degree/diploma. Selection is based on financial need, strong scholarly competence, leadership and extracurricular involvement, and the quality of reference letters. NSAC has had students selected for these scholarships in 2005 and 2006. The deadline is June 15.

Fairfax Financial Holdings Ltd. Scholarship Program
This scholarship program has been developed to promote and encourage academic excellence and the pursuit of higher education in Canada. The program is targeted to Canadian university undergraduate programs and college diploma programs in any field of study. Candidates must have completed the first year of a first university degree or college technical diploma program, be enrolled on a full-time basis, have attained high academic standing, and be in need of financial assistance.

NSAC is able to nominate two students for these nationally awarded scholarships. There are 36 $5,000 scholarships at the university level and 24 $3,500 scholarships at the college level. Both are renewable for three years or until completion of a first degree/diploma. Selection is based on financial need, strong scholarly competence, leadership and extracurricular involvement, and the quality of reference letters. NSAC has had students selected for these scholarships in 2005 and 2006. The deadline is June 15.

Farm Credit Corporation 4-H Scholarship
Farm Credit Corporation awards ten $1,000 scholarships (one per province) to students across Canada in any year of any program of post-secondary study who had been registered 4-H members in the last five years. Applicants must submit a completed application which includes general information, career plans, association involvement, and extracurricular involvement. In addition to a completed application form, applicants must submit a detailed plan for a community project that will either improve safety or reduce hunger in their community. The project plan should be a maximum of three typed pages in length. Project plans will be judged on completeness of plan, creativity, originality, spelling, and grammar. Application forms are due at the Canadian 4-H Council by April 1.

Fairfax Financial Holdings Ltd. Scholarship Program
This scholarship program has been developed to promote and encourage academic excellence and the pursuit of higher education in Canada. The program is targeted to Canadian university undergraduate programs and college diploma programs in any field of study. Candidates must have completed the first year of a first university degree or college technical diploma program, be enrolled on a full-time basis, have attained high academic standing, and be in need of financial assistance.

NSAC is able to nominate two students for these nationally awarded scholarships. There are 36 $5,000 scholarships at the university level and 24 $3,500 scholarships at the college level. Both are renewable for three years or until completion of a first degree/diploma. Selection is based on financial need, strong scholarly competence, leadership and extracurricular involvement, and the quality of reference letters. NSAC has had students selected for these scholarships in 2005 and 2006. The deadline is June 15.

www.aucc.ca/scholarships/open/fairfax_e.html
Terry Fox Humanitarian Award Program
The program provides scholarships to students entering or attending post-secondary educational institutions within Canada. The successful applicants are recognized for dedication to community service, humanitarianism, perseverance and courage in the face of obstacles, and the pursuit of excellence in fitness and academics. The scholarship is renewable, subject to satisfactory progress. The value of each award is $4,000 annually, for a maximum of four years or until first degree is obtained. The deadline for applications is February 1.
www.terryfox.org

Fredericton Scottish Rite Award
The award of $500 is given to students who are graduating from School Districts 10, 12, 13, 17, and 18 who have intellectual disabilities. The application deadline is April 15. For more information contact Fredericton Scottish Rite Award, c/o Fredericton Association for Community Living, 1079 York Street, Fredericton, NB E3B 3S4.
www.gnb.ca/0048/english/schindex.htm

Keith Gilmore Foundation Scholarships
Four $1,500 scholarships are offered to individuals in undergraduate or postgraduate degree programs in agriculture, journalism, or communications at recognized universities, and three $750 scholarships are offered to individuals enrolled in recognized diploma programs in agriculture, journalism, or communications. The successful applicants will have already completed a minimum of one year in their programs. Applications are available at the NSAC Awards Office and should be submitted no later than July 1 to The Keith Gilmore Foundation, 5160 Skyline Way N.E., Calgary, Alberta T2E 6V1.
www.keithgilmorefoundation.com

John Gyles Education Awards
The John Gyles Education Awards are available each year to male and female students for all areas of post-secondary study in both Canada and the United States. Full Canadian or American citizenship is a requirement. Criteria other than strictly academic ability and financial need are considered in the selection process; however, a minimum GPA of 2.7 is required. Selected students will receive up to $3,000. Applications must be mailed by June 1. To receive an application form, send only a stamped self-addressed envelope to: John Gyles Education Awards, Attention: The Secretary, 259-103 Brunswick Street, Box 4808, Fredericton, NB E3B 5G4.

Hants County Exhibition Scholarship
This $1,000 scholarship is sponsored by the Windsor Agricultural Society. Applicants must be residents of Hants County, NS, entering any year of any program at a recognized agricultural or veterinary college and have aspirations of working in the agricultural industry. Selection criteria include academic performance, extracurricular activities, part-time employment, and career plans. Application forms with copies of transcripts must be received by August 26 at: Windsor Agricultural Society, PO Box 368, Windsor, NS B0N 2T0.

Anna Helvig Schousboe Scholarship
This $300 scholarship is awarded to a resident from Kings County, NB, working towards a degree or diploma in Agriculture, Veterinary Medicine, or Home Economics at a post-secondary institution. Application information is available at the NSAC Awards Office. The application deadline is September 20.

Holstein Association of Canada Scholarships
Holstein Canada offers three $1,000 university (degree) scholarships and three $500 college/university (diploma) scholarships to post-secondary students in Canada. Applicants must be regular or junior members of Holstein Canada, or children of members; must have completed at least one year of university/college; must submit official, original transcripts of the two most recent semesters; and must be returning to school within the calendar year. Application forms are available on the website or from the NSAC Awards Office. The application deadline is September 30.
www.holstein.ca/english/Youth/edaward.asp

Imperial Tobacco Scholarship Fund for Disabled Students
This program is used to help Canadian disabled students attend university. The award is $5,000 for each student who is chosen (a minimum of 10 awards are offered each year). Persons applying for the award must be Canadian citizens or have lived in Canada for at least two years as legal permanent citizens. All applicants must be entering or currently enrolled in a first undergraduate program at a Canadian post-secondary institution. Recipients may re-apply. Deadline to apply is June 1.
www.ldrc.ca/scholarships.php
Ivomec 4-H Youth Scholarship
The $1,000 Ivomec 4-H scholarships are awarded to students who have been 4-H members for at least two years (registered within the last five years) in any year of post-secondary study. As part of the selection process, applicants will be judged on their degree of community and volunteer involvement. Additionally, all applicants are required to submit a presentation in any medium (essay of 500–750 words, video, speech on audio-cassette, poster, etc.) based on the following statement: What is the future of branded consumer meat products in Canadian livestock production? How will this development impact the way producers raise and market livestock? Applications, accompanied by essay, video or audiocassette or poster, must be received by the Canadian 4-H Council office no later than May 15.

Arlen Kerr Memorial Scholarship
The Canada Mink Breeders Association awards a $2,000 renewable scholarship to Canadian graduate students engaged in mink research attending any Canadian university or veterinary college. Applicants should submit their education profiles and research proposals by January 15 to: Karlene Hart, Executive Secretary, Canada Mink Breeders Association, 65 Skyway Ave., Suite B, Rexdale, ON M9W 6C7.

Kinsman and Kinettes Bursaries
The Hal Rogers Endowment Fund provides $1,600 bursaries to full-time Canadian students demonstrating financial need, extracurricular involvement, high ideals, and qualities of citizenship who have not already received a bursary from the Hal Rogers Endowment Fund. The deadline is February 1.
www.bursary.ca

The Leonard Foundation
The Leonard Foundation offers financial assistance to university students who are experiencing specific financial difficulties. Full-time students who are enrolled in an undergraduate or first professional degree program in a recognized Canadian college or university (AUC) are eligible. All applicants will be considered but preference will be given to sons and daughters of clergy, teachers, military personnel, graduates of Royal Military College, members of the Engineering Institute of Canada, and members of the Mining and Metallurgical Institute of Canada. The amount of assistance may vary depending on the applicant’s financial situation, but on average will be about $1250. Applications must be submitted and an interview arranged with the Nominator nearest you (listed on insert in application) by March 15. Applications for the Leonard Foundation scholarships are available from: The Provincial Nominator, The Leonard Foundation, 1774 Pryor St., Halifax, NS B3H 4G8.
www.leonardfnd.org

Terry MacDonald Memorial Scholarship
This scholarship is awarded to a Southern District NB 4-H member from a farm family who is entering or enrolled in post-secondary study. An interview is part of the application process. The application deadline is July 31. Applications are available from: Ron Menzies, RR #4, Norton, NB E0G 2N0.
www.nb4h.com/ewelcome/escholarship/escholarship.htm

C.C. MacDougall Scholarship
This $250 scholarship is awarded to a student pursuing a degree or diploma in Agriculture, Home Economics or Veterinary Medicine. To be eligible, a student must have been a 4-H member from Kings County, NB, or have parents who raise or breed Guernseys anywhere in NB. The application form must be submitted to the NSAC Awards Office no later than September 20.

Maritimes & Northeast Pipeline Liaison Scholarships & Academic Achievement Awards
The Assembly of Nova Scotia Mi’kmaq Chiefs and Maritimes & Northeast Pipeline (MNPP) are committed to the development of future generations of Mi’kmaq students through academic and personal development. They have made available $1,000 scholarships for full-time/part-time students enrolled in university, college, vocational or technical institute, and $500 Academic Achievement Awards for students graduating from high school, Adult High School, or academic upgrading. To be eligible, students must be registered with a Nova Scotia Mi’kmaq band, enrolled either full-time or part-time and expect to return the following year to their field of study, and graduating from high school or a university program. The application deadline is June 16 for scholarships and July 21 for academic achievement awards.
www.mns.firstnet.ca or www.mnp.com
Scholarships, Bursaries and Academic Prizes

VI. OTHER CONTINUING EXTERNAL SCHOLARSHIPS AND BURSARIES

Maritime Dairy Industry Scholarship
Two individual scholarships of $2,000 will be awarded. Students eligible to apply for this scholarship include any student currently attending a post-secondary education institution within Canada who has completed at least three years of study in a program that has application to the dairy industry, and is a resident of NS, NB, or PEI. Applicants must show professional and academic promise and a commitment and interest in the dairy industry. Applicants must submit a completed application form, a one-page letter stating their commitment and interest in the dairy industry, an official transcript of marks for completed years in post-secondary education, and three reference letters (at least one from a professor). Selection will be based on application requirements, academic standing, and potential contribution and commitment to the dairy industry. Applications must be submitted by January 31 to: The Maritime Dairy Industry Scholarship Committee, c/o Milk Maritime Inc., 191 Halifax Street, Suite 3, Moncton, NB E1E 4E1. www.dairygoodness.ca

Mattinson Endowment Fund Scholarship for Disabled Students
This program is to encourage Canadian students with a disability to obtain a first university degree. The award is $2,500; the number awarded each year will be based on the funding available for that year. Applicants must be Canadian citizens or have lived in Canada for two years as legal permanent citizens. All applicants must be entering or currently enrolled in a first undergraduate program at a Canadian post-secondary institution. Recipients may re-apply. Deadline to apply is June 1. www.mattinson_e.html

Douglas McRorie Memorial Scholarships
The Royal Bank Financial Group Foundation sponsors the Agricultural Institute of Canada Foundation (AICF) Douglas McRorie Memorial Scholarship, in recognition of the significant contribution Douglas McRorie, P.Ag, made to agricultural finance through his career with the Royal Bank and his professional involvement with the Agricultural Institute of Canada and AICF. The six annual $1,500 scholarships provide financial support to master's program students specializing in agricultural business, finance, or trade. The scholarship is tenable for full-time study in the 2006/2007 academic year at any Canadian university with an agricultural program accredited by the Agricultural Institute of Canada. Selection criteria (not necessarily in order of importance) include academic achievement, areas of study, leadership, and career interests. The application deadline is October 17. Additional information is available on the AICF website or by contacting: Education Committee, Agricultural Institute of Canada Foundation, 141 Laurier Ave. West, Suite 1112, Ottawa, ON K1P 5J3. www.aic.ca/aicfinitiatives.html

John Miller Memorial Bursary
The $500 John Miller Memorial Bursary is awarded to an NS student in any year of any program at any agricultural university/college in Canada whose course and project work and career plans reflect an interest in the hog industry or whose application shows interest, understanding, and appreciation for Nova Scotia's hog industry. The bursary is in memory of John Miller, who served as Secretary/Manager of Pork Nova Scotia from 1983 to 1997. Applications must be submitted to the NSAC Awards Office no later than September 29.

Mine Action Student Essay Competition
Canada is committed to ensuring that the Ottawa Convention banning anti-personnel mines is universally accepted and effectively implemented. You can help offer your ideas through a student essay competition sponsored by the Canadian Department of Foreign Affairs and International Trade. The competition is open in a wide range of disciplines including social sciences, health sciences, humanities, and natural sciences. No prior knowledge of the land mines issue is required. Successful applicants will receive a $1,000 award and an opportunity for publication of their papers. Further details and application form are available on the website. www.mines.gc.ca

National Association of United Church Men’s Clubs
The National Association of United Church Men’s Clubs provides a $1,000 scholarship to a student of agriculture, fisheries, and/or food sciences who is interested in serving on the international scene. The Harry Colnett Scholarship is designed to encourage students to prepare for service in international agriculture and education, particularly in countries. NSAC students who have taken the Tropical Agriculture course should make good candidates for this award. The application deadline is February 22.

New Brunswick Institute of Agrologists Scholarship
The New Brunswick Institute of Agrologists awards a $1,000 scholarship to an NB student entering the third year of a degree program in Agriculture at a recognized Canadian institution. Students should indicate their enrollment in one of the following Agrology disciplines: Agricultural Economics and Farm Management; Plant, Animal, Soil and Environmental Sciences; Pest Management; Agrometeorology. Selection criteria include academic performance, participation in extracurricular activities, and financial need. Applications must be submitted no later than October 1 to: Registrar, New Brunswick Institute of Agrologists, Box 3479, Station B, Fredericton, NB E3A 5H2. www.nbagrologists.nb.ca/Awards.htm
New Brunswick Milk Marketing Board Scholarship
The NB Milk Marketing Board awards a $750 scholarship to an NB resident who is enrolled in a technician or technology diploma or certification program related to agriculture and the dairy industry at a recognized agricultural or community college. Selection is based on financial need, academic achievement, participation in community activities, and future plans. The application deadline is July 3.
www.nb4h.com/welcome/escholarship/escholarship.htm

Nova Scotia Fruit Growers’ Association Scholarship
The Nova Scotia Fruit Growers’ Association awards a $500 bursary to a student entering or already in a post-secondary education program in the field of Tree Fruit Production, or a related science program, which might include Biology, Chemistry, Food Science, Plant Science, Environmental Science or Business or Agri-Business. Selection criteria include academic achievement, participation in school and community activities and interest in the tree fruit industry.
Applications, including a résumé, university/college acceptance letter or transcript, and an essay outlining career and life goals, must be received no later than May 31 by: Education Committee, Nova Scotia Fruit Growers’ Association, Blair House, 32 Main St., Kentville, NS B4N 1J5.
www.farmcentre.com/english/courses/ss.asp

Nova Scotia Fur Institute Scholarship
The Nova Scotia Fur Institute awards a $2,500 scholarship to a graduate in Animal Science from NSAC who is pursuing graduate studies in fur production at an approved university. Selection will be based primarily on academic performance. Applications must be submitted no later than March 31 to: Chairman, Nova Scotia Fur Institute, Nova Scotia Agricultural College, Box 550, Truro, NS B2N 5E3.

Nova Scotia Salmon Association Scholarships
The Nova Scotia Salmon Association annually awards $500 scholarships to Nova Scotia residents who enhance or who propose to enhance by any endeavour the well-being of the Atlantic Salmon. For example an applicant may:
1. have undertaken or be in the process of undertaking scholarly pursuit related to the enhancement or conservation of the Atlantic Salmon;
2. propose to publish or have published an article or scientific paper in any field which furthers enhancement of the Atlantic Salmon;
3. promote the cause of the Atlantic Salmon by outstanding leadership or participation;
4. be engaged in endeavours of an Association which results in the conservation of the Atlantic Salmon.
The deadline for applications is March 12. Applications should be submitted to the Chair of the Scholarship Committee, NSSA, Box 470, Port Williams, NS B0P 1T0.
www.novascotiasalmon.ns.ca

Nova Scotian Institute of Science Mentorship Program
This mentorship program is aimed at university students (undergraduate and graduate) seeking guidance regarding their career opportunities in science. For more information or to arrange for a mentor, email sean.tibbetts@nrc-cnrc.gc.ca.
www.chebucto.ns.ca/Science/NSIS/index.html

Nova Scotian Institute of Science Student Science Awards
This competition is open to any graduate or undergraduate student currently enrolled in a degree program at a recognized educational institution in NS. A total of $1,500 in prizes is available, as well as the opportunity to have work published in a peer-reviewed scientific journal. Intent-to-submit deadline is January 15; submission of article February 25. Further details are available on the website or from the NSAC Awards Office.
www.chebucto.ns.ca/Science/NSIS/index.html

Partnership for Access Awareness Nova Scotia (PAANS) Scholarships
Partnership for Access Awareness Nova Scotia (PAANS), with the assistance of the Collaborative Partnership Network (CPN), sponsors scholarships to students with disabilities who are planning to pursue further studies. To qualify, a student must have a permanent disability, be a permanent resident of NS, be entering or returning to a Canadian post-secondary institution which is recognized by the Association of Universities and Colleges of Canada, and not be involved in the selection process nor related to any PAANS scholarship selection committee member. The application deadline is April 28.
www.accessawareness.nsnet.org

Poultry Industry Council Grad-Ship Program
The Poultry Industry Council Grad-Ship Program encourages graduates to undertake research and training at the postgraduate level at universities and research institutions in Canada. The area of study must embrace some aspect of poultry science. Grad-ship amounts are $15,000 to $19,000 (depending on field of study and location). Preference is given to students targeting applied research and entering their first year of an M.Sc. or Ph.D. program. The application deadline is January 31.
www.poultryindustrycouncil.ca
Prince Edward Island Potato Industry Scholarship
The PEI Potato Board offers a $500 scholarship to PEI students studying at the graduate or undergraduate level of an agriculture degree program at any recognized Canadian agricultural institution or to students in a postgraduate degree program at a recognized Canadian university carrying out research projects related to potato production and utilization (including all disciplines e.g. biotechnology, pathology, entomology, etc). Undergraduate students must demonstrate through course work, summer employment and/or home farm background an interest in working in the potato industry. Selection criteria for potential undergraduate scholarships include academic performance, extracurricular activities and employment history. Graduate students will be considered on the basis of academic performance and relevance of the project to the improvement of the Prince Edward Island potato industry. Applications must be submitted to the NSAC Awards Office no later than September 29.

Provincial Artisans (Fredericton) Inc. Bursaries
Several annual bursaries totalling $10,000 are being funded by Provincial Artisans (Fredericton) Inc. To qualify for these awards a student must have a disability, be entering or currently enrolled in a post-secondary institution, and be an NB resident. The deadline to apply is May 31.
www.provart.net

Alvin Rowledge Bursary Award
The Atlantic Golf Superintendents Association (AGSA) has established the $1,000 Alvin Rowledge Bursary Award, which is available to residents of Atlantic Canada who are members in good standing of the AGSA. Its intent is both to encourage students to pursue golf course management as a career option and to support students in enhancing their knowledge and skills for the turf industry. Applicants must have a minimum of two summers/seasons work experience in golf course maintenance and be presently enrolled in a minimum of a two-year program, preferably in at least the second semester of a recognized turf grass program. Selection will be based on academic performance, financial need, and letters of reference. Applications must be submitted to the NSAC Awards Office no later than September 16.

