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Abstract

Non-invasive neurophysiological recordings, like those measured by magneto/electro-
encephalography (M/EEG), provide insight into the behaviour of neural networks
and how these networks change with factors such as task performance, disease state,
and age. Recently, there has been a trend in describing neurophysiological recordings
as a series of transient bursts of neural activity rather than averaged sustained oscil-
lations as burst characteristics may be more directly correlated with the neurological
generators of brain activity. This thesis presents three projects focused on exploring
sensorimotor transient bursts in healthy populations using non-invasive neuroimaging.

Project 1 investigates age-related changes in beta burst characteristics using MEG
data acquired at the Cambridge Centre for Ageing and Neuroscience (n=596, ages
18-88). The objectives of project 1 are (1) to detect and characterize transient beta
bursts over the ipsilateral and contralateral primary sensorimotor cortices during a
unilateral motor task performance and during wakeful resting, and (2) to identify
age-related changes in beta burst characteristics, in the context of earlier reports of
age-related changes in beta suppression and the post-movement beta rebound. We
found that the beta burst rate is the main influencer of beta rhythm power and the
predominant factor related to age-related changes in the amplitude of the induced
beta rhythm responses associated with a button press task.

Project 2 presents a novel transient burst detection algorithm called the peri-
odic/aperiodic parametrization of transient oscillations (PAPTO). The objectives of
project 2 are (1) to motivate and validate the PAPTO algorithm, and (2) to use
PAPTO to disambiguate adult lifespan changes in the aperiodic activity power spec-
trum and transient event characteristics. Project 2 analyzes the same MEG data
as analyzed in Project 1. We show that PAPTO is more sensitive to neocortical
transient beta rhythms compared to more conventional transient event detection al-
gorithms and captures more variance in the resting-state occurrence rate of beta
events across participants.

Project 3 explores the hemodynamic changes coupled to the occurrence of tran-
sient events using simultaneous EEG- functional near-infrared spectroscopy (fNIRS)
recordings from healthy participants (n=26). The objectives of project 3 are (1) to ex-
tract the burst-evoked hemodynamic response function (HRF) for transient mu, beta,
and gamma events using resting state recordings, and (2) to evaluate the contribution
of neurovascular changes evoked by transient events to the total measured hemody-
namic response over a unilateral finger-tapping motor task. We found that transient
beta events evoke a significant (p<0.05) decrease in oxy-hemoglobin concentration
and increase in deoxy-hemoglobin concentration.

This thesis is as an important step in characterizing transient bursts in neuro-
physiological signals in the temporal domain, towards a better understanding of sen-
sorimotor activity in the healthy human brain.
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Chapter 1

Introduction

1.1 Sensorimotor Beta (15 - 30 Hz) Activity

The coupling/integration of sensory input (i.e., vision, audition, tactile stimulation,

olfaction, and gustation) to a related voluntary motor response is achieved via senso-

rimotor processing. Sensorimotor processing occurs in/between several brain struc-

tures, including the primary sensorimotor cortices, basal ganglia, and the thala-

mus. Electrophysiological signatures in these structures, as measured via magnetoen-

cephalography (MEG), electroencephalography (EEG), electrocorticography (ECoG),

and local field potential (LFP), are naturally rhythmic/oscillatory. The association

between oscillations in the 15-30 Hz frequency range (the so-called beta band) and sen-

sorimotor processing is well-established (Pfurtscheller and Lopes da Silva, 1999). Beta

rhythms are diminished below baseline levels prior to and during movement, known

as beta event-related desynchronization (ERD). Beta ERD happens even without ac-

tual movement, as in the case of motor imagery (Miller et al., 2010). Beta rhythms

are enhanced above baseline levels after movement stops, an effect known as post-

movement beta rebound (PMBR). Beta rhythms have been shown to emerge from

the sensorimotor cortex (Murthy and Fetz, 1992) and the basal ganglia (Brown et al.,

2001), and beta ERD and PMBR have been shown in both structures (Engel and

Fries, 2010).

The association of beta rhythms with sensorimotor processing is well established,

yet the physiological relevance (i.e., functional role) of beta rhythms is not well un-

derstood. After the discovery of beta ERD and PMBR in relation to movement,

early work suggested beta oscillations are simply representative of an ‘idling’ signal

in sensorimotor processing, in that beta rhythms become evident when the system

is in a state of “nothing to do” (Pfurtscheller et al., 1996). In the following 10-15

years, evidence emerged suggesting a more specific, functional, role of beta oscil-

lations (for review, see Engel and Fries (2010)). Engel and Fries (2010) proposed

1
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what is currently the most well-accepted hypothesis for the role of beta rhythms;

beta oscillations are representative of an active process that intends to maintain the

current sensorimotor/cognitive state and inhibit the sensorimotor processing of in-

coming sensory information (i.e., maintenance of the “status-quo”), herein referred

to as the status-quo hypothesis. The status-quo hypothesis suggests that beta ERD

and PMBR are driven by endogenous cognitive processes, where ERD is necessary

for releasing inhibition and allowing the initiation/execution of a motor plan and the

PMBR represents a state of motor cortical inhibition which preserves the existing

state from internal and external sources of noise (Barone and Rossiter, 2021). In the

following sections, a selection of studies that contribute to the understanding of the

functional role of beta oscillations are highlighted. The conceptualization presented in

sections 1.1.1 through 1.1.4 is largely based off that from a review paper (Barone and

Rossiter, 2021) focused on new evidence for understanding the role of sensorimotor

beta oscillations.

1.1.1 Beta Rhythm Changes with Healthy Aging

A detailed review of age-related trends in beta ERD and PMBR can be found in section

2.2

Beta rhythm characteristics change over the lifespan in a reasonably stereotypical

manner. Here we consider healthy aging in two regimes, first the developmental

regime from children to adult, and second the adulthood regime from younger to older

adulthood. Gaetz et al. (2010) examined beta ERD and PMBR in children at different

stages of typical development (4-6 years, n=10, and 11-13 years, n=10) and in adults

(n=10), all performing the identical motor task. They found a developmental trend

of increasing beta ERD and PMBR with age and that the PMBR was particularly

diminished in the younger age group. The authors suggest that this diminished

PMBR may reflect reduced inhibition generated by the inhibitory neurotransmiter

γ-Aminobutyric acid (GABA), which could in turn facilitate neuronal plasticity and

promote motor learning in children.

Motor performance is known to decline with healthy ageing over the adult lifespan.

Several reports find that ageing is also accompanied by increases in resting state beta

power (Rossiter et al., 2014b; Heinrichs-Graham and Wilson, 2016), an enhancement
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of movement-induced beta ERD, and a reduction in PMBR (Bardouille and Bailey,

2019). Interestingly, older adults show smaller changes in PMBR compared to younger

adults in motor learning paradigms (Mary et al., 2015), which the authors suggest is

indicative of more plasticity in younger adults. The increase in resting beta power

and enhancement of ERD with age suggest that ageing is associated with difficulty

in releasing inhibition to initiate movement.

1.1.2 Beta Rhythm Changes with Pathology

The functional role of beta rhythms have been elucidated through studies in pa-

tients with neurological disorders, such as Parkinson’s disease (PD) and stroke. PD

is a prevalent neurological disorder often associated with bradykinesia (slowness of

movement) and overall motor impairment. The primary pathology in PD is the de-

struction of dopaminergic neurons in the basal ganglia, which results in dopamine

depletion and ultimately reduced excitatory input from the thalamus to the motor

cortex (Brown, 2003). As measured via LFP recordings during neurosurgery, patients

with PD typically exhibit exaggerated beta activity in the basal-ganglia (Brown et al.,

2001). Levodopa, a commonly used dopaminergic medication for PD has been shown

to attenuate subcortical beta rhythms (Brown et al., 2001). Treatment approaches fo-

cusing on attenuating these exaggerated subcortical beta rhythms via high-frequency

brain stimulation generally work well to relieve symptoms of bradykinesia (Brown

et al., 2004). In the context of the status-quo hypothesis, the strong basal-ganglia

beta rhythms maintain the status-quo at the detriment of releasing inhibition to ini-

tiate voluntary movement.

Stroke is often followed by impaired motor function associated with the affected

hemisphere. Rossiter et al. (2014a) found that patients who experience motor impair-

ments following stroke exhibit diminished beta ERD during movement, with greater

reductions in beta ERD correlating with greater motor impairment. Further, stroke

patients exhibit excess beta power in the affected hemisphere, with the beta power

correlating with poorer motor function (Thibaut et al., 2017). In the context of the

status-quo hypothesis, these studies suggest that stroke may somewhat prevent in-

hibition release thereby making it difficult to initiate voluntary movement. Overall,

studies in these patient populations provide support for the inhibitory role of beta



4

oscillations in the human brain.

1.1.3 Pharmacological Manipulation of Beta Rhythms

Cortical beta oscillations can be modulated experimentally via drugs. Administra-

tion of diazepam, a GABAA (specific GABA receptor) agonist, has been shown to

increase the amplitude and decrease the frequency of beta oscillations at rest (Jensen

et al., 2005; Hall et al., 2010). Further, Muthukumaraswamy et al. (2013) found that

administering tiagabine, a drug that elevates the extracellular/synaptic concentra-

tion of GABA, prior to a movement task causes an enhanced beta ERD and reduced

PMBR. In comparing their results to those from Hall et al. (2011), the authors sug-

gest that beta ERD may be a GABAA receptor mediated process while PMBR may

be GABAB (a different specific GABA receptor) receptor mediated. These studies

provide evidence that GABA plays a major role in sensorimotor beta oscillations and

movement.

1.1.4 Summary of Beta Rhythm Characteristics

In summary, beta rhythms are associated with sensorimotor processing yet a unified

model as to their functional role still remains elusive. The status-quo hypothesis

proposes that beta rhythms are indicative of an active process to maintain the current

state of the sensorimotor system and are driven by endogenous mechanisms. Evidence

from studying changes in beta rhythms with healthy ageing and in the context of

PD finds that excess resting-state beta power is associated with motor impairment.

Further, beta rhythm reducing drugs and brain stimulation can relieve akinesia in

patients with PD. Evidence for the meaning of the PMBR has accumulated rapidly

in recent years, although its exact role remains unclear. The PMBR is virtually absent

in children aged 4-6 years, which may reflect reduced GABAergic cortical inhibition,

which may in turn facilitate neural plasticity to promote motor learning (Gaetz et al.,

2010). It is clear the beta rhythm plays a fundamental role in sensorimotor processing

and that its characteristics change with pathology, learning, and aging. A better

understanding is needed of the mechanisms that underlie beta rhythms, in order

to know how the network that generates the signal is changing. Tying changes in

electrophysiology directly to changes in brain structures could pave the way towards
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the development of better motor learning paradigms, better understanding of and

therapies for sensorimotor pathology, and a more detailed view of the healthy aging

processes

1.2 Beta Rhythms as a Series of Transient Events

The common interpretation of beta band oscillatory activity as a sustained rhythm

arises only as a consequence of averaging neurophysiological recordings in the time-

frequency domain (i.e., spectrograms) over multiple trials (Jones, 2016; van Ede et al.,

2018). In single trial recordings, beta activity emerges as transient periods of high-

power oscillations, herein referred to as transient events, each lasting only a few

hundred milliseconds. Common descriptive characteristics of transient events are de-

scribed in Table 1.1. Transient beta events can be thought of as the building blocks of

the beta band peak observed in the aggregated power spectral density (PSD) repre-

sentation of electrophysiological recordings. Importantly, representing beta activity

as a sustained rhythm can obscure the connection between the signal and the under-

lying mechanism. For example, a higher amplitude beta band peak in the PSD can

be caused by higher amplitude transients or longer duration transients (to name just

two) with differing mechanistic underpinnings for each cause. Exploring the charac-

teristics of the transient beta events that underlie beta rhythms may thus provide

a more detailed interpretation of neural mechanisms and the beta rhythm’s role in

sensorimotor processing.
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The manifestation of transient events as continuous rhythms upon averaging is

depicted in Figure 1.1. Transforming a signal from the time domain to the time-

frequency domain (i.e., typically timecourse to spectrogram) is common-practice as

it provides a time-varying estimate of the energy of the signal across frequencies.

In modern digital signal processing, signal transformation is often accomplished by

wavelet decomposition analysis using complex Morlet’s wavelets, which consist of a

Gaussian-windowed sinusoid. The time-varying energy of the signal, E(t, f0), at a

particular frequency, f0, (i.e., one row of a spectrogram) is obtained as the square

norm of the convolution of the complex wavelet, w(t, f0), and the measured signal,

s(t), namely

E(t, f0) = |w(t, f0)× s(t)|2. (1.1)

While the measured signal s(t) fluctuates about zero, the square norm of the convolu-

tion provides a positive-only spectrogram E(t, f0). Thus, E(t, f0) accumulates upon

averaging over several trials (Figure 1.1 a), whereas s(t) cancels (Figure 1.1 b). The

accumulation of transient events in single-trial E(t, f0) imitates the appearance of a

sustained rhythm in the average.
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Figure 1.1: (a) Single-single trial spectrograms (1s duration, positive-only) of MEG
recordings (source localized to S1) show transient bouts of high power activity (i.e.,
transient events) (top). Positive-only transient events accumulate upon averaging
over trials, resulting in what appears like continuous activity in the mu and beta
frequency bands (bottom). (b) Corresponding single-trial time-domain recordings
(positive and negative currents) show distinct transient event waveforms centered by
a large negative trough, as indicated by the red boxes (top). Averaging over 100
time-domain recordings results in cancelling of the negative and positive currents
such that the spectrogram of the average timecourse shows no activity. Reproduced
from (Jones, 2016)

To study the neural activity that underlies transient events, Murthy and Fetz

(1992) recorded extracellular unit activity and LFPs from the motor and somatosen-

sory cortex of two awake monkeys. As shown in Figure 1.2 (a), they found that the
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LFP emerges as distinct episodes of oscillatory beta activity with variable amplitude,

duration, and frequency, but lasting on average 4-5 oscillatory cycles. They also found

(see Figure 1.2 b) that the field potential oscillations were synchronous with the ac-

tivity of single units. This investigation by Murthy and Fetz (1992) is considered to

be pioneering work in the area of transient sensorimotor activity because it showed a

clear change in the behaviour of underlying single units during beta bursts.

At this stage it is important to highlight that transient events in the time domain

in single-trial extracranial recordings (i.e., M/EEG) are not as apparent as those

observed in the LFPs (compare Figure 1.1 b with Figure 1.2 a and b). This discrep-

ancy is primarily a result of better signal-to-noise ratio in LFP recordings due to the

proximity to the source and the inverse square law. In human M/EEG recordings,

transient events are typically first identified in the time-frequency domain where they

are more easily identified in contrast to the background neural activity.

Figure 1.2: (A) LFPs and unit activity recorded at two nearby sites in the motor
cortex of one monkey. LFPs were in phase with each other and units tended to
discharge during the negative phase of the LFP. Note that positivity is downward in
all plots. (B) Cycle-triggered averages of LFPs and unit activity for sites in A. As
shown, unit discharge occured during the negative deflections of the LFP. Reproduced
from (Murthy and Fetz, 1992).

There is a renaissance of transient events-based analysis of M/EEG recordings

amongst the scientific community following work by Shin et al. (2017), who found a

direct link between the occurrence of transient beta events and human tactile percep-

tion. Namely, they found that beta power reflects the number of transient beta events

and that beta events occurring close in time to a light tactile stimulus were likely to

impair perception of the stimulus. This work was a follow-up to previous work from

the same group (Jones et al., 2010) which found that lower prestimulus beta power in
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the somatosensory cortex increased the probability of detection of light tactile stimuli.

In a more recent report, the same group investigated the mechanisms of beta event

generation and found that the detection probability decrease may be attributed to a

period of post-event GABA inhibition (Law et al., 2022) (discussed in detail below).

This series of manuscripts demonstrates that a transient events based analysis aligns

with conventional trial-averaging based analysis while providing a more detailed view

of the role of beta rhythm’s in sensorimotor processing.

1.2.1 Generative Mechanism of Transient Beta Events

The generative mechanism of transient beta events in the somatosensory cortex has

been extensively explored by Sherman et al. (2016) and Law et al. (2022) using a

combination of human and animal recordings with computational models. A summary

of their findings is presented below.

Transient beta events in somatosensory cortex are generated by synchronous ex-

ogenous excitatory synaptic drive to infragranular and supragranular cortical layers.

The supragranular drive is stronger, lasts one beta period (∼ 50 ms), and is the signal

that initiates the occurrence of a beta event. This drive excites distal apical dendrites

of neocortical pyramidal neurons, inducing downward dendritic currents. This distal

drive is thought to originate from higher-order cortex or higher-order thalamus. The

infragranular drive, originating from the lemniscal thalamus, is weaker and broader

in time compared to the distal drive. This drive induces proximal current flow in the

apical dendrites. The competing distal and proximal current flow are thought to gen-

erate the beta event waveform, which strongly resembles an inverted Morlet wavelet.

The strong central trough of the waveform arises from the strong distal drive.

Recently, Law et al. (2022) found that the distal drive may also target inhibitory

interneurons, recruiting slow-decay inhibitory GABA synaptic currents. In turn,

GABA inhibits the spiking of the neocortical pyramidal neurons for up to 300 ms

post-event and hence inhibits the relay of sensory information to other parts of the

brain. The authors propose that this mechanism underlies beta-burst induced percep-

tion suppression observed by Shin et al. (2017). Interestingly, the authors also suggest

that the distal drive generates a brief during-event window of excitation where cor-

tical activity is facilitated and perception is enhanced. With this said, the overall
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consequence of a beta event is somatosensory suppression due to the longer period of

GABA inhibition following the event. Further understanding of neural mechanisms

relating to beta events requires a clear model of the network generating these signals.

1.2.2 Basal Ganglia-Thalamo-Cortical Sensorimotor Circuit

A reduced model of the basal ganglia-thalamo-cortical sensorimotor circuit with M1

and S1 microcircuits is shown in Figure 1.3. I developed this model using a range

of sources as an attempt to unify the transient events generative mechanisms (see

section 1.2.1) with the more well established networks involved in overall sensorimotor

processing (Mello and Villares, 1997). The S1 microcircuit (top right) is reproduced

from Sherman et al. (2016) and Law et al. (2022) and depicts the local network

connections that are relevant for the generation of transient beta events (see section

1.2.1 for details). Here, we assume that the same beta event generative mechanisms

can be extended to M1 (top left).

In terms of sensorimotor processing, afferent somatosensory information enters

this basal ganglia-thalamo-cortical sensorimotor network via the spinal cord and

brainstem (path [A]) and passes through the cerebellum prior to reaching the tha-

lamus (bottom right), which in turn relays the information to pyramidal neurons in

L4 of S1 (top right) and to M1 (not shown) (Asan et al., 2022). L4 pyramidal neu-

rons in S1 then convey the information to supragranular neurons in L2/3 [B]. The

occurrence of a beta event simultaneously generates primary dendritic current flow

(which generates the beta wavelet, as shown) and activates inhibitory interneurons

in supra and infragranular layers. These excited interneurons inhibit the relay of

sensory information to other parts of the brain for around 300 ms post-event, thus

inhibiting the perception of tactile stimuli. Pyramidal neurons in S1 L2/3 are also

connected via long-range networks to pyramidal neurons in L2/3 in M1 [C]. These

networks are plastic and are involved in sensorimotor integration and motor learning

(reverse connections, i.e., from M1 to S1, also exist but are not shown) (Asan et al.,

2022).

The loop between M1, the basal ganglia, and the thalamus is where movement

is shaped and initiated. Motor control exists as a balance of activation of the direct

(or Go) pathway and the indirect (or NoGo) pathway. Movement is thought to be
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stimulated in the thalamus via excitatory projections to the motor cortex [D]. The

thalamus is typically inhibited via inhibitory projections from the globus pallidus

internal (GPi) [E]. When movement is desired, excitatory projections from the cortex

[F] stimulate inhibitory projections from the striatum to the GPi, thus preventing

the GPi from inhibiting the thalamus. This is the direct pathway. When movement

suppression is desired, excitatory projections from the cortex stimulate inhibitory

projections from the striatum to the globus pallidus external (GPe), which in turn

prevents the GPe from inhibiting the subthalamic nucleus (STN) [G]. The STN is

then able to stimulate the GPi via excitatory projections [H], which in turn inhibits

the thalamus [E] and suppresses movement. This is the indirect pathway.

The substantia nigra pars compacta (SNc) can modulate GABA release in the

striatum via dopaminergic projections, which can inhibit the indirect pathway (or

activate the direct pathway) and facilitate movement. As discussed in section 1.1.2,

this is one mechanism in which patients with PD (a dopamine depletion disorder) have

difficulty initiating movement, and why dopaminergic medications (i.e., Levodopa)

help relive akinesia. Furthermore, patients with PD also exhibit exaggerated transient

beta bursting emerging from the basal ganglia, which can be suppressed via DBS and

dopaminergic medication.

When the Go pathway is activated, pyramidal tract neurons in M1 deliver the

motor command to the muscles through the brainstem and spinal cord. A copy of

the motor command is also delivered to the cerebellum where it is integrated with

afferent sensory information, a process important for various sensorimotor tasks and

motor learning (Asan et al., 2022). Note that there are many other local and long

range network connections in the basal ganglia-thalamo-cortical sensorimotor circuit

that are not depicted in this reduced model.
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Figure 1.3: Reduced model of the basal ganglia-thalamo-cortical sensorimotor circuit
with M1 and S1 microcircuits. See text for details. M1: primary motor cortex, S1:
primary somatosensory cortex, Jp(r

′): primary current density, B(r): magnetic field,
GPe: globus pallidus external, GPi: globus pallidus internal, SNc: substantia nigra
pars compacta, STN: subthalamic nucleus. GABA: γ-Aminobutyric acid inhibitory
neurotransmitter, Glutumate: excitatory neurotransmitter.
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1.3 Theoretical Considerations

In this thesis, I will present non-invasive functional neuroimaging studies investigating

transient beta events. Below, I provide some background for the relevant imaging

modalities.

1.3.1 Functional Neuroimaging via MEG/EEG

The MEG/EEG Forward Problem

The signals measured by MEG and EEG originate primarily from post-synaptic den-

dritic current flow in cortical pyramidal neurons. MEG and EEG are not sensitive

to signals generated from intraceullar current in individual neurons (i.e., insufficient

SNR) but are sensitive to signals generated by synchronous current flow in clusters of

spatially aligned pyramidal neurons. The flow of information from the neural source

activity to sensor-level measurements, via secondary currents in the case of EEG or

via magnetic fields in the case of MEG, (i.e., how these signals project forward in

space) is described in the forward problem of MEG/EEG. In the case of MEG, the

magnetic field B(r) outside of the head generated from a primary current distribution

Jp(r
′) within the brain (V) can be obtained via the Biot-Savart Law, i.e.,

B(r) =
µ0

4π

∫
V

Jp(r
′)× r̂
|r|2 dτ ′ (1.2)

where r = r− r′ is the separation vector from the source (r′) to the point of interest

(r). The cross-product in equation 1.2 reflects how the magnetic field curls around the

current source according to the right-hand rule. As described in depth in Hämäläinen

et al. (1993), in the context of MEG, it is useful to approximate a localized primary

current as a current dipole Q. Q at position rQ can be thought of as a concentration

of Jp(r
′) to a single point, namely Jp(r

′) = Qδ(r− rQ), where δ(r) is the Dirac delta

function at centered at position r. In this approximation, equation 1.2 becomes

B(r) =
µ0

4π

Q× r̂Q
|rQ|2

(1.3)

where rQ = r−rQ is the separation vector from the source (rQ) to the point of interest

(r). Furthermore, as described in depth in Hämäläinen et al. (1993), considering the
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head as a spherically symmetric volume conductor, current dipoles oriented tangen-

tial to the head surface will dominate the MEG signal over current dipoles oriented

radially. Thus, given the curl of the field around the current source, the MEG signal

can be considered as the radial component (Bz) of equation 1.3, namely

Bz(r) =
µ0

4π

Q× r̂Q
|rQ|2

· ẑ (1.4)

where ẑ represents the direction normal to head surface. Given the alignment of

pyramidal neurons in the cortex, MEG is sensitive to detecting activity in the sulci

of the cortex.

Note that the current sources in the cortex can be approximated as point sources

since the cell size (∼ 100s µm)<< distance to the MEG/EEG sensors and the distance

between sensors (∼ 10s mm). Jp induces extracellular secondary (volume) currents

throughout the head volume and on the surface of the scalp. EEG electrodes measure

potentials on the surface of the scalp due to these secondary currents.

The forward problem is the calculation of the EEG/MEG sensor-level signals given

the current dipole sources (location, orientation, number, and strength of dipoles) and

the geometry/conductivity models of the head. The forward problem can be expressed

in matrix notation as

x(t) = As(t) + n(t) (1.5)

where x(t) is the vector of sensor-level EEG/MEG recordings (sensors × time), A is

the linear forward operator, or the lead-field matrix (sensors × dipole sources), s(t) is

the vector of dipole source timecourses (dipole sources × time), and n(t) is additive

noise (sensors × time). For a single MEG or EEG sensor, i, equation 1.5 can be

written as a weighted sum over all dipole sources, j, namely

xi(t) =
∑
j

Aijsj(t) + ni(t). (1.6)

It is clear in equation 1.6 that the measured timecourse at one sensor is modeled as

a linear superposition of dipole timecourses (plus additive noise).

The forward problem is a well-posed problem in that there is one unique solution,
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x(t), for a given source matrix, s(t). Computing an accurate forward solution, i.e.,

computing a representative lead-field matrix A, is nevertheless complex as it depends

on the individual’s head geometry and tissue conductivity. Current algorithms use

subject-specific anatomical magnetic resonance images to generate realistic geometries

for head volume conduction. One of these algorithms, called The Boundary Element

Method (BEM), is used in Chapters 2 and 3 of this thesis. The BEM considers that

the boundaries between tissues most effect the propagation of volume currents and

magnetic fields. The BEM models each tissue boundary as a tessellated 2D closed

and homogeneous surface. Because currents are significantly attenuated and smeared

by low conductivity layers, it is common to consider 3 tissue boundaries in the case

of EEG: skin, outer skull, and inner skull. For MEG, because magnetic fields are

less affected by biological tissues, it is common to consider only a 1-layer model

(inner skull). The Finite Element Method (FEM) is a more accurate alternative head

volume conduction compared to BEM as it considers 3D voxels instead of 2D surfaces,

however it is significantly more computationally expensive.

The MEG/EEG Inverse Problem

The purpose of functional neuroimaging is to probe the spatio-temporal dynamics

of brain activity related to perceptual and cognitive processes. Knowledge of the

spatial localization of neural activity in the brain is essential to understanding these

perceptual and cognitive processes. The (non-invasive) sensor-level measurements

of electric potentials and magnetic fields however have contributions from activity

in many brain areas (the forward problem considers dipole sources throughout the

brain). The inverse problem in MEG/EEG is to estimate the dipole current sources

given the MEG/EEG signals at the extracranial sensor locations. The inverse problem

can be expressed in matrix notation as

ŝ(t) = Wx(t) (1.7)

where ŝ(t) is estimated dipole strength vector (dipole sources × time) and W is the

inverse operator (dipole sources × sensors). Obtaining an estimate of the dipole

current sources, ŝ(t), is equivalent to finding an inverse operator W. The inverse

problem is an ill-posed problem in that, without constraints, there are infinite possible
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source activity patterns that could generate any measured sensor level data x(t). This

is because the number of modeled dipole sources in the brain is (much) larger than

the number of MEG/EEG sensors.

Source estimating algorithms are generally divided into classes based on the ap-

proach to obtain the inverse operator, W. The 3 most common classes are dipole

fitting, distributed sources models, and beamforming. Dipole fitting attempts to

model a pre-specified number of dipole sources with initial guesses as to their loca-

tions, orientations, and strengths. Beyond topographies that suggest a single, focal

source, results tend not to be robust to different initial conditions, thus limiting repro-

ducibility. Distributed sources models and beamforming are data driven approaches

that generate estimates of source activity across the brain. The data driven nature

of these approaches mean that reproducibility is assured. Distributed sources models

and beamforming were applied in Chapters 3 and 2 of this thesis, respectively, and

are discussed in more detail below.

Distributed Sources Models

In Chapter 3 of this thesis, a distributed sources model was used to estimate

resting-state MEG timecourses at the centre of mass of 4 separate anatomical ROIs

(M1 and S1 left and right). Distributed source models use the measured data to

simultaneously fit the amplitudes of a large number of dipoles (typically thousands)

at fixed locations distributed across the tessellated cortical surface. This avoids the a

priori assumption of only a few dipole locations necessary for basic dipole fitting and

thus avoids the strong dependency on initial conditions. Distributed source models

however do assume the source dipoles are distributed at specific locations across the

cortex.

In the miminum norm estimates (MNE) approach, the ill-posed inverse problem is

addressed by adding the constraint that the best source estimate is the one that min-

imizes its power while maintaining the requirement that the measured data match

those predicted by the model (Hämäläinen and Ilmoniemi, 1994; Lin et al., 2006).

This type of minimization problem can be addressed through Tikhonov regulariza-

tion, which can be used to generate an MNE-derived inverse matrix W in terms

of the forward solution A, the noise-covariance matrix C (which can be obtained
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from empty room recordings), and a regularization parameter typically denoted as

λ2. For a complete derivation of the MNE-derived inverse matrix, see (Hämäläinen

and Ilmoniemi, 1994; Dale and Sereno, 1993; Lin et al., 2006). The derivation of the

MNE-derived inverse matrix assumes that the source matrix s(t) and noise matrix

n(t) are stationary and Gaussian distributed with zero mean.

The dynamic statistical parametric mapping technique (dSPM) technique (Dale

et al., 2000) normalizes the MNE-derived dipole strength (i.e., as described above) by

the predicted standard error of the estimate due to additive noise. This establishes

the statistical significance of the source current estimate. The noise-normalized source

estimate for dipole location j is

zj(t) =
wjx(t)√
wjCwT

j

, (1.8)

where wj is the row of the MNE-derived inverse operator matrix corresponding to

source dipole j. The normalized dipole strength, zj(t), is t-distributed under the

null hypothesis of no activity at the current source location j. Since the number

of time samples used to calculated the noise covariance matrix C is typically large

(i.e., > 100), the t-distribution approaches unit normal distribution and zj(t) can be

considered a z-score. Note that the y-values plotted in Figure 3.3 (a) are values of

zj(t).

Beamformers

The following is an exploration of the beamformer in the time domain (as opposed to

the frequency domain) for ease of conceptualization.

Beamforming is similar to distributed sources modeling in that dipoles are situated

on the tessellated cortical surface (or in a 3D volume), however instead of fitting all

dipoles simultaneously, beamforming analyzes one dipole at a time. The inverse oper-

ator W in equation 1.7 is referred to as the spatial filter. The role of the spatial filter

is to extract data from the dipole source of interest while suppressing activity from

all interfering sources (i.e., other dipoles and signal noise). In combining equations

1.5 and 1.7, we can obtain the following,
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ŝ(t) = WAs(t) (1.9)

where we have ignored noise for the sake of a simple intuitive model. In the case of

a perfect spatial filter, ŝ(t) = s(t), equation 1.9 becomes

WA = I (1.10)

where I is the identity matrix. This perfect spatial filter has unit gain for the dipole

of interest and zero gain for all other dipole sources. While this kind of perfect

spatial filter is not possible (all sensors inevitably measure signal from all sources)

it can be used to constrain the minimization problem. In other words, the problem

is to minimize the overall signal power (i.e., variance) of the spatial filter output

while preserving (i.e. constraining) unit gain for the dipole of interest. The solution

to this constrained minimization problem expresses the spatial filter in terms of the

linear forward operator and the sensor data covariance matrix. The ingredients of

the beamformer method are thus the forward operator, which combines the volume

conduction model (as discussed previously) with co-registered sensor positions, and

the experimental (sensor-level) data. This method is known as Linearly Constrained

Minimum Variance (LCMV) spatial filtering (Van Veen et al., 1997).

In Chapter 2 of this thesis, the Dynamic imaging of Coherent Sources (DICS)

beamformer (Gross et al., 2001) was used to estimate the timecourse at the center

of mass of functional ROIs corresponding to the induced responses to a button-press

task. DICS is an extension of a time-domain beamformer (i.e., LCMV) to the fre-

quency domain, where cross-spectral density matrices are used instead of the sensor

data covariance matrices. DICS was particularly suitable for estimating timecourses

in Chapter 2 as we are particularly interested in frequency-specific responses.

Beamformer source estimates assume that the timecourses from multiple sources

are uncorrelated. In the case that there is high temporal correlations between the

source of interest and a different source, the beamformer may filter out that activity

from the source of interest. Note that this is typically only a problem if two correlated

sources are far apart (a few cms), as sources close together (i.e., neighboring voxels)

will have very similar spatial filters.
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1.3.2 Functional Neuroimaging via NIRS

Functional near-infrared spectroscopy (fNIRS or NIRS) is a non-invasive optical neu-

roimaging technique. It stems from spectrophotometry; a technique used in analytical

chemistry to determine the concentration of substances via light absorption and the

Beer-Lambert Law (introduced later). fNIRS monitors changes in blood oxy- and

deoxy-hemoglobin concentration ([HbO] and [HbR], respectively) as proxies for cor-

tical activation via neurovascular/neurometabolic coupling.

fNIRS and fMRI take similar approaches to imaging brain activity (i.e., via

changes in blood oxygenation) and have existed for approximately the same amount of

time (Wyatt et al., 1986; Ogawa et al., 1990), yet fMRI is a significantly more popular

neuroimaging technique. This is primarily due to most major hospitals already having

clinical MRIs with trained technicians, and fMRI requires no additional specialized

equipment. fNIRS has no widespread clinical application and is thus a stand-alone

imaging modality typically used only for research. Further, fNIRS can only measure

superficial activity because NIR spectrophotometry light penetrates only about 1-3

cm into the head (Patil et al., 2011). Since fNIRS is a detector-based imaging modal-

ity, source localization is fundamentally limited by the ill-posed inverse problem, as

discussed previously in the context of M/EEG. fNIRS is generally considered to have

a spatial resolution no-better than about 1 cm (Quaresima and Ferrari, 2019). fNIRS

does present some benefits over fMRI, most notably lower up-front and maintenance

costs. It requires no magnetic shielding, is portable, and allows some degree of subject

movement without substantial artifacts. fNIRS is thus particularly valuable for infant

studies, brain-computer interfacing (BCI), and any experiments involving movement.

fNIRS can additionally quantify changes in oxy- and deox-hemoglobin concentration

whereas fMRI can detect only relative changes in the BOLD signal. Finally, fNIRS

has better temporal resolution (∼ 0.1s (Quaresima and Ferrari, 2019)) compared to

fMRI (∼ 1s (Soares et al., 2016)), however this is only beneficial in specific instances

as generic imaging of neural activation is ultimately limited by the times-scale of

neurovascular coupling (∼ seconds).

The near-infrared (NIR) range (∼ 650 – 950 nm) is considered the “bio-imaging

window” as light in this range can penetrate relatively deep in tissue (a few centime-

ters), due to relatively low absorption of the skull and of water (Scholkmann et al.,
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2014). Oxy- and deoxy-hemoglobin however have distinct absorption profiles over

this same range, which is fundamental to the ability of fNIRS to separately quan-

tify changes in [HbO] and [HbR]. fNIRS optode montages consist of pairs of light

sources (often light-emitting diodes, LEDs) and detectors (often avalanche photodi-

odes, APDs) typically separated by a few centimeters. The NIR photons emitted by

the source will be either scattered or absorbed by the tissues in the head. The un-

absorbed photons will reflect out of the head; some reaching the detector. Detected

photons typically follow a banana-shaped path, reaching a max depth of about 1-2

cm (Scholkmann et al., 2014). Each neighboring source-detector pair is considered as

one fNIRS channel with an effective location at the midpoint.

The most common fNIRS imaging technique (the technique used in Chapter 4 of

this thesis) is continuous wave (cw) imaging. In cwNIRS, light is emitted from the

source at a constant intensity and frequency (i.e., wavelength). Changes in measured

intensity at the detector are assumed to arise only from fluctuations in oxy- and deoxy-

hemoglobin concentration. The concentration of all other absorbing substances, and

the geometry of the scattering tissues in the head, is assumed to remain constant

throughout the measurement. A dual-wavelength measurement is required to separate

changes in [HbO] and [HbR] (see next section for a derivation). The choice of the two

wavelengths to most accurately determine changes in [HbO] in [HbR] is a complex

optimization problem which has been the subject of several reports (see (Scholkmann

et al., 2014) for a discussion on this topic). Generally, the two wavelengths must be

chosen such that oxy- and deoxy-hemoglobin do not have equal absorption coefficients

(equal absorption coefficients happens only around 800 nm in the NIR range).

The Modified Beer-Lambert Law for cwNIRS

The traditional Beer-Lambert law describes the attenuation of light intensity through

an absorbing medium, namely

I = I0(λ)e
−µa(λ)d, (1.11)

where I0(λ) is the light intensity (at a particular wavelength λ) incident on the

medium, I(λ) is the remaining light intensity after passing through the medium,

d is the length of the medium (i.e., the source-detector distance), and µa(λ) is the
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absorption coefficient of the medium (a function of λ and measured in units of inverse

length). Equation 1.11 can be written in terms of optical density, OD(λ), as

OD(λ) ≡ −log
I(λ)

I0(λ)
= µa(λ)d. (1.12)

The Beer-Lambert law as written in equations 1.11 and 1.12 makes two important

assumptions. First, it assumes the medium is homogeneous throughout length d.

Second, it assumes there is no loss of intensity due to light scattering. This second

assumption limits the use of the Beer-Lambert law for fNIRS as tissues in the brain

do scatter light. In fact, NIRS would not exist as a neuroimaging method if brain

tissue did not scatter light, as no light would reach the detectors.

The modified Beer-Lambert law describes the change in optical density in scat-

tering media due to changes in absorption. In scattering media, the optical density

can be expressed as (Boas et al., 2001)

OD(λ) = µa(λ)dφ(λ) +G(λ), (1.13)

where φ(λ) is pathlength factor and G(λ) is a scattering factor that accounts for

measurement geometry. The pathlength factor φ(λ) accounts for increased distance

that photons travel from the source to the detector as a result of scattering (and ab-

sorption). A change in chromophore concentration (i.e., oxy and deoxy-hemoglobin)

changes the absorption coefficient but the other variables on the right-side of equation

1.13 remain the same (Strangman et al., 2003), thus

∆OD(λ) = −log
If (λ)

Ii(λ)
= ∆µa(λ)dφ(λ). (1.14)

Note that in the case of no scattering, φ(λ) = 1 and the traditional Beer-Lambert

relationship is recovered.

In the context of NIRS for neuroimaging, cortical activation induces changes

in oxy- and deoxy-hemoglobin concentration. Assuming the changes in these two

hemoglobin species dominate the changes in total absorption, ∆µa(λ) can be written

as

∆µa(λ) = εHbR(λ)∆[HbR] + εHbO(λ)∆[HbO], (1.15)
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where [HbO] and [HbR] are oxy- and deoxy-hemoglobin concentrations and εHbO(λ)

and εHbR(λ) are the respective extinction coefficients. A set of two NIRS measure-

ments (separated in time) at a particular wavelength gives the ratio If (λ)/Ii(λ) in

equation 1.14. Furthermore, the source-detector distance, d, is determined by the op-

tode configuration, and φ(λ) is typically just set to a constant value (often φ(λ) = 6

based on (Delpy et al., 1988) ). Thus fNIRS measurements can be mapped to changes

in absorption coefficient, ∆µa(λ), via equation 1.14. Considering a two-wavelength

(λ1 and λ2) measurement, as discussed previously, equation 1.15 can be rearranged

to directly solve for oxy- and deoxy-hemoglobin concentrations:

∆[HbR] =
εHbO(λ2)∆µa(λ1)− εHbO(λ1)∆µa(λ2)

εHbR(λ1)εHbO(λ2)− εHbO(λ1)εHbR(λ2)
(1.16)

∆[HbO] =
εHbR(λ1)∆µa(λ2)− εHbR(λ2)∆µa(λ1)

εHbR(λ1)εHbO(λ2)− εHbO(λ1)εHbR(λ2)
(1.17)

Note that equations 1.16 and 1.17 show that cwNIRS provides only the change in

oxy- and deoxy-hemoglobin concentration (relative to some baseline level) as opposed

to absolute concentrations. Furthermore, the assumption of the Beer-Lambert law

brought up earlier (i.e., the medium is homogeneous throughout length d and there-

fore absorption occurs homogeneously over the full pathlength) means that these

concentration changes are typically underestimates of the true changes.
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1.4 This Work

In this thesis, we explore sensorimotor transient beta events in non-invasive human

neurophysiological recordings in terms of how they change with movement and with

healthy aging, and in terms of their coupling to neurovascular dynamics. This thesis

is comprised of three manuscripts:

Manuscript 1 (Ch. 2 of this thesis) addresses the following two objectives: (1) to

detect and characterize transient beta bursts over the ipsilateral and contralateral

primary sensorimotor cortices during a unilateral motor task performance and during

wakeful resting, and (2) to identify age-related changes in beta burst characteristics,

in the context of earlier reports of age-related changes in beta suppression and the

post-movement beta rebound. The results detailed in manuscript 1 show explicitly

transient events-based analysis generates results that align with, instead of contra-

dicting, traditional sustained rhythm-based analysis while providing a more detailed

description of sensorimotor beta activity and specifically how it changes with motor

task-engagement and with healthy aging. Manuscript 1 is published as follows:

Brady, B., Power, L., & Bardouille, T. (2020). Age-related trends in neuromagnetic

transient beta burst characteristics during a sensorimotor task and rest in the Cam-

CAN open-access dataset. NeuroImage, 222, 117245.

https://doi.org/10.1016/j.neuroimage.2020.117245

Manuscript 2 (Ch. 3 of this thesis) details a new algorithm for detecting transient

events in non-invasive neurophysiological recordings called the Periodic/Aperiodic Pa-

rameterization of Transient Oscillations (PAPTO). Manuscript 2 follows from manuscript

1 where we notice that transient event characteristics and their age-related changes are

conflated with underlying age-related changes in aperiodic neural activity. Manuscript

2 addresses the following two objectives: (1) to motivate and validate the PAPTO

algorithm, and (2) to use PAPTO to disambiguate adult lifespan changes in the aperi-

odic activity power spectrum and transient event characteristics. The results detailed
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in manuscript 2 are valuable both in terms of understanding the healthy ageing pro-

cess and in terms of consolidating the understanding of the resting-state beta’s role

in somatosensory processing. Manuscript 2 is published as follows:

Brady, B., & Bardouille, T. (2022). Periodic/Aperiodic parameterization of transient

oscillations (PAPTO)-Implications for healthy ageing. NeuroImage, 251, 118974.

https://doi.org/10.1016/j.neuroimage.2022.118974

Manuscript 3 (Ch. 4 of this thesis) addresses the following two objectives: (1) to

extract the burst-evoked hemodynamic response function for transient mu, beta, and

gamma events using resting state recordings, and (2) to evaluate the contribution

of neurovascular changes evoked by transient events to the total measured hemody-

namic response over a unilateral finger-tapping motor task. Manuscript 3 utilizes

the transient events analysis framework to help explain mechanistic details underly-

ing neurovascular coupling. Manuscript 3 is still in preparation for submission for

publication.



Chapter 2

Age-related trends in neuromagnetic transient beta burst

characteristics during a sensorimotor task and rest in the

Cam-CAN open-access dataset

The text below was published in November 2020 in NeuroImage. NeuroImage is a

peer-reviewed journal. The reference is provided below.

Brady, B., Power, L., & Bardouille, T. (2020). Age-related trends in neuromagnetic

transient beta burst characteristics during a sensorimotor task and rest in the Cam-

CAN open-access dataset. NeuroImage, 222, 117245.

https://doi.org/10.1016/j.neuroimage.2020.117245

See Appendix C for copyright permissions.
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2.1 Abstract

Non-invasive neurophysiological recordings, such as those measured by magnetoencel-

ography (MEG), provide insight into the behaviour of neural networks and how these

networks change with factors such as task performance, disease state, and age. Re-

cently, there has been a trend in describing neurophysiological recordings as a series

of transient bursts of neural activity rather than averaged sustained oscillations as

burst characteristics may be more directly correlated with the neurological genera-

tors of brain activity. In this work, we investigate how beta burst characteristics

change with age in a large open access dataset. The objectives are (1) to detect

and characterize transient beta bursts over the ipsilateral and contralateral primary

sensorimotor cortices during a unilateral motor task performance and during wakeful

resting, and (2) to identify age-related changes in beta burst characteristics, in the

context of earlier reports of age-related changes in beta suppression and the post-

movement beta rebound. MEG data, acquired at the Cambridge Centre for Ageing

and Neuroscience, of roughly 600 participants with a nearly uniform distribution of

ages between 18 and 88 years old was used for analysis. We found that burst rate is

the predominant factor related to age-related changes in the amplitude of the induced

beta rhythm responses associated with a button press task. Furthermore, we present

a cross-validation of burst parameters detected at the sensor- (peak sensor and sensor

ROI) and source-level (beamformer spatial filter). This work is as an important step

in characterizing transient bursts in neuromagnetic signals in the temporal domain,

towards a better understanding of the healthy aging human brain.
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2.2 Introduction

Non-invasive neurophysiological recordings provide insight into the behaviour of neu-

ral networks, and how these networks change with factors such as task performance,

disease state, and age. The human motor system serves as an effective platform to

study cortical oscillation dynamics in relatively simple experimental paradigms. A

sensorimotor event, such as a voluntary movement or a sensory stimulus, is associ-

ated with measurable, stereotypical modulations in the power of mu (10-15 Hz), beta

(15-30 Hz), and gamma (> 30 Hz) band signals (Rossiter et al., 2014b)(Engel and

Fries, 2010)(Shin et al., 2017)(Pfurtscheller et al., 1996). In the mu and beta bands,

oscillatory activity is understood to be generated by an inhibitory thalamocortical

neural system. Thus, a reduction in signal strength represents an activated state of

processing in the underlying cortical network (i.e., facilitation), whereas an increase

represents stronger inhibition (Pfurtscheller and Lopes da Silva, 1999). Conversely,

oscillatory activity in the gamma band is understood to be excitatory in nature,

and is likely generated by more local circuitry. Changes in the dynamics of these

oscillatory signals have been directly associated with neurological conditions, includ-

ing stroke and Parkinson’s disease (Rossiter et al., 2014a)(Brown, 2007)(Little and

Brown, 2014).