George W. Slipp Memorial Scholarship
The Chicken Farmers of NB Marketing Board awards a $1,000 scholarship in memory of Mr. George W. Slipp. The scholarship will be awarded annually to an NB resident who is enrolled in a post-secondary agricultural program. Selection is based on academic achievement, financial need, involvement in agriculture, and interest in the poultry or food industry. The application deadline is October 31. Applications are available at the NSAC Awards Office, or e-mail nbchicken@rogers.com.

Southern District 4-H Council Scholarship
The Southern District 4-H Club Council in New Brunswick awards a $150 scholarship to a Southern District NB 4-H member attending a post-secondary institution. Application details are available from the NB Provincial 4-H Office.
www.nb4h.com/ewelcome/escholarship/escholarship.htm

Norah Stephen Oncology Scholar Awards
Ten $5,000 awards will be granted each spring; five of these awards will be dedicated to cancer-related research projects including basic science, cancer informatics, epidemiology, outcomes, and socio-behavioural research; the remaining five awards will be dedicated to clinical training and experience projects. Each award covers stipend support for the student for up to 14 weeks. Candidates and their supervisors are invited to complete an application outlining the project or practical experience directly related to the study of cancer. Application forms are available on the website. Applications, including academic transcripts, student’s résumé, and supervisor’s résumé, are to be submitted to Cancer Care Nova Scotia by February 2.
www.cancercare.ns.ca

Wales Scholarship
The Wales Scholarship is a $6,000 annual scholarship fund provided by the Province of NS to commemorate the wedding of the Prince and Princess of Wales. The annual fund is administered by the Nova Scotia/Nunavut Command of the Royal Canadian Legion. To be considered you must be a disabled Nova Scotian, starting or continuing post-secondary education in NS, and ineligible to receive assistance under the Employability Assistance for People with Disabilities (EAPD) program. For application details see the website or the NSAC Awards Office. The application deadline is July 15 for awards for the upcoming academic year.
www.nsabcu.ednet.ns.ca/scholarships.shtml
Garfield Weston Merit Scholarship for Colleges Upper Year Awards

The W. Garfield Weston Foundation through the Garfield Weston Merit Scholarships for Colleges has established an Upper-year Awards program to recognize and reward the outstanding college student who is passionate about his or her field of study; curious and willing to try new things; caring about his or her family, neighbourhood and community; and truly interested in becoming involved and making a difference in society. GWMSC will provide the following scholarships for 2007/2008:

- 25 National Awards consisting of a tuition waiver, a stipend worth $8,000, access to summer program funding, and a $4,000 retroactive award to help defray accumulated education costs;
- up to 18 Regional Awards of $4,000;
- up to 15 Provincial Awards of $2,500.

To be eligible, a student must be a Canadian citizen or permanent resident, be enrolled full time, have at least one full academic year left in the academic program, be pursuing his or her remaining studies on a full-time basis, have a minimum academic average of 73%, and be nominated by the Scholarship Committee at NSAC. NSAC can nominate up to three students for national consideration. Students who are currently GWMSC National Scholars are not eligible to apply. NSAC students presently enrolled in full-time studies in the two- and three-year Technical programs (Animal Science, Agricultural Business, Environmental Horticulture, Plant Science and Animal Health) are eligible. Further information and an application form are available on the website. The application deadline is March 15.

www.gwmsc.ca

George B. Whalen Memorial Scholarship

The New Brunswick Milk Marketing Board awards a $750 scholarship in memory of George B. Whalen, who dedicated a great part of his life to the promotion of a more viable dairy industry in New Brunswick. Applicants must be NB residents enrolled in the second, third, or fourth year of study in a university degree program relating to agriculture or the dairy industry. Areas of study may include, but are not necessarily limited to, plant and animal science, agricultural engineering, veterinary medicine, agricultural economics, etc. Selection will be based on financial need, academic performance, and involvement in community and future plans. Applications including an essay (300–500 words), two letters of recommendation, and a transcript of marks must be submitted no later than June 15 to: Scholarship Committee, NB Milk Marketing Board, Box 490, Sussex, NB E0E 1P0.

Zonta Club of Truro Bursary

The Zonta Club of the Truro, NS, area has established a $1,000 bursary open to women of mature status who are attending or plan to attend a program of post-secondary education. A woman of mature status is defined as one who has been out of secondary school for five or more years. The bursary’s purpose is to provide incentive for further education to mature women who need financial assistance. The program of further education must be of at least two semesters’ duration. Selection criteria include having qualifications for admission to the chosen program, having a defined education goal, having made arrangements for looking after family/dependent responsibility, and being highly motivated to change lifestyle (volunteered in chosen field). See the NSAC Awards Office for further application details. The deadline is May 31.
The following is a list of other resources that may be useful in finding information for awards:

- **Nova Scotia 4H Scholarships**
 www.gov.ns.ca/nsaf/4h/glkit/scholar.shtml

- **New Brunswick 4H Scholarships**
 www.nb4h.com/ewelcome/ewelcome.htm

- **Prince Edward Island 4H Scholarships**
 www.pei4h.pe.ca/scholarship.html

- **Newfoundland & Labrador 4H Scholarships**
 www.gov.nl.ca/agric/prog_serv/4h/4-H

- **Association of Universities and Colleges of Canada**
 www.aucc.ca/index_e.html

- **Agriculture scholarships across Canada**
 www.farmcentre.com/english/courses/ss.asp

- **Student Awards**
 www.studentawards.com

- **Scholarships Canada**
 www.scholarshipscanada.com

- **International Scholarships for Canadians**
 Learn about opportunities for graduate study and research abroad
 www.scholarships.gc.ca/menu-en.html

Students are also encouraged to check with their local high school guidance office for scholarships and bursaries available to them. Service groups and community organizations may also sponsor awards for students pursuing post-secondary studies.
Administration and Faculty

ADMINISTRATIVE OFFICERS

President
T. P. Hicks, B.A. (Carleton), B.Sc. (Dalhousie), Ph.D. (UBC)

Vice-President Academic
L. A. MacLaren, B.Sc.(Agr.) (Guelph), M.Sc. (Alberta), Ph.D. (California)

Vice-President Administration
B. M. MacDonald, B.Sc., M.Sc. (Maine), Ed.D. (West Virginia)

Executive Director Development & External Relations
J. B. Goit, B.Sc., M.Sc. (Guelph)

Registrar
D. W. Paquet, B.A., B.Ed. (Acadia), M.L.I.S. (Dalhousie)

Assistant Registrar
A. L. Sibley

Director of Enrollment Management
L. French-Munn, B.Sc. (St. F.X.), M.Ed. (UNB)

Dean of Student Services, Director of Athletics
J. M. Smith, B.P.Ed. (Dalhousie)

Assistant Dean Recruitment and Awards
B. M. Crouse, B.Sc.(Agr.) (Guelph)

Assistant Dean Health Services
L. Young, RN

Assistant Dean Judicial
TBA

Dean, Research
G. W. Stratton, B.Sc.(Agr.), M.Sc., Ph.D. (Guelph)

Manager of Research & Graduate Studies
J. L. Rogers, B.Sc. (Guelph), B.Ed. (Brock), M.Sc. (Dalhousie/NSAC)

Chief Librarian
B. R. Waddell, B.A. (Colorado), M.L.S. (Dalhousie)

Dean Internationalization
D. L. Patterson, B.Sc. (Alberta), M.Sc., Ph.D. (Guelph)

Manager, Continuing Education
S. C. Macdonald, B.A. (St. Mary's), B.Sc.(Agr.) (NSAC)

Business Manager
R. O. Mosher, B.B.A. (Acadia)

Coordinator, Alumni and Public Relations
S. L. Rogers, B.A. (New Brunswick), BPR (Mount St. Vincent)

Coordinator of Marketing
S. G. Morris, B.A. (Acadia), BPR (Mount St. Vincent)

Administrative Secretary
T. E. Blois

Vice-Principal Emeritus
I. M. Fraser, B.Sc. (Dalhousie), M.A. (Maine), M.B.A. (Dalhousie)

Dean Emeritus
A. D. Ellis, B.Sc.(Agr.) (McGill), M.A. (Acadia)

FACULTY

Business & Social Sciences

S. G. Russell, B.Sc.(Agr.) (Guelph), M.B.A. (Saint Mary's), Ph.D. (Bradford)

- **Associate Professor and Head**

G. A. Cameron, B.A. Hon (St. F.X.), M.A. (York), Ph.D. (SOAS)

- **Assistant Professor**

J. S. Clark, B.A. (Guelph), M.Sc. (Saskatchewan), Ph.D. (North Carolina)

- **Associate Professor**

S. R. Dukeshire, B.Comm, B.A. Hon (Saint Mary's), M.A.Sc., Ph.D. (Waterloo)

- **Assistant Professor**

D. M. Dunlop, B.Sc.(Agr.) (NSAC), M.Sc. (Alberta)

- **Assistant Professor**

K. G. Grant, B.A. (Acadia), M.A., Ph.D. (Western)

- **Professor**

M. D. MacPherson, B.Sc.(Agr.) (NSAC), AGDM (Athabasca), MBA(Agr.) (Guelph)

- **Assistant Professor**

L. L. Sanderson, B.Sc.(Agr.), M.Sc. (Guelph)

- **Associate Professor**

P. M. Sanger, B.A. (Melbourne), B.Ed. (Acadia), M.A. (Victoria)

- **Professor Emeritus**

J. M. Smith, B.P.Ed. (Dalhousie)

- **Assistant Professor**

J. B. Stackhouse, B.Sc.(Agr.Ec.), M.Sc. (Guelph)

- **Associate Professor**

D. Stiles, A.B. (Marshall), M.A., Ph.D. (Maine)

- **Associate Professor**

E. K. Yiridoe, B.Sc. (Un. of Science & Technology, Ghana), M.Sc., Ph.D. (Guelph)

- **Associate Professor**
Administration and Faculty

Engineering
K. J. Sibley, B.Sc.(Agr.Eng.), M.Sc. (McGill)
-Associate Professor and Head

R. Ablett, B.Sc. (Reading), M.Sc. (Sterling), Ph.D. (Oregon)
-Professor, and CEO, Atlantic Bioventure Centre

J. F. Adsett, B.Sc.(Agr.) (McGill), M.Sc.E. (New Brunswick),
Ph.D. (Saskatchewan)
-Professor

T. Astatkie, B.Sc., M.Sc. (Addis Ababa), Ph.D. (Queen’s)
-Professor

D. G. Bishop, B.Eng.(Agr.), M.Eng.(Agr.) (Technical University of
Nova Scotia)
-Associate Professor

J. P. Blanchard, B.Sc. (Saint Mary’s), B.Sc. (Dalhousie),
M.Sc.(Agr.Eng.), Ph.D. (Technical University of Nova Scotia)
-Associate Professor

A. Georgallas, B.Sc. (Queen Elizabeth College), Ph.D. (London)
-Associate Professor

R. J. Gordon, B.Sc., M.Sc. (McGill), Ph.D. (Guelph)
-Canada Research Chair in Agricultural Resource Management

-Associate Professor

S. A. Madani, B.Sc. (Pahlavi), M.Sc. (British Columbia),
Ph.D. (Washington)
-Professor

C. T. Madigan, B.Sc., M.Sc. (Windsor)
-Associate Professor

G. J. Pearson, B.Sc.(Queens), B.Ed. (Dalhousie), M.Sc. (Queens)
-Associate Professor

M. N. Rifai, M.Sc., Ph.D. (Nitra)
-Professor

- Assistant Professor and Machinery Systems Research Chair

Environmental Sciences
G. W. Stratton, B.Sc.(Agr.), M.Sc., Ph.D. (Guelph)
-Professor and Head

N. S. Boyd, B.Sc. (Dalhousie), M.Sc. (Dalhousie/NSAC), Ph.D. (Manitoba)
-Associate Professor and Vegetation Management Research Chair

G. R. Brewster, B.A., M.Sc., Ph.D. (Western Ontario)
-Associate Professor

D. L. Burton, B.Sc. (Dalhousie), M.Sc. (Guelph), Ph.D. (Alberta)
-Climate Change & Greenhouse Gas Management Research Professor

R. W. Daniels, B.Sc.(Agr.) (McGill), M.S. (Michigan State),
Ph.D. (Penn State)
-Professor

C. D. Goodwin, B.Sc. (Mount St. Vincent), M.Sc. (Guelph)
-Assistant Professor

A. B. Gray, B.Sc. (Bishops), M.Sc., Ph.D. (McGill)
-Professor

J. Hoyle, B.A. (Univ. York), B.A. (Open Univ., U.K.), B.Ed. (Dalhousie),
M.Sc. (Leeds), Ph.D. (Dalhousie)
-Professor

W. M. Langille, B.Sc. (Acadia), M.Sc. (McGill)
-Professor Emeritus

J.-P. R. Le Blanc, B.A. (Montreal), B.Sc. (Quebec), Ph.D. (McGill)
-Professor

L. E. Levy, B.Sc., M.Sc. (Acadia)
-Associate Professor

T. S. MacKenzie, Dip. LH (NSAC), B.Sc. (Dalhousie)
-Lecturer

L. R. Mapplebeck, B.Sc., M.Sc. (Guelph)
-Associate Professor

V. O. Nams, B.Sc. (Toronto), M.Sc. (Alberta), Ph.D. (Victoria)
-Professor

A. R. Olson, B.A. (Augustana), M.Sc. (Wisconsin), Ph.D. (Alberta)
-Professor

D. C. Percival, B.Sc.(Agr.), M.Sc., Ph.D. (Guelph)
-Associate Professor

N. L. Pitts, B.Sc.(Agr.), M.Sc. (McGill), Ph.D. (Guelph)
-Associate Professor

A. R. Robinson, B.Sc.(Agr.), M.Sc., Ph.D. (McGill)
-Professor

V. Rupasinghe, B.Sc. (Peradeniya), M.Sc. (Iowa), Ph.D. (Guelph)
-Tree Fruit Biologist Research Chair

M. G. Sampson, B.Sc. (Dalhousie), B.Sc.(Agr.), M.Sc. (McGill)
-Associate Professor
Administration and Faculty

Plant and Animal Sciences

T. Tennessen, B.A., B.Sc., M.Sc., Ph.D. (Alberta)
-Professor and Head

D. M. Anderson, B.S.A., M.Sc. (Manitoba), Ph.D. (Saskatchewan)
-Professor

S. K. Asiedu, B.Sc.(Agr.), M.Sc., Ph.D. (McGill)
-Professor

B. F. Benkel, B.Sc. (Brock), Ph.D. (Ottawa)
-Canada Research Chair in Agricultural Biotechnology

C. D. Caldwell, B.Sc. (Mount Allison), M.Sc. (Dalhousie), Ph.D. (East Anglia)
-Professor

J. Duston, B.Sc. (Bath), Ph.D. (Aston)
-Associate Professor

C. T. Enright, M.Sc., M.B.A., Ph.D. (Dalhousie)
-Associate Professor

A. H. Farid, B.Sc., M.Sc. (Shiraz), Ph.D. (Alberta)
-Professor

N. L. Firth, B.Sc. (Edinburgh), M.S. (Purdue), Ph.D. (Cornell)
-Associate Professor

A. H. Fredeen, B.S.A. (Saskatchewan), M.Sc. (Guelph), Ph.D. (California)
-Professor

K. E. Glover, B.Sc.(Agr.), M.Sc. (Guelph), Ph.D. (Dalhousie)
-Associate Professor

S. N. Goodyear, B.Sc.(Agr.) (McGill), M.Sc., Ph.D. (Guelph)
-Associate Professor

P. Y. Hamilton, B.Sc.(Agr.) (McGill), M.Sc. (Maine)
-Professor Emeritus

H-Y. Ju, B.Sc.(Agronomy) (Seoul), M.Sc., Ph.D. (McGill)
-Professor Emeritus

B. Prithiviraj, B.Sc.(Agr.) (Annamalai), M.Sc., Ph.D. (BHU)
-Assistant Professor and Industrial Research Chair (Plant Stress Physiology)

K.W. Pruski, B.Sc. (Warsaw), M.Sc. (Warsaw, Alberta), Ph.D. (Wageningen)
-Chair in Potato Physiology

W. B. Ramsay, D.V.M. (Guelph)
-Associate Professor

J.D. Ronquillo, B.Sc. (Philippines), M.Sc., Ph.D. (Kagoshima)
-Associate Professor

K. I. Rouvinen-Watt, B.Sc., M.Sc., Ph.D. (Tampere)
-Associate Professor

G. Wang-Pruski, B.Sc. (Tian Jin), Ph.D. (Alberta)
-Associate Professor

NSAC Adjunct, Research, Honorary Research Professors and Honorary Research Associates