The induced responses occurring during a button press task include changes in

mu, beta, and gamma band activity, which are generally elucidated by calculating the

average spectral power across a number of task repetitions (or “trials”). Immediately

preceding and during the button press (-100 - 500 ms relative to the button press), a

decrease in average spectral power in the mu and beta bands, compared to an earlier

“baseline” interval, localizes bilaterally in the primary motor and somatosensory cor-

tices with contralateral dominance (Pfurtscheller and Aranibar, 1977)(Bardouille and

Bailey, 2019)(Pfurtscheller and Lopes da Silva, 1999)(Pfurtscheller et al., 1997)(Hari

et al., 1997)(Crone et al., 1999). This decrease in average spectral power is often

referred to as event-related desynchronization (ERD), or rhythm suppression. In the

time following the button press (500 - 1250 ms relative to the button press), the av-

erage spectral power in the beta band is higher than the baseline interval, an effect

known as the post-movement beta rebound (PMBR), which localizes slightly anterior

and medial relative to the localized suppression (Pfurtscheller et al., 1996)(Bardouille
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and Bailey, 2019)(Gaetz and Cheyne, 2006). The mu rhythm shows no such rebound

characteristic (Bardouille and Bailey, 2019). Furthermore, a low intensity increase in

average spectral power occurs for a duration of roughly 400 ms temporally centered on

the button press in the gamma band. This example of event-related synchronization

(ERS) is known as the movement-related gamma burst (MRGB) and localizes to the

contralateral primary motor cortex with some somatosensory representation (Bar-

douille and Bailey, 2019)(Pfurtscheller et al., 1994)(Cheyne et al., 2008)(Cheyne and

Ferrari, 2013)(Muthukumaraswamy, 2011). Thus, changes in cortical oscillations can

be characterized temporally and spatially as ERS and ERD, based solely on changes

in average spectral power (Pfurtscheller and Lopes da Silva, 1999).

It is generally accepted that cortical oscillations change with healthy aging (Rossini

et al., 2007). The induced oscillatory dynamics in response to a basic motor task are

generally fully evident by late adolescence in healthy individuals. In particular, mu

and beta ERD are strong in all age groups (Wilson et al., 2010) while children in the

11-13 age range show the greatest MRGB compared to younger children and adults

(Gaetz et al., 2010). The PMBR on the other hand shows a developmental time

course with limited expression in young children (4-6 years old), a significant increase

in prominence around 13 years, and a further increase into adulthood (Gaetz et al.,

2010)(Gaetz et al., 2020). On the other end, beta oscillations have been linked to the

inhibitory neurotransmitter gamma-aminobutyric acid (GABA) which shows greater

inhibitory activity within the motor cortices of older subjects (Rossiter et al., 2014b).

Recently, age-related changes in the movement-related induced responses have been

shown in a large dataset consisting of magnetoencephalographic (MEG) recordings

of roughly 700 healthy adults with a nearly uniform distribution of participant ages

between 18 and 88 years (Shafto et al., 2014)(Taylor et al., 2017). Bardouille and

Bailey (2019) found that the movement-related response in the contralateral primary

motor cortex shifts to lower spectral power with increasing age. Specifically, they

found decreasing PMBR amplitude, PMBR frequency, and MRGB amplitude as well

as increasing beta suppression amplitude with age. These age-related changes in

the induced responses verify many previous reports in studies with smaller datasets

(Babiloni et al., 2004)(Labyt et al., 2003)(Schmiedt-Fehr et al., 2016)(Christov and

Dushanova, 2016)(Sallard et al., 2016)(Toledo et al., 2016)(Cheyne and Ferrari, 2013).
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However, the reported age-related effects focus on measures of average spectral power,

which fail to capture how individual oscillatory bursts are changing with age. Re-

search linking these age-related changes in average spectral power change to the char-

acteristics of transient bursts will provide a clearer understanding of how neural net-

works change with age.

Recent studies support the idea that the complexity of brain activity is not com-

pletely captured using spectral averaging techniques (Cole and Voytek, 2017)(Jones,

2016). It has been shown that raw neurophysiological recordings show transient bursts

of high-power activity lasting on the order of hundreds of milliseconds and that it is

only through averaging over many trials that we observe oscillatory dynamics that

appear to be sustained for longer periods of time (van Ede et al., 2018)(Jones, 2016).

For example, recent work has shown, across various tasks and species, that an increase

in beta band average spectral power in the primary somatosensory cortex specifically

is due to an increase in the occurrence rate of transient beta bursts in the raw neuro-

physiological recordings (Shin et al., 2017). Some alternate hypotheses for an increase

in spectral power include longer duration bursts, bursts with a larger signal ampli-

tude, or bursts with a wider frequency span. Each of these hypotheses is supported by

different changes in the underlying neural circuitry. Thus, the characteristics of tran-

sient bursts contain crucial information for understanding the generators of induced

responses, including identifying changes in the underlying neural systems (Murthy

and Fetz, 1992). Computational modeling to generate stereotypical transient bursts

is thus an emerging technique in the literature, hinting at the possibility of developing

a dictionary that relates burst waveform shapes to the underlying physiology (Cole

and Voytek, 2017)(Jones, 2016). For example, Sherman et al. (2016) used a combina-

tion of human MEG, computational modeling, and laminar recordings in animals to

show that excitatory input to proximal and distal dendrites in pyramidal neurons in

the primary sensorimotor cortex is a possible mechanistic origin for transient bursts

in the beta band.

In this report, we apply a transient burst analysis framework to MEG data from

the Cam-CAN open-access dataset. The objectives are (1) to detect and characterize

transient beta burst events over the ipsilateral and contralateral primary sensorimotor

cortices during a unilateral motor task performance and during wakeful resting in a
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large open-access dataset, and (2) to identify age-related changes in beta burst char-

acteristics, in the context of earlier reports of age-related changes in beta suppression

and the post-movement beta rebound. We hypothesize that age-related trends in

transient beta burst characteristics will reflect those previously found in the average

spectral power analysis of the same data. We investigate transient bursts through

sensor-level as well as source estimation (beamformer spatial filter) techniques. To

our knowledge this work is the first attempt of validation that the beamformer pro-

vides an accurate representation of the characteristics of individual transient events

at the source level.

2.3 Methods

Text from Bardouille and Bailey (2019) is adapted in sections 2.1 - 2.4 for clarity and

consistency.

2.3.1 Participants & Experimental Paradigm

Six hundred and fifty participants had MEG data obtained during the performance

of the simple cued-button pressing task in Phase 2 of the Cam-CAN examination of

healthy cognitive ageing. Participant ages ranged from 18 to 88 years of age, with an

equal distribution in age per decile and equal proportions of males and females. Fol-

lowing exclusions (described in section 2.4), we report findings from 596 participants

(91.7% of the original 650 datasets). Each participant performed the “Sensorimotor

task” and a “Resting state” scan (Shafto et al., 2014). In the sensorimotor task,

participants responded with a right index finger button press to unimodal or bimodal

audio/visual stimuli. The order of bimodal and unimodal trials was randomized,

and the inter-trial interval varied between 2 and 26 s. The button press task did

not include specific imperatives related to performance (e.g., fast responses). Thus,

brain-behaviour interactions focused on response time were not investigated in this

report. In the resting state scan, data were acquired for 8 minutes and 40 seconds

while participants rested with their eyes closed. The first 20 seconds of the resting

data were discarded.
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2.3.2 Data Acquisition

Data were obtained from the Cam-CAN repository (available at

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/; (Shafto et al., 2014)(Taylor et al.,

2017)). MEG data were acquired at 1000 Hz with inline band-pass filtering between

0.03 and 330 Hz using a 306-channel Vectorview system with continuous head po-

sition monitoring (Elekta Neuromag, Helsinki, Finland). Digitization of anatomical

landmarks (i.e., fiducial points; nasion and left/right preauricular point) as well as

additional points on the scalp was also performed for registration of MEG and MRI

coordinate systems. Electrooculogram (EOG) and electrocardiogram (ECG) were

recorded concurrently. T1-weighted magnetic resonance images (MRI) were acquired

using a 3T Siemens Tim Trio system with a 32-channel head coil.

2.3.3 MRI Data Analysis

Each participant’s MRI was reconstructed using the FreeSurfer recon-all algorithm

(Dale et al., 1999)(Fischl and Dale, 2000)(Fischl et al., 1999a)(Fischl et al., 1999b)(Fischl

et al., 2001)(Fischl et al., 2002)(Fischl et al., 2004)(Desikan et al., 2006). The recon-

struction process provided a digitization of the cortical surface for source estimation,

a transformation to the average (i.e., fsaverage) brain for spatial normalization and

group statistics, and a boundary element model of the brain to provide more accu-

rate calculation of the forward solution (Hamalainen and Sarvas, 1989). Locations for

source estimation were defined covering the entire cortical surface with 5 mm spac-

ing. Finally, each participant’s MRI data was registered to the MEG data based on

the alignment of anatomical landmarks (i.e., fiducials) in MEG and MRI, and MEG

head digitization with the scalp as visualized on the MRI (MNE python coreg, v.0.14)

using a semi-automated process (Bardouille and Bailey, 2019).

2.3.4 MEG Pre-Processing

Data was pre-processed by the Cam-CAN group using temporal signal space separa-

tion to perform environmental noise reduction, reconstruction of missing or corrupted

MEG channels, continuous head motion correction, and a transform of each dataset
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to a common head position (Taulu and Simola, 2006). All subsequent MEG pro-

cessing was completed in the Python programming environment (v.2.7.13), using the

MNE-python library (v.0.18.1) (Gramfort et al., 2014). Raw MEG data were low-pass

filtered at 125 Hz and notch filtered at 50 Hz and 100 Hz to remove signals related

to power lines. Data pre-processing proceeded as previously described (Bardouille

and Bailey, 2019). Briefly, the task data was parsed into trials synchronized to each

button press, with a duration of 3.4 s and a 1.7 s pre-stimulus interval. Trials were

excluded if the button press occurred more than 1 s after the cue (indicating poor

task performance) or if the button press occurred within 3 s of the previous button

press (which provided insufficient baseline for subsequent analysis). Participants with

less than 55 trials after these exclusions were excluded from further analysis. The rest

data were cropped to a single 210 s trial including 105 s prior to and following the

midpoint of the resting data. The length of this trial was chosen to be approximately

equal in length to the sum of all task trials. Independent component analysis was

performed on the task and rest data using the FASTICA algorithm (Hutchinson et al.,

2002)(Delorme et al., 2007) to remove artifacts using a fully automated process. This

process resulted in cleaned MEG task data (i.e., channels x time x trials) and cleaned

rest data, which were used for time-frequency analysis and burst mapping.

2.3.5 Transient Burst Detection and Calculating Burst Characteristics

Time-frequency response (TFR) plots of spectral power were generated by convolving

each trial of the cleaned MEG task data with a complex Morlet wavelet. Morlet

wavelet analysis was performed between 1 and 100 Hz with 1 Hz resolution and

the power was calculated as the square magnitude of the complex wavelet-convolved

data. To investigate changes in average power, each TFR plot was normalized to the

mean value in the pre-stimulus interval and averaged across trials and participants

to generate a grand-average TFR. Topographic maps, as shown in Figure 2.1 (a), of

average beta power change immediately preceding/during the button press (-0.1 < t

< 0.5 s) and following the button press (0.5 < t < 1.25 s) were generated by plotting

the grand-average power change within the beta frequency band and appropriate time

interval to the sensor array.

Based on the topographic maps shown in Figure 2.1, we selected one channel,
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herein referred to as the ”Peak Sensor”, from each hemisphere for detecting beta

bursts. Channels MEG0221 (left, contralateral) and MEG1311 (right, ipsilateral)

were selected as the peak sensors because they overlay the left and right sensorimotor

areas, were strongly sensitive to changes in the beta rhythm (likely occurring in the

primary sensorimotor cortex), are far away from the midline (to ensure sensitivity to

one hemisphere only), and are in mirrored positions on the sensor array. In an effort

to mitigate spatial variability between subjects, we additionally detected transient

bursts over a wider region of interest (ROI) of sensors, herein referred to as ”Sensor

ROI”, consisting of 7 sensors in each hemisphere centered around (and including) each

peak sensor. Sensor ROIs for each hemisphere are indicated by numbers 1 through

7 in Figure 2.1 (a). Sensor ROI single-trial TFRs (TFRROI) were generated from a

weighted sum of the individual sensor single-trial TFRs (TFRi), namely

TFRROI =
7∑

i=1

(
ωi · TFRi

)
(2.1)

where (ωi) are the normalized sensor weights. Sensors were weighted based their

relative contributions to average power change during the movement-related beta

suppression and PMBR, i.e.

ωi = χϕi + (1− χ)τi (2.2)

where the contribution of beta ERD to the total power change due to both beta

responses across the ROI, χ, is given as

χ =

7∑
i=1

|PERD
i |

7∑
i=1

(
|PERD

i |+ |P PMBR
i |

) (2.3)

with each sensor’s relative contribution to the beta ERD, ϕi, given as

ϕi =
|PERD

i |
7∑

i=1

|PERD
i |

(2.4)

and each sensor’s relative contribution to the PMBR, τi, given as
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τi =
|P PMBR

i |
7∑

i=1

|P PMBR
i |

(2.5)

where |PERD
i | and |P PMBR

i | are the power change at sensor i in the ERD and PMBR

time intervals, respectively. The resulting normalized sensor weights, which are gen-

erally close to one-seventh, are shown in Figure 2.1 (b).

In an effort to address spatial variability by source estimation, we also detected

and characterized transient bursts at the source level. Here, we used a beamforming

approach to estimate activity on the cortical surface based on previously reported

functional ROIs for each induced response (Bardouille and Bailey, 2019), herein re-

ferred to as the ”Source” method. Briefly, the dynamic imaging of coherent sources

beamformer was used for each participant to generate functional maps constrained to

the cortical surface with unit-noise gain normalisation) of the movement-related beta

suppression and PMBR (Gross et al., 2001; Sekihara and Nagarajan, 2008). Each set

of functional maps were spatially normalised to the fsaverage brain, and combined to

generate a functional ROI for each response. The functional ROI was transformed

back to each participant’s MRI coordinate frame. Following this, a time course of

estimated source activity was generated at the centre of mass of the ROI (x=-32

mm, y=-19 mm, z=47 mm; FreeSurfer Talairach coordinates) using the participant’s

cleaned and epoched MEG data. Data analysis scripts to generate the functional ROI

can be found: https://github.com/tbardouille/camcan MovementInducedResponses.

This time course was used to detect and characterise transient spectral events at two

sources: one that localizes the beta suppression and one that localizes the PMBR.

This method provided transient events in the hemisphere contralateral to movement

only.
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Figure 2.1: (a) Grand-average beta rhythm spectral power change (log ratio) to-
pographies of the movement and post-movement phases relative to pre-movement.
Sensor ROIs for each hemisphere are indicated by numbers 1 through 7, where Left
ROI consists of [1:MEG0221, 2:MEG0321, 3:MEG0341, 4:MEG0211, 5:MEG0411,
6:MEG0231, 7:MEG0441] and Right ROI consists of [1:MEG1311, 2:MEG1231,
3:MEG1221, 4:MEG1321, 5:MEG1121, 6:MEG1341, 7:MEG1131]. (b) Normalized
sensor weights calculated via equation (2). Each box plot shows the distribution
of weights across all subjects. (c) Correlation coefficient as a function of threshold
(note: log scale) for detecting transient events for each analysis method. Curves are
averaged over all participants and trials with the 95 % confidence interval shown.

Transient spectral bursts were detected and characterised for all participants using

a process described in detail by Shin et al. (2017) (https://github.com/hs13/BetaEv).

As an initial step for burst detection and characterisation, local maxima in spectral

power were found in the single-trial TFRs (1 ≤ f ≤ 100 Hz with a 1 Hz step). Bursts

were defined as local maxima in the single-trial TFR plot with spectral power above a

threshold value (described as a multiple of the median value for that frequency). The

threshold value was calculated independently for each of the three analysis methods

based on a process by Shin et al. (2017). In short, the correlation coefficient between
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the mean pre-stimulus beta spectral power and the percent pixels above the threshold

power in the pre-stimulus spectrogram (both as a function of time) was calculated

for various threshold values, and for every trial and participant. The threshold cor-

responding to the maximum correlation coefficient was chosen as the threshold for

transient burst detection. Figure 2.1 (c) shows the correlation coefficient as a function

of threshold averaged over all trials and participants for each of the three analysis

methods. The resulting data-driven power thresholds for defining transient bursts

were 2.3x the median for peak sensor, 1.8x the median for sensor ROI, and 2.1x the

median for source.

For each burst, the peak power at the local maximum was normalized to the

median power for that frequency bin to record the normalized peak power of the

burst, while the time and frequency coordinates of the local maxima represent the

peak time and peak frequency, respectively. The event duration and frequency span

of the bursts were calculated as the full-width at half maximum (FWHM) of the

local maxima along the time and frequency dimension, respectively. Burst rate was

calculated as the number of events that occur within a given time range across all

trials divided by the total time. Bursts were categorised as occurring during the

pre-movement (-1.25 s to -0.25 s relative to the button press), movement (-0.25 s to

0.25 s relative to the button press), and post- movement (0.25 s to 1.25 s relative to

button press) phases. The choice of these time intervals was guided by the distinct

phases evident in the distribution of beta burst peak times across all data, as shown

in Figure 2.2 (a) and (b). An event was considered to fall within a given phase if

the peak time was within the associated time range, and burst rate was calculated

separately for each phase. Burst characteristics were also calculated, as described

above for the resting state MEG data by treating the 210-second rest dataset as one

trial.

2.3.6 Statistical Analysis of Age-Related Effects

Regression was used to reveal statistically significant relationships between age and

burst characteristics. Linear and quadratic models were investigated for each char-

acteristic, with the most appropriate model selected by comparing chi-square values

via an F-test (quadratic model was selected if F-stat > 4, corresponding to a 95%
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confidence level). If a linear model was deemed most appropriate, a statistically sig-

nificant non-zero age-related trend was determined if χ2
min < 3 and p-value < 0.05.

Additionally, multiple comparisons were taken into account by adjusting the false

discovery rate (0.5 %) using the Benjamin-Hochberg Procedure. If a quadratic model

was deemed most appropriate, statistical significance was determined if χ2
min < 3.

Analysis was focused on the hemisphere contralateral to movement. For each partic-

ipant, event duration, normalized peak power, peak frequency, and frequency span

were tabulated separately for all events occurring in the rest, pre-movement, move-

ment and post-movement phases. Burst rate was also calculated for each participant

in each phase. Regression was performed for each burst characteristic on all bursts

across participants during each phase, with age as the independent variable.

2.4 Results

2.4.1 Burst Characteristics

To investigate the movement related burst dynamics as a function of peak time and

peak frequency, Figure 2.2 (a) shows 2D histograms of transient burst peak times and

peak frequencies over all trials and participants (approximately 37,000 total trials)

for all three analysis methods. 2D histograms are shown for both hemispheres for

the sensor-level analysis methods and for the two source-level functional ROIs (ERD

and PMBR). Each histogram has a bin width is 0.062 s in the time domain and 4 Hz

in the frequency domain. There are relatively few mu and beta bursts throughout

the movement phase, which is likely a major source of the decrease in average power

associated with mu/beta suppression. In the post-movement phase, there is an in-

crease in the occurrence of bursts in the beta band as compared to pre-movement,

which is likely a major source of the increase in average power usually referred to as

the post-movement beta rebound. Figure 2.2 (a) shows some non-periodic frequency

banding in all histograms between 45 and 85 Hz, which we associate with different

median burst power (i.e. unique burst threshold criteria) for each frequency.

In addition, Figure 2.2 (a) peak sensor and sensor ROI histograms both show a

subtle increase in the occurrence of bursts in the gamma band during the movement
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phase, which matches in time and frequency with the previously reported movement-

related gamma burst. The source histogram shows no such gamma burst suggesting

source estimation based on the beta ERD functional ROI is not sensitive to the in-

crease in the gamma band burst rate. Figure 2.2 (a) provides a verification that a

burst analysis approach is effective in explaining previously observed so-called beta

band “induced responses” in this experimental paradigm but is less sensitive to tran-

sient events in the gamma band. Thus, we focus our attention to the bursts occurring

in the beta band from here on.

To focus on the beta band dynamics and elucidate the hemispheric laterality of

induced responses, Figure 2.2 (b) shows the normalized distributions of beta burst

peak time aggregated over the beta frequency range for each analysis method and each

hemisphere. This result supports the chosen time windows for each phase of the but-

ton press response as described in section 2.5. The reduction in normalized transient

burst counts from the pre-movement to the movement phase is approximately equal

in both hemispheres for the sensor-level methods, suggesting the beta suppression is

a symmetric bilateral response. This agrees with the spectral power change topogra-

phy shown in Figure 2.1 (a), and previous reports in the literature (Jurkiewicz et al.,

2006). The increase in normalized transient burst counts from the pre-movement to

the post-movement phase is larger for the contralateral sensor compared with the

ipsilateral sensor, suggesting the PMBR is contralateral dominant which also agrees

with the spectral power change topography in Figure 2.1 (a), and previous reports of

a contralateral dominant PMBR (Jurkiewicz et al., 2006). Furthermore, Figure 2.2

(b) shows the source-level analysis is less sensitive to burst rate changes in the beta

band throughout the motor task as compared to the sensor-level analysis methods.

Figure 2.2 (c) shows the calculated beta burst rate for each phase of the motor task

as well as rest for all three analysis methods across all participants in the contralat-

eral hemisphere. This plot indicates that both sensor-level analysis methods result in

similar burst rates despite their unique burst definition thresholds. The source-level

analysis gives slightly higher burst rates than the sensor-level analysis methods, and

shows less task-related modulation in burst rate compared to sensor-level analyses.
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Figure 2.2: (a) Grand-average 2D histograms of contralateral transient burst peak
times and peak frequencies for all three analysis methods. (b) Grand-average normal-
ized distribution of transient beta burst peak time showing both contralateral (solid)
and ispsilateral (dashed) hemispheres for the sensor-level analysis methods. The solid
source-level analysis curve is localized to ERD while the dashed curve is localized to
PMBR. (c) Burst rate box plots for all three analysis methods for each phase of the
motor task and rest in the contralateral hemisphere
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Figure 2.3: Grand-average normalized distributions of transient beta burst normal-
ized peak power, event duration, frequency span, and peak frequency during rest and
all phases of the button press response for all three analysis methods. The solid line is
the probability density for the contralateral hemisphere whereas the dashed line is the
probability density difference between the contralateral and ipsilateral hemispheres.