K. I. Al-Mughrabi, B.Sc., Agr. Eng., M.Sc. (Jordan), Ph.D. (Dalhousie)
-Adjunct

G. Belanger, B.Sc.A. (Laval), M.Sc. (Guelph), Ph.D. (Paris-Sud)
-Adjunct

C. Benchaa, D.E.A. (Toulouse), M.Sc. (Algeria), Ph.D. (Toulouse)
-Adjunct

R. L. Bernier, B.Sc., M.Sc., Ph.D. (Montreal)
-Adjunct

G. Boiteau, B.Sc., M.Sc. (Laval), Ph.D. (North Carolina)
-Adjunct

O. T. Bouman, B.Sc., Ph.D. (G'ettingen)
-Adjunct

-Adjunct

J. D. Castell, B.Sc., M.Sc. (Dalhousie), Ph.D. (Oregon)
-Adjunct

E. Charmley, B.Sc. (Aberdeen), Ph.D. (Reading)
-Adjunct

M. Chiappe, Ing. Agr. (Uruguay), M.A., Ph.D. (Minnesota)
-Adjunct

B. R. Christie, B.S.A. (Guelph), M.S.A. (Toronto), Ph.D. (Iowa)
-Adjunct

R. H. Coffin, B.Sc.(Agr.), M.Sc. (McGill), Ph.D. (Guelph)
-Adjunct

W. K. Coleman, B.A., Ph.D. (Western Ontario)
-Honorary Research Associate

J. DeLong, B.Sc.(Agr.) (NSAC), M.Sc., Ph.D. (Pennsylvania)
-Adjunct

H. De Jong, B.A. (Bethel College), M.Sc. (Kansas), Ph.D. (Wisconsin)
-Adjunct
R. Donald, B.Sc. (Mount Allison), M.Sc. (Guelph), Ph.D. (Saskatchewan)
-Research Associate
Z. Dong, B.Sc. (Shaanxi), M.Sc. (Peking), Ph.D. (Carleton),
Post-Doc (Queens)
-Adjunct
L. J. Eaton, B.Sc. (Acadia), M.Sc., Ph.D. (Dalhousie)
-Adjunct
A. El-Mowafi, B.V.M., M.Sc., Ph.D. (Zagazig)
-Adjunct
C. Embree, B.Sc. (Guelph), M.Sc. (B.C.)
-Adjunct
B. S. Flinn, B.Sc., M.Sc. (Queens), Ph.D. (UBC)
-Adjunct
C. Forney, B.Sc., M.Sc. (Pennsylvania), Ph.D. (Oregon)
-Adjunct
G. A. Gagnon, B.Sc.(Eng.) (Guelph), Ph.D. (Waterloo)
-Adjunct
S. O. Gaul, B.Sc. (Mount St. Vincent), M.Sc. (Dalhousie), Ph.D. (Guelph)
-Adjunct
J. R. Guernsey, B.Sc. Hon (Carleton), M.Sc., Ph.D (Iowa)
-Adjunct
R. M. G. Hamilton, B.Sc.(Agr.), M.Sc.(Agr.) (McGill), Ph.D. (Western)
-Adjunct
M. Hodges, B.Sc. Hon, Ph.D (Ottawa)
-Adjunct
A. R. Jamieson, B.Sc. (Acadia), M.Sc., Ph.D. (Guelph)
-Adjunct
R. C. Jamieson, B.Sc., M.Sc. (Dal), Ph.D. (Guelph)
-Adjunct
V. D. Jeliazkov, M.Sc., Ph.D. (HIA), Ph.D. (Massachusetts)
-Adjunct
J. R. Kemp, B.Sc., Ph.D. (Guelph)
-Adjunct
S. Lall, B.Sc. (Allahabad), M.Sc., Ph.D. (Guelph)
-Adjunct
R. H. Loucks, M.Sc. (British Columbia), Ph.D. (Michigan)
-Adjunct
T. A. McAllister, B.Sc.(Agr.), M.Sc. (Alberta), Ph.D. (Guelph)
-Adjunct
K. E. MacKenzie, Ph.D. (Cornell)
-Adjunct
J. MacLeod, B.Sc.(Agr.) (Macdonald), M.Sc. (McGill), Ph.D. (Cornell)
-Adjunct
K. B. MacRae, B.Ed. (British Columbia), M.Sc., Ph.D. (Oregon)
-Adjunct
K. E. MacKenzie, Ph.D. (Cornell)
-Adjunct
L. J. Mikitzel, B.Sc.(Agr.), M.Sc. (Guelph), Ph.D. (Alberta)
-Adjunct
J. Morton, B.Sc.(Agr.), M.Sc. (Guelph)
-Adjunct
A. Murphy, B.Sc. (Memorial), M.Sc. (Guelph)
-Honorary Research Associate
Y. Papadopoulos, B.Sc.(Agr.), M.Sc., Ph.D. (Guelph),
M.B.A. (Saint Mary's)
-Adjunct
G. T. Patterson, B.Sc. (Alberta), M.Sc. (Guelph)
-Adjunct
D. Pink, B.Sc. (St. F.X.), Ph.D. (British Columbia)
-Adjunct
H. W. Platt, B.Sc. (Manitoba), Ph.D. (Saskatchewan)
-Adjunct
R. K. Prange, B.Sc. (Acadia), M.Sc. (British Columbia), Ph.D. (Guelph)
-Honorary Research Associate
J-P. Privé, B.Sc. (Winnipeg), M.Sc. (Guelph)
-Adjunct
J. Y. Raggett, M.Ed. (Greenwich) Ph.D (York)
-Adjunct
B. Rathgeber, B.Sc.(Agr.) (Saskatchewan), M.Sc. (Arkansas),
Ph.D. (Saskatchewan)
-Adjunct
S. M. C. Robinson, B.Sc. (Acadia), M.Sc., Ph.D. (Simon Fraser)
-Adjunct
V. Rodd, B.Sc. (Prince Edward Island), M.Sc. (Manitoba)
-Affiliated Researcher
N. W. Ross, B.Sc., Ph.D. (McGill)
-Adjunct
F. G. Silversides, B.S.A. (Saskatchewan), M.S. (Massachusetts),
Ph.D. (Saskatchewan)
-Adjunct
R. Singh, B.Sc.(Agr.), M.Sc.(Agr.) (Agra Univ.), Ph.D. (N.Dakota)
-Adjunct
A. V. Sturz, B.Sc. (Newcastle-upon-Tyne), Ph.D. (Manchester)
-Adjunct
G. C. C. Tai, B.Sc., M.Sc. (Taiwan), Ph.D. (Saskatchewan)
-Adjunct
W. G. Thomas, B.Sc. (British Columbia), M.Sc. (Dalhousie)
-Adjunct
P. R. Warman, B.Sc.(Agr.) (Rutgers), M.Sc., Ph.D. (Guelph)
-Adjunct
J. M. Wright, B.Sc. (Mount Allison), Ph.D. (Memorial)
-Honorary Research Associate
B. Zebarth, B.Sc.(Agr.), M.Sc. (Guelph), Ph.D. (Saskatchewan)
-Adjunct
Appendix I: New Course Numbers to Old Course Numbers

In 2004 the course numbering system was changed. This appendix lists the courses that were available at that time (new course number/course title, followed by the old course number/course title and course designations). Designations are (A) for Agriculture courses, (H) for Humanities courses and DE for Distance Education courses. These designations will assist students in determining program requirements as described in the program syllabi.

<table>
<thead>
<tr>
<th>NEW COURSE</th>
<th>OLD COURSE</th>
<th>DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRI1000: Agricultural Ecosystems</td>
<td>IN100: Agricultural Ecosystems</td>
<td>(A) DE</td>
</tr>
<tr>
<td>AGRI1001: Food Security</td>
<td>IN101: Food Security</td>
<td>(A) DE</td>
</tr>
<tr>
<td>AGRI1003: Agriculture Today</td>
<td>H150: Agriculture Today</td>
<td>(A)</td>
</tr>
<tr>
<td>AGRI2000: Transition to Organic Agriculture</td>
<td>IN202: Transition to Organic Agriculture</td>
<td>(A)</td>
</tr>
<tr>
<td>AGRI3000: Agrometeorology</td>
<td>MP330: Agrometeorology</td>
<td>(A)</td>
</tr>
<tr>
<td>AGRI4000: Contemporary Issues in Agriculture</td>
<td>IN400: Issues in Agriculture</td>
<td>(A)</td>
</tr>
<tr>
<td>AGRI5210: Special Topics in Environmental Microbiology</td>
<td>AG521: Special Topics in Environmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>AGRI5220: Special Topics in Weed Science</td>
<td>AG522: Special Topics in Weed Science</td>
<td></td>
</tr>
<tr>
<td>AGRI5240: Special Topics in Environmental Impact</td>
<td>AG524: Special Topics in Environmental Impact</td>
<td></td>
</tr>
<tr>
<td>AGRI5250: Soil Microbiology</td>
<td>AG525: Soil Microbiology</td>
<td></td>
</tr>
<tr>
<td>AGRI5260: Special Topics in Plant Pathology</td>
<td>AG526: Special Topics in Plant Pathology</td>
<td></td>
</tr>
<tr>
<td>AGRI5270: Economic Entomology</td>
<td>AG527: Economic Entomology</td>
<td></td>
</tr>
<tr>
<td>AGRI5310: Special Topics in Applied Ethology</td>
<td>AG531: Special Topics in Applied Ethology</td>
<td></td>
</tr>
<tr>
<td>AGRI5320: Special Topics in Animal Nutrition</td>
<td>AG532: Special Topics in Animal Nutrition</td>
<td></td>
</tr>
<tr>
<td>AGRI5340: Special Topics in Animal Physiology</td>
<td>AG534: Special Topics in Animal Physiology</td>
<td></td>
</tr>
<tr>
<td>AGRI5360: Protein Nutrition</td>
<td>AG536: Protein Nutrition</td>
<td></td>
</tr>
<tr>
<td>AGRI5370: Special Topics in Animal Breeding and Genetics</td>
<td>AG537: Special Topics in Animal Breeding and Genetics</td>
<td></td>
</tr>
<tr>
<td>AGRI5380: Quantitative Genetics</td>
<td>AG538: Quantitative Genetics</td>
<td></td>
</tr>
<tr>
<td>AGRI5390: Molecular Genetic Analysis of Populations</td>
<td>AG539: Molecular Genetic Analysis of Populations</td>
<td></td>
</tr>
<tr>
<td>AGRI5410: Special Topics in Soil Fertility</td>
<td>AG541: Special Topics in Soil Fertility</td>
<td></td>
</tr>
<tr>
<td>AGRI5430: Special Topics in Environmental Analysis</td>
<td>AG543: Special Topics in Environmental Analysis</td>
<td></td>
</tr>
<tr>
<td>AGRI5440: Organic Environmental Analysis</td>
<td>AG544: Organic Environmental Analysis</td>
<td></td>
</tr>
<tr>
<td>AGRI5450: Environmental Soil Chemistry</td>
<td>AG545: Environmental Soil Chemistry</td>
<td></td>
</tr>
<tr>
<td>AGRI5460: Special Topics in Soil and Water Management</td>
<td>AG546: Special Topics in Soil and Water Management</td>
<td></td>
</tr>
<tr>
<td>AGRI5470: Special Topics in Analytical Instrumentation for Researchers</td>
<td>AG547: Special Topics in Analytical Instrumentation for Researchers</td>
<td></td>
</tr>
<tr>
<td>AGRI5510: Special Topics in Plant Breeding</td>
<td>AG551: Special Topics in Plant Breeding</td>
<td></td>
</tr>
<tr>
<td>AGRI5520: Plant Breeding Methods</td>
<td>AG552: Plant Breeding Methods</td>
<td></td>
</tr>
<tr>
<td>AGRI5530: Nitrogen in Crop Production</td>
<td>AG553: Nitrogen in Crop Production</td>
<td></td>
</tr>
<tr>
<td>AGRI5540: Special Topics in Crop Physiology</td>
<td>AG554: Special Topics in Crop Physiology</td>
<td>(A)</td>
</tr>
<tr>
<td>AGRI5560: Advanced Crop Physiology</td>
<td>AG556: Advanced Crop Physiology</td>
<td></td>
</tr>
<tr>
<td>AGRI5570: Special Topics in Agricultural Biotechnology</td>
<td>AG557: Special Topics in Agricultural Biotechnology</td>
<td></td>
</tr>
<tr>
<td>AGRI5580: Plant Biotechnology I</td>
<td>AG558: Plant Biotechnology cross-referenced as PS475</td>
<td></td>
</tr>
<tr>
<td>AGRI5610: Special Topics in Animal Product Technology</td>
<td>AG561: Special Topics in Animal Product Technology</td>
<td></td>
</tr>
<tr>
<td>AGRI5620: Ruminant Digestive Physiology and Metabolism</td>
<td>AG562: Ruminant Digestive Physiology and Metabolism</td>
<td></td>
</tr>
<tr>
<td>AGRI5630: Intermediate Statistical Methods</td>
<td>AG563: Intermediate Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>AGRI5700: Communication Skills and Graduate Seminar</td>
<td>AG570: Communication Skills and Graduate Seminar</td>
<td></td>
</tr>
<tr>
<td>AGRI5705: Module Course II</td>
<td>AG573: Module Course II</td>
<td></td>
</tr>
<tr>
<td>AGRI5710: Module Course I</td>
<td>AG571: Module Course I</td>
<td></td>
</tr>
</tbody>
</table>
Appendix I: New Course Numbers to Old Course Numbers

<table>
<thead>
<tr>
<th>New Course Numbers</th>
<th>Old Course Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR5740: Advanced Studies in Food Chemistry</td>
<td>AG574: Advanced Studies in Food Chemistry</td>
</tr>
<tr>
<td>AGR9000: Graduate Thesis</td>
<td>AG900: Graduate Thesis</td>
</tr>
<tr>
<td>AGRN0200: Potato Production</td>
<td>PS49: Potato Production</td>
</tr>
<tr>
<td>AGRN0201: Cereal-Based Cropping Systems</td>
<td>PS52: Cropping Systems I: Cereal-Based Systems</td>
</tr>
<tr>
<td>AGRN0202: Forage-Based Cropping Systems</td>
<td>PS56: Cropping Systems II: Forage-Based Systems</td>
</tr>
<tr>
<td>AGRN0200: Organic Field Crop Management</td>
<td>PS202: Organic Field Crop Management DE (A)</td>
</tr>
<tr>
<td>AGRN0208: Potato Production</td>
<td>PS325: Potato Production (A)</td>
</tr>
<tr>
<td>AGRN3000: Forage Crops</td>
<td>PS300: Forage Crops (A)</td>
</tr>
<tr>
<td>AGRN3001: Grain Production</td>
<td>PS305: Grain Production (A)</td>
</tr>
<tr>
<td>AGRN4000: Agronomy</td>
<td>PS405: Agronomy (A)</td>
</tr>
<tr>
<td>AHVT0202: Principles of Disease</td>
<td>AS24: Principles of Disease</td>
</tr>
<tr>
<td>AHVT0203: Principles of Pharmacology</td>
<td>AS36: Principles of Pharmacology</td>
</tr>
<tr>
<td>AHVT0204: Laboratory Animal Care I</td>
<td>AS37: Laboratory Animal Care I</td>
</tr>
<tr>
<td>AHVT0205: Veterinary Laboratory Techniques I</td>
<td>AS39: Veterinary Laboratory Techniques I</td>
</tr>
<tr>
<td>AHVT0206: Support Services in Veterinary Practice</td>
<td>AS40: Support Services in Veterinary Practice</td>
</tr>
<tr>
<td>AHVT0207: Veterinary Laboratory Techniques II</td>
<td>AS49: Veterinary Laboratory Techniques II</td>
</tr>
<tr>
<td>AHVT0303: Veterinary Laboratory Techniques III</td>
<td>AS59: Veterinary Laboratory Techniques III</td>
</tr>
<tr>
<td>AHVT0304: Animal Health Technology Project</td>
<td>AS95: Animal Health Technology Project</td>
</tr>
<tr>
<td>AHVT0305: Laboratory Animal Care II</td>
<td>AS71: Laboratory Animal Care II</td>
</tr>
<tr>
<td>ANSC0100: The Farm Workplace I</td>
<td>AS12: The Farm Workplace I</td>
</tr>
<tr>
<td>ANSC0103: Farm Animal Production I</td>
<td>AS16: Farm Animal Production I</td>
</tr>
<tr>
<td>ANSC0104: Farm Animal Biology I</td>
<td>AS18: Farm Animal Biology I</td>
</tr>
<tr>
<td>ANSC0105: Farm Animal Breeding</td>
<td>AS20: Farm Animal Breeding</td>
</tr>
<tr>
<td>ANSC0106: The Farm Workplace II</td>
<td>AS22: The Farm Workplace II</td>
</tr>
<tr>
<td>ANSC0108: Farm Animal Biology and Practices II</td>
<td>AS27: Farm Animal Biology and Practices II</td>
</tr>
<tr>
<td>ANSC0109: Farm Animal Production II</td>
<td>AS66: Farm Animal Production II</td>
</tr>
<tr>
<td>ANSC0110: Farm Animal Biology II</td>
<td>AS68: Farm Animal Biology II</td>
</tr>
<tr>
<td>ANSC0111: Project-Seminar</td>
<td>AS65: Project-Seminar</td>
</tr>
<tr>
<td>ANSC0200: Farm Animal Production III</td>
<td>AS76: Farm Animal Production III</td>
</tr>
<tr>
<td>ANSC0202: Farm Animal Production IV</td>
<td>AS86: Farm Animal Production IV</td>
</tr>
<tr>
<td>ANSC0203: Farm Animal Production IV Practices</td>
<td>AS87: Farm Animal Production IV Practices</td>
</tr>
<tr>
<td>ANSC0300: Technology Project</td>
<td>AS90: Technology Project</td>
</tr>
<tr>
<td>ANSC2004: Organic Livestock Production</td>
<td>AS202: Organic Livestock Production (A)</td>
</tr>
<tr>
<td>ANSC2001: Animal Agriculture II</td>
<td>AS201: Animal Agriculture II</td>
</tr>
<tr>
<td>ANSC3000: Animal Breeding</td>
<td>AS310: Animal Breeding</td>
</tr>
</tbody>
</table>
Appendix I: New Course Numbers to Old Course Numbers

<table>
<thead>
<tr>
<th>New Course</th>
<th>Old Course</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC3001: Animal Health</td>
<td>AS320: Animal Health</td>
<td>(A)</td>
</tr>
<tr>
<td>ANSC3002: Domestic Animal Behaviour</td>
<td>AS341: Domestic Animal Behavior</td>
<td>(A)</td>
</tr>
<tr>
<td>ANSC3003: Eggs and Dairy Products</td>
<td>AS345: Eggs and Dairy Products</td>
<td>(A)</td>
</tr>
<tr>
<td>ANSC3004: Meat Science</td>
<td>AS350: Meat Science</td>
<td>(A)</td>
</tr>
<tr>
<td>ANSC3005: Animal Welfare</td>
<td>new course</td>
<td>(A)</td>
</tr>
<tr>
<td>ANSC4000: Topics in Animal Production I</td>
<td>AS490: Topics in Animal Production I</td>
<td>(A)</td>
</tr>
<tr>
<td>ANSC4001: Topics in Animal Production II</td>
<td>AS492: Topics in Animal Production II</td>
<td>(A)</td>
</tr>
<tr>
<td>ANSC4003: Avian Production Systems</td>
<td>new course</td>
<td>(A)</td>
</tr>
<tr>
<td>AQUA2000: Introduction to Aquaculture</td>
<td>AS210: Introduction to Aquaculture</td>
<td>(A)</td>
</tr>
<tr>
<td>AQUA3000: Fish Health</td>
<td>AS370: Fish Health</td>
<td>(A)</td>
</tr>
<tr>
<td>AQUA4000: Finfish Production</td>
<td>AS440: Finfish Production</td>
<td>(A)</td>
</tr>
<tr>
<td>AQUA4001: Shellfish Production</td>
<td>AS445: Shellfish Production</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL1000: Animal Anatomy</td>
<td>B15: Animal Anatomy</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL1001: Plant Pathology</td>
<td>B40: Plant Pathology</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL1002: Plant Physiology and Stress Management</td>
<td>PS45/B41: Plant Physiology and Stress Management</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL1003: Weed Science</td>
<td>B46: Weed Science</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL2000: Entomology</td>
<td>B43: Entomology</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL1000: Botany</td>
<td>B100: Botany</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL1001: Zoology</td>
<td>B110: Zoology</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL2000: Cell Biology</td>
<td>B200: Cell Biology</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL2001: Cell Biology Laboratory</td>
<td>B201: Cell Biology Laboratory</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL2002: Plant Physiology</td>
<td>B260: Plant Physiology</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL2003: Systematic Botany</td>
<td>B265: Systematic Botany</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL2004: Structural Botany</td>
<td>B270: Structural Botany</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL2005: Principles of Plant Pathology</td>
<td>B300: Principles of Plant Pathology</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL2006: Mammalian Physiology</td>
<td>AS230: Physiological Systems of Farm Animals</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL3000: General Entomology</td>
<td>B320: General Entomology</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL3001: Ecology</td>
<td>B330: Ecology</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL3002: Weed Science</td>
<td>B335: Weed Science</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL3003: Comparative Vertebrate Anatomy</td>
<td>B340: Comparative Vertebrate Anatomy</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL3004: Environmental Physiology</td>
<td>AS335: Environmental Physiology</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL3005: Physiology of Aquatic Animals</td>
<td>AS380: Physiology of Aquatic Animals</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL3006: Aquatic Ecology</td>
<td>AS375: Aquatic Ecology</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL3007: Insects and Diseases of Landscape Plants</td>
<td>PS390: Insects and Diseases of Landscape Plants</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL3008: Growth, Reproduction and Lactation</td>
<td>AS330: Growth, Reproduction and Lactation</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL4000: Avian Biology</td>
<td>AS460: Avian Biology</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL4001: Animal Cell Culture</td>
<td>AS470: Animal Cell Culture</td>
<td>(A)</td>
</tr>
<tr>
<td>BIOL4002: Conservation Biology</td>
<td>B435: Conservation Biology</td>
<td>(A)</td>
</tr>
<tr>
<td>CHEM0050: Preparatory Chemistry</td>
<td>CS89: Preparatory Chemistry</td>
<td>(A)</td>
</tr>
<tr>
<td>CHEM0100: Agricultural Chemistry</td>
<td>CS14: Agricultural Chemistry</td>
<td>(A)</td>
</tr>
<tr>
<td>CHEM1000: General Chemistry I</td>
<td>CS101: General Chemistry I</td>
<td>(A)</td>
</tr>
<tr>
<td>CHEM1001: General Chemistry II</td>
<td>CS102: General Chemistry II</td>
<td>(A)</td>
</tr>
<tr>
<td>CHEM2000: Organic Chemistry I</td>
<td>CS201: Organic Chemistry I</td>
<td>(A)</td>
</tr>
<tr>
<td>CHEM2002: Analytical Chemistry I</td>
<td>CS212: Analytical Chemistry I</td>
<td>(A)</td>
</tr>
<tr>
<td>CHEM2003: Food Chemistry I</td>
<td>CS275: Food Chemistry I</td>
<td>(A)</td>
</tr>
<tr>
<td>CHEM2004: Introductory Food Chemistry</td>
<td>CS276: Introductory Food Chemistry</td>
<td>(A)</td>
</tr>
</tbody>
</table>
Appendix I: New Course Numbers to Old Course Numbers