Figure 2.3 shows the normalized distributions of transient beta burst character-

istics over all participants for each phase of the button press response, and for the

resting scan, for all three analysis methods. Note that, throughout the paper, source-

level burst characteristics are given based on the transient spectral events from the

appropriate functional ROI. For example, PMBR burst characteristics are tabulated

based on analysis of the PMBR functional ROI. The solid line is the probability

density for the contralateral hemisphere whereas the dashed line is the probability

density difference between the contralateral and ipsilateral hemispheres. The distri-

bution of normalized power for all three analysis methods suggests that beta bursts

in the post-movement phase are shifted to higher power and beta bursts in the move-

ment phase are shifted to lower power relative to rest and pre-movement. This peak

power dynamic over the motor task suggests a change in the underlying mechanism

and coincides with the changes in burst rate shown in Figure 2.2 (b). The high pro-

portion of low power events for the sensor ROI analysis method is a result of the lower



42

burst definition threshold compared to peak sensor and source analysis methods. The

distributions of burst duration, frequency span, and peak frequency are all consistent

across all phases of the button press response and all three analysis methods, with a

median burst duration and frequency span of 193 ± 5 ms and 6.6 ± 0.1 Hz, respec-

tively (where the uncertainty is the standard deviation of the mean of medians across

all phases and methods). Thus, modulation of burst duration, frequency span, or

peak frequency are not likely associated with generating the movement-related beta

suppression or rebound. Figure 2.3 shows no indication of hemispheric differences

in transient burst normalized peak power, event duration, frequency span, or peak

frequency.

2.4.2 Age-Related Changes in Burst Characteristics

To focus on a single network, the subsequent data analysis was limited to those

spectral bursts occurring contralateral to the movement whose peak frequency fell

within the beta frequency band. Figure 2.4 shows age-related changes in beta burst

characteristics for each phase of the button press response and for the resting state for

the peak sensor analysis method. Age-related changes in beta burst characteristics

for the sensor ROI and source analysis methods can be found in the supplementary

information (Appendix A). Burst characteristics are fit with either a linear trendline

(green) or a quadratic (orange) based on the chi-square comparison as described in

section 2.6. Those burst characteristics with a statistically significant relationship

with age are highlighted with a star. Table 2.1 shows the model statistics for all plots

in Figure 2.4. Tables for model statistics for the sensor ROI and source methods can

be found in the supplementary information (Appendix A).

The peak sensor analysis shows the most age-related changes in burst character-

istics (13), followed by the sensor ROI analysis (8), and the source level analysis (7).

There are no situations in which methods indicate conflicting statistically significant

age-related effects. Consistent effects across all three methods (with increasing age)

are a decrease in burst-rate during rest, a decrease in peak frequency during rest

and pre-movement, and a u-shaped relationship for frequency span at rest. Addi-

tionally, consistent effects across the two sensor-level methods are a decrease in peak

frequency post-movement, and a u-shaped relationship for frequency span during all
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task-related phases. Source-level analysis alone reveals a u-shape relationship with

age for normalized peak power in the movement interval. Event duration shows no

statistically significant trends with age for any interval or method.

Age-related trends for each burst characteristic are consistently modelled as either

linear or quadratic effects across intervals and methods. Specifically, burst rate and

peak frequency both show linear trends with age, whereas normalized peak power

and frequency span both show quadratic trends with age. Normalized peak power

tends to higher values in middle age, while frequency span tends to higher values for

younger and older participants.

With the exception of the burst rate, the same direction of significant age-related

trend are observed for each characteristic across analysis methods, and across the

resting state, pre-movement and post-movement intervals. Such agreement suggests

that the trends observed are independent of task performance. Interestingly, the in-

crease in pre-movement burst rate with age is opposite to the decrease in resting state

burst rate with age (both statistically significant for the peak sensor analysis). This

suggests an interaction between age-related changes in burst rate and brain state.

The movement interval shows substantially fewer statistically significant age-related

trends than the other intervals. For example, the peak sensor analysis shows statis-

tically significant trends in all intervals except movement for burst rate, normalized

peak power, and peak frequency. This likely stems from the movement interval having

higher variance, compared to other intervals, due to reduced burst rate and shorter

interval.

The ERD amplitude increase with age observed in previous work (Bardouille

and Bailey, 2019)(Babiloni et al., 2004)(Labyt et al., 2003)(Schmiedt-Fehr et al.,

2016)(Toledo et al., 2016) coincides well with the age-related trends in pre-movement

burst rate and normalized peak power observed in this work. Specifically, the increas-

ing pre-movement burst rate with age will lead to increased average spectral power in

the baseline. In combination with no significant trend in movement burst rate, this

equates to an ERD amplitude increase with age. The pre-movement normalized peak

power shows a quadratic trend with age, wherein bursts tend towards higher power

for older participants compared to younger participants (peak sensor analysis). This

increasing trend in pre-movement normalized peak power will also lead to increased
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average spectral power. In combination with no significant trend in movement nor-

malized peak power, this age-related trend in beta burst characteristics additionally

lends itself to an ERD amplitude increase with age.

The decrease in PMBR amplitude with age observed in studies of average spectral

power (Bardouille and Bailey, 2019)(Schmiedt-Fehr et al., 2016)(Sallard et al., 2016)

coincides directly with the decrease in post-movement burst rate observed in transient

beta bursts. Normalized peak power may additionally play a role in the decreased

PMBR amplitude, as the quadratic model shows a slightly lower normalized peak

power in older participants compared to younger participants. The age-related de-

crease in PMBR frequency observed based on average spectral power concurs with the

age-related decrease in post-movement peak frequency for beta bursts observed here.

Overall, the age-related trends observed in the context of studies of spectral power are

clearly associated with age-related trends in multiple transient burst characteristics.

This relationship between the two approaches to investigating cortical rhythms sup-

ports the notion that a transient burst events framework provides a valuable approach

for extracting age-related trends in neuromagnetic data.
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Figure 2.4: Age-related changes in transient burst characteristics for all burst charac-
teristics for each interval of the button press response and for the resting state. Only
peak sensor results are shown. Each plot is fit with the model, either linear (green)
or quadratic (orange), that was deemed most appropriate via chi-square comparison.
Stars indicate statistically relevant age-related trends. The shaded region around the
line of best fit represents the 95% confidence interval.



46

Table 2.1: Modeling parameters of peak sensor calculated burst characteristics with
age. Parameters are given for the linear and quadratic models. Bolded rows indicate
statistical significance.

2.5 Discussion

In this paper, we applied the transient spectral event framework proposed by Shin

et al. (2017) to a large open-access dataset to characterize beta bursts during a motor
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task and rest and to investigate how beta burst characteristics change with age.

The age-related changes in beta burst characteristics are considered in the context

of previous reports of age-related changes in average spectral power in the same

population. We found that transient beta burst rate (i.e., number of beta bursts

occurring per unit time) shows changes throughout the phases of the button press task

that strongly reflect those seen in average spectral power. The normalized peak power

of the burst (representative of the burst signal amplitude) shows similar dynamics

over the button press task but to a lesser extent than burst rate. Similarly, we found

that age-related changes in burst rate correspond well to the age-related increase in

beta suppression amplitude and decrease in post-movement beta rebound amplitude

previously reported. Again, normalized peak power shows similar age-related trends.

In fact, over the investigated age-span (i.e. 18 - 88 years), both burst rate and

normalized peak power show an approximate 10% decrease (relative to their median

values over the age-span) during the post-movement interval and a 5% increase during

the pre-movement interval. Although burst rate and normalized peak power show

similar fractional changes over the entire investigated age-span, burst rate shows a

direct linear correspondence with age while normalized peak power shows a quadratic

tendency, suggesting the age-related changes in normalized peak power have more

complex underpinnings. Thus, we suggest that transient beta burst rate is the primary

factor driving previously reported age-related changes in induced response amplitudes

during a movement task while the peak power of the burst plays a secondary (and

perhaps more complex) role. The previously reported decrease in peak frequency of

the beta rebound was explained by a decrease in the peak frequency of beta bursts.

It is clear that we can re-evaluate age-related changes in average spectral power

as modifications in specific characteristics of transient bursts of activity. We are not

suggesting that these characteristics are more sensitive to age than changes in average

spectral power. Rather, we posit that the changes in specific burst characteristics have

the potential to be more directly associated with changes in the neural circuitry, as

compared to the age-related changes in spectral power that represent many bursts as

one signal in average. For example, the potential causes for an increase in spectral

power include an increase in burst power and burst duration. Beta burst power and

duration are likely mediated by different underlying mechanisms (e.g., population size,
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pathway conductance, thalamic signalling). As such, an analysis that differentiates

the burst characteristics that underlie a change in spectral power is valuable. Further

work, perhaps in the fields of computational modelling or multi-modal imaging, to

determine the anatomical underpinnings of modulations in the beta burst rate and

peak frequency will provide insight into how the network generating sensorimotor

beta activity changes with age.

In this work, we analyze transient burst characteristics through two sensor-level

techniques (peak sensor and sensor ROI) as well as through a source estimation tech-

nique (beamformer spatial filter). Source estimation techniques have been validated

against expectations for providing accurate estimates of (i) spatial maps of changes

in spectral power (e.g, (Jurkiewicz et al., 2006)), (ii) average time courses for regions

of interest (e.g., (Cheyne et al., 2006)(Gaetz et al., 2009)), and (iii) average time-

frequency response plots (e.g., (Gaetz and Cheyne, 2006)(Bardouille et al., 2010)).

To our knowledge this work is the first attempt of validation that the beamformer pro-

vides an accurate representation of the characteristics of individual transient events,

such as a single beta burst, at the source level. Such validation exists for MEG sensor

and equivalent current dipole source estimated data (Shin et al., 2017). Our results

show that the source-level analysis attempted here is less sensitive to burst charac-

teristic dynamics throughout motor task performance and the associated age-related

trends, as compared with sensor-level analysis. The reduced sensitivity we observed

could stem from the spatial specificity of our approach to beamforming transient

spectral events. It may be that other beamformer modifications (e.g., regularization,

empty room data) and source estimation methods (e.g., dSPM, LORETA) may be

better suited to accurately reconstructing transient beta bursts. However, a rigor-

ous comparison of source estimation methods, including simulations and parameter

optimisation, is beyond the scope of this thesis. Regardless, the reduced sensitivity

to transient bursts at the source level points to a need for a more rigorous analysis

of the spatiotemporal dynamics of transient spectral events during movement and at

rest, which is beyond the scope of this work.

Despite the reduced sensitivity of the source level approach, the three analysis

methods agree as to the appropriate model (i.e. linear or quadratic) to best represent

significant age-related trends in this population. Namely, all analysis methods agree
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that a linear model best represents age-related trends in burst rate and peak frequency

(both decrease with age), a quadratic model best represents age-related trends in

normalized peak power (n-shaped) and frequency span (u-shaped), and that event

duration shows no age-related changes. Different burst characteristics showing diverse

age-related trajectories suggests that the characteristics of a given transient beta burst

are generated by various underlying neural circuits, and that these neural circuits have

unique age-related changes.

One interesting finding is that burst rate showed differing relationships to age for

different intervals of MEG data. For example, burst rate decreased with age during

rest but increased with age during the pre-movement interval (for peak sensor). It is

tempting to think of the pre-movement interval (or pre-stimulus intervals, in general)

as equivalent to a long rest interval. However, our results suggest that being engaged

in a task can lead to changes in beta burst characteristics from the resting state, and

that these changes have a different age-dependency. Specifically, our results indicate

that younger participants show a drop in burst rate when transitioning from a rest

state to being engaged in a motor task but not moving, while older participants show a

jump in burst rate (with the crossover occurring at approximately 50 years old). One

could speculate that some fundamental suppression in the signalling of the network

underlying beta bursts is occurring when switching from resting to a task state, more

so in younger than older participants.

One novel aspect of this work is the discovery of significant high-order (i.e. quadratic)

age-related trends in MEG data permissible due to the high number of participants

(N = 596) with a nearly uniform age distribution between 18 and 88. Previous re-

ports of age-related effects in smaller populations were limited in investigating only

up to first-order effects or to separating participants into ”young” and ”old” groups

(Schmiedt-Fehr et al., 2016)(Sallard et al., 2016)(Toledo et al., 2016)(Gaetz et al.,

2010)(Gaetz et al., 2020). Modeling age-related trends with a quadratic function sug-

gests the existence of developmental periods of critical differences in the 18-88 age

range occurring around the quadratic vertex. With that said, our statistical analysis

has forced either a quadratic, linear, or null age-related change for each transient beta

burst characteristic. It is possible (perhaps likely) that the natural ageing trajectories

of transient beta burst characteristics follow a more complex path. In fact, recent
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work shows more advanced regression techniques can lead to accurate MEG-based

age prediction for the same Cam-CAN dataset (Sabbagh et al., 2019). To further

progress efforts towards a better understanding of the healthy ageing human brain,

more advanced regression techniques may need to be considered to more accurately

reflect how the network generating sensorimotor beta activity changes with age.

The age-related change in the frequency span of beta bursts, which was consis-

tently observed in all intervals for both sensor level analyses, is a novel trend that

we did not predict. To our knowledge, this age-related effect has not been previously

reported. The quadratic nature of this effect means that it was unlikely to be ob-

served in small sample studies that dichotomize data into young and old groups. A

reduction in the frequency span of transient bursts would lead to a reduction in aver-

age spectral power. However, the consistency of the age-related trend across intervals

may result in this effect being masked in measures of ERD and ERS. At this stage,

it is unclear how the age-related modulation of frequency span relates to previously

reported age-related changes in the beta rhythm.

Brain-behaviour interactions were not investigated in this work because partici-

pants received no imperative instructions with respect to task performance. It would

be interesting to investigate beta burst characteristics during task and at rest in

datasets where such an imperative exists. Additionally, an investigation of age-related

changes in transient bursts in the gamma band would be valuable, although beyond

the scope of this thesis. One important limitation of this work is that the TSE frame-

work makes the underlying assumption that transient events are best characterized

via transform to frequency space using a Morlet wavelet. Recent work (Jones, 2016)

suggests that the electrophysiological correlates of many transient events are not sinu-

soidal. Thus, the TSE framework can lead to a misrepresentation of burst character-

istics. Techniques are required to study transient events in the time domain, rather

than using spectral analysis methods that make assumptions about wave shapes.

Another weakness is that TSE analysis is performed independently for each channel,

such that the mixing of signals between sensors is not accounted for in the analysis.

Thus, a given transient event is detected and characterized independently by multi-

ple sensors, which is not ideal for managing the dataset as a whole. Convolutional
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sparse coding (La Tour et al., 2018) is a promising data-driven technique that de-

composes multi-channel MEG data into multiple repeating spatiotemporal patterns,

which may have some utility in the detection and characterization of transient events

in the time domain across the entire sensor array. Further work is required to char-

acterize transient bursts in neuromagnetic signals in the temporal domain, towards a

better understanding of the human brain.
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Chapter 3

Periodic/Aperiodic parameterization of transient oscillations

(PAPTO)-Implications for healthy ageing

3.1 Preamble

In Chapter 2 of this thesis, transient events were detected using the same signal power

thresholding method applied in Shin et al. (2017), where the threshold was calculated

as a multiple of the median power of the timecourse at the peak frequency of the event.

The median power spectrum was calculated individually for each participant while

the same multiple was used for all participants. While this burst detection approach

has led to meaningful neurophysiological insights in Shin et al. (2017) and in Chapter

2 of this thesis, it is important to highlight that normalizing the power threshold by

the median power to detect burst events causes the information contained within the

median signal power for each participant to be lost (i.e., the information is divided

out). Upon completing Chapter 2 of this thesis, I decided to check if the median power

itself changed with age out of concern that this loss of information may impact the

identified age-related changes in burst characteristics. Figure 3.1 shows the average

median power spectrum across the younger (ages 18-53, n=274) and older (ages 53-

88, n=286) Cam-CAN participants. The amplitude of the beta frequency peak in the

median power spectrum shows an age-related increase. This age-related change and

its potential associated neurophysiological insights are lost by amplitude thresholding

events based on the median power.

Following the discovery of the age-related increase in the beta frequency peak in

the median power spectrum, I searched through the literature to find alternative nor-

malization approaches to the median power spectrum for detecting burst events. I

subsequently found the fooof (fitting oscillations and one over f) algorithm for param-

eterizing neural power spectra into aperiodic and periodic components (https://fooof-

tools.github.io/fooof/), which has since been published as Donoghue et al. (2020). As

52
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shown in Chapter 3, replacing the median power normalization factor with the aperi-

odic power spectrum for power thresholding transient burst events avoids the loss of

information from dividing out the median power while simultaneously disambiguating

the transient burst events from the aperiodic activity.

Figure 3.1: Median power spectra show significant age-related changes, particularly
around the beta rhythm peak. Median power spectra of all Cam-CAN participants
analyzed in this work divided into younger and older age groups. Shaded areas
represent 95% C.I. across participants. Information about age-related changes in
beta rhythms (shown here) may originate from the transient events themselves but
is lost when defining transient events relative to the median power. Note that the
median power spectra shown here are scaled by the frequency to eliminate the general
1/f falloff of the curve (for visualization purposes).

In Chapter 3 we use a dynamic statistical parametric mapping (dSPM) technique,

a modified minimum norm inverse solution (see section 1.3.1), to localize resting-

state time courses to anatomical regions of interest. This differs from the dynamic

imaging of coherent sources (DICS) beamformer spatial filter used in Chapter 2. The

motivation for this switch arises from recent work from Power and Bardouille (2021)

which shows that the dSPM technique gives a more focal localization compared to

the DICS beamformer method for beta burst localization.
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3.2 Abstract

Two techniques for analyzing human extracranial neurophysiological signals, namely

the periodic/aperiodic parameterization of neural power spectra and the transient

events framework of oscillatory activity, have recently emerged in the scientific litera-

ture. In this work, we integrate these two analysis perspectives to analyze extracranial

neurophysiological signals as a series of transient rhythmic events disambiguated from

the background aperiodic activity. We call this novel technique the periodic/aperiodic

parametrization of transient oscillations (PAPTO). We demonstrate PAPTO by in-

vestigating resting-state sensorimotor magnetoencephalography recordings from the

Cambridge Centre for Ageing and Neuroscience cross-sectional study on healthy age-

ing (n=600, ages 18-88). We show that PAPTO is more sensitive to neocortical

transient beta rhythms compared to more conventional transient event detection al-

gorithms and captures more variance in the resting-state occurrence rate of beta

events across participants. The improved sensitivity of PAPTO reveals that the beta

occurrence rate almost doubles over the adult lifespan which we discuss in terms

of thalamocortical beta generation in the somatosensory cortex and the age-related

decline of sensory perception.
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3.3 Introduction

Healthy ageing is accompanied by a deterioration of sensorimotor performance. The

human sensorimotor cortex is responsible for sensory perception and in the plan-

ning, control, and execution of voluntary movement (Bardouille et al., 2010; Jones

et al., 2010; Parkkonen et al., 2015; Siegel et al., 2008), Sensorimotor function is as-

sociated with beta frequency (15-30 Hz) neuroelectrophysiological rhythms that are

generated in an inhibitory thalamocortical network. Namely, an increase in beta

rhythm strength represents an inhibited state of processing in the network whereas

a reduction in beta rhythm strength represents a more activated state of processing

(Pfurtscheller and Lopes da Silva, 1999). The performance of a motor task induces

a suppression in the sensorimotor beta rhythm amplitude throughout the duration

of the task, known as event-related desynchronization (ERD), which is followed by

a short ( 750 ms) rebound in beta rhythm amplitude above baseline levels after

completion of the task, known as event-related synchronization (ERS) (Crone et al.,

1999; Hari et al., 1997; Pfurtscheller and Aranibar, 1977; Pfurtscheller and Lopes

da Silva, 1999; Pfurtscheller et al., 1997). The amplitude and frequency of the beta

ERD and ERS change with healthy ageing over the adult lifespan (Babiloni et al.,

2004; Bardouille and Bailey, 2019; Christov and Dushanova, 2016; Labyt et al., 2003;

Schmiedt-Fehr et al., 2016; Toledo et al., 2016) indicating age-related changes in the

neurological processes underlying the thalamocortical neural system.

Sensorimotor cortical rhythms have conventionally been analyzed using spectral

averaging techniques in which rhythms appear continuous and sustained in time.

Recent work however shows that sensorimotor activity manifests as a series of short-

lasting transient events of high-power, frequency-specific oscillatory activity in raw

recordings (Jones, 2016; van Ede et al., 2018). These so-called transient events can

be defined as episodes of oscillatory activity with peak power above a cutoff value of

6X the median of that recording (Shin et al., 2017) or via a Hidden Markov Modeling

(HMM) based technique (Quinn et al., 2019). Local field potential recordings in

monkeys reveal that sensorimotor transient beta oscillations (15-30 Hz) emerge from

coherent population spiking of cortical pyramidal neurons (Murthy and Fetz, 1992)

and work in computational modeling proposes that the positive and negative field

deflections within an oscillatory episode arise from competing proximal and distal
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thalamocortical drives (Sherman et al., 2016). The timing and occurrence rate of

these events (i.e., event rate) play an important role in sensory perception as well

as the planning and execution of voluntary movement (Brady et al., 2020; Heideman

et al., 2020; Little et al., 2019; Seedat et al., 2020; Shin et al., 2017). Primarily,

beta events occurring close in time to a sensory stimulus impair the perception of the

stimulus (Shin et al., 2017) while events occurring close to a visual cue delay movement

initiation (Little et al., 2019). Furthermore, the beta event rate modulations over a

motor task mimic the spectral power dynamics associated with beta ERD and ERS

(Brady et al., 2020; Little et al., 2019; Seedat et al., 2020). Beta event rate also

plays a role in brain disease; namely individuals with Parkinson’s disease show robust

differences in beta event rate during movement preparation compared to healthy

controls (Heideman et al., 2020) while patients with schizophrenia exhibit a lower

post-movement beta event rate compared to healthy controls (Gascoyne et al., 2021).

At rest, evidence suggests the temporal coincidence of events plays a fundamental

role in driving the known electrophysiological beta connectome (Seedat et al., 2020).

Recent work by our group (Brady et al., 2020) analyzes age-related trends in

sensorimotor transient beta events characteristics during a motor task (i.e., unilateral

button press) and at rest using MEG data from the Cambridge Centre for Ageing

and Neuroscience (Cam-CAN) cross-sectional study of healthy ageing (n=596, ages

18-88) (Shafto et al., 2014; Taylor et al., 2017). We found that the peak power

of the events showed an n-shaped quadratic ageing trajectory, the peak frequency

of the events showed a linear decrease with age, and the frequency span of events

showed a u-shaped quadratic ageing trajectory. These trends were found both at

rest and during the various phases of the button press. The beta event rate on the

other hand showed a slight linear decrease with age at rest but a linear increase

with age during the pre-movement interval, suggesting that thalamocortical activity

is underpinned by a strong interaction between age and task engagement. As the beta

event characteristics show a variety of ageing trajectory functional forms, the results

of our recent work (Brady et al., 2020) hint at the unique functional significance of

beta event characteristics beyond just the event rate.

The aperiodic behaviour of neuroelectrophysiological signals has not been as widely
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studied as the rhythmic behaviour. This is primarily due to difficulties in measur-

ing aperiodic signals and thus connecting them to neurological generators (He et al.,

2010). The aperiodic activity generally manifests as a f−χ distribution in the neural

power spectral density (PSD), where the power drops off exponentially as a function

of frequency, f . The aperiodic exponent, χ, reflects the steepness of the falloff and

is typically around a value of one. The steepness of the frequency fall-off has been

shown to decrease (i.e., the PSD flattens) with waking compared to sleep (Freeman

and Zhai, 2009) and decrease with engagement in a visuomotor task (Podvalny et al.,

2015). Furthermore, resting-state ageing studies have shown adults have flatter neural

spectra compared to children (He et al., 2019) and older adults have flatter spectra

compared to younger adults in the visual cortex, which may facilitate age-related

impairments in visual working memory (Voytek et al., 2015). The PSD shape has

additionally been found to be a bio-marker for brain disease, including schizophrenia

(Racz et al., 2021), Attention deficit hyperactivity disorder (Ostlund et al., 2021;

Robertson et al., 2019), as well as Gilles de la Tourette syndrome (Münchau et al.,

2021). In addition to the aperiodic exponent χ, the neural PSD is determined by

a power offset parameter, b, which reflects the aperiodic baseline power levels. As

evidence of its functional significance continues to accumulate in the scientific litera-

ture, previous reports labeling the aperiodic activity as a type of “neural noise” are

potentially unjustified. In fact, recent work in computational modeling shows that

the aperiodic exponent (i.e., the steepness of the frequency fall-off) is associated with

the ratio of excitatory (ex. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid,

AMPA) to inhibitory (ex. GABA) synaptic currents, where a flatter PSD indicates a

higher excitatory to inhibitory ratio (Gao et al., 2017). The aperiodic offset has been

shown to correlate with the rate of single-neuron spiking (Manning et al., 2009).

Evidence for the functional significance of rhythmic and aperiodic neuroelectro-

physiological activity is now bountiful in the scientific literature. It is thus imperative

to separate rhythmic and aperiodic data in signal analysis pipelines to avoid conflat-

ing effects and the misinterpretation of the underlying neurophysiological mechanisms.

Such a scientific challenge has motivated the recent development of the ‘fooof’ (fitting

oscillations & one over f) algorithm which is designed to parameterize neural PSDs
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into their rhythmic and aperiodic components (Donoghue et al., 2020). Isolating ape-

riodic and periodic brain activity using the fooof technique is an effective approach

of assessing their functional roles. For instance, (Ouyang et al., 2020) found that dis-

sociating alpha oscillations from 1/f activity revealed a strong relationship between

1/f activity and between-person variability in cognitive speed – an association that

is mistaken to originate from alpha oscillations when applying conventional spectral

analysis techniques. Isolating aperiodic and periodic brain activity has also shown

that simultaneous changes in both components can underpin changes in functional

and behavioural processes. For example, (Thuwal et al., 2021) found that both pe-

riodic and aperiodic features correlate with visual short-term memory (VSTM) task

measures - the aperiodic features being associated with more global changes in infor-

mation processing and the periodic features reflecting more local changes in selective

aspects of the VSTM task. Changes in both the aperiodic and periodic features

over the adult lifespan were found to align well with an age-related decline in VSTM

task performance. An extension of the fooof parameterization approach to analyze

sensorimotor signals may be extremely valuable to elucidate neurophysiological un-

derpinnings of the ageing sensorimotor network. This is challenging however as the

fooof algorithm is designed to operate on time-averaged signals while sensorimotor

rhythmic activity presents as a series of short-lasting transient events. An integrated

approach to parameterize neurophysiological recordings into their transient event and

aperiodic components is thus necessary to comprehensively investigate the ageing sen-

sorimotor network.

In this work, we demonstrate the periodic/aperiodic parameterization of transient

oscillations (PAPTO). PAPTO is a transient event detection algorithm that intrin-

sically disambiguates transient event events from the background aperiodic activity.

PAPTO works on the basis that the amplitude power threshold for detecting events

is calculated as a multiple of the modeled aperiodic activity power spectrum. The

objectives of this work are (1) to motivate and validate the PAPTO algorithm, and

(2) to use PAPTO to disambiguate adult lifespan changes in the aperiodic activ-

ity power spectrum and transient event characteristics. We assess changes across the

adult lifespan using resting-state MEG data from the Cam-CAN cross-sectional study
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of healthy ageing (n=600, ages 18-88). Primarily, we show that PAPTO is more sen-

sitive to neocortical transient beta rhythms compared to beta events detected via a

conventional median power amplitude threshold technique. We additionally find that

PAPTO captures more variance in the resting-state beta event occurrence rate across

participants. The improved sensitivity of PAPTO reveals that the beta occurrence

rate almost doubles over the adult lifespan which we discuss in terms of thalamocorti-

cal beta generation in the somatosensory cortex and the age-related decline of sensory

perception. The valuable new insights gained in our investigation of the ageing human

sensorimotor network suggests that PAPTO should be extended to other neurophys-

iological signals, such as transient events across the entire neuroelectrophysiological

frequency spectrum and how they change with age, disease, and task performance.

3.4 Methods

Text from Brady et al. (2020) and Bardouille and Bailey (2019) is adapted in the

following sub-sections for clarity and consistency.

3.4.1 Participants & Experimental Paradigm

Six hundred and forty-seven participants had eyes-closed resting-state MEG data

recorded for 8 minutes and 40 seconds (first 20 seconds discarded) in Phase 2 of the

Cam-CAN examination of healthy cognitive ageing. Participant ages ranged from 18

to 88 years of age, with an equal distribution in age per decile and equal propor-

tions of males and females. Most participants were right hand dominant. Following

exclusions (described under sections “MEG pre-processing” and “MRI data analysis

& anatomical ROI timecourse estimation”), we report findings from 600 participants

(93% of the original 647 datasets).

3.4.2 Data Acquisition

Data were obtained from the Cam-CAN repository (available at http://www.mrc-

cbu.cam.ac.uk/datasets/camcan/) (Shafto et al., 2014; Taylor et al., 2017). MEG

data were acquired at 1000 Hz with inline band-pass filtering between 0.03 and 330

Hz using a 306-channel Vectorview system with continuous head position monitoring
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(Elekta Neuromag, Helsinki, Finland). Digitization of anatomical landmarks (i.e.,

fiducial points; nasion and left/right preauricular point) as well as additional points

on the scalp was also performed for registration of MEG and MRI coordinate systems.

Electrooculogram (EOG) and electrocardiogram (ECG) were recorded concurrently.

T1-weighted magnetic resonance images were acquired using a 3T Siemens Tim Trio

system with a 32-channel head coil

3.4.3 MEG Pre-Processing

Data were pre-processed by the Cam-CAN group using temporal signal space sep-

aration to perform environmental noise reduction, reconstruction of missing or cor-

rupted MEG channels, continuous head motion correction, and a transform of each

dataset to a common head position (Taulu and Simola, 2006). All subsequent MEG

processing was completed in the Python programming environment (v.3.7.3), using

the MNE-python library (v.0.20.7) (Gramfort et al., 2014). Raw MEG data were

low-pass filtered at 125 Hz and notch filtered at 50 Hz and 100 Hz to remove sig-

nals related to power lines. Python code for all subsequent analysis is available at

https://github.com/tbardouille/papto camcan.

Independent component analysis was performed on the task and rest data using

the FASTICA algorithm (Delorme et al., 2007; Hutchinson et al., 2002) to remove ar-

tifacts using a fully automated process. Briefly, the MEG data were decomposed into

independent components (Delorme et al., 2007). Epochs with signals that exceeded

5 pT (magnetometers) or 400 pT/cm2 (gradiometers) were not included when calcu-

lating the deconstruction. Following this, components were excluded if the amplitude

and phase of the component was similar to that of the EOG or ECG (Dammers et al.,

2008). Finally, the MEG sensor data was reconstructed from the remaining compo-

nents. This process resulted in cleaned MEG data (i.e., channels x time), which were

used for anatomical ROI timecourse estimation. To access relatively quiescent MEG

data, the rest data were cropped to a single 210 s trial including 105 s prior to and

following the midpoint of the resting data.

As described in section 2.4 MRI data analysis & anatomical ROI timecourse es-

timation, we validated the anatomical ROI timecourse estimation by analyzing beta

power over the unilateral button press task (Shafto et al., 2014). The task data was
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parsed into trials synchronized to each button press, with a duration of 3.4 s and a

1.7 s pre-stimulus interval. Trials were excluded if the button press occurred more

than 1 s after the cue (indicating poor task performance) or if the button press oc-

curred within 3 s of the previous button press (which provided insufficient baseline

for subsequent analysis). Participants with less than 55 trials after these exclusions

were excluded from task analysis (but still included for resting state analysis).

3.4.4 MRI Data Analysis & Anatomical ROI Timecourse Estimation

Each participant’s structural MRI was reconstructed using the FreeSurfer recon-all

algorithm (Dale et al., 1999; Desikan et al., 2006; Fischl and Dale, 2000; Fischl et al.,

2001, 2002, 2004, 1999a,b). The reconstruction process provided a digitization of the

cortical surface for source estimation and a boundary element model of the brain to

provide more accurate calculation of the forward solution (Hamalainen and Sarvas,

1989). Locations for source estimation were defined covering the entire cortical surface

with 5 mm spacing. Finally, each participant’s MRI data was registered to the MEG

data based on the alignment of anatomical landmarks (i.e., fiducials) in MEG and

MRI, and MEG head digitization with the scalp as visualized on the MRI (MNE

python coreg, v.0.14) using a semi-automated process (Bardouille and Bailey, 2019).

Participants missing MRI data were excluded from further analysis.

Timecourses were estimated at the cortical surface at the centre of mass of 4

sensorimotor gyri (left and right hemispheres, M1 and S1), see 3.2, for each partic-

ipant using dynamical statistical parametric mapping (dSPM). The statistical para-

metric maps provide the current density estimates at each cortical location relative

to the noise standard deviation at that location (i.e., Z-scores). Individual subject

cortices were automatically parcellated using the ‘aparc.a2009s’ scheme (Destrieux

et al., 2010). A total of 2,400 single-trial timecourses (4 ROIs x 600 participants)

were generated for analysis in this work. Forward solutions were generated at all

source location on each participant’s cortical surface using boundary element method

and each participant’s MRI (see MRI data analysis). Noise covariance matrices were

generated for each participant using empty room recordings. A vector source estimate

(source current estimate in 3 dimensions) was done at each ROI centre of mass for

each participant. We then extracted the component of the current density normal to



63

the cortical surface for analysis. We validated the timecourse estimation by analyz-

ing beta power over a motor task and observed the expected beta suppression and

rebound along with the expected laterality of these effects (Figure B.1).

3.4.5 Modeling Aperiodic Neural Power Spectra

Aperiodic activity was modeled via the open source “fitting oscillations & one over

f” (fooof) (Donoghue et al., 2020) algorithm (available at

https://fooof-tools.github.io/fooof/index.html) for each of the 2,400 anatomical ROI

estimated single-trial timecourses. The neural power spectral densities (PSDs) as

inputs to the fooof algorithm were generated using Welch’s method (4 s segments,

90% overlap) between 0.25 and 80 Hz with 0.25 Hz steps. Neural PSDs were linearly

interpolated around 50 Hz to remove notch filter (for powerline noise) effects. The

fooof modeling was done across the entire 0.25-80 Hz spectrum with peak width

limited between 2 and 10 Hz, minimum peak height of 0.05, a peak threshold of

1.5, and with a maximum of 4 peaks. For efficient processing of the large Cam-CAN

dataset, a “fixed” aperiodic mode (knee parameter set to zero for all participants) was

used for all model fits. The aperiodic components, namely the aperiodic exponent,

χ, and the aperiodic offset, b, for each timecourse, as well as the goodness of fit

parameters, namely the absolute error and R2, were assessed in this work. Variances

in the modeled aperiodic parameters for each ROI for each participant were obtained

via bootstrapping over 250 randomly selected 12s epochs from each recording. Figure

A.2 shows a detailed summary of goodness of fit metrics for the fooof models and the

bootstrapping. We observed high quality fits across the Cam-CAN cohort with no

differences associated with ROI or age. The mean absolute error was highest for low

frequencies (< 3 Hz) due to the 1/f nature of the neural power spectra.

3.4.6 Mathematical Basis of PAPTO

From Donoghue et al. (2020), the semi-log PSD as a function of frequency, f , of a

single trial timecourse can be modeled as the sum of the aperiodic activity, L(f), and

rhythmic activity,
∑N

n=0Gn(f), namely:
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logPSD(f) = L (f) +
N∑

n=0

Gn(f) (3.1)

which represents the power/unit frequency in log10 scale. The aperiodic activity,

L(f), is expressed as:

L (f) = b− log10(k + fχ) (3.2)

where b and χ are the aperiodic offset and aperiodic exponent, respectively, and k is

a knee parameter. The rhythmic activity,
∑N

n=0 Gn(f), is a summation of Gaussian

peaks present in the PSD. Each Gaussian peak represents one neural rhythm at a

particular frequency present in the recording. See Donoghue et al. (2020) for more

details on the parameters in equations 3.1 and 3.2.

In this work, we consider that the rhythmic activity is a direct result of the

presence of transient events in the timecourse. In other words, we consider that each

Gaussian peak in the PSD arises from the accumulation of several transient events

all occurring around the same frequency. Since we detect transient events as localized

peaks in TFRs with linear power scaling (see section 3.3.7 Detecting transient events),

we must consider equation 3.1 in linear space, which simplifies to

PSD (f) =
10b

fχ

N∏
n=0

10Gn (3.3)

upon substituting in equation 3.2 and setting k = 0 (i.e., “fixed” aperiodic mode).

Equation 3.3 indicates that the power spectrum of a neural recording is the product

of the aperiodic activity, 10b/fχ, and rhythmic (transient events) activity,
∏N

n=0 10
Gn .

In this work, we propose that the aperiodic activity in linear space, namely:

η (f) =
10b

fχ
(3.4)

be used as a baseline power to identify (i.e., amplitude threshold) the occurrence

of transient events in single-trial recordings. Utilizing n (f) as a baseline power in-

trinsically disambiguates transient events from the aperiodic activity while effectively

standardizing transient event power across participants.
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3.4.7 Detecting Transient Events

The PAPTO technique (https://github.com/tbardouille/papto) is a modified ampli-

tude thresholding approach of detecting transient events. We developed PAPTO

as an adaptation of the event detection technique established by Shin et al. (2017)

https://github.com/hs13/BetaEvents, herein referred to as the “Shin method”. Note

that several of the scripts for PAPTO are direct adaptations from the Shin method.

In PAPTO, transient events are defined as short-lasting local maxima of signal

power in single-trial recordings in time-frequency representation (TFR). TFRs, de-

noted as E(t, f), are calculated via Morlet wavelet convolution as described previously

(Tallon-Baudry et al., 1997). The Morlet wavelet’s, w (t, f 0), used in PAPTO are of

the form

w (t, f 0) = A exp
(
−t2/2σ2

t

)
exp (2iπf0t) (3.5)

where f0 denotes the central frequency and A = (2/σt

√
π)

1/2
. Here, σt = m/2πf0

represents the standard deviation of the Morlet wavelet envelope in the time domain,

scaled by the width parameter, m, which we set to 10 (i.e., number of Morlet wavelet

cycles). For each of the 2,400 single trial recordings, E(t, f) is normalized by the

fooof modeled aperiodic activity power spectrum, η (f), (i.e., from equation 3.4) at

each time-frequency bin to generate a new TFR, Eη(t, f). Transient events are then

defined as local maxima in each Eη(t, f) with peak power that exceeds a threshold

value defined as a multiple of η (f). PAPTO differs from the Shin method in that

the Shin method defines the amplitude power threshold as a multiple of the median

power spectrum, Ẽ(f), of E(t, f). Herein, transient events detected via PAPTO will

be referred to as “PAPTO events” and transient events detected via the Shin method

will be referred to as “med-norm events”.

The amplitude threshold for defining both PAPTO and med-norm events was

calculated based on the correspondence of thresholded data to the TFR as described

by Shin et al. (2017). TFRs were first cropped to the beta band and epoched into

2s segments. The percentage of TFR pixels above the power cutoff value for various

cutoff values (defined as multiples of η (f) for PAPTO and multiples of Ẽ(f) for med-

norm) was calculated for each epoch. The Pearson correlation coefficient between the
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average beta power and percent pixels across time (i.e., across epochs) was then

calculated for each cutoff value. This resulted in one correlation coefficient for each

threshold for each timecourse. Correlations at each threshold were then averaged

over all participants for each anatomical ROI. The power cutoff corresponding to the

peak of the correlation coefficient was then used as the amplitude threshold value, as

shown in Figure B.3. Following this procedure, we found that an amplitude threshold

of 8×n(f) for PAPTO events and 5× Ẽ(f) for med-norm events. Note that the same

procedure was done in the mu band and found the same thresholds (see Figure B.3).

3.4.8 Characterizing and Classifying Transient Events

All transient events were then characterized in the time-frequency domain. The time

and frequency coordinates of the local maxima in the single-trial TFRs represent the

peak time and peak frequency of the events, respectively. Note that beta events refer

to any event with peak frequency between 15 and 30 Hz. The event duration and

frequency span were calculated as the full-width at half maximum (FWHM) of the

local maxima along the time and frequency dimension, respectively. The cycles per

event were calculated as the peak frequency multiplied by the event duration for a

given event. The occurence rate was calculated as the number of events that occur

within 210 s timecourse by 210 s. All example event characteristics values given in-

text are determined from left hemisphere S1 localized data, unless otherwise stated.

All PAPTO and med-norm events were classified as either 1 unique to PAPTO,

2 unique to med-norm, or 3 detected by both methods. If the peak time and peak

frequency of a med-norm event fell within the event duration and frequency span of

a PAPTO event, both events were considered group 3. PAPTO events that were not

classified as group 3 were classified as group 1. Likewise, med-norm events that were

not classified as group 3 were classified as group 2.

Transient beta event waveforms were generated following an event-triggered time-

course averaging process described in detail by Sherman et al. (2016). Briefly, the

peak time for each transient beta event detected in a single-trial TFR was used to trig-

ger epoching (2000 ms width centred on the peak time) in the associated anatomical

ROI timecourse. The resulting time-domain epoch for each event was then bandpass



67

filtered to the peak frequency of the event +/- 1 Hz and then centered in time to the

nearest negative field deflection to the peak time. One average epoch, or beta event

waveform, was generated for each participant/ROI by averaging all event-triggered

epochs over the 210 s recoding, based on the corrected peak time but without the +/-

1 Hz band-pass filter. The resulting participant/ROI average waveforms were char-

acterized by their peak times (relative to the central negative deflection centered at

t = 0 s) and peak amplitudes. Variance in waveform characteristics were generated

via a bootstrapping technique involving 25 iterations of generating and character-

ising waveforms using a randomly selected subset of ½ of the total events in each

participant/ROI timecourse.

3.4.9 Statistical Analysis of Age-Related Effects

Regression was used to reveal statistically significant relationships between age and

aperiodic activity parameters as well as between age and beta event characteris-

tics. Regression analysis was performed on the average characteristic/parameter per

participant/ROI with participant age as the independent variable. Within subject

variance of parameters (calculated as indicated above) was accounted for in the re-

gression models by subject-specific weighting factors (higher variance leads to lower

weighting). Both linear and quadratic models were investigated for each character-

istic/parameter. The most appropriate model, i.e., linear or quadratic, was selected

by comparing chi-square values via an F-test (quadratic model was selected if F-stat

> 6.6, corresponding to a 99% confidence level). Statistically significant non-zero

age-related trends were determined if the model fit had a Bonferroni adjusted (for

multiple comparisons) p-value < 0.05.

3.5 Results

3.5.1 Aperiodic Activity in S1 and M1 and Associated Age-Related

Changes

We utilized the fooof algorithm (Donoghue et al., 2020) to parameterize each neural

PSD (one for each of the 2400 timecourses) into its periodic and aperiodic compo-

nents. Figure 3.2 b shows fooof fitted PSDs generated from each anatomical ROI
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for one example Cam-CAN participant. Each PSD shows periodic activity in the mu

and beta bands sitting amongst the 1/f -like aperiodic activity spectrum, η(f). The

fooof algorithm generated accurate models for all PSDs in Cam-CAN cohort (grand

average median r-squared: 0.96, 25th - 75th percentile: [0.94, 0.98]). See Figure B.2

for a comprehensive analysis of the goodness of fit of the fooof models. The aperiodic

activity spectrum, η(f), for a single-trial recording is completely described via the

aperiodic exponent, χ, and the aperiodic offset, b (see Methods section equation 3.4).

Our analysis (Figure 3.2 c, left) reveals a significantly higher aperiodic exponent in S1

compared to M1 and in the right hemisphere compared to the left (paired t-test across

participants, p < 0.05, Bonferroni corrected for multiple comparisons). We addition-

ally found (Figure 3.2 c, right) that S1 has a significantly lower offset compared to M1

(paired t-test across participants, p < 0.05, Bonferroni corrected for multiple com-

parisons), but no hemispheric differences were found. These regional differences are

nicely visualized in the grand-average aperiodic activity spectra for each anatomical

ROI (Figure 3.2 d). Analyzing the fitted aperiodic activity parameters as a function

of participant age reveals age-related changes in the aperiodic activity spectrum. We

found that the aperiodic exponent in S1 shows a significant u-shaped quadratic ageing

trajectory (p < 0.05, Bonferroni corrected for multiple comparisons) with the flattest

aperiodic activity spectral density occurring at 60 years for both hemispheres (Figure

3.2 e, left). No significant age-related changes were found for the aperiodic exponent

in M1. Conversely, the aperiodic offset shows a significant age-related increase in M1

(both hemispheres) but no significant changes in S1 (Figure 3.2 e, right). See Table

3.1 for model fit parameters.
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Figure 3.2: Aperiodic activity analysis of the Cam-CAN dataset reveals variations
across ROIs and healthy ageing trajectories. Application of the fooof algorithm to the
Cam-CAN dataset resting-state scans. (a) timecourses localized to four sensorimotor
ROIs (S1 and M1, left and right hemispheres) for each participant in the Cam-CAN
dataset. (b) example fooof modeling of PSDs localized to each anatomical ROI for
one example participant. Example participant chosen based on maximum correlation
to grand-average PSD (for left S1). (c) bar plots showing the average aperiodic
activity parameters for each ROI across the Cam-CAN cohort reveal several significant
differences between the four sensorimotor ROIs (paired t-tests across participants).
(d), visual depiction of the average aperiodic activity spectrum for each ROI. Shaded
areas represent 95 % C.I. across participants. (e) scatterplots showing age-related
changes in aperiodic activity parameters for each sensorimotor ROI. Stars indicate
statistical significance. All p-values Bonferroni corrected for multiple comparisons.
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Table 3.1: Modeling age-related changes of resting-state sensorimotor aperiodic ac-
tivity parameters. Ageing model fit parameters for fitted aperiodic activity spectra.
Model selection (linear vs quadratic) based on an F-test for each characteristic (see
section 3.4.9 for more details). Bolded values indicate statistically significant (p <
0.05) non-zero age related changes. All p-values Bonferroni corrected for multiple
comparisons.