<table>
<thead>
<tr>
<th>New Course</th>
<th>Old Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM2005: Biochemistry I</td>
<td>no longer offered</td>
</tr>
<tr>
<td>CHEM3000: Biochemistry</td>
<td>CS301: Biochemistry</td>
</tr>
<tr>
<td>CHEM3001: Biochemical Pathways</td>
<td>CS302: Biochemical Pathways</td>
</tr>
<tr>
<td>CHEM3002: Radiotracers in Agriculture</td>
<td>CS310: Radiotracers in Agriculture</td>
</tr>
<tr>
<td>CHEM3003: Advanced Integrated Chemistry Laboratory I</td>
<td>CS318: Advanced Integrated Chemistry Laboratory I</td>
</tr>
<tr>
<td>CHEM3004: Instrumental Analytical Chemistry II</td>
<td>CS341: Instrumental Analytical Chemistry II</td>
</tr>
<tr>
<td>CHEM3005: Instrumental Analytical Chemistry III</td>
<td>CS342: Instrumental Analytical Chemistry III</td>
</tr>
<tr>
<td>CHEM3006: Mammalian Biochemistry</td>
<td>CS360: Mammalian Biochemistry</td>
</tr>
<tr>
<td>CHEM3007: Food Chemistry II</td>
<td>CS375: Food Chemistry II</td>
</tr>
<tr>
<td>CHEM3009: Environmental Chemistry</td>
<td>ES312: Environmental Chemistry</td>
</tr>
<tr>
<td>CHEM4000: Advanced Integrated Chemistry Laboratory II</td>
<td>CS436: Advanced Integrated Chemistry Laboratory II</td>
</tr>
<tr>
<td>CMMT0100: Veterinary Practice Communication</td>
<td>H45: Technical Communications</td>
</tr>
<tr>
<td>CMMT0101: Communication Skills</td>
<td>H60: Communication Techniques</td>
</tr>
<tr>
<td>CMMT3000: Communication Theory and Skills</td>
<td>new course</td>
</tr>
<tr>
<td>CSCI0100: Computational Methods</td>
<td>MP14: Computational Methods</td>
</tr>
<tr>
<td>CSCI1000: Computer Methods</td>
<td>MP222: Computer Methods</td>
</tr>
<tr>
<td>CSCI2000: Computer Science</td>
<td>MP220: Computer Science</td>
</tr>
<tr>
<td>CSCI3000: Data Structures and Numerical Methods</td>
<td>MP336: Data Structures and Numerical Methods</td>
</tr>
<tr>
<td>ECON0100: Introductory Microeconomics</td>
<td>EB13: Microeconomics</td>
</tr>
<tr>
<td>ECON0101: Introductory Macroeconomics</td>
<td>EB12: Macroeconomics</td>
</tr>
<tr>
<td>ECON1000: Principles of Microeconomics</td>
<td>EB110: Agricultural Economics</td>
</tr>
<tr>
<td>ECON1001: Principles of Macroeconomics</td>
<td>EB255: Macroeconomics I</td>
</tr>
<tr>
<td>ECON2000: Intermediate Microeconomics</td>
<td>EB200: Microeconomics I</td>
</tr>
<tr>
<td>ECON2001: Intermediate Macroeconomics</td>
<td>EB305: Macroeconomics II</td>
</tr>
<tr>
<td>ECON2002: Production Economics</td>
<td>EB220: Production Economics</td>
</tr>
<tr>
<td>ECON3000: Mathematical Economics</td>
<td>EB260: Mathematical Economics</td>
</tr>
<tr>
<td>ECON3002: Agricultural and Food Policy</td>
<td>EB320: Agricultural and Food Policy I</td>
</tr>
<tr>
<td>ECON3003: Mathematical Programming</td>
<td>EB325: Operations Research</td>
</tr>
<tr>
<td>ECON3004: Agricultural Markets and Prices</td>
<td>EB330: Agricultural Markets and Prices</td>
</tr>
<tr>
<td>ECON3005: Econometrics</td>
<td>EB360: Econometrics</td>
</tr>
<tr>
<td>ECON4001: Agri-food Policy Analysis</td>
<td>EB419: Agri-food Policy Analysis</td>
</tr>
<tr>
<td>ECON4002: Topics in Advanced Farm Management</td>
<td>EB441: Topics in Advanced Farm Management</td>
</tr>
<tr>
<td>ENGL1000: Technical Writing</td>
<td>H10: Technical Writing</td>
</tr>
<tr>
<td>ENGL1000: Composition</td>
<td>H113: Composition</td>
</tr>
<tr>
<td>ENGL1001: The Novel</td>
<td>H101: The English and American Novel</td>
</tr>
<tr>
<td>ENGL1002: Nature in English and American Literature</td>
<td>H102: Nature in English and American Literature</td>
</tr>
<tr>
<td>ENGL3000: Literature of Atlantic Canada</td>
<td>H310: Literature of Atlantic Canada</td>
</tr>
<tr>
<td>ENGN0100: Surveying</td>
<td>AE14: Surveying</td>
</tr>
<tr>
<td>ENGN0101: Horticultural Engineering</td>
<td>AE38: Horticultural Engineering</td>
</tr>
<tr>
<td>ENGN0102: Soil and Water Resources Management</td>
<td>AE46: Soil and Water Resources Management</td>
</tr>
<tr>
<td>ENGN1001: Design and Graphics</td>
<td>AE102: Design and Graphics</td>
</tr>
<tr>
<td>ENGN1002: Statics</td>
<td>AE110: Statics</td>
</tr>
<tr>
<td>ENGN2001: Agricultural Machinery</td>
<td>AE202: Agricultural Machinery</td>
</tr>
<tr>
<td>ENGN2002: Introduction to Systems Analysis</td>
<td>AE204: Introduction to Systems Analysis</td>
</tr>
</tbody>
</table>
Appendix I: New Course Numbers to Old Course Numbers

ENGN2003: Food Processing Systems
ENGN2004: Aquacultural Environment
ENGN2005: Dynamics
ENGN3006: Surveying
ENGN3000: Electric Circuits
ENGN3001: Engineering Measurements and Controls
ENGN3002: Thermodynamics
ENGN3003: Technology for Precision Agriculture
ENGN3004: Digital Circuits
ENGN3005: Fundamentals of Chemical Engineering
ENGN3006: Strength of Materials
ENGN3007: Structures and Their Environment
ENGN3008: Circuit Analysis
ENGN3009: Materials Handling and Processing
ENGN3010: Soil and Water
ENGN3011: Fluid Mechanics
ENGN3012: Principles of Agricultural Machinery
ENGN3013: Aquacultural Engineering
ENGN3015: Irrigation and Drainage
ENGN3016: Engineering Economy
ENGN3017: Design Project
ENGN4000: Water and Water Quality Management
ENGN4001: Water Quality Issues
ENGN4002: Management of Mechanized Agricultural Systems
ENGN4003: Senior Design Project for Engineers I
ENVS2002: Composting and Compost Use
ENVS2000: Environmental Studies I
ENVS2001: Environmental Studies II
ENVS3000: Environmental Impact
ENVS3001: Environmental Sampling and Analysis
ENVS3002: Waste Treatment and Site Remediation
ENVS3003: Environmental Studies Field Course
ENVS3004: Principles of Pest Management
ENVS4000: Pesticides in Agriculture
ENVS4001: Economic Plant Pathology
ENVS4002: Economic Entomology
ENVS4003: Applied Weed Science
ENVS4004: The Science of Composting & Its Application
EXTE3000: Extension Education in the Rural Community
EXTE3001: Leadership Development and the Social Action Process
FOOD3000: Food Quality Assurance
FREN1000: French Language I
FREN1001: French Language II
GENE2000: Genetics
GENE3000: An Introduction to Molecular Genetics
GENE3001: Population and Quantitative Genetics
GENE4000: Molecular Applications to Animal Production
GEOG1000: Introductory Human Geography

AE207: Food Processing Systems
AE215: Aquatic Environment
AE230: Dynamics
AE260: Surveying
AE300: Electric Circuits
AE305: Engineering Measurements and Controls
AE310: Thermodynamics
AE311: Technology for Precision Agriculture
AE312: Digital Circuits
AE314: Fundamentals of Chemical Engineering
AE315: Strength of Materials
AE320: Structures and Their Environment
AE332: Circuit Analysis
AE335: Materials Handling and Processing
AE340: Soil and Water
AE350: Fluid Mechanics
AE355: Principles of Agricultural Machinery
AE360: Aquatic Engineering
AE370: Irrigation and Drainage
AE380: Engineering Economy
AE410: Water and Water Quality Management
AE412: Water Quality Issues
AE420: Management of Mechanized Agricultural Systems
AE440: Senior Design Project for Engineers I
ES200: Basic Composting Skills
ES200: Environmental Studies I
ES201: Environmental Studies II
B365: Environmental Impact
ES330: Environmental Sampling and Analysis
ES333: Waste Reduction and Site Remediation
ES350: Environmental Studies Field Course
B385: Principles of Pest Management
B405: Pesticides in Agriculture
B406: Economic Plant Pathology
B425: Economic Entomology
B445: Applied Weed Science
CS457: The Science of Composting & Its Application
H320: Extension Education in the Rural Community
H321: Leadership Development and the Social Action Process
CS380: Food Quality Assurance
H130: Introductory French
H131: French Language II
B240: Genetics I
B370: An Introduction to Molecular Genetics
B375: Population and Quantitative Genetics
AS465: Molecular Applications to Animal Production
H170: Introductory Human Geography

(A) DE
(A)
Appendix I: New Course Numbers to Old Course Numbers

<table>
<thead>
<tr>
<th>New Course</th>
<th>Old Course</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG3000: Rural Geography</td>
<td>H370: Rural Geography</td>
<td>(H)</td>
</tr>
<tr>
<td>GEOL2000: Introduction to Geology</td>
<td>CS230: Introduction to Geology</td>
<td></td>
</tr>
<tr>
<td>HIST1000: Introduction to Canadian History I: 1000–1867</td>
<td>new course</td>
<td></td>
</tr>
<tr>
<td>HIST1001: Introduction to Canadian History II: 1867–Present</td>
<td>new course</td>
<td></td>
</tr>
<tr>
<td>HIST3000: Rural History</td>
<td>H301: Rural History</td>
<td>(H)</td>
</tr>
<tr>
<td>HORT0100: Landscape Plants I</td>
<td>ES60: Landscape Plants I</td>
<td></td>
</tr>
<tr>
<td>HORT0101: Landscape Plants II</td>
<td>ES61: Landscape Plants II</td>
<td></td>
</tr>
<tr>
<td>HORT0102: Turfgrass Production and Management</td>
<td>PS47: Turfgrass Production and Management</td>
<td></td>
</tr>
<tr>
<td>HORT0103: Landscape Horticulture I</td>
<td>PS50: Landscape Horticulture I</td>
<td></td>
</tr>
<tr>
<td>HORT0200: Landscape Plant Nursery Management</td>
<td>PS38: Nursery Crop Production</td>
<td></td>
</tr>
<tr>
<td>HORT0201: Greenhouse & Floriculture Crop Management</td>
<td>PS39: Greenhouse Crop Management</td>
<td></td>
</tr>
<tr>
<td>HORT0202: Small Fruit Crops</td>
<td>PS43: Small Fruit Crops</td>
<td></td>
</tr>
<tr>
<td>HORT0203: Tree Fruit Crops</td>
<td>PS44: Tree Fruit Crops</td>
<td></td>
</tr>
<tr>
<td>HORT0204: Landscape Plants III</td>
<td>ES62: Landscape Plants III</td>
<td></td>
</tr>
<tr>
<td>HORT0205: Residential Landscape Design and Construction</td>
<td>PS51: Residential Landscape Design and Construction</td>
<td></td>
</tr>
<tr>
<td>HORT0206: Landscape Techniques</td>
<td>PS70: Landscape Techniques</td>
<td></td>
</tr>
<tr>
<td>HORT0207: Arboriculture</td>
<td>PS71: Arboriculture</td>
<td></td>
</tr>
<tr>
<td>HORT0208: Landscape Maintenance</td>
<td>PS72: Landscape Maintenance</td>
<td></td>
</tr>
<tr>
<td>HORT0209: Landscape Horticulture II</td>
<td>PS73: Landscape Horticulture II</td>
<td></td>
</tr>
<tr>
<td>HORT0210: Landscape Design and Construction</td>
<td>PS74: Landscape Design and Construction</td>
<td></td>
</tr>
<tr>
<td>HORT2000: Vegetable Production</td>
<td>PS200: Vegetable Production</td>
<td>(A) DE</td>
</tr>
<tr>
<td>HORT2002: Landscape Horticulture Work Program I</td>
<td>PS270: Landscape Horticulture Work Program I</td>
<td></td>
</tr>
<tr>
<td>HORT2003: The British Garden</td>
<td>PS290: The British Garden</td>
<td></td>
</tr>
<tr>
<td>HORT2004: Introduction to Viticulture</td>
<td>PS280: Introduction to Viticulture</td>
<td>(A)</td>
</tr>
<tr>
<td>HORT3000: Environmental Processes and Natural Landscape Functions</td>
<td>ES370: Environmental Processes and Natural Landscape Functions</td>
<td></td>
</tr>
<tr>
<td>HORT3001: Landscape Project Management</td>
<td>ES380: Landscape Project Management</td>
<td></td>
</tr>
<tr>
<td>HORT2006: Tree Fruit Crops</td>
<td>PS315: Tree Fruit Crops</td>
<td>(A)</td>
</tr>
<tr>
<td>HORT2007: Small Fruit Crops</td>
<td>PS320: Small Fruit Crops</td>
<td>(A)</td>
</tr>
<tr>
<td>HORT2009: Landscape Plant Nursery Management</td>
<td>PS335: Landscape Plant Production</td>
<td>(A)</td>
</tr>
<tr>
<td>HORT2010: Greenhouse & Floriculture Crop Management</td>
<td>PS330: Greenhouse Crop Production and Floriculture</td>
<td>(A)</td>
</tr>
<tr>
<td>HORT3006: Landscape Horticulture Work Program II</td>
<td>PS370: Landscape Horticulture Work Program II</td>
<td></td>
</tr>
<tr>
<td>HORT3007: Environmental Horticulture Project I</td>
<td>PS360: Landscape Horticulture Project I</td>
<td></td>
</tr>
<tr>
<td>HORT4000: Urban Tree Management</td>
<td>ES470: Urban Tree Management</td>
<td></td>
</tr>
<tr>
<td>HORT4001: Horticulture</td>
<td>PS410: Horticulture</td>
<td>(A)</td>
</tr>
<tr>
<td>HORT4002: Management of Specialized Turf</td>
<td>PS440: Management of Specialized Turf</td>
<td></td>
</tr>
<tr>
<td>HORT4004: Environmental Horticulture Project II</td>
<td>PS460: Landscape Horticulture Project II</td>
<td></td>
</tr>
<tr>
<td>INTD2000: Food Systems in the Tropics</td>
<td>IN205: Food Systems in the Tropics</td>
<td>(A)</td>
</tr>
<tr>
<td>INTD2001: Agricultural Systems of Central Europe</td>
<td>IN206: Agricultural Systems of Central Europe</td>
<td>(A)</td>
</tr>
<tr>
<td>INTD3000: Tropical Agriculture</td>
<td>PS355: Tropical Agriculture</td>
<td>(A)</td>
</tr>
<tr>
<td>MATH0050: Functions</td>
<td>MP85: Functions</td>
<td></td>
</tr>
<tr>
<td>MATH1000: Introductory Calculus I</td>
<td>MP100: Calculus and Analytic Geometry I</td>
<td></td>
</tr>
<tr>
<td>MATH1001: Introductory Calculus II</td>
<td>MP105: Calculus and Analytic Geometry II</td>
<td></td>
</tr>
<tr>
<td>MATH2000: Multivariable Calculus</td>
<td>MP230: Multivariable Calculus</td>
<td></td>
</tr>
<tr>
<td>MATH2001: Differential Equations</td>
<td>MP236: Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MATH3000: Applied Linear Algebra</td>
<td>MP335: Applied Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH4000: Agricultural Modelling</td>
<td>MP460: Agricultural Modelling</td>
<td></td>
</tr>
<tr>
<td>MGMT0100: Accounting</td>
<td>EB10: Accounting</td>
<td></td>
</tr>
</tbody>
</table>
Appendix I: New Course Numbers to Old Course Numbers