3.5.2 Motivating and Validating PAPTO

Here we show that basing the transient event amplitude threshold on the median

power spectrum, Ẽ(f), (i.e., med-norm events) leads to a significant loss of infor-

mation which can be avoided via PAPTO. Figure 3.3 a shows the raw (mean) PSD,

Ẽ(f), and the fooof modeled aperiodic activity, η(f), for 6 representative example

participants from the Cam-CAN cohort. All data shown here is generated from time-

courses localized to the left hemisphere S1. All example raw PSDs shown here, apart

from ex. subj03, demonstrate distinct periodic neural activity in the mu and beta

frequency ranges. The spectral features present in the raw PSDs are also present in

Ẽ(f) with only slightly reduced amplitude for each participant. Amplitude thresh-

olding transient events using Ẽ(f) is thus expected to result in a loss of information

about the periodic signal. PAPTO is designed to avoid this loss of information by am-

plitude thresholding transient event detection using η(f). The advantage of PAPTO

is depicted in Figure 3.3 b, which shows 20 s spectrogram snippets (taken from the

middle of the rest recording) for each example participant shown in Figure 3.3 a. The

spectrograms are each shown [1] in raw form, [2] normalized by η(f) (i.e., used to

identify PAPTO events), and [3] normalized by Ẽ(f) (i.e., used to identify med-norm

events). The PSDs generated (from the entire 210 s rest recording) from [1]-[3] are
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shown on the right. By amplitude thresholding events as a multiple of Ẽ(f), the med-

norm technique results in a substantial loss of oscillatory signal components (compare

PSD[3] and PSD[1]). On the other hand, by amplitude thresholding transient events

as a multiple of η(f), PAPTO preserves the periodic components of the raw signal

while still removing the aperiodic components (compare PSD[3] and PSD[2]).

We then detected both PAPTO transient events and med-norm transient events

from the resting state data using an amplitude-thresholding approach. We applied

a technique reported by Shin et al. (2017) to determine the amplitude threshold for

med-norm transient events as a multiple of Ẽ(f). We extended the Shin et al. (2017)

technique to PAPTO transient events to determine the amplitude threshold as a

multiple of η(f). See section 3.4.7 for details on the threshold selection process. We

found an amplitude threshold of 5× Ẽ(f) for the med-norm events and 8× η(f) for

PAPTO events was suitable across all participants for all four anatomical ROIs and

for both mu and beta events (see Figure B.3). For the remainder of this work, we

present a parallel analysis of PAPTO and med-norm resting state transient events

while calling attention to their differences and highlighting the advantages of the

PAPTO technique.
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Figure 3.3: fooof modeled aperiodic activity as an alternative to the median for am-
plitude thresholding transient events. Thresholding transient event detection via the
median power leads to a significant loss of information. (a) raw (mean) PSD, median
PSD, and modeled aperiodic activity over the entire 210 s resting state recording
for 6 representative example participants taken from the Cam-CAN dataset (plots
shown at the same y-scale). (b) time-frequency representation (20 s widows) of the
resting-state recordings for each example participant. Each TFR is shown in [1] raw
form, [2] normalized by the fooof modeled aperiodic activity, and [3] normalized by
the median power. Power shown (in dB) is calculated as 10*log10 of the raw power.
PSDs corresponding to each TFR are shown on the right. All curves are y-shifted so
they align at 80 Hz. Note all data shown here is localized to the left hemisphere S1.

We first examine the temporal waveforms of both med-norm and PAPTO events

to show that PAPTO is more sensitive to stereotypical beta transient events. Figure

3.4 a (top panels) shows the grand-average peak-time triggered waveforms (see section

3.4.8) for all events detected in Left S1 across the Cam-CAN cohort. Both PAPTO

and med-norm event waveforms show a stereotypical waveform lasting about 4-5 os-

cillatory cycles centered by a large amplitude negative field deflection and symmetric

about t = 0 ms. These waveform temporal profiles are consistent with those found

by Sherman et al. (2016), where the positive and negative modulations are described

as a consequence of competing proximal and distal current flow, respectively, along
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the apical dendrites of neocortical pyramidal neurons. The small 95% C.I. intervals

indicate low inter-subject variability in waveform profile. The average occurrence

rate of these events across participants, as indicated above the waveform (± denotes

95% C.I.), shows that PAPTO detects about 25-30% more events than the med-norm

method (differences in occurrence rate between the methods are further explored in

Figure 3.5). To elucidate the differences between PAPTO and med-norm transient

events waveforms, we then categorized each detected event as either being unique to

med-norm, unique to PAPTO, or detected by both med-norm and PAPTO (see sec-

tion 3.4.8). Figure 3.4 a (bottom panels) shows the temporal waveforms of the events

in each category. Primarily, as expected, events detected by both methods show

stereotypical waveforms with large amplitudes. These high-power events are supra

threshold for both techniques and make up most of all events detected for each tech-

nique (68% of all PAPTO events and 88% of all med-norm events). These waveforms

thus dominate the average waveform for each technique causing no major differences

between the average PAPTO and average med-norm waveforms (top panels). The

unique to PAPTO events (32% of all PAPTO events) are low-amplitude events with

stereotypical waveforms. These events, which occur at a rate of 0.50 ± 0.04 Hz, are

picked up by PAPTO but missed by the med-norm method. The unique to med-

norm events (12% of all med-norm events) show an atypical waveform compared to

prototypical transient beta events. These atypical temporal signatures, which occur

at a rate of 0.15 ± 0.02 Hz, are excluded by the PAPTO technique. PAPTO desig-

nates these atypical peaks in signal power as sub-threshold transient modulations in

aperiodic activity. PAPTO is therefore more sensitive to stereotypical beta transient

events and less sensitive to atypical beta transients compared to the conventional

med-norm technique.
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Figure 3.4: PAPTO is sensitive to neocortical beta oscillations. (a) transient event
waveforms average over all participants (shaded areas represent 95% C.I.) for all
PAPTO events (top left) and med-norm events (top right). All events were then
divided into three categories, namely unique to PAPTO (middle left), unique to
med-norm (middle right), and detected by both methods (bottom). The average
occurrence rate of each category of beta event is shown. Uncertainties represent 95%
C.I. (b) average spectral characteristics for each category of beta event. Error bars
represent 95% C.I. across participants. Note that all data shown in (a) and (b) were
localized to left hemisphere S1. Other anatomical ROIs show similar patterns. (c)
average beta event waveform across all participants for each anatomical ROI shows
that M1 events are higher amplitude than S1 (95% C.I.)

Figure 3.4 b explores the time-frequency domain characteristics of the transient

beta events and further highlights the atypical nature of med-norm only events. Pri-

marily, PAPTO beta events detected in left hemisphere S1 have an average duration

of 218 ± 2 ms (mean ± 95% C.I.), an average of 4.58 ± 0.02 oscillatory episodes per
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event, an average event peak frequency of 21.7 ± 0.1 Hz, and an average frequency

span of 6.35 ± 0.05 Hz. Average characteristics over all PAPTO events, all med-norm

events, PAPTO-only events, and all events detected by both methods are all similar

with only marginal differences. The events unique to the med-norm technique how-

ever show a substantially lower event duration and oscillatory episodes per event along

with substantially higher peak frequency and frequency span. These atypical charac-

teristics further emphasize that these events should not be considered in parallel with

the more stereotypical transient events. The characteristic differences between the 5

event categories shown in Figure 3.4 a and 3.4 b are similar for all anatomical ROIs

and thus results from the other anatomical ROIs are not shown. The key difference

between anatomical ROIs, as shown in Figure 3.4 c, is the amplitude of the beta

waveform, namely events detected in M1 have higher waveform amplitude for both

PAPTO (shown) and med-norm (not shown) events.

Recent findings relating sensorimotor beta event occurrence rate dynamics with

motor task performance (Brady et al., 2020; Heideman et al., 2020; Little et al., 2019;

Seedat et al., 2020; Shin et al., 2017) suggest that beta event occurrence rate plays

a fundamental role in sensorimotor processing. Here, we show that PAPTO events

better capture the inter-subject variability in cortical beta rhythmic activity com-

pared to med-norm events. Figure 3.5 a shows the beta event occurrence rate across

all Cam-CAN participants for each region of interest for med-norm beta events (left)

and PAPTO beta events (right). There is a narrow distribution of med-norm beta

event occurrence rates across participants, centered around 1.22 Hz with no significant

differences between ROIs. PAPTO beta events show a much higher variance in occur-

rence rates across participants and generally higher occurrence rates (average around

1.52 – 1.64 Hz) than med-norm events. PAPTO additionally reveals significant dif-

ferences in the average occurrence rates between ROIs, namely the left hemisphere

showing higher rates than the right hemisphere and S1 showing higher rates than M1.

The increased inter-subject variance for PAPTO is further investigated in Figure3.5

b, where occurrence rate is plotted against average beta power for med-norm events

and PAPTO events for each sensorimotor ROI (note varying x-scale). The increased

variance seen in Figure 3.5 a correlates (compare Pearson correlation coefficients, r)
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with inter-subject variance in average spectral power. Given the functional signifi-

cance of beta event occurrence rate, the significantly improved sensitivity of PAPTO

to inter-subject variances in neuroelectrophysiological rhythmic activity is a powerful

discovery which highlights the benefits of re-defining transient events via PAPTO.

Figure 3.5: PAPTO transient beta occurrence rate is correlated with average beta
power. (a) beta event occurrence rate for med-norm (left) and PAPTO (right) beta
events for each sensorimotor ROI. Each point corresponds to the average occurrence
rate for one participant and the black diamond represents the average (also indicated
above) across participants. PAPTO finds significant event rate differences between
sensorimotor regions (p-values shown are Bonferroni corrected for multiple compar-
isons). (b) correlations between occurrence rate and average beta power for med-norm
and PAPTO events for each sensorimotor ROI. Each point corresponds to one par-
ticipant. Pearson correlation coefficients indicated by ‘r’.

An analysis of transient events in the frequency domain reveals that the frequency

distribution of PAPTO events closely aligns with the generally accepted spectral

power distribution across canonical frequency bands. Single-participant transient

events spectra (events binned according to their central frequencies) in Figure 3.6

a (top row) are used to demonstrate where transient events were detected in the

frequency domain. The same 6 example participants in Figure 3.3 are shown here.
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PAPTO detects a high density of events in the mu and beta frequency bands which

manifest as high event counts around 10 Hz and 20 Hz in each event spectrum. Note

that the relatively little periodic activity of ex. subj03 and subj06 (see Figure 3.3)

compared to the other example subjects is reflected in the low PAPTO event count

for these two subjects in Figure 3.6 a. Med-norm events predictably show a more

spread-out distribution of events in the frequency domain. The median PSDs shown

in Figure 3.3 a indicated the med-norm event detection technique will bias event

detection away from the mu and beta bands due to an elevated detection thresh-

old stemming from the high signal power in these bands. To assess the degree to

which an individual’s transient event spectrum represents their sensorimotor activity,

we calculated the Pearson correlation coefficient (r) between each individual’s mean

PSD (Figure 3.6 a, bottom row) and their transient event spectra. We found that

the PAPTO spectrum more closely resembles the mean power spectrum, as com-

pared to the med-norm spectrum for each example participant. We then assessed the

correlations for all participants in the Cam-CAN dataset (Figure 3.6 b) and found

a significantly higher correlation for the PAPTO events compared to the med-norm

events across sensorimotor ROIs. These results suggests that PAPTO provides a more

accurate depiction of the transient activity in the frequency domain.
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Figure 3.6: PAPTO highlights transient events in canonical frequency bands. (a)
transient event spectra (top) showing both med-norm events (grey) and PAPTO
events (blue) for the six example participants shown in Figure 3.3. bin width = 2 Hz.
Mean power spectra (bottom) shown for visual comparison. Correlation coefficient
between mean power spectra and transient events spectra for both event types are
indicated. (b) bar plots showing correlation coefficient between mean power spectra
and transient event spectra for both med-norm events and PAPTO events across
all participants. Each anatomical ROI shows a significantly higher correlation for
PAPTO events. (c) overall PAPTO event spectrogram (across all 600 Cam-CAN
participants, bin width = 0.5 Hz ) shown as a cumulative histogram indicating event
duration by color.

Figure 3.6 c shows the PAPTO event spectrum (5-35 Hz) for all events detected

in left hemisphere S1 compiled over the Cam-CAN cohort. This event spectrum is

shown as a cumulative histogram where the color of each bar represents the event

duration. This histogram shows distinct mu and beta bands with a higher likelihood

of events (i.e., events per frequency bin) in mu compared to beta. In terms of event

duration, there is a sharp transition to longer duration events as event peak frequency
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decreases. Namely, beta (15-30 Hz) events show an average duration of 218 ± 2 ms

while mu events (8-15 Hz) have a substantially longer average duration of 452 ± 6 ms.

When looking at the number of oscillatory cycles sustained per event however, mu

events only slightly out-last beta events, that is 4.91 ± 0.05 cycles per event for mu

events and 4.58 ± 0.02 cycles per event for beta events. The longer duration and more

cycles of mu events compared to beta events may underlie the previously observed

stronger lagged coherence of beta rhythms compared to mu rhythms (Fransen et al.,

2015).

3.5.3 Resting-State Sensorimotor Beta Events Show Significant

Changes with Healthy Human Ageing

Basing the amplitude threshold on Ẽ(f) poses a particular challenge when investi-

gating age-related changes in transient event characteristics due the median power

spectrum itself changing with age (Figure 3.1). The age-related change in median

power is a blend of the age-related changes in the aperiodic activity spectrum (Figure

3.2 e) with changes in the transient events themselves. PAPTO disambiguates the

periodic and aperiodic ageing effects without losing information about age-related

changes in transient event characteristics. We thus hypothesize that PAPTO events

show novel age-related trends not observed in in med-norm events. Figure 3.7 and

Table 3.2 highlight age-related changes in left hemisphere S1 transient beta event

characteristics. Age-related changes in event characteristics for the other anatomical

ROIs can be found in Figures S5-7 and Tables S1-3.

The PAPTO beta event occurrence rate shows a significant increase with age,

from about 1.0 Hz to about 1.75 Hz across the age-range (18-88) of the Cam-CAN

cohort (Figure 6a). This trend is consistent across sensorimotor ROIs (Figures S5-S7).

This result is in support of our hypothesis as only marginal age-related changes are

found in med-norm events across sensorimotor ROIs. Our ageing analysis suggest this

age-related change is best modeled with a quadratic function with a peak around 70

years old, indicating that the occurrence rate increases most rapidly in early adult-

hood before settling out towards middle to older ages. Considering the functional

significance of the beta event occurrence rate in the sensorimotor cortices, this sub-

stantial age-related increase in occurrence rate is an important outcome realized only
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via the sensitivity of PAPTO technique.

Figure 3.7: Left hemisphere S1: Resting-state sensorimotor transient beta events
show significant age-related changes. Each individual parameter of transient beta
events evaluated for age-related changes. (a)-(f) scatterplots showing participant-
average beta event parameters (occurrence rate, peak frequency, frequency span, event
duration, event peak times, and event peak amplitudes, respectively) as a function of
participant age (one point represents one participant) with linear or quadratic fitted
ageing models. Stars indicate statistically significant (p<0.05, Bonferroni corrected
for multiple comparisons) non-zero age related changes. See Supplemental Figures
for other anatomical ROIs.
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Table 3.2: Left hemisphere S1: Modeling age-related changes of resting-state senso-
rimotor transient beta events. Ageing model fit parameters for each event character-
istics. Model selection (linear vs quadratic) based on an F-test for each characteristic.
Bolded rows indicate statistically significant (p<0.05, Bonferroni corrected for mul-
tiple comparisons) non-zero age related changes. See Supplemental Figures for other
anatomical ROIs.

We found a significant linear decrease in the peak frequency of PAPTO events

from about 22.1 Hz to 21.2 Hz across the age-range (18-88) of the Cam-CAN cohort

(Figure 3.7 b). Such an age-related decrease suggests that older participants exhibit

more low-beta events and less high-beta events compared to younger participants.

We found a similar linear age-related decrease in the peak frequency of med-norm

events. This age-related change is consistent across anatomical ROIs. We found

no statistically significant age-related changes in the frequency span of events apart

from marginal quadratic changes with age for med-norm events in left hemisphere

S1 (Figure 3.7 c) and for PAPTO events in right hemisphere M1 (Figure B.7 c).

Similarly, the duration of events shows no significant age-related changes throughout

the adult lifespan except for marginal decrease for PAPTO events in right hemisphere

S1 (Figure B.4 d). Note that the age-related changes of the med-burst beta event

characteristics found here are similar to the age-related changes found in our previous

work (Brady et al., 2020), but not identical. We attribute the differences to the stricter
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amplitude threshold we applied here, and the different signal localization techniques

used.

In terms of the intra-event oscillations, we found that the beta waveform linearly

spreads out in time by a factor of about 1.1 across the adult lifespan, independent

of detection method and across all sensorimotor ROIs (Figure 3.7 e). This age-

related change aligns with the age-related decrease in central frequency of the events

see in Figure 3.7 b. Furthermore, we found an age-related increase in PAPTO event

amplitude by a factor of about 1.6 across the adult lifespan in M1 (both hemispheres)

but not in S1 (Figure 3.7 f & Figure B.4 f). A similar pattern is observed in med-

norm event amplitude but with additional marginal age-related increases in left S1.

Incorporating all the age-related changes shown in Figure 3.7 a-g, we have generated a

visual depiction (roughly to scale) of how transient beta events in all four sensorimotor

ROIs evolve with healthy human ageing (Figure 3.8), as detected by PAPTO.

Figure 3.8: A visual depiction of age-related changes in sensorimotor extracranial
neurophysiological signals. Each timecourse shown is a compilation of age-related
changes for each beta event characteristic. Changes are shown approximately to
scale.

3.6 Discussion

3.6.1 Insights Into the Ageing Somatosensory Thalamocortical Network

The age-related increase in transient beta event occurrence rate may help explain

age-related decline in sensory perception. Previous work (Law et al., 2021) has found

that beta events in S1 briefly facilitate sensory relay (i.e., a during-event effect) before

a longer period of GABA inhibition lasting about 300 ms post-event. This post-event

inhibition of sensory relay is the proposed mechanism for the decrease in human
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tactile perception following a beta event (Shin et al., 2017). The age-related increase

in transient event occurrence rate found in this work, namely from 1.00 Hz in early

adulthood to 1.75 Hz in later adulthood, can thus explain age-related decline in

sensory perception (Brodoehl et al., 2013; Godde et al., 2018; Kalisch et al., 2009;

Pleger et al., 2016; Wickremaratchi and Llewelyn, 2006). Considering the 300 ms

inhibitory period post-stimulus reported by Law et al. (2021), an event occurrence rate

of 1.75 Hz suggests the somatosensory thalamocortical network of older adults spends

more than 50% of time in an inhibited state (compared to about 30% in younger

adults). Although age-related changes at various stages of the sensorimotor processing

pathway have been associated with the age-related decrease in tactile perception,

including altered skin conformance (Bowden and McNulty, 2013) and an enhancement

of cortical excitability (Lenz et al., 2012), our findings help to explain the role of the

thalamocortical network in the healthy ageing process.

The age-related changes in somatosensory beta event characteristics observed in

this work imply age-related changes in the upstream mechanisms involved in beta

event generation. The occurrence of a somatosensory beta event is thought to be

dictated by the presence of a strong distal drive (i.e., β0) generated by bursts of

excitatory inputs to supragranular layers (i.e., tuft excitation) originating from the

thalamus (Law et al., 2021). Our finding of an age-related increase in event rate

suggests these distal targeting thalamic bursts either occur more frequently and/or a

higher proportion have sufficient amplitude to generate strong tuft excitation. Given

that we did not observe an age-related change in event amplitude, we suggest that

these distal targeting thalamic bursts occur more frequently with age. Furthermore,

our observation that the waveform oscillatory frequency decreases with age suggests

that there may be a decrease in the temporal coherence in this upstream thalamic

bursting. Furthermore, the age-related changes in beta event characteristics observed

in this work may also be driven by other factors not discussed, such as cortico-cortical

interactions and changes in the functional coupling between subnetworks outside the

sensorimotor system.

We additionally observed an age-related change in the somatosensory aperiodic

activity, namely an approximate 10% decrease in the aperiodic exponent from early

adulthood until 60 years old followed by a reversal back towards its original value
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in later years. In terms of the neurophysiological correlates, this ageing trend sug-

gests that the ratio of underlying excitatory (i.e., AMPA) currents to inhibitory (i.e.,

GABA) synaptic currents peaks around 60 years (Gao et al., 2017). Furthermore,

recall that the beta generative model (Sherman et al., 2016; Law et al., 2021) sug-

gests that beta generation induces both excitatory AMPA (fast decay) and inhibitory

GABA (slow decay) synaptic currents. We thus expect that characteristics of tran-

sient beta events and the aperiodic exponent are interlinked. The various ageing

models revealed in this work however suggest this interconnection is highly complex

and making collective inferences is out of the scope of this report. Computational

modeling (Neymotin et al., 2020) is a promising avenue to further elucidate the un-

derlying relationships between these parameters.

The age-related changes observed in the neurophysiological signals localized to M1

are like those observed in S1 with a few notable exceptions. Primarily, the transient

beta event waveforms in M1 show the same age-related trends as those localized to

S1 with the addition of a linear increase in amplitude by a factor of approximately

1.6X across the adult lifespan. This amplitude increase, which is indicative of narrow

band power increase, suggests that motor events may recruit larger neocortical neural

populations with increasing age. As less is known about the transient beta generators

in M1 compared to S1, we cannot infer what this change implies in the context

of the underlying thalamocortical network. In terms of the aperiodic activity, the

aperiodic offset in M1 shows an age-related linear increase which is indicative of a

broadband power increase. As broadband power correlates with single neuron firing

rates (Manning et al., 2009), the age-related increase in broadband power observed

here may be a consequence of an age-related increase in single neuron firing rates.

Although the ageing trends observed here may be true for the cross-sectional Cam-

CAN cohort, care must be taken to not over generalize these findings. In particular,

we observed several 2nd order (i.e., quadratic) ageing trends which all show a vertex

mostly in the older half of the cam-CAN cohort. While these vertices may suggest

the existence of developmental periods of critical differences within adulthood, they

instead may be a manifestation of non-participation selection bias. Previous work

found a strong association between age and participation in Cam-CAN study, with

participation likeliness increasing from 18 to around 58-67 before rapidly dropping
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for participants older than 67 (Green et al., 2018). In other words, the significant

age-related trends identified in this work follow a very similar mathematical trend to

the non-participation bias in the Cam-CAN study. Such a bias could result in the

misinterpretation of fundamentally linear ageing trends as being quadratic.

3.6.2 Additional Beta Waveform Features

Sherman et al. (2016) found that the temporal profile associated with beta events

detected in the hand area of SI resembles an inverted Ricker wavelet produced by

competing non-rhythmic distal and proximal current flow along the apical dendrites

of neocortical pyramidal neurons. The big-data derived temporal profile of beta events

shown in Figure 3.6 includes many of the distinct features found in the beta event

waveform by Sherman et al. (2016), however we find additional oscillatory activity. In

agreement with Sherman et al. (2016), we find the beta event waveform is dominated

by a sharp high amplitude central trough (β0) with two positive peaks about 25 ms

before and after (β1
− and β1

+, respectively). In disagreement with Sherman et al.

(2016), we find the beta events includes several significant oscillations around zero at

earlier and later times (i.e., β3
−, β

4
−, . . . ) causing the beta waveform to more closely

resemble an inverted Morlet wavelet as opposed to an inverted Ricker wavelet. We

confirmed that this beta event waveform difference is not a result of increased signal-

to-noise ratio (SNR) from larger sample size; namely we generated the temporal profile

of beta events using the 50 highest power event from a subset of 10 randomly selected

participants to better match the human dataset analyzed by Sherman et al. (2016)

and found an inverted Morlet wavelet beta event profile. Our results suggest that

beta events may arise from proximal and distal neocortical inputs from the thalamus

that are more rhythmic than previously thought. Next steps involve using the Human

Neocortical Neurosolver software tool (Neymotin et al., 2020) to attempt to further

investigate the neurophysiological origins of these additional beta event oscillations.