<table>
<thead>
<tr>
<th>Old Course Number</th>
<th>New Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT0102</td>
<td>Agriculture Marketing</td>
</tr>
<tr>
<td>MGMT0103</td>
<td>Business Law</td>
</tr>
<tr>
<td>MGMT0200</td>
<td>Applied Farm Management</td>
</tr>
<tr>
<td>MGMT0201</td>
<td>Business Project</td>
</tr>
<tr>
<td>MGMT0300</td>
<td>Farm Project</td>
</tr>
<tr>
<td>MGMT0301</td>
<td>Practicum—Farming Technology</td>
</tr>
<tr>
<td>MGMT0302</td>
<td>Economics and Business Technology Project</td>
</tr>
<tr>
<td>MGMT1000</td>
<td>Small Business Entrepreneurship</td>
</tr>
<tr>
<td>MGMT2000</td>
<td>Human Resource Management</td>
</tr>
<tr>
<td>MGMT2001</td>
<td>Introduction to Business Law</td>
</tr>
<tr>
<td>MGMT2002</td>
<td>Marketing</td>
</tr>
<tr>
<td>MGMT2003</td>
<td>Financial Management</td>
</tr>
<tr>
<td>MGMT2004</td>
<td>Financial Accounting I</td>
</tr>
<tr>
<td>MGMT2005</td>
<td>Financial Accounting II</td>
</tr>
<tr>
<td>MGMT3000</td>
<td>Management Accounting</td>
</tr>
<tr>
<td>MGMT3001</td>
<td>International Marketing</td>
</tr>
<tr>
<td>MGMT3002</td>
<td>Consumer Behaviour</td>
</tr>
<tr>
<td>MGMT4000</td>
<td>Strategic Management</td>
</tr>
<tr>
<td>MGMT4001</td>
<td>Advanced Entrepreneurship</td>
</tr>
<tr>
<td>MICR2000</td>
<td>Microbiology</td>
</tr>
<tr>
<td>MICR3000</td>
<td>Food Microbiology</td>
</tr>
<tr>
<td>MICR4000</td>
<td>Soil Microbiology</td>
</tr>
<tr>
<td>NUTR3000</td>
<td>Animal Nutrition</td>
</tr>
<tr>
<td>NUTR3001</td>
<td>Applied Animal Nutrition</td>
</tr>
<tr>
<td>NUTR3002</td>
<td>Fish Nutrition</td>
</tr>
<tr>
<td>NUTR4000</td>
<td>Ruminant Digestive Physiology and Metabolism</td>
</tr>
<tr>
<td>PHIL3000</td>
<td>Environmental and Agricultural Ethics</td>
</tr>
<tr>
<td>PHYS0050</td>
<td>Introductory Physics</td>
</tr>
<tr>
<td>PHYS1000</td>
<td>Physics for the Life Sciences I</td>
</tr>
<tr>
<td>PHYS1001</td>
<td>Physics for the Life Sciences II</td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics I</td>
</tr>
<tr>
<td>PHYS1003</td>
<td>Physics II</td>
</tr>
<tr>
<td>PLSC0100</td>
<td>Utilization of Plant Resources</td>
</tr>
<tr>
<td>PLSC0200</td>
<td>Plant Propagation</td>
</tr>
<tr>
<td>PLSC0201</td>
<td>Technology Project</td>
</tr>
<tr>
<td>PLSC0202</td>
<td>Plant Science Techniques</td>
</tr>
<tr>
<td>PLSC0203</td>
<td>Plant Products Physiology</td>
</tr>
<tr>
<td>PLSC1000</td>
<td>Farm Woodlot Management</td>
</tr>
<tr>
<td>PLSC2000</td>
<td>Specialty Crops</td>
</tr>
<tr>
<td>PLSC2001</td>
<td>Theory and Practice of Plant Propagation</td>
</tr>
<tr>
<td>PLSC4000</td>
<td>Plant Breeding</td>
</tr>
<tr>
<td>PLSC4001</td>
<td>Crop Adaptation</td>
</tr>
<tr>
<td>POLS1000</td>
<td>Introduction to Political Science</td>
</tr>
<tr>
<td>POLS1001</td>
<td>Structure and Function of Government</td>
</tr>
<tr>
<td>RESM4000</td>
<td>Bio-Environmental Systems Management Project-Seminar I</td>
</tr>
<tr>
<td>RESM4001</td>
<td>Bio-Environmental Systems Management Project-Seminar II</td>
</tr>
<tr>
<td>RESM4002</td>
<td>Animal Science Project-Seminar I</td>
</tr>
<tr>
<td>RESM4003</td>
<td>Animal Science Project-Seminar II</td>
</tr>
<tr>
<td>RESM4004</td>
<td>Research Methods for Economics and Business</td>
</tr>
</tbody>
</table>
Appendix I: New Course Numbers to Old Course Numbers

RESM4005: Project-Seminar for Economics and Business EB450: Project-Seminar (A)
RESM4006: Environmental Sciences Project-Seminar I ES449: Project-Seminar I (A)
RESM4007: Environmental Sciences Project-Seminar II ES450: Project-Seminar II (A)
RESM4008: Plant Science Project-Seminar I PS449: Plant Science Project-Seminar I (A)
RESM4009: Plant Science Project-Seminar II PS450: Plant Science Project-Seminar II (A)
RESM4010: Aquaculture Project-Seminar I AS449: Project-Seminar I (A)
RESM4011: Aquaculture Project-Seminar II AS450: Project-Seminar II (A)
SOCI1000: Introductory Sociology H160: Introductory Sociology (H)
SOCI1001: Introductory Sociology II new course (H)
SOCI3000: Rural Sociology H360: Rural Sociology (H)
SOIL0100: Principles of Soil Science CS12: Principles of Soil Science
SOIL0200: Soil Management CS13: Soil Management
SOIL2000: Introduction to Soil Science CS220: Introduction to Soil Science (A)
SOIL3000: Soil Fertility & Nutrient Management CS320: Soil Fertility (A)
SOIL3001: Soil Conservation in Agriculture CS345: Soil Conservation in Agriculture (A)
SOIL4000: Environmental Soil Chemistry CS440: Environmental Soil Chemistry
SPAN1000: Basic Spanish I H135: Basic Spanish I (H)
SPAN1001: Basic Spanish II H136: Basic Spanish II (H)
SPEC2000: Topics in Economics and Business Management EB221: Topics in Economics and Business Management (A)
SPEC4000: Special Topics in Animal Science or Aquaculture AS421: Special Topics in Animal Science or Aquaculture
SPEC4001: Special Topics in Agribiology I B421: Special Topics in Agribiology I (A)
SPEC4002: Special Topics in Agribiology II B422: Special Topics in Agribiology II (A)
SPEC4003: Special Topics in Chemistry and Soil Science I CS415: Special Topics in Chemistry and Soil Science I (A)
SPEC4004: Special Topics in Chemistry and Soil Science II CS425: Special Topics in Chemistry and Soil Science II (A)
SPEC4005: Special Topics in Agricultural Economics and Business I EB421: Special Topics in Agricultural Economics and Business I (A)
SPEC4006: Special Topics in Agricultural Economics and Business II EB422: Special Topics in Agricultural Economics and Business II (A)
SPEC4007: Special Topics in Environmental Studies I ES401: Special Topics in Environmental Studies I (A)
SPEC4008: Special Topics in Environmental Studies II ES402: Special Topics in Environmental Studies II (A)
SPEC4009: Special Topics in Rural Studies H403: Special Topics in Humanities (H)
SPEC4010: Special Topics in Plant Science I PS421: Special Topics in Plant Science I (A)
SPEC4011: Special Topics in Plant Science II PS422: Special Topics in Plant Science II (A)
SPEC4012: Directed Studies in Agricultural Engineering AE415: Directed Studies in Agricultural Engineering (A)
STAT3000: Introduction to Planned Studies: Surveys and Experiments MP211: Introduction to Planned Studies: Surveys and Experiments
STAT4000: Intermediate Statistical Methods MP420: Intermediate Statistical Methods
Appendix II: Old Course Numbers to New Course Numbers

This appendix lists the old course number and course title, followed by the new course number/course title and the course designations. Designations include: (A) for Agriculture courses, (H) for Humanities courses, and DE for Distance Education courses. These designations will assist students in determining program requirements as described in the program syllabi.

<table>
<thead>
<tr>
<th>OLD COURSE</th>
<th>NEW COURSE</th>
<th>DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE14: Surveying</td>
<td>ENGN0100: Surveying</td>
<td></td>
</tr>
<tr>
<td>AE28: Wood Construction Techniques</td>
<td></td>
<td>no longer offered</td>
</tr>
<tr>
<td>AE38: Horticultural Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE46: Soil and Water Resources Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE52: Agricultural Power Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE101: Computer Aided Graphics and Projection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE102: Design and Graphics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE110: Statics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE120: Properties and Mechanics of Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE200: Environmental Impacts and Resource Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE202: Agricultural Machinery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE204: Introduction to Systems Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE206: Design Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE207: Food Processing Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE215: Aquatic Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE230: Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE260: Surveying</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE300: Electric Circuits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE305: Engineering Measurements and Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE310: Thermodynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE311: Technology for Precision Agriculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE312: Digital Circuits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE314: Fundamentals of Chemical Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE315: Strength of Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE320: Structures and Their Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE332: Circuit Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE335: Materials Handling and Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE340: Soil and Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE350: Fluid Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE355: Principles of Agricultural Machinery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE360: Aquatic Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE370: Irrigation and Drainage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE380: Engineering Economy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE410: Water and Water Quality Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE412: Water Quality Issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE415: Directed Studies in Agricultural Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE420: Management of Mechanized Agricultural Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE440: Senior Design Project for Engineers I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE449: Project-Seminar I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE450: Project-Seminar II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix II: Old Course Numbers to New Course Numbers

This appendix lists the old course number and course title, followed by the new course number/course title and the course designations. Designations include: (A) for Agriculture courses, (H) for Humanities courses, and DE for Distance Education courses. These designations will assist students in determining program requirements as described in the program syllabi.
Appendix II: Old Course Numbers to New Course Numbers

<table>
<thead>
<tr>
<th>Old Course Number</th>
<th>New Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG521: Special Topics in Environmental Microbiology</td>
<td>AGR15210: Special Topics in Environmental Microbiology</td>
</tr>
<tr>
<td>AG522: Special Topics in Weed Science</td>
<td>AGR15220: Special Topics in Weed Science</td>
</tr>
<tr>
<td>AG524: Special Topics in Environmental Impact</td>
<td>AGR15240: Special Topics in Environmental Impact</td>
</tr>
<tr>
<td>AG525: Soil Microbiology</td>
<td>AGR15250: Soil Microbiology</td>
</tr>
<tr>
<td>AG526: Special Topics in Plant Pathology</td>
<td>AGR15260: Special Topics in Plant Pathology</td>
</tr>
<tr>
<td>AG527: Economic Entomology</td>
<td>AGR15270: Economic Entomology</td>
</tr>
<tr>
<td>AG531: Special Topics in Applied Ethology</td>
<td>AGR15310: Special Topics in Applied Ethology</td>
</tr>
<tr>
<td>AG532: Special Topics in Animal Nutrition</td>
<td>AGR15320: Special Topics in Animal Nutrition</td>
</tr>
<tr>
<td>AG534: Special Topics in Animal Physiology</td>
<td>AGR15340: Special Topics in Animal Physiology</td>
</tr>
<tr>
<td>AG536: Protein Nutrition</td>
<td>AGR15360: Protein Nutrition</td>
</tr>
<tr>
<td>AG537: Special Topics in Animal Breeding and Genetics</td>
<td>AGR15370: Special Topics in Animal Breeding and Genetics</td>
</tr>
<tr>
<td>AG538: Quantitative Genetics</td>
<td>AGR15380: Quantitative Genetics</td>
</tr>
<tr>
<td>AG539: Molecular Genetic Analysis of Populations</td>
<td>AGR15390: Molecular Genetic Analysis of Populations</td>
</tr>
<tr>
<td>AG541: Special Topics in Soil Fertility</td>
<td>AGR15410: Special Topics in Soil Fertility</td>
</tr>
<tr>
<td>AG543: Special Topics in Environmental Analysis</td>
<td>AGR15430: Special Topics in Environmental Analysis</td>
</tr>
<tr>
<td>AG544: Organic Environmental Analysis</td>
<td>AGR15440: Organic Environmental Analysis</td>
</tr>
<tr>
<td>AG545: Environmental Soil Chemistry</td>
<td>AGR15450: Environmental Soil Chemistry</td>
</tr>
<tr>
<td>AG546: Special Topics in Soil and Water Management</td>
<td>AGR15460: Special Topics in Soil and Water Management</td>
</tr>
<tr>
<td>AG547: Special Topics in Analytical Instrumentation for Researchers</td>
<td>AGR15470: Special Topics in Analytical Instrumentation for Researchers</td>
</tr>
<tr>
<td>AG551: Special Topics in Plant Breeding</td>
<td>AGR15510: Special Topics in Plant Breeding</td>
</tr>
<tr>
<td>AG552: Plant Breeding Methods</td>
<td>AGR15520: Plant Breeding Methods</td>
</tr>
<tr>
<td>AG553: Nitrogen in Crop Production</td>
<td>AGR15530: Nitrogen in Crop Production</td>
</tr>
<tr>
<td>AG554: Special Topics in Crop Physiology</td>
<td>AGR15540: Special Topics in Crop Physiology</td>
</tr>
<tr>
<td>AG556: Advanced Crop Physiology</td>
<td>AGR15560: Advanced Crop Physiology</td>
</tr>
<tr>
<td>AG557: Special Topics in Agricultural Biotechnology</td>
<td>AGR15570: Special Topics in Agricultural Biotechnology</td>
</tr>
<tr>
<td>AG558: Plant Biotechnology cross-referenced as PS475</td>
<td>AGR15580: Plant Biotechnology I</td>
</tr>
<tr>
<td>AG561: Special Topics in Animal Product Technology</td>
<td>AGR15610: Special Topics in Animal Product Technology</td>
</tr>
<tr>
<td>AG562: Ruminant Digestive Physiology and Metabolism</td>
<td>AGR15620: Ruminant Digestive Physiology and Metabolism</td>
</tr>
<tr>
<td>AG563: Intermediate Statistical Methods</td>
<td>AGR15630: Intermediate Statistical Methods</td>
</tr>
<tr>
<td>AG570: Communication Skills and Graduate Seminar</td>
<td>AGR15700: Communication Skills and Graduate Seminar</td>
</tr>
<tr>
<td>AG571: Module Course I</td>
<td>AGR15710: Module Course I</td>
</tr>
<tr>
<td>AG573: Module Course II</td>
<td>AGR15705: Module Course II</td>
</tr>
<tr>
<td>AG574: Advanced Studies in Food Chemistry</td>
<td>AGR15740: Advanced Studies in Food Chemistry</td>
</tr>
<tr>
<td>AG900: Graduate Thesis</td>
<td>AGR19000: Graduate Thesis</td>
</tr>
<tr>
<td>AS12: The Farm Workplace I</td>
<td>ANSC0100: The Farm Workplace I</td>
</tr>
<tr>
<td>AS16: Farm Animal Production I</td>
<td>ANSC0103: Farm Animal Production I</td>
</tr>
<tr>
<td>AS18: Farm Animal Biology I</td>
<td>ANSC0104: Farm Animal Biology I</td>
</tr>
<tr>
<td>AS20: Farm Animal Breeding</td>
<td>ANSC0105: Farm Animal Breeding</td>
</tr>
<tr>
<td>AS22: The Farm Workplace II</td>
<td>ANSC0106: The Farm Workplace II</td>
</tr>
<tr>
<td>AS24: Principles of Disease</td>
<td>AHVT0202: Principles of Disease</td>
</tr>
<tr>
<td>AS25: Animal Nursing and Clinical Procedures I</td>
<td>no longer offered</td>
</tr>
<tr>
<td>AS27: Farm Animal Biology and Practices II</td>
<td>ANSC0108: Farm Animal Biology and Practices II</td>
</tr>
<tr>
<td>AS36: Principles of Pharmacology</td>
<td>AHVT0203: Principles of Pharmacology</td>
</tr>
</tbody>
</table>
Appendix II: Old Course Numbers to New Course Numbers

AS37: Laboratory Animal Care I
AS39: Veterinary Laboratory Techniques I
AS40: Support Services in Veterinary Practice
AS46: Animal Nursing and Clinical Procedures II
AS49: Veterinary Laboratory Techniques II
AS59: Veterinary Laboratory Techniques III
AS60: Animal Nursing—Clinical Practices I
AS61: Animal Nursing—Clinical Practices II
AS62: Animal Nursing—Clinical Practices III
AS63: Animal Nursing—Clinical Practices IV
AS64: Animal Nursing—Clinical Practices V
AS65: Project-Seminar
AS66: Farm Animal Production II
AS68: Farm Animal Biology II
AS71: Laboratory Animal Care II
AS76: Farm Animal Production III
AS77: Farm Animal Production III Practices
AS86: Farm Animal Production IV
AS87: Farm Animal Production IV Practices
AS90: Technology Project
AS95: Animal Health Technology Project
AS99: Practicum—Animal Health Technology
AS200: Animal Agriculture I
AS201: Animal Agriculture II
AS202: Organic Livestock Production
AS210: Introduction to Aquaculture
AS230: Physiological Systems of Farm Animals
AS240: The Horse: Its Biology and Use
AS241: Introduction to Applied Ethology
AS305: Animal Nutrition
AS310: Animal Breeding
AS320: Animal Health
AS325: Applied Animal Nutrition
AS330: Growth, Reproduction and Lactation
AS335: Environmental Physiology
AS341: Domestic Animal Behavior
AS345: Eggs and Dairy Products
AS350: Meat Science
AS365: Fish Nutrition
AS370: Fish Health
AS375: Aquatic Ecology
AS380: Physiology of Aquatic Animals
AS421: Special Topics in Animal Science or Aquaculture
AS440: Finfish Production
AS445: Shellfish Production
AS449: Project-Seminar I
AS449: Project-Seminar I
AS450: Project-Seminar II

AHVT0204: Laboratory Animal Care I
AHVT0205: Veterinary Laboratory Techniques I
AHVT0206: Support Services in Veterinary Practice
no longer offered
AHVT0207: Veterinary Laboratory Techniques II
AHVT0303: Veterinary Laboratory Techniques III
AHVT0100: Animal Nursing—Clinical Practices I
AHVT0101: Animal Nursing—Clinical Practices II
AHVT0200: Animal Nursing—Clinical Practices III
AHVT0201: Animal Nursing—Clinical Practices IV
AHVT0302: Animal Nursing—Clinical Practices V
ANSC0111: Project-Seminar
ANSC0109: Farm Animal Production II
ANSC0110: Farm Animal Biology II
AHVT0305: Laboratory Animal Care II
ANSC0200: Farm Animal Production III
ANSC0201: Farm Animal Production III Practices
ANSC0202: Farm Animal Production IV
ANSC0203: Farm Animal Production IV Practices
ANSC0300: Technology Project
AHVT0304: Animal Health Technology Project
AHVT0301: Practicum—Animal Health Technology
ANSC2000: Animal Agriculture I
ANSC2001: Animal Agriculture II
ANSC2004: Organic Livestock Production
AQUA2000: Introduction to Aquaculture
BIOL2006: Mammalian Physiology
ANSC2002: The Horse: Its Biology and Use
ANSC2003: Companion Animal Behaviour
NUTR3000: Animal Nutrition
ANSC3000: Animal Breeding
ANSC3001: Animal Health
NUTR3001: Applied Animal Nutrition
BIOL3008: Growth, Reproduction and Lactation
BIOL3004: Environmental Physiology
ANSC3002: Domestic Animal Behaviour
ANSC3003: Eggs and Dairy Products
ANSC3004: Meat Science
NUTR3002: Fish Nutrition
AQUA3000: Fish Health
BIOL3006: Aquatic Ecology
BIOL3005: Physiology of Aquatic Animals
SPEC4000: Special Topics in Animal Science or Aquaculture
AQUA4000: Finfish Production
AQUA4001: Shellfish Production
RESM4002: Animal Science Project-Seminar I
RESM4010: Aquaculture Project-Seminar I
RESM4003: Animal Science Project-Seminar II
Appendix II: Old Course Numbers to New Course Numbers

<table>
<thead>
<tr>
<th>Old Course Number</th>
<th>New Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS450: Project-Seminar II</td>
<td>RESM4011: Aquaculture Project-Seminar II (A)</td>
</tr>
<tr>
<td>AS460: Avian Biology</td>
<td>BOL4000: Avian Biology</td>
</tr>
<tr>
<td>AS465: Molecular Applications to Animal Production</td>
<td>GENE4000: Molecular Applications to Animal Production (A)</td>
</tr>
<tr>
<td>AS470: Animal Cell Culture</td>
<td>BOL4001: Animal Cell Culture</td>
</tr>
<tr>
<td>AS475: Ruminant Digestive Physiology and Metabolism</td>
<td>NUTR4000: Ruminant Digestive Physiology and Metabolism</td>
</tr>
<tr>
<td>AS490: Topics in Animal Production I</td>
<td>ANSC4000: Topics in Animal Production I (A)</td>
</tr>
<tr>
<td>AS492: Topics in Animal Production II</td>
<td>ANSC4001: Topics in Animal Production II (A)</td>
</tr>
<tr>
<td>B15: Animal Anatomy</td>
<td>BOL0100: Animal Anatomy</td>
</tr>
<tr>
<td>B40: Plant Pathology</td>
<td>BOL0101: Plant Pathology</td>
</tr>
<tr>
<td>B41: Plant Physiology</td>
<td>no longer offered</td>
</tr>
<tr>
<td>B43: Entomology</td>
<td>BOL0200: Entomology</td>
</tr>
<tr>
<td>B46: Weed Science</td>
<td>BOL0103: Weed Science</td>
</tr>
<tr>
<td>B100: Botany</td>
<td>BOL1000: Botany</td>
</tr>
<tr>
<td>B110: Zoology</td>
<td>BOL1001: Zoology</td>
</tr>
<tr>
<td>B200: Cell Biology</td>
<td>BOL2000: Cell Biology</td>
</tr>
<tr>
<td>B201: Cell Biology Laboratory</td>
<td>BOL2001: Cell Biology Laboratory</td>
</tr>
<tr>
<td>B225: Microbiology</td>
<td>MICR2000: Microbiology</td>
</tr>
<tr>
<td>B240: Genetics I</td>
<td>GENE2000: Genetics</td>
</tr>
<tr>
<td>B260: Plant Physiology</td>
<td>BOL2002: Plant Physiology</td>
</tr>
<tr>
<td>B265: Systematic Botany</td>
<td>BOL2003: Systematic Botany</td>
</tr>
<tr>
<td>B270: Structural Botany</td>
<td>BOL2004: Structural Botany</td>
</tr>
<tr>
<td>B300: Principles of Plant Pathology</td>
<td>BOL2005: Principles of Plant Pathology (A)</td>
</tr>
<tr>
<td>B320: General Entomology</td>
<td>BOL3000: General Entomology</td>
</tr>
<tr>
<td>B330: Ecology</td>
<td>BOL3001: Ecology</td>
</tr>
<tr>
<td>B335: Weed Science</td>
<td>BOL3002: Weed Science</td>
</tr>
<tr>
<td>B340: Comparative Vertebrate Anatomy</td>
<td>BOL3003: Comparative Vertebrate Anatomy</td>
</tr>
<tr>
<td>B355: Food Microbiology</td>
<td>MICR3000: Food Microbiology</td>
</tr>
<tr>
<td>B365: Environmental Impact</td>
<td>ENVS3000: Environmental Impact</td>
</tr>
<tr>
<td>B370: An Introduction to Molecular Genetics</td>
<td>GENE3000: An Introduction to Molecular Genetics</td>
</tr>
<tr>
<td>B375: Population and Quantitative Genetics</td>
<td>GENE3001: Population and Quantitative Genetics</td>
</tr>
<tr>
<td>B385: Principles of Pest Management</td>
<td>ENVS3004: Principles of Pest Management (A)</td>
</tr>
<tr>
<td>B400: Soil Microbiology</td>
<td>MICR4000: Soil Microbiology</td>
</tr>
<tr>
<td>B405: Pesticides in Agriculture</td>
<td>ENVS4000: Pesticides in Agriculture (A)</td>
</tr>
<tr>
<td>B406: Economic Plant Pathology</td>
<td>ENVS4001: Economic Plant Pathology (A)</td>
</tr>
<tr>
<td>B421: Special Topics in Agribiology I</td>
<td>SPEC4001: Special Topics in Agribiology I (A)</td>
</tr>
<tr>
<td>B422: Special Topics in Agribiology II</td>
<td>SPEC4002: Special Topics in Agribiology II (A)</td>
</tr>
<tr>
<td>B425: Economic Entomology</td>
<td>ENVS4002: Economic Entomology</td>
</tr>
<tr>
<td>B435: Conservation Biology</td>
<td>BOL4002: Conservation Biology</td>
</tr>
<tr>
<td>CS12: Principles of Soil Science</td>
<td>SOIL0100: Principles of Soil Science</td>
</tr>
<tr>
<td>CS13: Soil Management</td>
<td>SOIL0200: Soil Management</td>
</tr>
<tr>
<td>CS14: Agricultural Chemistry</td>
<td>CHEM0100: Agricultural Chemistry</td>
</tr>
<tr>
<td>CS89: Preparatory Chemistry</td>
<td>CHEM0050: Preparatory Chemistry</td>
</tr>
<tr>
<td>CS101: General Chemistry I</td>
<td>CHEM1000: General Chemistry I</td>
</tr>
<tr>
<td>CS102: General Chemistry II</td>
<td>CHEM1001: General Chemistry II</td>
</tr>
<tr>
<td>CS110: Organic Chemistry</td>
<td>no longer offered</td>
</tr>
<tr>
<td>CS200: Biochemistry I</td>
<td>no longer offered</td>
</tr>
</tbody>
</table>
Appendix II: Old Course Numbers to New Course Numbers

<table>
<thead>
<tr>
<th>Old Course Number</th>
<th>New Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS205: Biochemistry II</td>
<td>no longer offered</td>
</tr>
<tr>
<td>CS212: Analytical Chemistry I</td>
<td>CHEM2002: Analytical Chemistry I</td>
</tr>
<tr>
<td>CS220: Introduction to Soil Science</td>
<td>SOIL2000: Introduction to Soil Science</td>
</tr>
<tr>
<td>CS230: Introduction to Geology</td>
<td>GEOL2000: Introduction to Geology</td>
</tr>
<tr>
<td>CS275: Food Chemistry I</td>
<td>CHEM2003: Food Chemistry I</td>
</tr>
<tr>
<td>CS301: Biochemistry</td>
<td>CHEM3000: Biochemistry</td>
</tr>
<tr>
<td>CS302: Biochemical Pathways</td>
<td>CHEM3001: Biochemical Pathways</td>
</tr>
<tr>
<td>CS310: Radiotracers in Agriculture</td>
<td>CHEM3002: Radiotracers in Agriculture</td>
</tr>
<tr>
<td>CS316: Advanced Organic Chemistry</td>
<td>no longer offered</td>
</tr>
<tr>
<td>CS318: Advanced Integrated Chemistry Laboratory I</td>
<td>CHEM3003: Advanced Integrated Chemistry Laboratory I</td>
</tr>
<tr>
<td>CS320: Soil Fertility</td>
<td>SOIL3000: Soil Fertility & Nutrient Management</td>
</tr>
<tr>
<td>CS341: Instrumental Analytical Chemistry II</td>
<td>CHEM3004: Instrumental Analytical Chemistry II</td>
</tr>
<tr>
<td>CS342: Instrumental Analytical Chemistry III</td>
<td>CHEM3005: Instrumental Analytical Chemistry III</td>
</tr>
<tr>
<td>CS345: Soil Conservation in Agriculture</td>
<td>SOIL3001: Soil Conservation in Agriculture</td>
</tr>
<tr>
<td>CS360: Mammalian Biochemistry</td>
<td>CHEM3006: Mammalian Biochemistry</td>
</tr>
<tr>
<td>CS375: Food Chemistry II</td>
<td>CHEM3007: Food Chemistry II</td>
</tr>
<tr>
<td>CS380: Food Quality Assurance</td>
<td>FOOD3000: Food Quality Assurance</td>
</tr>
<tr>
<td>CS415: Special Topics in Chemistry and Soil Science I</td>
<td>SPEC4003: Special Topics in Chemistry and Soil Science I</td>
</tr>
<tr>
<td>CS425: Special Topics in Chemistry and Soil Science II</td>
<td>SPEC4004: Special Topics in Chemistry and Soil Science II</td>
</tr>
<tr>
<td>CS436: Advanced Integrated Chemistry Laboratory II</td>
<td>CHEM4000: Advanced Integrated Chemistry Laboratory II</td>
</tr>
<tr>
<td>CS440: Environmental Soil Chemistry</td>
<td>SOIL4000: Environmental Soil Chemistry</td>
</tr>
<tr>
<td>EB10: Accounting</td>
<td>MGMT0100: Accounting</td>
</tr>
<tr>
<td>EB12: Macroeconomics</td>
<td>ECON0101: Introductory Macroeconomics</td>
</tr>
<tr>
<td>EB13: Microeconomics</td>
<td>ECON0100: Introductory Microeconomics</td>
</tr>
<tr>
<td>EB40: Marketing Practices</td>
<td>MGMT0102: Agricultural Marketing</td>
</tr>
<tr>
<td>EB41: Business Law</td>
<td>MGMT0103: Business Law</td>
</tr>
<tr>
<td>EB42: Applied Farm Management</td>
<td>MGMT0200: Applied Farm Management</td>
</tr>
<tr>
<td>EB65: Business Project</td>
<td>MGMT0201: Business Project</td>
</tr>
<tr>
<td>EB72: Farm Project</td>
<td>MGMT0300: Farm Project</td>
</tr>
<tr>
<td>EB90: Technology Project</td>
<td>MGMT0302: Economics and Business Technology Project</td>
</tr>
<tr>
<td>EB95: Practicum—Farming Technology</td>
<td>MGMT0301: Practicum—Farming Technology</td>
</tr>
<tr>
<td>EB110: Agricultural Economics</td>
<td>ECON1000: Principles of Microeconomics</td>
</tr>
<tr>
<td>EB200: Microeconomics I</td>
<td>ECON2000: Intermediate Microeconomics</td>
</tr>
<tr>
<td>EB205: Microeconomics II</td>
<td>no longer offered</td>
</tr>
<tr>
<td>EB220: Production Economics</td>
<td>ECON2002: Production Economics</td>
</tr>
<tr>
<td>EB221: Topics in Economics and Business Management</td>
<td>SPEC2000: Topics in Economics and Business Management</td>
</tr>
<tr>
<td>EB225: Introduction to Small Business Entrepreneurship</td>
<td>MGMT1000: Small Business Entrepreneurship</td>
</tr>
<tr>
<td>EB255: Macroeconomics I</td>
<td>ECON1001: Principles of Macroeconomics</td>
</tr>
<tr>
<td>EB260: Mathematical Economics</td>
<td>ECON3000: Mathematical Economics</td>
</tr>
<tr>
<td>EB300: Environmental and Resource Economic Policy</td>
<td>no longer offered</td>
</tr>
</tbody>
</table>
Appendix II: Old Course Numbers to New Course Numbers

<table>
<thead>
<tr>
<th>Old Course Number</th>
<th>New Course Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB305</td>
<td>ECON2001: Intermediate Macroeconomics</td>
</tr>
<tr>
<td>EB315</td>
<td>MGMT3000: Management Accounting</td>
</tr>
<tr>
<td>EB320</td>
<td>ECON3002: Agricultural and Food Policy</td>
</tr>
<tr>
<td>EB325</td>
<td>ECON3003: Mathematical Programming</td>
</tr>
<tr>
<td>EB330</td>
<td>ECON3004: Agricultural Markets and Prices</td>
</tr>
<tr>
<td>EB335</td>
<td>MGMT2002: Marketing</td>
</tr>
<tr>
<td>EB360</td>
<td>ECON3005: Econometrics</td>
</tr>
<tr>
<td>EB400</td>
<td>no longer offered</td>
</tr>
<tr>
<td>EB410</td>
<td>MGMT4000: Strategic Management</td>
</tr>
<tr>
<td>EB419</td>
<td>ECON4001: Agri-food Policy Analysis</td>
</tr>
<tr>
<td>EB421</td>
<td>SPEC4005: Special Topics in Agricultural Economics and Business I</td>
</tr>
<tr>
<td>EB422</td>
<td>SPEC4006: Special Topics in Agricultural Economics and Business II</td>
</tr>
<tr>
<td>EB425</td>
<td>RESM4004: Research Methods for Economics and Business</td>
</tr>
<tr>
<td>EB430</td>
<td>MGMT3001: International Marketing</td>
</tr>
<tr>
<td>EB435</td>
<td>MGMT3002: Consumer Behaviour</td>
</tr>
<tr>
<td>EB441</td>
<td>ECON4002: Topics in Advanced Farm Management</td>
</tr>
<tr>
<td>EB445</td>
<td>MGMT4001: Advanced Entrepreneurship</td>
</tr>
<tr>
<td>EB450</td>
<td>RESM4005: Project-Seminar for Economics and Business</td>
</tr>
<tr>
<td>ES60</td>
<td>HORT0100: Landscape Plants I</td>
</tr>
<tr>
<td>ES61</td>
<td>HORT0101: Landscape Plants II</td>
</tr>
<tr>
<td>ES62</td>
<td>HORT0204: Landscape Plants III</td>
</tr>
<tr>
<td>ES200</td>
<td>ENVS2000: Environmental Studies I</td>
</tr>
<tr>
<td>ES201</td>
<td>ENVS2001: Environmental Studies II</td>
</tr>
<tr>
<td>ES202</td>
<td>ENVS2002: Composting and Compost Use (A) DE</td>
</tr>
<tr>
<td>ES312</td>
<td>CHEM3009: Environmental Chemistry</td>
</tr>
<tr>
<td>ES330</td>
<td>ENVS3001: Environmental Sampling and Analysis</td>
</tr>
<tr>
<td>ES333</td>
<td>ENVS3002: Waste Treatment and Site Remediation</td>
</tr>
<tr>
<td>ES350</td>
<td>ENVS3003: Environmental Studies Field Course</td>
</tr>
<tr>
<td>ES370</td>
<td>HORT3000: Environmental Processes and Natural Landscape Functions</td>
</tr>
<tr>
<td>ES380</td>
<td>HORT3001: Landscape Project Management</td>
</tr>
<tr>
<td>ES401</td>
<td>SPEC4007: Special Topics in Environmental Studies I</td>
</tr>
<tr>
<td>ES402</td>
<td>SPEC4008: Special Topics in Environmental Studies II</td>
</tr>
<tr>
<td>ES449</td>
<td>RESM4006: Environmental Sciences Project-Seminar I</td>
</tr>
<tr>
<td>ES450</td>
<td>RESM4007: Environmental Sciences Project-Seminar II</td>
</tr>
<tr>
<td>ES470</td>
<td>HORT4000: Urban Tree Management</td>
</tr>
<tr>
<td>H10</td>
<td>ENGL0100: Technical Writing</td>
</tr>
<tr>
<td>H45</td>
<td>CMMT0100: Veterinary Practice Communication</td>
</tr>
<tr>
<td>H60</td>
<td>CMMT0101: Communication Skills</td>
</tr>
<tr>
<td>H101</td>
<td>ENGL1001: The Novel</td>
</tr>
<tr>
<td>H102</td>
<td>ENGL1002: Nature in English and American Literature</td>
</tr>
<tr>
<td>H113</td>
<td>ENGL1000: Composition</td>
</tr>
<tr>
<td>H130</td>
<td>FREN1000: French Language I</td>
</tr>
<tr>
<td>H131</td>
<td>FREN1001: French Language II</td>
</tr>
<tr>
<td>H135</td>
<td>SPAN1000: Basic Spanish I</td>
</tr>
<tr>
<td>H136</td>
<td>SPAN1001: Basic Spanish II</td>
</tr>
<tr>
<td>H150</td>
<td>AGRI1003: Agriculture Today</td>
</tr>
</tbody>
</table>
Appendix II: Old Course Numbers to New Course Numbers

<table>
<thead>
<tr>
<th>Old Course Number</th>
<th>New Course Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H160</td>
<td>SOCI1000: Introductory Sociology</td>
<td>(H)</td>
</tr>
<tr>
<td>H170</td>
<td>GEOG1000: Introductory Human Geography</td>
<td>(H)</td>
</tr>
<tr>
<td>H301</td>
<td>HIST3000: Rural History</td>
<td>(H)</td>
</tr>
<tr>
<td>H310</td>
<td>ENGL3000: Literature of Atlantic Canada</td>
<td>(H)</td>
</tr>
<tr>
<td>H320</td>
<td>EXTE3000: Extension Education in the Rural Community</td>
<td>(H)</td>
</tr>
<tr>
<td>H321</td>
<td>EXTE3001: Leadership Development and the Social Action Process</td>
<td>(H)</td>
</tr>
<tr>
<td>H325</td>
<td>PHIL3000: Environmental and Agricultural Ethics</td>
<td>(H)</td>
</tr>
<tr>
<td>H350</td>
<td>SOCI3000: Rural Sociology</td>
<td>(H)</td>
</tr>
<tr>
<td>H370</td>
<td>GEOG3000: Rural Geography</td>
<td>(H)</td>
</tr>
<tr>
<td>H401</td>
<td>SPEC4009: Special Topics in Rural Studies</td>
<td>(H)</td>
</tr>
<tr>
<td>IN100</td>
<td>AGRI1000: Agricultural Ecosystems</td>
<td>(A) DE</td>
</tr>
<tr>
<td>IN101</td>
<td>AGRI1001: Food Security</td>
<td>(A) DE</td>
</tr>
<tr>
<td>IN202</td>
<td>AGRI2000: Transition to Organic Agriculture</td>
<td>(A)</td>
</tr>
<tr>
<td>IN205</td>
<td>INTD2000: Food Systems in the Tropics</td>
<td>(A)</td>
</tr>
<tr>
<td>IN206</td>
<td>INTD2001: Agricultural Systems of Central Europe</td>
<td>(A)</td>
</tr>
<tr>
<td>IN400</td>
<td>CSCI1001: Computational Methods</td>
<td>no longer offered</td>
</tr>
<tr>
<td>MP14</td>
<td>MATH0050: Functions</td>
<td></td>
</tr>
<tr>
<td>MP90</td>
<td>PHYS0050: Introductory Physics</td>
<td></td>
</tr>
<tr>
<td>MP100</td>
<td>MATH1000: Introductory Calculus I</td>
<td></td>
</tr>
<tr>
<td>MP105</td>
<td>MATH1001: Introductory Calculus II</td>
<td></td>
</tr>
<tr>
<td>MP140</td>
<td>PHYS1002: Physics I</td>
<td></td>
</tr>
<tr>
<td>MP145</td>
<td>PHYS1003: Physics II</td>
<td></td>
</tr>
<tr>
<td>MP150</td>
<td>PHYS1000: Physics for the Life Sciences I</td>
<td></td>
</tr>
<tr>
<td>MP210</td>
<td>STAT2000: Introduction to Statistics</td>
<td></td>
</tr>
<tr>
<td>MP211</td>
<td>STAT3000: Introduction to Planned Studies: Surveys and Experiments</td>
<td></td>
</tr>
<tr>
<td>MP212</td>
<td>STAT2001: Probability and Statistics for Engineering</td>
<td></td>
</tr>
<tr>
<td>MP220</td>
<td>CSCI2000: Computer Science</td>
<td></td>
</tr>
<tr>
<td>MP222</td>
<td>CSCI1000: Computer Methods</td>
<td></td>
</tr>
<tr>
<td>MP230</td>
<td>MATH2000: Multivariable Calculus</td>
<td></td>
</tr>
<tr>
<td>MP236</td>
<td>MATH2001: Differential Equations</td>
<td></td>
</tr>
<tr>
<td>MP250</td>
<td>PHYS1001: Physics for the Life Sciences II</td>
<td></td>
</tr>
<tr>
<td>MP330</td>
<td>AGRI3000: Agrometeorology</td>
<td></td>
</tr>
<tr>
<td>MP335</td>
<td>MATH3000: Applied Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MP336</td>
<td>CSCI3000: Data Structures and Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>MP420</td>
<td>STAT4000: Intermediate Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>MP460</td>
<td>MATH4000: Agricultural Modelling</td>
<td></td>
</tr>
<tr>
<td>PS35</td>
<td>PLSC0100: Utilization of Plant Resources</td>
<td></td>
</tr>
<tr>
<td>PS38</td>
<td>HORT2000: Landscape Plant Nursery Management</td>
<td></td>
</tr>
<tr>
<td>PS39</td>
<td>HORT2001: Greenhouse & Floriculture Crop Management</td>
<td></td>
</tr>
<tr>
<td>PS43</td>
<td>HORT2002: Small Fruit Crops</td>
<td></td>
</tr>
<tr>
<td>PS44</td>
<td>HORT2003: Tree Fruit Crops</td>
<td></td>
</tr>
<tr>
<td>PS45</td>
<td>BIOL0102: Plant Physiology and Stress Management</td>
<td></td>
</tr>
</tbody>
</table>
Appendix II: Old Course Numbers to New Course Numbers