3.6.3 Extending our Analysis Approach to Other

Neuroelectrophysiological Signals and Event Detection Techniques

Disambiguating transient events from the aperiodic activity is important for transient

events that change with age, disease, tasks, cortical regions, or any other domain.
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Primarily, these transient events are not limited to a particular frequency band, but

rather could be detected at any frequency across the entire neuroelectrophysiological

signal power spectrum. Due to the 1/f -like nature of the aperiodic activity power

spectral density, it is particularly important to disambiguate low frequency transient

events, including mu, theta, and delta events, from the aperiodic activity. Although

we have focused on demonstrating the significant implications of disambiguating beta

events from aperiodic activity, we expect that lower frequency events exhibit more

substantial changes after disambiguating from aperiodic activity. Further work with

a focus on lower frequency events is required to elucidate the degree of these changes

and their potential implications.

As an example, paroxysmal slow wave events (PSWEs) are relatively long-lasting

(typically > 5 s) low frequency (typically < 6 Hz) transient events that indicate

abnormally slow network activity. Recent evidence suggests PSWEs play a functional

role in both Alzheimer’s Disease and epilepsy (Milikovsky et al., 2019). The detection

of PSWEs conventionally involves calculating the median power frequency directly

from single-trial neural power spectra. As discussed in this work, the shape of neural

power spectra is largely dependent on the aperiodic activity power spectrum. Thus,

future work involving the detection and characterization of PSWEs should take care

to normalize the neural power spectra by η(f) to avoid conflating PSWE properties

with properties of the aperiodic activity.

In this work, we disambiguated the beta events from the aperiodic activity by

defining the event amplitude detection threshold in terms of a multiple of the ape-

riodic activity power as an alternative to the conventionally used median power.

Other event detection techniques have been reported in the literature which may also

benefit from our analysis approach. For example, other authors (Tinkhauser et al.,

2017) set the event detection threshold as the 75th percentile of event amplitudes.

To extend our analysis approach in this case, we recommend the power of the event

power be normalized by η(f) to avoid detection frequency bias. Furthermore, in

recent years, there has been a trend towards detecting transient events using Hid-

den Markov Models (HMM) to avoid the arbitrary threshold selection intrinsic to

the amplitude-thresholding techniques. In time-delay embedded HMM, each tran-

sient event is identified as a period of neural activity with a distinct power spectrum,
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where each distinct spectrum is considered an “HMM state” (Quinn et al., 2019).

To disambiguate the transient events from the aperiodic activity in this case, one

could separate the neural power spectra into their rhythmic and aperiodic compo-

nents followed by inferring HMM states of two types, namely rhythmic HMM states

and aperiodic HMM states. This approach would avoid conflating changes within the

two types of activity and could provide the benefit of simultaneously identifying how

the two signals independently change in time and between participants. Although

we have suggested possible avenues to apply aperiodic/transient rhythmic parame-

terization with different transient event identification techniques, there may be other

effective avenues not discussed. Further studies are required to identify the potential

implications disambiguating transient rhythmic events from the aperiodic activity for

other event detection techniques.

3.6.4 Comparing PAPTO to Other Event Detection Algorithms

PAPTO joins a rapidly growing list of algorithms designed to identify short-lived tran-

sient episodes of oscillatory activity in single trial neuroelectrophysiological recordings

(Cole and Voytek, 2019; Feingold et al., 2015; Sherman et al., 2016; Shin et al., 2017;

Tinkhauser et al., 2017; Watrous et al., 2018; Whitten et al., 2011). In particular,

PAPTO is conceptually similar to eBOSC (extended Better Oscillation Detection)

(Kosciessa et al., 2020) in that both techniques provide event-wise assessment of

transient oscillations baselined by the 1/f aperiodic activity, yet they differ in terms

of aperiodic activity modelling (i.e., fooof compared to ‘robust regression’), detection

threshold (multiple of η(f) compared to the 95th percentile of χ2(2) distribution of

the 1/f power), and approach to identify and characterize events. Systematically

comparing PAPTO with eBOSC and other burst detection techniques is challenging

due to the vast parameter space of each technique and the lack of objective metric

to assess algorithm performance. In this work, we were able to effectively compare

PAPTO with the Shin method as we limited the parameter space to one dimension

(i.e., threshold baseline, η(f) vs. Ẽ(f) ) thereby allowing us to directly assess the

impact of disambiguating the oscillatory events from the aperiodic activity.
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3.7 Conclusions

The PAPTO algorithm is a novel approach to analyzing neuroelectrophysiological

data as a disambiguated combination of transient rhythmic events and aperiodic

activity. PAPTO starts with extracting the aperiodic power spectrum from neuro-

electrophysiological data using the recently published ‘fooof’ algorithm (Donoghue

et al., 2020). The aperiodic power spectrum is then used power baseline for detecting

transient events via an amplitude-thresholding technique developed by Shin et al.

(2017). The effectiveness of PAPTO is demonstrated using resting-state sensorimo-

tor MEG data from the Cam-CAN cross-sectional study of healthy ageing over the

adult lifespan (n=600, ages 18-88) (Shafto et al., 2014; Taylor et al., 2017). Our

findings reveal that PAPTO is more sensitive to neocortical transient beta rhythms

compared to more conventional transient event detection algorithms and that the

PAPTO captures more variance in the resting state beta event occurrence rate across

participants. The improved sensitivity of PAPTO reveals that the beta occurrence

rate almost doubles over the adult lifespan.
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3.9 Follow-up to Preamble (section 3.1)

The following section is not published (February, 2022) in NeuroImage

In Chapter 3, we found that amplitude thresholding events based on the modeled

aperiodic activity compared to the median power enhances the sensitivity of burst

detection to inter-subject variance in burst rate (see Figure 3.5). In relating this

finding back to Section 3.1, this finding can be re-framed such that inter-subject

variance in burst rate is lost when dividing out the median power. PAPTO thus

effectively recovers this lost information and recasts the age-related increase in the

amplitude of the beta peak in the median power spectrum in Figure 3.1 to an age-

related increase in the beta burst rate. The results presented in Chapter 3 do not

completely nullify the age-related changes observed in Chapter 2, but they do suggest

the age-related trends in Chapter 2 should be considered with the caveat that some

of the variance between participants is lost due to median power normalization.

The question then arises if/how the main findings stemming from Chapter 2 (i.e.,

changes in beta burst rate underlie changes in spectral beta power during the motor

task and with age) would change if PAPTO, rather than the median normalization

technique, was used to identify transient events. While this research question was not

explicitly investigated, I would expect the main findings from Chapter 2 to remain

the same:

• Primarily, I would expect that PAPTO-detected burst rate would show the

same changes over the motor task phases as was found in Chapter 2 (i.e., lower

burst rate during movement and higher burst rate post-movement, compared to

baseline) but potentially with greater relative changes between the movement

phases. As shown in Figure 3.3, the median power spectrum shows similar

rhythmic features as the mean power spectrum, and we know from Bardouille

and Bailey (2019) that the mean spectral power changes over the motor task.

Thus, I would expect the beta peak in the median power spectrum to also change

during the motor task (in the same manner to the beta power). The improved

ability of PAPTO to recognize differences in spectral beta power through the

quantification of the burst rate would then translate to more substantial changes

in the burst rate throughout the motor task.
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• Given the substantial difference in the age-related change in beta burst rate

between PAPTO and med-norm events shown in Figure 3.7, I would expect

that the age-related changes in beta burst rate in each phase of the button

press task (as shown in Figure 2.4) would also substantially change. At the

same time, I would also expect to still see the same relative differences in age-

related changes between the phases, which is the underlying signal for the age

related changes in beta ERD and PMBR (as discussed in section 2.4.2).

Though I have made a series of predictions based on applying PAPTO to the Cam-

CAN button press data, it is important to note that very short epochs (< 2 s), like

those designated to the phases of the button press task, pose a potential obstacle

for PAPTO as modeling of the aperiodic activity is highly dependent on the low-

frequency components of the neural power spectrum.



Chapter 4

Transient-burst Evoked Hemodynamic Response

4.1 Abstract

The transient events description of beta-frequency electrophysiological activity in the

human sensorimotor cortex is well-established in the neuroimaging literature. While

extensive work has focused on exploring these distinct temporal events in extracra-

nial recordings, there has yet to be a study on their coupling to other neuro-biological

processes, such as hemodynamic brain activity. In this work, we use simultaneous

EEG-fNIRS in 26 healthy participants to investigate the hemodynamic changes cou-

pled to the occurrence of transient events. The two objectives are (1) to extract

the burst-evoked hemodynamic response function (HRF) for transient mu, beta, and

gamma events using resting state recordings, and (2) to evaluate the contribution of

neurovascular changes evoked by transient events to the total measured hemodynamic

response over a unilateral finger-tapping motor task. In terms of objective (1), we

found that transient beta events evoke a significant (at the 0.05 level) decrease in

oxy-hemoglobin concentration and increase in deoxy-hemoglobin concentration, both

peaking about 10 s after the burst event. No significant changes were found for mu

or gamma events at the 0.05 level, although we found mu-evoked decrease in oxy-

hemoglobin at the 0.1 significance level. We discuss this beta-specific hemodynamic

response in the context of computational models in the literature, and suggest that

the negative polarity of the response may arise from a period of GABA inhibition fol-

lowing the beta event. In terms of objective (2), we found evidence that beta events

contribute to the ”initial dip” phase of the total hemodynamic response measured

over the motor task. We hesitate to generalize this result however as we find it may

simply be an artifact of inadequate baseline interval between task blocks. This work

is an important step to elucidate the neuro-biological mechanisms surrounding the

occurrence of sensorimotor transient events, towards a better understanding of the

neuro-hemodynamic coupling in the healthy human brain.

91
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4.2 Introduction

Sustained sensorimotor cortical rhythms are manifestations of brief high-power events

that accumulate upon averaging over time and/or trials (Jones, 2016; van Ede et al.,

2018). These so called transient events or transient bursts are evident and detectable

in single-trial magneto-/electro-encephalography (M/EEG) recordings in humans.

Extensive work has focused on the development of transient event detection algo-

rithms (Feingold et al., 2015; Lundqvist et al., 2016; Shin et al., 2017; Brady and

Bardouille, 2022; Fabus et al., 2021; Salman et al., 2018; Jas et al., 2017; Quinn

et al., 2019; Kosciessa et al., 2020; Briley et al., 2021; La Tour et al., 2018), investi-

gating their thalamocortical generative mechanisms (Sherman et al., 2016; Law et al.,

2022), exploring their relation to behaviour and information processing (Shin et al.,

2017; Little et al., 2019; Brady et al., 2020; Seedat et al., 2020; Lundqvist et al.,

2016, 2018), and in identifying their changes with disease (Heideman et al., 2020;

Gascoyne et al., 2021) and healthy ageing (Brady et al., 2020; Brady and Bardouille,

2022; Power and Bardouille, 2021). Yet, little attention has been given to their re-

lation to other ”downstream” neuro-biological processes, such as their coupling to

hemodynamic effects. This coupling is the focus of this work.

Sensorimotor beta-frequency (15-30 Hz) rhythms are among the most well-established

bursty rhythms. Sensorimotor beta is generated in an inhibitory thalamocortical net-

work, where an increase in rhythm strength indicates an inhibited state of processing

and rhythm suppression indicates an activated state (Pfurtscheller and Lopes da

Silva, 1999). Correspondingly, transient beta-frequency bursts evidently play an in-

hibitory role in sensorimotor processing. Namely, Shin et al. (2017) found that the

pre-stimulus beta event occurrence rate is a reliable predictor of sensory perception in

humans and mice, with higher occurrence rates in the 100-300 ms pre-stimulus time

correlating with sensory suppression. These findings compliment previous work from

the same group that shows lower pre-stimulus beta power in the primary somatosen-

sory cortex predicts an increase in the probability of detection of tactile stimuli (Jones

et al., 2010). Similarly, Little et al. (2019) found that beta events occurring close in

time to a visual cue in a cued-movement paradigm delay movement initiation. The

generative mechanisms of transient beta events have been investigated by Sherman

et al. (2016), who showed that beta events may originate from synchronous bursts
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of excitatory synaptic drive which originate in the thalamus and simultaneously tar-

get both the proximal and distal dendrites of neocortical pyramidal neurons. Law

et al. (2022) recently expanded on the work from Sherman et al. (2016) and re-

ported that the distal-targeting excitatory drive briefly facilitates sensory relay (i.e.,

a during-event effect) before a longer period of GABA inhibition lasting about 300

ms post-event. This post-event GABA-induced inhibition explains the decrease in

human tactile perception following a beta event (Shin et al., 2017). Less is known

about transient events in the mu (8-12 Hz) frequency range compared to beta events,

however evidence shows that transient mu and beta rhythms have some degree of

temporal co-occurrence, implying that they share components of neural mechanism

(Jones et al., 2010; Seedat et al., 2020). Transient gamma events have been detected

in the human motor cortex during movement (Muthukumaraswamy, 2010), where

they reflect sensory reafference and have a facilitative role in movement initiation

(for a comprehensive review of transient gamma oscillations in the motor cortex, see

(Cheyne and Ferrari, 2013)). Transient gamma activity has also been studied outside

of the sensorimotor cortices, particularly in the prefrontal cortex in the context of

working memory (Lundqvist et al., 2016, 2018).

Our previous work (Brady et al., 2020) shows that event-related synchronization

(ERS) and desynchronization (ERD) of sensorimotor rhythms during voluntary move-

ment are predicated by changes in the probability of occurrence of transient events.

We observed this phenomenon by analysing unilateral button press motor task data

from the open-access Cam-CAN dataset (Shafto et al., 2014; Taylor et al., 2017) in

both a transient events framework (Brady et al., 2020) and using a more traditional

spectral power analysis framework (Bardouille and Bailey, 2019). Namely, we found

fewer mu and beta events during the movement phase of the motor task which cor-

relates with mu and beta ERD, respectively. We also found a higher number of beta

events compared to baseline pre-stimulus levels were detected in the post-movement

time window, corresponding to the post-movement beta rebound (PMBR), or beta

ERS. We additionally observed a higher probability of detecting gamma-frequency

events during movement, corresponding to the movement related gamma synchro-

nization (MRGS). Similar results have also been reported by other groups (Little

et al., 2019; Seedat et al., 2020).
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Neural activity can be indirectly assessed by monitoring the “downstream” hemo-

dynamic signals. The onset of neural activation (i.e., by a stimulus, voluntary move-

ment, etc.) induces an increase in cerebral metabolic rate of oxygen (CMRO2) and a

compensatory stronger increase in cerebral blood flow (CBF) (Fox and Raichle, 1986).

The combination of these two effects leads to a decrease in local deoxy-hemoglobin

concentration. Deoxy-hemoglobin is paramagnetic and thus a decrease in its concen-

tration gives rise to an increase in the MR signal, resulting in the robust positive fMRI

blood oxygen level dependent (BOLD) response (Ogawa et al., 1990). A post-stimulus

undershoot in the MR signal is also commonly observed as part of the BOLD response

and can last up to 30 s after stimulation has ended (Mullinger et al., 2013). The ori-

gin of this undershoot is still debated (van Zijl et al., 2012), however recent work

found that this post-stimulus effect may arise from an altered CBF/CMRO2 coupling

ratio (compared to during stimulation) induced by post-stimulus cortical inhibition

(Mullinger et al., 2017). While not as robust as the post-stimulus undershoot, there

are several reports of an “initial dip” in the BOLD signal (Hu and Yacoub, 2012),

lasting about 1-2s before the increase in CBF. This initial dip has been attributed to

early deoxygenation from the initial increase in CMRO2.

The electrophysiological correlates of the BOLD signal have been extensively ex-

plored however complete and comprehensive models remain elusive. Using simultane-

ous intracortical electrophysiology and fMRI BOLD imaging in primates, Logothetis

et al. (2001) found that the BOLD response to visual stimuli is more closely related

to local field potentials (LFPs) rather than multi-unit recordings. Since the LFP

reflects post-synaptic/dendritic activity, this finding suggests that the BOLD mech-

anism reflects the input and intracortical processing of a given area rather than its

spiking output. Notably, the correlation observed by Logothetis et al. (2001) was

specifically found for power modulations in gamma frequency LFPs. High gamma

LFP-BOLD correlations have also been confirmed in mice (Mateo et al., 2017), cats

(Niessing et al., 2005) and in humans via intracranial electrocorticography in patients

with epilepsy (Mukamel et al., 2005; Lachaux et al., 2007). These studies suggest a

close spatio-temporal correlation between hemodynamic responses and neuronal syn-

chronization, at least in the gamma frequency band. In terms of lower frequency

oscillatory activity, early work in EEG-informed fMRI in healthy adults found that
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the BOLD signal is negatively correlated with spontaneous (i.e., resting state) alpha

activity in extensive areas of the occipital, frontal, and parietal lobes (R. Goldman,

J. Stern, J. Engel, 2002; Laufs et al., 2003; Moosmann et al., 2003; Gonçalves et al.,

2006). In sensorimotor areas, motor-task induced changes in mu and beta power in-

versely correlate with the BOLD signal (Ritter et al., 2009; Formaggio et al., 2008;

Lachert et al., 2017; Yuan et al., 2010; Stevenson et al., 2011). Strongest correlations

occur in S1 for mu ERD and M1 for beta ERD (Ritter et al., 2009). At rest, negative

correlations have been found between the BOLD signal and spontaneous fluctuations

in the amplitude of sensorimotor mu and beta rhythms (Yin et al., 2016; Tsuchimoto

et al., 2017).

Changes in blood oxygenation can also be monitored via optical imaging tech-

niques, such as functional near-infrared spectroscopy (fNIRS). While limited in spatial

resolution relative to fMRI (cm vs mm), fNIRS offers the advantage of quantifying

time-resolved concentrations of oxy- and deoxy-hemoglobin. fNIRS-measured oxy-

hemoglobin generally shows strong positive correlations with the BOLD signal while

deoxy-hemoglobin generally shows anticorrelations (Cui et al., 2011). Analogous to

the BOLD initial dip (see above), oxy- and deoxy-hemoglobin show an initial dip

and initial rise (Jasdzewski et al., 2003), respectively. Likewise, oxy- and deoxy-

hemoglobin show a post-stimulus undershoot and overshoot, respectively (Schroeter

et al., 2006).

While there has been extensive work exploring detection algorithms, generative

mechanisms, and functional significance of transient burst events, there are no in-

vestigations into the downstream metabolic/hemodynamic changes associated with

these brief bouts of brain activity. In this work, we simultaneously record EEG and

fNIRS signals in 26 healthy participants to investigate the hemodynamic correlates of

sensorimotor transient mu, beta, and gamma events. The first objective is to identify

the hemodynamic response function associated with resting-state transient mu, beta,

and gamma events. We hypothesize that mu, beta, and gamma events each evoke a

non-zero/measurable hemodynamic response. Based on positive correlation between

the gamma LFP and the fMRI BOLD signal introduced above, we suspect transient
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gamma events evoke an increase in oxy-hemoglobin concentration. Based on the neg-

ative correlations between the BOLD signal and spontaneous fluctuations in the am-

plitude of sensorimotor mu and beta rhythms introduced above, we suspect transient

mu and beta events evoked a decrease in oxy-hemoglobin concentration. The second

objective of this work is to evaluate the contribution of neurovascular changes evoked

by transient events to the total measured hemodynamic response over a unilateral

finger-tapping motor task. Given that motor tasks induce systematic changes in the

burst rate of mu, beta, and gamma events, as introduced above, we hypothesize that

the contribution of the transient events to the total measured hemodynamic response

is non-zero. In elucidating the hemodynamic correlates of transient burst events, this

work provides novel insights into the neuro-biological mechanisms surrounding the

occurrence of transient events and helps to explicitly identify one contributing factor

to spontaneous and task related changes in blood oxygenation. This work is an im-

portant step towards relating electrophysiology to vascular responses in the healthy

human brain.

4.3 Methods

4.3.1 Participants

We collected simultaneous EEG-fNIRS data from thirty-two healthy volunteers. Four

datasets were dropped due to poor fNIRS scalp coupling, one was dropped due to

insufficient cap fitting, and one was dropped due to data loss. The remaining par-

ticipants (n = 26) had an average age of 31 ± 3.6 (mean ± standard error of the

mean). Twenty-four of the participants were right-handed. All participants provided

written consent and ethics approval for the study was obtained through the Dalhousie

Research Ethics Board (HSHREB No. 2017-4197).

4.3.2 Data Acquisition

Simultaneous EEG-fNIRS data were collected from each participant during a 10-

minute wakeful resting period and during a motor task block design paradigm (de-

scribed below). EEG data were collected using a 22-electrode Synamps RT system

(Compumedics Neuroscan, Charlotte, NC) at a sampling rate of 1000 Hz. Impedance
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for all electrodes was confirmed to be <15 kohm at the start of data collection. Elec-

trooculogram (EOG) was obtained using self-adhering electrodes placed above and

below the left eye (vEOG), and just lateral to the left and right eye (hEOG). Electro-

cardiogram (ECG) was obtained using self-adhering electrodes placed on the upper

left and upper right arms. fNIRS data were collected using a 30-channel (8 sources,

15 detectors) NIRx NIRScout Extended fNIRS system at a sampling rate of 7.8125

Hz. Sufficient skin-optode contact was ensured for each source-detector pair using

a combined quality metric calculated within the NIRx acquisition software (Manual,

2014). Most pairings (>90% per participant) were in the excellent quality range for

the start of data collection, indicating a gain (i.e., amplification of received light at

the detector) of less than 106, a signal level (i.e., average voltage output by the de-

tector during a short test scan) between 0.09 and 1.40 V, and signal noise percentage

(timecourse standard deviation / mean * 100) of less than 2.5%. The other pairings

(<10% per participant) were maintained within an ”acceptable” range ( gain < 107,

signal level 0.03-2.50 V, and signal noise 2.5-7.5%) The EEG electrodes and fNIRS

channels were arranged in a checkerboard pattern over each sensorimotor hemisphere

(see Figure 4.1 for sensor layout).



98

Figure 4.1: Sensor layout indicating positions of EEG electrodes, fNIRS sources,
fNIRS detectors, and virtual electrodes. Virtual electrodes are described in section
4.3.4. Location labels are based on the EEG international 10-20 system.

The motor task block design paradigm consisted of 15 task blocks with duration

jittered between 8-10 s (jittered to minimize anticipatory effects). The motor task

used was a unilateral sequential finger tapping task on the left hand consisting of

touching the thumb pad to successive finger pads with the order: index, middle,

index, ring, index, pinky, index, ring, index, middle (repeat). The participant was

instructed to continuously perform the finger tapping task for the duration of each

task block. The end of each task block was accompanied by an 8-10 s pause period,

where the participant was instructed to remain still. Audio cues guided participants

through the experiment and simultaneous triggers were sent to both the EEG and

fNIRS recording hardware (via LabJack USB DAQ device) to mark the start and end

of the different phases of data collection. Participants were instructed to keep eyes
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closed during both the 10-minute rest scan and the motor task block design paradigm.