<table>
<thead>
<tr>
<th>Old Course Number</th>
<th>New Course Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS47: Turfgrass Production and Management</td>
<td>HORT0102: Turfgrass Production and Management</td>
<td></td>
</tr>
<tr>
<td>PS49: Potato Production</td>
<td>AGRN0200: Potato Production</td>
<td></td>
</tr>
<tr>
<td>PS50: Landscape Horticulture I</td>
<td>HORT0103: Landscape Horticulture I</td>
<td></td>
</tr>
<tr>
<td>PS51: Residential Landscape Design and Construction</td>
<td>HORT0205: Residential Landscape Design and Construction</td>
<td></td>
</tr>
<tr>
<td>PS52: Cropping Systems I: Cereal-Based Systems</td>
<td>AGRN0201: Cereal-Based Cropping Systems</td>
<td></td>
</tr>
<tr>
<td>PS56: Cropping Systems II: Forage-Based Systems</td>
<td>AGRN0202: Forage-Based Cropping Systems</td>
<td></td>
</tr>
<tr>
<td>PS62: Landscape Plant Materials III</td>
<td>no longer offered</td>
<td></td>
</tr>
<tr>
<td>PS70: Landscape Techniques</td>
<td>HORT0206: Landscape Techniques</td>
<td></td>
</tr>
<tr>
<td>PS71: Arboriculture</td>
<td>HORT0207: Arboriculture</td>
<td></td>
</tr>
<tr>
<td>PS72: Landscape Maintenance</td>
<td>HORT0208: Landscape Maintenance</td>
<td></td>
</tr>
<tr>
<td>PS73: Landscape Horticulture II</td>
<td>HORT0209: Landscape Horticulture II</td>
<td></td>
</tr>
<tr>
<td>PS74: Landscape Design and Construction</td>
<td>HORT0210: Landscape Design and Construction</td>
<td></td>
</tr>
<tr>
<td>PS76: Plant Products Physiology</td>
<td>PLSC0203: Plant Products Physiology</td>
<td></td>
</tr>
<tr>
<td>PS90: Technology Project</td>
<td>PLSC0201: Technology Project</td>
<td></td>
</tr>
<tr>
<td>PS99: Plant Science Techniques</td>
<td>PLSC0202: Plant Science Techniques</td>
<td></td>
</tr>
<tr>
<td>PS147: Farm Woodlot Management</td>
<td>PLSC1000: Farm Woodlot Management</td>
<td>(A)</td>
</tr>
<tr>
<td>PS200: Vegetable Production</td>
<td>HORT2000: Vegetable Production</td>
<td>(A) DE</td>
</tr>
<tr>
<td>PS202: Organic Field Crop Management</td>
<td>AGRN2000: Organic Field Crop Management</td>
<td>(A) DE</td>
</tr>
<tr>
<td>PS211: Specialty Crops</td>
<td>PLSC2000: Specialty Crops</td>
<td></td>
</tr>
<tr>
<td>PS270: Landscape Horticulture Work Program I</td>
<td>HORT2002: Landscape Horticulture Work Program I</td>
<td></td>
</tr>
<tr>
<td>PS280: Introduction to Viticulture</td>
<td>HORT2004: Introduction to Viticulture</td>
<td>(A)</td>
</tr>
<tr>
<td>PS290: The British Garden</td>
<td>HORT2003: The British Garden</td>
<td></td>
</tr>
<tr>
<td>PS300: Forage Crops</td>
<td>AGRN3000: Forage Crops</td>
<td>(A)</td>
</tr>
<tr>
<td>PS305: Grain Production</td>
<td>AGRN3001: Grain Production</td>
<td>(A)</td>
</tr>
<tr>
<td>PS315: Tree Fruit Crops</td>
<td>HORT2006: Tree Fruit Crops</td>
<td>(A)</td>
</tr>
<tr>
<td>PS320: Small Fruit Crops</td>
<td>HORT2007: Small Fruit Crops</td>
<td>(A)</td>
</tr>
<tr>
<td>PS325: Potato Production</td>
<td>AGRN2008: Potato Production</td>
<td>(A) DE</td>
</tr>
<tr>
<td>PS330: Greenhouse Crop Production and Floriculture</td>
<td>HORT2010: Greenhouse & Floriculture Crop Management</td>
<td>(A)</td>
</tr>
<tr>
<td>PS335: Landscape Plant Production</td>
<td>HORT2009: Landscape Plant Nursery Management</td>
<td>(A)</td>
</tr>
<tr>
<td>PS355: Tropical Agriculture</td>
<td>INTD3000: Tropical Agriculture</td>
<td>(A)</td>
</tr>
<tr>
<td>PS360: Landscape Horticulture Project I</td>
<td>HORT3007: Environmental Horticulture Project I</td>
<td>(A)</td>
</tr>
<tr>
<td>PS370: Landscape Horticulture Work Program II</td>
<td>HORT3006: Landscape Horticulture Work Program II</td>
<td></td>
</tr>
<tr>
<td>PS390: Insects and Diseases of Landscape Plants</td>
<td>BIOL3007: Insects and Diseases of Landscape Plants</td>
<td></td>
</tr>
<tr>
<td>PS400: Plant Breeding</td>
<td>PLSC4000: Plant Breeding</td>
<td>(A)</td>
</tr>
<tr>
<td>PS405: Agronomy</td>
<td>AGRN4000: Agronomy</td>
<td>(A)</td>
</tr>
<tr>
<td>PS410: Horticulture</td>
<td>HORT4001: Horticulture</td>
<td>(A)</td>
</tr>
<tr>
<td>PS415: Crop Adaptation</td>
<td>PLSC4001: Crop Adaptation</td>
<td>(A)</td>
</tr>
<tr>
<td>PS421: Special Topics in Plant Science I</td>
<td>SPEC4010: Special Topics in Plant Science I</td>
<td>(A)</td>
</tr>
<tr>
<td>PS422: Special Topics in Plant Science II</td>
<td>SPEC4011: Special Topics in Plant Science II</td>
<td>(A)</td>
</tr>
<tr>
<td>PS440: Management of Specialized Turf</td>
<td>HORT4002: Management of Specialized Turf</td>
<td></td>
</tr>
<tr>
<td>PS449: Plant Science Project-Seminar I</td>
<td>RESM4008: Plant Science Project-Seminar I</td>
<td>(A)</td>
</tr>
<tr>
<td>PS450: Plant Science Project-Seminar II</td>
<td>RESM4009: Plant Science Project-Seminar II</td>
<td>(A)</td>
</tr>
<tr>
<td>PS460: Landscape Horticulture Project II</td>
<td>HORT4004: Environmental Horticulture Project II</td>
<td></td>
</tr>
</tbody>
</table>
Appendix III: NSAC Courses Eligible for Admission to Atlantic Veterinary College

This list was compiled to help applicants choose courses that meet both degree and DVM admissions requirements (Atlantic Veterinary College, PEI). Please note that courses must also meet other prerequisite criteria as listed in the Supplementary Application to AVC, including “Rigor,” “Age of Credits,” “Science Courses,” “Animal Biology Courses,” “Graduate Courses,” and “Repeated Courses.”

<table>
<thead>
<tr>
<th>Course#</th>
<th>Course Name</th>
<th>Course#</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td></td>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>BIOL1000</td>
<td>Botany</td>
<td>CHEM1000</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>BIOL1001</td>
<td>Zoology</td>
<td>CHEM1001</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>BIOL2006</td>
<td>Mammalian Physiology</td>
<td>CHEM2000</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>BIOL3003</td>
<td>Comparative Vertebrate Anatomy</td>
<td>CHEM2002</td>
<td>Analytical Chemistry I</td>
</tr>
<tr>
<td>BIOL3004</td>
<td>Environmental Physiology</td>
<td>CHEM2003</td>
<td>Food Chemistry I</td>
</tr>
<tr>
<td>BIOL3005</td>
<td>Physiology of Aquatic Animals</td>
<td>CHEM2005</td>
<td>Biochemistry I</td>
</tr>
<tr>
<td>BIOL3008</td>
<td>Growth, Reproduction & Lactation</td>
<td>CHEM3000</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>BIOL4000</td>
<td>Avian Biology</td>
<td>CHEM3001</td>
<td>Biochemical Pathways</td>
</tr>
<tr>
<td>BIOL4001</td>
<td>Animal Cell Culture</td>
<td>CHEM3003</td>
<td>Advanced Integrated Chemistry Lab I</td>
</tr>
<tr>
<td>GENE2000</td>
<td>Genetics</td>
<td>CHEM3004</td>
<td>Instrumental Analytical Chemistry II</td>
</tr>
<tr>
<td>GENE3000</td>
<td>An Introduction to Molecular Genetics</td>
<td>CHEM3005</td>
<td>Instrumental Analytical Chemistry III</td>
</tr>
<tr>
<td>GENE3001</td>
<td>Population & Quantitative Genetics</td>
<td>CHEM3007</td>
<td>Food Chemistry II</td>
</tr>
<tr>
<td>GENE4000</td>
<td>Molecular Applications to Animal Production</td>
<td>Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>MICR2000</td>
<td>Microbiology</td>
<td>CHEM2000</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>MICR3000</td>
<td>Food Microbiology</td>
<td>CHEM2003</td>
<td>Food Chemistry I</td>
</tr>
<tr>
<td>MICR4000</td>
<td>Soil Microbiology</td>
<td>CHEM3007</td>
<td>Food Chemistry II</td>
</tr>
</tbody>
</table>

Microbiology

<table>
<thead>
<tr>
<th>Course#</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICR2000</td>
<td>Microbiology</td>
</tr>
<tr>
<td>MICR3000</td>
<td>Food Microbiology</td>
</tr>
<tr>
<td>MICR4000</td>
<td>Soil Microbiology</td>
</tr>
</tbody>
</table>

Genetics

<table>
<thead>
<tr>
<th>Course#</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENE2000</td>
<td>Genetics</td>
</tr>
<tr>
<td>GENE3000</td>
<td>An Introduction to Molecular Genetics</td>
</tr>
<tr>
<td>GENE3001</td>
<td>Population & Quantitative Genetics</td>
</tr>
<tr>
<td>GENE4000</td>
<td>Molecular Application to Animal Production</td>
</tr>
</tbody>
</table>
Appendix III: NSAC Courses Eligible for Admission to Atlantic Veterinary College

<table>
<thead>
<tr>
<th>Course#</th>
<th>Course Name</th>
<th>Course#</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Humanities/Soc Science</td>
<td></td>
<td>Physics</td>
</tr>
<tr>
<td>AGR1001</td>
<td>Food Security</td>
<td>ENGN1002</td>
<td>Statics</td>
</tr>
<tr>
<td>AGR1003</td>
<td>Agriculture Today</td>
<td>ENGN2005</td>
<td>Dynamics</td>
</tr>
<tr>
<td>CMMT3000</td>
<td>Communication Theory & Skills</td>
<td>ENGN3002</td>
<td>Thermodynamics</td>
</tr>
<tr>
<td>ECON1000</td>
<td>Principles of Microeconomics</td>
<td>ENGN3011</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>ECON1001</td>
<td>Principles of Macroeconomics</td>
<td>PHYS1000</td>
<td>Physics for Life Sciences I</td>
</tr>
<tr>
<td>ECON2000</td>
<td>Intermediate Microeconomics</td>
<td>PHYS1001</td>
<td>Physics for Life Sciences II</td>
</tr>
<tr>
<td>ECON2001</td>
<td>Intermediate Macroeconomics</td>
<td>PHYS1002</td>
<td>Physics I</td>
</tr>
<tr>
<td>ECON2002</td>
<td>Production Economics</td>
<td>PHYS1003</td>
<td>Physics II</td>
</tr>
<tr>
<td>ECON3001</td>
<td>Environmental Economics</td>
<td></td>
<td>Math</td>
</tr>
<tr>
<td>ECON3002</td>
<td>Agricultural and Food Policy</td>
<td>ECON3000</td>
<td>Mathematical Economics</td>
</tr>
<tr>
<td>ECON4000</td>
<td>Advanced Microeconomics</td>
<td>ECON3005</td>
<td>Econometrics</td>
</tr>
<tr>
<td>ECON4001</td>
<td>Agri-food Policy Analysis</td>
<td>MATH1000</td>
<td>Introductory Calculus I</td>
</tr>
<tr>
<td>ECON4003</td>
<td>Resource Economics</td>
<td>MATH1001</td>
<td>Introductory Calculus II</td>
</tr>
<tr>
<td>ENGL1000</td>
<td>Composition</td>
<td>MATH2000</td>
<td>Multivariable Calculus</td>
</tr>
<tr>
<td>ENGL1001</td>
<td>The Novel</td>
<td>MATH2001</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>ENGL1002</td>
<td>Nature in English & American Literature</td>
<td>MATH3000</td>
<td>Applied Linear Algebra</td>
</tr>
<tr>
<td>ENGL3000</td>
<td>Literature of Atlantic Canada</td>
<td>MATH4000</td>
<td>Agricultural Modelling</td>
</tr>
<tr>
<td>EXTE3001</td>
<td>Leadership Development & Social Action Process</td>
<td>STAT2000</td>
<td>Introduction to Statistics</td>
</tr>
<tr>
<td>FREN1000</td>
<td>French Language I</td>
<td>STAT2001</td>
<td>Probability & Statistics for Engineering</td>
</tr>
<tr>
<td>FREN1001</td>
<td>French Language II</td>
<td>STAT3000</td>
<td>Introduction to Planned Studies: Surveys & Experiments</td>
</tr>
<tr>
<td>GEOG1000</td>
<td>Introductory Human Geography</td>
<td>STAT4000</td>
<td>Intermediate Statistical Methods</td>
</tr>
<tr>
<td>GEOG3000</td>
<td>Rural Geography</td>
<td></td>
<td>Statistics</td>
</tr>
<tr>
<td>HIST1000</td>
<td>Introduction to Canadian History I</td>
<td>ECON3005</td>
<td>Econometrics</td>
</tr>
<tr>
<td>HIST1001</td>
<td>Introduction to Canadian History II</td>
<td>STAT2000</td>
<td>Introduction to Statistics</td>
</tr>
<tr>
<td>HIST3000</td>
<td>Rural History</td>
<td>STAT3000</td>
<td>Introduction to Planned Studies: Surveys & Experiments</td>
</tr>
<tr>
<td>PHIL3000</td>
<td>Environmental & Agricultural Ethics</td>
<td>STAT4000</td>
<td>Intermediate Statistical Methods</td>
</tr>
<tr>
<td>POLS1000</td>
<td>Intro to Political Science</td>
<td></td>
<td>English Composition</td>
</tr>
<tr>
<td>POLS1001</td>
<td>Structure & Function of Government</td>
<td>ENGL1000</td>
<td>Composition</td>
</tr>
<tr>
<td>SOCI1000</td>
<td>Introductory Sociology I</td>
<td>ENGL1001</td>
<td>The Novel</td>
</tr>
<tr>
<td>SOCI1001</td>
<td>Introductory Sociology II</td>
<td>ENGL1002</td>
<td>Nature in English & American Literature</td>
</tr>
<tr>
<td>SOCI3000</td>
<td>Rural Sociology</td>
<td>ENGL3000</td>
<td>Literature of Atlantic Canada</td>
</tr>
<tr>
<td>SPAN1000</td>
<td>Basic Spanish I</td>
<td></td>
<td>English</td>
</tr>
<tr>
<td>SPAN1001</td>
<td>Basic Spanish II</td>
<td></td>
<td>Communication Theory & Skills</td>
</tr>
</tbody>
</table>
Appendix IV: Course Designations

NSAC courses designated as **Animal Science** electives for the major, or courses for the minor, include the following:

ANSC2000 Animal Agriculture I
ANSC2001 Animal Agriculture II
ANSC2002 The Horse: Its Biology and Use
ANSC2003 Companion Animal Behaviour
ANSC2004 Organic Livestock Production
ANSC3000 Animal Breeding
ANSC3001 Animal Health
ANSC3002 Domestic Animal Behaviour
ANSC3003 Eggs and Dairy Products
ANSC3004 Meat Science
ANSC3005 Animal Welfare
ANSC4000 Topics in Animal Production I
ANSC4001 Topics in Animal Production II
ANSC4003 Avian Production Systems
AQUA2000 Introduction to Aquaculture
AQUA3000 Fish Health
AQUA4000 Finfish Production
AQUA4001 Shellfish Production
BIOL2006 Mammalian Physiology
BIOL3004 Environmental Physiology
BIOL3005 Physiology of Aquatic Animals
BIOL3006 Aquatic Ecology
BIOL3008 Growth, Reproduction and Lactation
BIOL4000 Avian Biology
BIOL4001 Animal Cell Biology
GENE4000 Molecular Applications to Animal Production
NUTR3000 Animal Nutrition
NUTR3001 Applied Animal Nutrition
NUTR3002 Fish Nutrition
SPEC4000 Ruminant Digestive Physiology and Metabolism

NSAC courses classified as **Planning Production** courses:

AGRN2000 Organic Field Crop Management
AGRN2001 Cereal-Based Cropping systems
AGRN2002 Forage-Based Cropping Systems
AGRN2008 Potato Production
HORT2000 Vegetable Production
HORT2001 Principles of Organic Horticulture
HORT2004 Introduction to Viticulture
HORT2006 Tree Fruit Crops
HORT2007 Small Fruit Crops
HORT2009 Landscape Plant Nursery Management
HORT2010 Greenhouse & Floriculture Crop Management
HORT4002 Management of Specialized Turf
PLSC1000 Farm Woodlot Management
PLSC2000 Specialty Crops
PLSC2001 Theory and Practice of Plant Propagation

NSAC courses classified as **Plant Science** electives for the major, or courses for the minor, include AGRN, HORT, and PLSC. In addition the following courses are also designated as Plant Science: BIOL3007 Insects and Diseases of Landscape Plants; INTD3000 Tropical Agriculture; SPEC4010 Special Topics in Plant Science I; and SPEC4011 Special Topics in Plant Science II.
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absentia, Diploma Granted in</td>
<td>24</td>
</tr>
<tr>
<td>Academic</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>54</td>
</tr>
<tr>
<td>Academic Calendar</td>
<td>6</td>
</tr>
<tr>
<td>Academic Prizes</td>
<td>163</td>
</tr>
<tr>
<td>Academic Probation</td>
<td>13, 20</td>
</tr>
<tr>
<td>Academic Regulations</td>
<td>20</td>
</tr>
<tr>
<td>Academic Misconduct</td>
<td>21</td>
</tr>
<tr>
<td>Academic Residency Requirements</td>
<td>24</td>
</tr>
<tr>
<td>Academic Responsibility</td>
<td>20, 21</td>
</tr>
<tr>
<td>Academic Standing</td>
<td>20, 21, 24</td>
</tr>
<tr>
<td>Challenge for Credit</td>
<td>22</td>
</tr>
<tr>
<td>Deferred Examinations</td>
<td>23</td>
</tr>
<tr>
<td>Dropping a Course</td>
<td>22</td>
</tr>
<tr>
<td>Examination Regulations</td>
<td>23</td>
</tr>
<tr>
<td>Required to Withdraw (Academic Dismissal)</td>
<td>21, 122</td>
</tr>
<tr>
<td>Transcripts</td>
<td>18, 26, 120</td>
</tr>
<tr>
<td>Academic Support Services</td>
<td>8</td>
</tr>
<tr>
<td>Acceptance</td>
<td>13, 117</td>
</tr>
<tr>
<td>Address, Notification of Change</td>
<td>129</td>
</tr>
<tr>
<td>Administration and Faculty</td>
<td>183</td>
</tr>
<tr>
<td>Admission</td>
<td>13</td>
</tr>
<tr>
<td>Deadlines</td>
<td>13, 118</td>
</tr>
<tr>
<td>English Proficiency</td>
<td>13, 116</td>
</tr>
<tr>
<td>Full-time students</td>
<td>12, 129</td>
</tr>
<tr>
<td>Mature students</td>
<td>12</td>
</tr>
<tr>
<td>No-program students</td>
<td>12</td>
</tr>
<tr>
<td>Part-time students</td>
<td>12, 129</td>
</tr>
<tr>
<td>Procedures</td>
<td>13</td>
</tr>
<tr>
<td>Readmission</td>
<td>122</td>
</tr>
<tr>
<td>Requirements</td>
<td>14</td>
</tr>
<tr>
<td>Graduate Program</td>
<td>116</td>
</tr>
<tr>
<td>Technical</td>
<td>45, 48, 49, 51</td>
</tr>
<tr>
<td>Undergraduate</td>
<td>28, 38, 41, 43</td>
</tr>
<tr>
<td>Status</td>
<td>12</td>
</tr>
<tr>
<td>Submission of documents</td>
<td>13</td>
</tr>
<tr>
<td>TOEFL</td>
<td>13, 116</td>
</tr>
<tr>
<td>Visiting students</td>
<td>12</td>
</tr>
<tr>
<td>Admission to Candidacy Examination</td>
<td>123</td>
</tr>
<tr>
<td>Advanced Placement</td>
<td>119</td>
</tr>
<tr>
<td>Advanced Standing</td>
<td>21, 24, 119</td>
</tr>
<tr>
<td>Advisors</td>
<td>20</td>
</tr>
<tr>
<td>Agricultural</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>54, 137</td>
</tr>
<tr>
<td>Agricultural Colleges Exchange Program</td>
<td>9</td>
</tr>
<tr>
<td>Agronomy</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>56</td>
</tr>
<tr>
<td>Technology Program</td>
<td>50</td>
</tr>
<tr>
<td>Ancillary Courses</td>
<td>120</td>
</tr>
<tr>
<td>Animal Science</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>57</td>
</tr>
<tr>
<td>Aquaculture</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>64</td>
</tr>
<tr>
<td>Appeal</td>
<td></td>
</tr>
<tr>
<td>of Grades</td>
<td>23</td>
</tr>
<tr>
<td>of Academic Dismissal</td>
<td>21, 122</td>
</tr>
<tr>
<td>of Scholarship Renewal Decision</td>
<td>144</td>
</tr>
<tr>
<td>Application to Graduate</td>
<td>18, 24</td>
</tr>
<tr>
<td>Art</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>64</td>
</tr>
<tr>
<td>Articulation Agreements</td>
<td>10</td>
</tr>
<tr>
<td>Athletics</td>
<td>7, 21</td>
</tr>
<tr>
<td>Facilities</td>
<td>7</td>
</tr>
<tr>
<td>Insurance</td>
<td>25</td>
</tr>
<tr>
<td>Atlantic Veterinary College Admission Requirements</td>
<td>43</td>
</tr>
<tr>
<td>Attendance in class</td>
<td>22</td>
</tr>
<tr>
<td>Audit</td>
<td>22, 120</td>
</tr>
<tr>
<td>Bachelor of Science [B.Sc.(Agr.)]</td>
<td>20</td>
</tr>
<tr>
<td>Agricultural Business</td>
<td>29</td>
</tr>
<tr>
<td>Agricultural Chemistry</td>
<td>37</td>
</tr>
<tr>
<td>Agricultural Economics</td>
<td>30</td>
</tr>
<tr>
<td>Animal Science</td>
<td>31</td>
</tr>
<tr>
<td>Aquaculture</td>
<td>32</td>
</tr>
<tr>
<td>Bio-Environmental Systems Management</td>
<td>33</td>
</tr>
<tr>
<td>Environmental Sciences</td>
<td>34</td>
</tr>
<tr>
<td>Pest Management</td>
<td>37</td>
</tr>
<tr>
<td>Plant Science</td>
<td>36</td>
</tr>
<tr>
<td>Bachelor of Technology [B.Tech]</td>
<td>38</td>
</tr>
<tr>
<td>Applied Science</td>
<td>38</td>
</tr>
<tr>
<td>Environmental Horticulture</td>
<td>38</td>
</tr>
<tr>
<td>Biology</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>65</td>
</tr>
<tr>
<td>Biosystems Engineering</td>
<td>41</td>
</tr>
<tr>
<td>Books (cost)</td>
<td>16</td>
</tr>
<tr>
<td>Bursaries</td>
<td>143</td>
</tr>
<tr>
<td>CAEL</td>
<td>13, 116</td>
</tr>
<tr>
<td>Canada Student Loans</td>
<td>19</td>
</tr>
<tr>
<td>CanTest</td>
<td>116</td>
</tr>
<tr>
<td>Career Services</td>
<td>8</td>
</tr>
<tr>
<td>Centre for Continuing and Distance Education</td>
<td>11</td>
</tr>
<tr>
<td>Certificate of Specialization in Organic Agriculture</td>
<td>53</td>
</tr>
<tr>
<td>Challenge for Credit</td>
<td>22</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>68</td>
</tr>
<tr>
<td>Churches</td>
<td>11</td>
</tr>
<tr>
<td>College Colours</td>
<td>7</td>
</tr>
</tbody>
</table>
Index

Communications	Course Descriptions	71
Computer	Course Descriptions	72
Computing Services	10	
Continuing and Distance Education	11	
Continuing Students	129	
Convocation	136	
Corequisite	54	
Course Descriptions:	54, 137	
Academic (ACAD)	54	
Agricultural (AGRI)	54, 137	
Agronomy (AGRN)	56	
Animal Science (ANSC)	57	
Aquaculture (AQUA)	64	
Art (ARTS)	64	
Biology (BIOL)	65	
Chemistry (CHEM)	68	
Communications (CMMT)	71	
Computer (CSCI)	72	
Economics (ECON)	72	
English (ENGL)	76	
Engineering (ENGN)	77	
Environmental Sciences (ENVS)	83	
Extension Education (EXTE)	85	
Food Science (FOOD)	85	
French (FREN)	86	
Genetics (GENE)	87	
Geography (GEOG)	88	
Geology (GEOL)	88	
Graduate	137	
History (HIST)	88	
Horticulture (HORT)	89	
International Development (INTD)	93	
Internship	94	
Mathematics (MATH)	94	
Management (MGMT)	96	
Microbiology (MICR)	99	
Nutrition (NUTR)	100	
Philosophy (PHIL)	100	
Physics (PHYS)	101	
Plant Science (PLSC)	102	
Political Science (POLS)	103	
Research Methods (RESM)	104	
Sociology (SOCI)	105	
Soils (SOIL)	106	
Spanish (SPAN)	107	
Special Topics (SPEC)	107	
Statistics (STAT)	110	
Veterinary Technology (VTEC)	110	
Course Load	22	
Cross-Referenced Courses	137	
Cumulative Average	24	
Dates, Schedule of	6	
Day Care	11	
Deadlines	118	
Academic	21, 23	
Appeal	21, 23	
Application	13	
Course Registration	6	
Deposits	17, 18	
Dropping a Course	22	
Fees	16	
Graduate Program	118, 121	
Refunds	18	
Thesis	136	
Defence of Thesis	135	
Deferred Examinations	23	
Demonstrating	122	
Deposits	18	
Diploma in Enterprise Management	44	
Diplomas, Granted in Absentia	24	
Dismissal, Academic	21, 121	
Distance Education	11	
Drop Failure	22	
Dropping a Course	22	
Economics	41	
Course Descriptions	72	
E-mail	10, 129	
English	76	
Course Descriptions	13, 116	
English Language Requirements	13, 116	
Engineering	41	
Course Descriptions	77	
Engineering Diploma	41	
Enterprise Management	44	
Entrance Requirements	14	
Environmental Engineering	41	
Environmental Horticulture	48	
Environmental Sciences	83	
Course Descriptions	83	
Ethical Review	133	
Examinations	133	
Admission to Candidacy	123	
Deferred	23	
Regulations	23	
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rereading</td>
<td>23</td>
</tr>
<tr>
<td>Supplemental</td>
<td>23</td>
</tr>
<tr>
<td>Thesis</td>
<td>134</td>
</tr>
<tr>
<td>Exchange Program</td>
<td>8, 9, 10</td>
</tr>
<tr>
<td>Extension Education</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>85</td>
</tr>
<tr>
<td>Facilities</td>
<td>7</td>
</tr>
<tr>
<td>Faculty</td>
<td>183</td>
</tr>
<tr>
<td>Fees</td>
<td>16</td>
</tr>
<tr>
<td>Caution/Development Fund</td>
<td>17</td>
</tr>
<tr>
<td>Change in</td>
<td>16</td>
</tr>
<tr>
<td>Full-time student</td>
<td>16</td>
</tr>
<tr>
<td>Graduate program</td>
<td>130</td>
</tr>
<tr>
<td>Graduation fee</td>
<td>24</td>
</tr>
<tr>
<td>Health and Dental Plan</td>
<td>16</td>
</tr>
<tr>
<td>House</td>
<td>17</td>
</tr>
<tr>
<td>International students</td>
<td>16, 19</td>
</tr>
<tr>
<td>Key replacement</td>
<td>17</td>
</tr>
<tr>
<td>Laundry</td>
<td>17</td>
</tr>
<tr>
<td>Materials and service</td>
<td>17</td>
</tr>
<tr>
<td>Meal Plan</td>
<td>17</td>
</tr>
<tr>
<td>Medical Insurance</td>
<td>16</td>
</tr>
<tr>
<td>Part-time Student</td>
<td>16</td>
</tr>
<tr>
<td>Program-related</td>
<td>17</td>
</tr>
<tr>
<td>Refund of</td>
<td>18, 122</td>
</tr>
<tr>
<td>Registration Deposit</td>
<td>18</td>
</tr>
<tr>
<td>Residence</td>
<td>17</td>
</tr>
<tr>
<td>Student and Technology Renewal</td>
<td>16</td>
</tr>
<tr>
<td>Tuition</td>
<td>16</td>
</tr>
<tr>
<td>Financial Support</td>
<td>131</td>
</tr>
<tr>
<td>Food Science</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>85</td>
</tr>
<tr>
<td>Food Services</td>
<td>8</td>
</tr>
<tr>
<td>French</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>86</td>
</tr>
<tr>
<td>Foreign Students</td>
<td>13, 19, 116</td>
</tr>
<tr>
<td>Freedom of Information and Protection of Privacy</td>
<td>20</td>
</tr>
<tr>
<td>Full-time Students</td>
<td>12, 129</td>
</tr>
<tr>
<td>General Information</td>
<td>7</td>
</tr>
<tr>
<td>Genetics</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>87</td>
</tr>
<tr>
<td>Geography</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>88</td>
</tr>
<tr>
<td>Geology</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>88</td>
</tr>
<tr>
<td>Governor-General’s Medals</td>
<td>163</td>
</tr>
<tr>
<td>Grades</td>
<td>23</td>
</tr>
<tr>
<td>Appeals</td>
<td>23</td>
</tr>
<tr>
<td>Grading Policy (Graduate)</td>
<td>120</td>
</tr>
<tr>
<td>Release of Final Grades</td>
<td>18, 24, 120</td>
</tr>
<tr>
<td>Graduate Course Descriptions</td>
<td>137</td>
</tr>
<tr>
<td>Graduate/Mature Student Housing</td>
<td>17</td>
</tr>
<tr>
<td>Graduate Program</td>
<td>115</td>
</tr>
<tr>
<td>Admission Requirements</td>
<td>116</td>
</tr>
<tr>
<td>ATC Exam</td>
<td>123</td>
</tr>
<tr>
<td>Curriculum Listing</td>
<td>136</td>
</tr>
<tr>
<td>Demonstrating</td>
<td>122</td>
</tr>
<tr>
<td>Graduate Course Descriptions</td>
<td>137</td>
</tr>
<tr>
<td>Progress Report, Annual</td>
<td>124</td>
</tr>
<tr>
<td>Registration</td>
<td>126</td>
</tr>
<tr>
<td>Thesis</td>
<td>133</td>
</tr>
<tr>
<td>Time Limits</td>
<td>121</td>
</tr>
<tr>
<td>Graduation</td>
<td></td>
</tr>
<tr>
<td>Application to Graduate</td>
<td>18, 24</td>
</tr>
<tr>
<td>Convocation</td>
<td>136</td>
</tr>
<tr>
<td>Fees</td>
<td>18, 24</td>
</tr>
<tr>
<td>Grants, Conference</td>
<td>132</td>
</tr>
<tr>
<td>Health and Dental Plan</td>
<td>16</td>
</tr>
<tr>
<td>Health Insurance</td>
<td>25</td>
</tr>
<tr>
<td>Health Services</td>
<td>8</td>
</tr>
<tr>
<td>HelpDesk</td>
<td>10</td>
</tr>
<tr>
<td>High Honours</td>
<td>24</td>
</tr>
<tr>
<td>History</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>88</td>
</tr>
<tr>
<td>Honours</td>
<td>24</td>
</tr>
<tr>
<td>Horticulture</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>89</td>
</tr>
<tr>
<td>Identification cards</td>
<td>16, 26, 128</td>
</tr>
<tr>
<td>IELTS</td>
<td>13, 116</td>
</tr>
<tr>
<td>International Baccalaureate</td>
<td>21</td>
</tr>
<tr>
<td>International Development</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>93</td>
</tr>
<tr>
<td>International Students</td>
<td>12, 19, 116</td>
</tr>
<tr>
<td>International Programs</td>
<td>8</td>
</tr>
<tr>
<td>International Study Opportunities</td>
<td>9</td>
</tr>
<tr>
<td>Internship</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>94</td>
</tr>
<tr>
<td>Intramural Athletics</td>
<td>7</td>
</tr>
<tr>
<td>Language Requirements</td>
<td>13, 116</td>
</tr>
<tr>
<td>Leave of Absence</td>
<td>128</td>
</tr>
<tr>
<td>Letter of Permission</td>
<td>25, 119</td>
</tr>
<tr>
<td>Library</td>
<td>11</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Reread of an Exam</td>
<td>23</td>
</tr>
<tr>
<td>Research Assistantships</td>
<td>131</td>
</tr>
<tr>
<td>Research Methods</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>104</td>
</tr>
<tr>
<td>Residence</td>
<td>8</td>
</tr>
<tr>
<td>Early Arrival</td>
<td>19</td>
</tr>
<tr>
<td>Food Service</td>
<td>8</td>
</tr>
<tr>
<td>Mature Students</td>
<td>17</td>
</tr>
<tr>
<td>Room Draw</td>
<td>18</td>
</tr>
<tr>
<td>Regulations</td>
<td>25</td>
</tr>
<tr>
<td>Residency Requirement, Academic</td>
<td>24</td>
</tr>
<tr>
<td>Returning Students</td>
<td>18</td>
</tr>
<tr>
<td>Safety</td>
<td>25</td>
</tr>
<tr>
<td>Schedule of dates</td>
<td>6</td>
</tr>
<tr>
<td>Schedule of fees</td>
<td>16</td>
</tr>
<tr>
<td>Scholarships, Bursaries and Prizes</td>
<td>143</td>
</tr>
<tr>
<td>Continuation</td>
<td>151</td>
</tr>
<tr>
<td>Entrance</td>
<td>145</td>
</tr>
<tr>
<td>For continuing studies beyond NSAC</td>
<td>165</td>
</tr>
<tr>
<td>Graduate</td>
<td>161</td>
</tr>
<tr>
<td>Medals and Prizes</td>
<td>163</td>
</tr>
<tr>
<td>Other entrance (external)</td>
<td>166</td>
</tr>
<tr>
<td>Other continuing (external)</td>
<td>173</td>
</tr>
<tr>
<td>Resource List</td>
<td>182</td>
</tr>
<tr>
<td>Second Diploma</td>
<td>24</td>
</tr>
<tr>
<td>Sociology</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>105</td>
</tr>
<tr>
<td>Soils</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>106</td>
</tr>
<tr>
<td>Spanish</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>107</td>
</tr>
<tr>
<td>Special Students</td>
<td>129</td>
</tr>
<tr>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>107</td>
</tr>
<tr>
<td>Standing on Graduation</td>
<td>24</td>
</tr>
<tr>
<td>Statement of Values</td>
<td>5</td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>110</td>
</tr>
<tr>
<td>Status</td>
<td>12, 26</td>
</tr>
<tr>
<td>Stipends</td>
<td>131</td>
</tr>
<tr>
<td>Student Categories</td>
<td>26, 129</td>
</tr>
<tr>
<td>Student Loans</td>
<td>19</td>
</tr>
<tr>
<td>Student Government</td>
<td>8</td>
</tr>
<tr>
<td>Student Online Registration System</td>
<td>25</td>
</tr>
<tr>
<td>Student Safety</td>
<td>25</td>
</tr>
<tr>
<td>Student Services</td>
<td>7</td>
</tr>
<tr>
<td>Student Visa</td>
<td>12, 19</td>
</tr>
<tr>
<td>Supervisor (Thesis) and Supervisory Committee</td>
<td>124</td>
</tr>
<tr>
<td>Supplemental Exams</td>
<td>23</td>
</tr>
<tr>
<td>Suspension of Studies</td>
<td>128</td>
</tr>
<tr>
<td>Technical Exchange Program</td>
<td>9</td>
</tr>
<tr>
<td>Technology Programs</td>
<td>44</td>
</tr>
<tr>
<td>Diploma in Enterprise Management</td>
<td>44</td>
</tr>
<tr>
<td>Environmental Horticulture</td>
<td>48</td>
</tr>
<tr>
<td>Plant Science</td>
<td>49</td>
</tr>
<tr>
<td>Veterinary Technology</td>
<td>51</td>
</tr>
<tr>
<td>Terms and Codes</td>
<td>27</td>
</tr>
<tr>
<td>Thesis</td>
<td></td>
</tr>
<tr>
<td>Regulations</td>
<td>124, 133</td>
</tr>
<tr>
<td>Supervisor</td>
<td>124</td>
</tr>
<tr>
<td>TOEFL</td>
<td>13, 116</td>
</tr>
<tr>
<td>Transcripts</td>
<td>18, 26, 120</td>
</tr>
<tr>
<td>Transfer Credits</td>
<td>24, 119</td>
</tr>
<tr>
<td>Tuition</td>
<td></td>
</tr>
<tr>
<td>Fees</td>
<td>16</td>
</tr>
<tr>
<td>Refunds</td>
<td>18</td>
</tr>
<tr>
<td>Tutoring, Peer</td>
<td>8</td>
</tr>
<tr>
<td>University Preparatory Courses</td>
<td>52</td>
</tr>
<tr>
<td>U.S. Students</td>
<td>15</td>
</tr>
<tr>
<td>Varsity Athletics</td>
<td>7</td>
</tr>
<tr>
<td>Veterinary Technology</td>
<td></td>
</tr>
<tr>
<td>Course Descriptions</td>
<td>110</td>
</tr>
<tr>
<td>Visiting Students</td>
<td>12</td>
</tr>
<tr>
<td>Withdrawal</td>
<td>26, 122</td>
</tr>
<tr>
<td>Required to Withdraw</td>
<td>21, 121</td>
</tr>
</tbody>
</table>