4.3.3 Data Pre-Processing

The raw EEG signal for each participant was band pass filtered between 0.25 Hz

and 110 Hz and notch filtered at 60 Hz to reduce power line noise. Independent

component analysis (ICA) was carried out to identify 20 ICs in each recording using

the FASTICA algorithm (Hyvärinen, 1999). ICs that matched the hEOG, vEOG,

and ECG recordings (above) were excluded from signal reconstruction. Matches were

determined if the Z-score (across ICs) of the correlation coefficient between the IC

and the artifact recording exceeded 1.96 (95% C.I.). The first and last 10 s segments

of the 10-minute resting-state recording were dropped from analysis.

The raw fNIRS signal was band pass filtered between 0.01 Hz and 3 Hz before being

used to compute the hemodynamic states (i.e. oxy- and deoxy-Hb concentrations,

[HbO] and [HbR]). Optical density and hemodynamic states were computed within

the MNE environment (via the MNE-NIRS library) using the Beer-Lambert Law. Bad

channels were identified if the scalp coupling index was below 0.5 (Pollonini et al.,

2014). The heartbeat was removed from the data by bandpass filtering the [HbO]

and [HbR] signals between 0.04 Hz and 0.7 Hz. The first and last 10 s segments of

the 10-minute resting-state recording were dropped from analysis.

4.3.4 Virtual Electrodes, Event Detection, & Unique Events

Transient events were detected at 12 virtual electrodes in each hemisphere for each

participant. The 12 virtual electrode locations correspond to locations where the

midpoint between two neighboring EEG electrodes overlaps with an effective fNIRS

channel (i.e., midpoints between a source and a detector pair). See Figure 4.1 for

locations of virtual electrodes relative to EEG electrodes and fNIRS optodes. Each

virtual electrode position has one associated transient events list and one associated

fNIRS signal. A TFR for transient event identification was obtained at each virtual

electrode location by averaging TFRs from each of the two neighboring EEG elec-

trodes. The TFR at each neighboring EEG electrode was calculated as the squared

magnitude of the complex wavelet-convolved data as described in section 3.4.7.

Transient events in the mu (8-15 Hz), beta (15-30 Hz), and gamma (30-90 Hz)
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bands were detected at each virtual electrode using the PAPTO method as described

in Chapter 3. Due to signal spreading, the same transient event could be detected

at multiple virtual electrodes. However, our goal was to identify the transient events

uniquely for each virtual electrode (i.e., assign each event detected over the sensori-

motor array in each hemisphere to one and only one virtual electrode). Identifying

unique events avoids repeat analysis of the same transient event detected over mul-

tiple EEG electrodes by assigning events to the electrode at which the magnitude

is maximal. An event was designated as a unique event at a virtual electrode only

if there was no other transient event detected at any virtual electrode in the same

hemisphere with higher peak power and occurring within the peak time ± half the

event duration and within the peak frequency ± half the frequency span of the event

in question.

The amplitude threshold for defining transient events was then assessed uniquely

for each frequency band following the process described in section 3.4.7. As depicted

in Figure 4.2, we found an amplitude threshold of 13× n(f) for mu events, 7× n(f)

for beta events, and 6 × n(f) for gamma events. The remainder of the analysis

is conducted on unique supra-threshold transient events, hereinafter referred to as

transient bursts or transient events, unless otherwise indicated.

Figure 4.2: Defining amplitude thresholds for mu, beta, and gamma events. Correla-
tion coefficient between average resting state band power and percent of spectrogram
pixels with power above cutoff value, as a function of cutoff value. One colored curve
per participant. The solid black curves shows the average across all participants.
Shaded region depicts the standard error of the mean. As a conservative (i.e., strict)
estimate of the threshold value, we selected the amplitude threshold as the largest
integer value that is still within 1 standard error of the mean from the peak value.
Found threshold are 13× n(f) for mu events, 7× n(f) for beta events, and 6× n(f)
for gamma events (as depicted by the vertical dashed lines).
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4.3.5 Characterizing Resting-State Transient Events

Transient events were characterized in the time-frequency domain to obtain the peak

time, peak frequency, event duration, and oscillatory cycles per event for each event

as described in section 3.4.8. The peak power of each event is reported as a multiple of

the aperiodic activity, η(f), as in equation 3.4. Transient event peak frequency spectra

as well as histograms for peak power, event duration, and oscillatory cycles per event

were generated for each participant using events detected across all 24 virtual EEG

electrodes. The peak power, event duration, and oscillatory cycles per event were

then averaged across all events and virtual electrodes to obtain one averaged burst

characteristic per participant. The burst rate for each participant was calculated as

the average burst rate over the left and right hemispheres. The burst rate in each

hemisphere was calculated as the total number of transient events identified across

all 12 hemisphere-specific virtual EEG electrodes divided by 580 s.

4.3.6 The Burst-Evoked Hemodynamic Responses (Real vs. Sham)

The grand-average burst-evoked hemodynamic response functions (HRFs) were as-

sessed for mu, beta, and gamma transient events (i.e., the first objective: To identify

the hemodynamic response function associated with transient mu, beta, and gamma

events) using a conventional averaging technique applied to the resting-state data. At

each virtual channel location, the transient event peak times were used to epoch the

fNIRS data into 35 s segments (from – 10 s to + 25 s relative to the event peak time).

The epochs were baselined to the -2 to 0 s interval. The baselined epochs were then

averaged over all events at each virtual electrode location and then across all virtual

electrodes to obtain one averaged burst-evoked hemodynamic response per frequency

band for each participant. The grand-average burst-evoked HRF for each frequency

band (HRFµ, HRFβ, HRFγ) was then obtained by averaging the participant-level

burst-evoked hemodynamic responses. The standard error of the mean (SEM) on

the grand-average burst-evoked HRFs were calculated from the variance across the

participant-level responses.

The statistical significance of the burst-evoked HRFs were addressed by comparing

the real grand-average HRFs (one for each frequency band, generated as described

above) against a series of 100 sham grand-average HRFs for each frequency band. The
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sham grand-average HRFs were generated in an identical manner to the real grand-

average HRFs with the exception that the transient event peak times were randomly

shuffled prior to epoching the fNIRS data. Peak time shuffling was accomplished by

first generating a list of real inter-burst intervals (i.e., the times between sequential

events) and then randomly shuffling that list and using it to generate a set of new

(sham) peak times. This process ensured that each set of sham peak times had the

same distribution of inter-burst intervals as the real set of peak times.

One p-value was calculated to directly assess the first hypothesis (Individual tran-

sient mu, beta, and gamma events evoke a non-zero hemodynamic response) sepa-

rately for transient events in each frequency band. We first identified a time window

in the real grand-average burst evoked HRF where it was furthest from baseline levels.

Time windows selected were 10-12 s for HRFµ, 8-12 s for HRFβ, and 8-11 s for HRFγ

(see Figure 4.3). We then calculated the average deviation from baseline within these

time windows in terms of number of SEMs. We did the same process for each of the

100 grand-average sham HRFs (using the same time windows identified in the real

grand-average HRFs) to obtain a sham distribution of number of SEMs away from

baseline. The p-value was calculated as the portion of sham curves with more SEMs

away from baseline compared to the real curve (ex. if only 3 out of the 100 sham

curves were more SEMs away from baseline compared to the real curve in the same

time window, p ≈ 0.03).

We also assessed the temporal coincidence of transient events across frequency

bands to assess co-dependence of the HRFs. A transient event in one frequency band

(event A) was determined to be coincident with a transient event in a different fre-

quency band (event B) if the peak time of event A fell within within± 0.5 s of the peak

time of event B and both A and B were detected at the same virtual electrode. For

each virtual electrode for each participant, the percentage of coincident events were

found for each pair of frequency bands. This produced one 3 × 3 (mu/beta/gamma

× mu/beta/gamma) matrix of percentages per electrode per participant. The per-

centages were then averaged over virtual electrodes and participants.
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4.3.7 Transient Event and Neurovascular Dynamics During Motor Task

The cleaned EEG data and fNIRS measured [HbO] and [HbR] were epoched between

-2 and +16 s relative to the start of each motor task block. The participant was

actively engaged in the motor task from 0 to 8 s. Between 8 and 10 s is the ’jitter

window’ as the participant may have still been engaged in the motor task or may have

entered to the ’pause’ phase of the paradigm. The participant was definitely in the

’pause’ of the paradigm from 10 to 16 s. PAPTO was applied to the epoched EEG

data to identify mu, beta, and gamma transient events throughout the motor task

paradigm. The aperiodic activity model parameters obtained from applying PAPTO

to the 10-minute resting-state data were input to the PAPTO algorithm. This was

done because the short duration of each task epoch relative to the duration of the

10-minute resting-state recording results in a noisy neural power spectrum and thus

a high variance in aperiodic fit parameters across trials for each participant. This

assumes that the aperiodic parameters were unchanged between task and rest. For

each 1 second interval in the epoch, the burst rate change was determined as the

average number of transient events per unit time in that interval subtract the average

burst rate within the baseline (-2 to 0 s).

To determine if the transient event hemodynamic response had a non-zero con-

tribution to the task-evoked hemodynamic response, we predicted [HbO] and [HbR]

signals without the contribution of hemodynamic changes evoked by the occurrence of

transient beta events. Mu and gamma events were not included in this analysis stage

as we found no significant mu or gamma event evoked hemodynamic response (see

Figure 4.4). These “transient event-less” [HbO] and [HbR] signals (i.e., [HbO]−E and

[HbR]−E) were generated by subtracting out the real HRFβ from the (un-epoched)

fNIRS measured timecourses following every occurrence of a transient beta event. The

[HbO]−E and [HbR]−E timecourses were generated at each virtual sensor location for

each participant and then epoched as described above.

We tested our hypothesis that the neurovascular changes evoked by transient

events have a non-zero contribution to the measured hemodynamic response over a

unilateral motor task block design experiment by assessing the difference between the

[HbO] and [HbR] epoched signals and the [HbO]−E and [HbR]−E epoched signals.

P-values were obtained via paired t-tests across participants using timeseries data
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averaged over the 0 - 8 s task block for oxy-hemoglobin and over the 10 - 15 s pause

block for deoxy-hemoglobin (data-driven time windows with the largest difference

between [HbO] and [HbO]−E and between [HbO] and [HbR]−E, respectively).

4.4 Results

4.4.1 Resting-State Transient Event Characteristics

Figure 4.3 (a) shows the transient event peak frequency histograms averaged across all

virtual electrodes for each participant. The distinct peaks in the mu and beta bands

indicate the presence of mu and beta transient events, with more events detected near

the middle of the bands. The gamma band shows a comparatively flat distribution,

indicating that gamma transient events are as likely to occur at any frequency. The

steps in the plot at 15 Hz and 30 Hz are due to the different amplitude thresholds for

the different frequency bands (see section 4.3.4).

Fig 4.3 (b) shows the average resting state burst rate for transient mu, beta,

and gamma events for each participant (calculated as described in section 4.3.5).

The values depicted in Figure 4.3 (b) are the average of the two ROIs (i.e., two

hemispheres) for each participant. The average burst rates across participants for

each event type are shown in Tbl. 4.1. The mean beta burst rate across participants,

1.67 ± 0.12 Hz (mean ± SEM), is within one SEM of the Cam-CAN cohort average

beta burst rates found in M1 and S1 (left and right) as reported in Chapter 3 (see

Figure 3.5), indicating that our effort to mitigate signal spreading via considering

only unique events in each hemisphere yields bursting activity reflective of the level

of activity at the cortical source. The beta burst rates found here and in Chapter 3,

both using the PAPTO method, are higher than the 1 Hz beta burst rate found by

Shin et al. (2017) using the median normalization technique. As discussed in detail

in Chapter 3, this difference can be attributed to the different power normalization

factors (i.e., median power vs modeled aperiodic activity power spectrum). In terms

of mu and gamma events, our data suggest that the gamma band is the most “bursty”

of the three bands investigated with a burst rate of 2.24 ± 0.12 Hz, while mu band

shows the lowest burst rate at 0.87± 0.06 Hz. As far as we know, this is the first report

to quantify resting-state burst rate of transient events specific to the mu and gamma
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frequency ranges. Interestingly, Seedat et al. (2020) used Hidden Markov Modeling

(HMM) to identify transient events as spectral patterns (referred to as ’states’) in

the 1-48 Hz range and found a burst rate of about 1 Hz. In contrast to our approach

of separating activity by frequency band, HMM aggregates activity across frequency

bands into a single state/event. Hence, we observe a higher burst rate (consider that

the total burst rate in the 1-48 Hz range observed here would be > 4 Hz) because we

treat each frequency band independently.

The topographies in Fig 4.3 (b) show where the bursts are detected across the

virtual electrode array. Values shown are the normalized (to the mean across sensors)

burst rates at each virtual sensor location, averaged across all participants. The mu

burst rate scalp topography shows that mu events are predominantly detected at

the two posterior electrodes in the electrode array. This activity is likely occipital

alpha. The mu frequency bursting activity detected at the two most central-anterior

recording sites is more likely sensorimotor in origin. The beta burst topography is

similar to the mu burst topography, however beta shows a more even distribution of

burst rate across the same 4 identified electrodes, indicating that beta has a stronger

sensorimotor component. The mu and beta burst rate scalp topographies shown here

are similar to the alpha and beta resting-state power topographies shown by Fransen

et al. (2015). Interestingly, Fransen et al. (2015) found that using lagged coherence

(a metric that quantifies rhythmicity) to define oscillations as opposed to spectral

power separates the central sensorimotor activity from the strong posterior activity

even within the same frequency band. The gamma burst rate topography shows no

discernible structure, indicating that gamma activity is generated more evenly across

the cortical regions below the electrode array.

Figure 4.3 (c) shows event peak power histograms (calculated as multiples of the

modeled aperiodic activity) for each type of event for each participant (averaged across

virtual electrodes). The corresponding average values across participants are shown

in Table 4.1. As compared to beta and gamma bands, the number of detected mu

events drops off more slowly with increasing peak power, giving them a substantially

higher average peak power.

Figure 4.3 (d) shows event duration histograms for each type of event for each

participant (averaged across virtual electrodes). As shown in Table 4.1, the average
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duration of mu events across participants is 455± 12 ms and beta is 215± 2 ms. These

values are very close to the duration of PAPTO-detected mu and beta events found

in the Cam-CAN cohort in Chapter 3 (425 ± 6 ms and 218 ± 2 ms, respectively).

Gamma event duration (77 ± 2) was found to be much shorter than mu and beta

events. The decrease in event duration with increasing peak frequency is generally

expected due to the inverse relation between time and frequency. In the context of

transient neurophysiological events, it may be more informative/functionally relevant

to quantify the number of cycles per event, as shown in Figure 4.3 (e) and in Table

4.1. Primarily, mu and beta events show comparable number of cycles (4.85 ± 0.08

and 4.45 ± 0.04, respectively) to those found in Chapter 2 (4.91 ± 0.05 and 4.58 ±
0.02, respectively). The longer duration and more cycles of mu events compared to

beta events is unsurprising considering a previous report of stronger lagged coherence

of mu rhythms compared to beta rhythms (Fransen et al., 2015).The number of cycles

per gamma event (4.37 ± 0.03) is similar to beta events observed here. Our finding

of around 4-5 beta cycles per event is consistent with the number of cycles per event

observed in LFP recordings in the sensorimotor cortex of monkeys by Murthy and

Fetz (1992) (Murthy and Fetz, 1992), who show that these oscillations correspond to

bouts of synchronous unit activity in the underlying neural population.
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Figure 4.3: (a) event peak frequency distributions depicting distinct mu, beta, and
gamma bands. Each colored line represents one participant. The black line is average
across participants. (b) burst rate for each event type (one point per participant).
Averages across participants indicated by the horizontal line. Topographies show
normalized burst rates (to the mean), averaged across all participants. (c) peak
power, (d) event duration, and (e) cycles (episodes) per event histograms for each
event type. Each colored line represents one participant. The black line is average
across participants.
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Table 4.1: Mean burst characteristics (± standard error of the mean) across partici-
pants for each event type.

4.4.2 Transient Burst-Evoked HRF

Figure 4.4 depicts the transient burst-evoked HRFs for mu (top), beta (middle), and

gamma (bottom) events for both oxy- (left) and deoxy-hemoglobin (right). Primarily,

our data suggest that transient beta events evoked significant non-zero HRFs for both

oxy- and deoxy-hemoglobin. In the 8-12 s time window following the occurrence of a

beta event, the [HbO] dips to about 1.3 ± 0.4 µM (mean ± SEM) below baseline (0

- 2 s prior to the event) levels. This corresponds to 3.08 SEMs away from 0, which is

substantially higher magnitude than all 100 sham curves in the same time window (all

< 2.5 SEMs). We found a complimentary increase in [HbR] to about 0.2 ± 0.1 µM

above baseline levels in the same 8-12 s time window. This corresponds to 2.06 SEMs

away from 0, which is higher than 95 out of the 100 sham curves in the same time

window. This comparison of the real HRF against the 100 sham HRFs gives a rough

estimate of p-values indicating the significance level of a non-zero burst-evoked HRF.

In this case, we found that transient beta events evoked a change in [HbO] at the

p ≈ 0.00 significance level and evoke a change in [HbR] at the p ≈ 0.05 significance

level.

For mu and gamma transient events, a significant HRF was not observed in our

data. In an analogous manner to that described above, we found that the real mu

and gamma burst-evoked HRFs for both [HbO] and [HbR] do not (significantly) differ

from the corresponding distribution of sham HRF magnitudes. The p-value estimates

are p ≈ 0.08 for changes in [HbO] and p ≈ 0.39 for changes in [HbR] for mu events,

and p ≈ 0.44 for changes in [HbO] and p ≈ 0.37 for changes in [HbR] for gamma

events.

While the statistical analysis for the mu burst evoked HRF reveals no significant

changes at the 0.05 significance level, there is a trend towards a significant effect for
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changes in [HbO]. To ensure this is not simply due to the temporal/spatial coincidence

of mu and beta events, Figure 4.5 shows a temporal coincidence matrix indicating

the percent of bursts that overlap in time (within ± 0.5 s of the peak time) and space

(at the same virtual electrode) across the 3 frequency bands of interest. This matrix

shows that 19% of mu events coincide with a beta event, which may help explain

some of the decrease in [HbO] following the occurrence of mu events in Figure 4.4,

but likely not all of it. Interestingly, 20% of gamma events also coincide with a

beta event. Gamma events also show a slight decrease in [HbO] following the event,

however this decrease is small compared to mu and beta events, and could reasonably

be explained solely by this coincidence with beta events.
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Figure 4.4: Transient burst-evoked HRFs for mu (top), beta (middle), and gamma
(bottom) events. Changes in oxy-hemoglobin, [HbO], and changes in deoxy-
hemoglobin, [HbR], both shown. Plots labeled as ’real events’ were generated from
the true sequence of transient events. Dotted lines represent time windows for statis-
tical analysis (10-12 s for mu events, 8-12 s for beta events, 8-11 s for gamma events).
Plots labeled as ’sham events’ show one randomly selected sham HRF from the set
of 100. The probability density plots show the distribution of sham HRF magnitudes
(in terms of number of SEMs away from zero) within the time window for statistical
analysis. The corresponding real HRF magnitude is shown as a vertical dashed line
superimposed on the sham distribution. The fraction of the sham HRF magnitudes
that are lower than the real HRF magnitude is represented by the shaded area of the
distribution and indicated by the numerical label.
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Figure 4.5: Temporal coincidence of transient events across the three frequency bands.
The fraction of y-axis events that fall within ± 0.5 s of x-axis events per virtual
electrode, averaged over virtual electrodes and participants. Uncertainties represent
the SEM across participants.

4.4.3 Transient Burst-Evoked Neurovascular Changes During the

Finger Tapping Task

Figure 4.6 (a) shows the inter-trial average changes in mu, beta, and gamma burst

rate. During movement, the mu burst rate decreases by about 0.1-0.2 Hz below

baseline levels (≈ 15-20% drop from resting-state) while the beta burst rate decreases

by about 0.5 Hz below baseline levels (≈ 30% drop from resting-state). The beta burst

rate rebounds to about 0.1-0.2 Hz above baseline levels (≈ 5-10% above resting state)

for about 2-3 s following the completion of the movement. The rebound is stronger in

the right hemisphere (contralateral to movement). These observed changes in mu and

beta burst rate are consistent with our previous work that found burst rate underlies

mu and beta ERD and PMBR (Brady et al., 2020). No reliable changes were found

in the gamma burst rate throughout the motor task.

Figure 4.6 (b) shows the inter-trial average changes in [HbO] and [HbR]. The

movement induces an initial dip in [HbO] which lasts about 1 s and is larger in the

right hemisphere (contralateral to movement). Following the initial dip is an overall

increase in [HbO] which peaks about 7-10 s after movement onset. The [HbO] re-

mains raised above baseline levels for about 8-10 s after movement offset and returns

to baseline with the start of the next movement block. [HbR] shows a nearly opposite

trend to [HbO], with approximately 20-25 % of the magnitude of [HbO]. The initial
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increase in [HbR] lasts substantially longer than the initial dip in [HbO] (about twice

as long in the left hemisphere and about 50 % longer in the right hemisphere). There

is clear contralateral dominance with larger overall neurovascular changes in the right

hemisphere for both [HbO] and [HbR]. The results shown in Figure 4.6 (b) are consis-

tent with a plethora of fNIRS and fMRI literature that shown similar neurovascular

changes throughout movement tasks.

Figure 4.6: (a) Block-average mu, beta, and gamma burst rate change (see section
4.3.7 for methodological details ). (b) Block-average changes in [HbO] and [HbR].
The dark red bars represent the task block (i.e., movement) and the lighter red
bars represent the jitter window (see section 4.3.7). Each thin colored line is one
participant. Thicker black lines represent average across participants. Shaded areas
represent one SEM.

Figure 4.7 shows the inter-trial average changes in [HbO]−E and [HbR]−E ([HbO]
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and [HbR] subtract the hemodynamic changes evoked by transient beta events). The

measured changes in [HbO] and [HbR], as shown in Figure 4.6 (b), are included for

reference. Figure 4.7 shows that [HbO] and [HbO]−E both increase from baseline

levels after movement onset and both peak at around the 6-7 s timepoint. [HbO]−E is

higher than [HbO] during the entire movement window (0-8 s) and the peak change

from baseline in [HbO]−E is about 1/3 higher (corresponding to about 3-4 µM) than

that in [HbO]. Interestingly, [HbO]−E lacks the initial dip seen in [HbO], suggesting

that transient beta events may be responsible for the initial dip. After movement

ends, [HbO]−E drops to align with [HbO]. Deoxy-hemoglobin shows the opposite

kind of temporal pattern to oxy-hemoglobin. [HbR] and [HbR]−E both increase above

baseline levels for about the first 5 s of movement, after which point they both dip

below baseline. [HbR] and [HbR]−E remain about the same for the entire movement

block, however they deviate in the 10-15 s window, where [HbR]−E tends back towards

baseline but [HbR] remains significantly below baseline.

Figure 4.7: Block-average oxy- (solid) and deoxy-hemoglobin (dashed) concentration
change. The black curves represent the fNIRS-measured concentrations and the blue
curves represent the measured concentrations subtract the contribution of transient
beta events (see section 4.3.7) Shaded regions represent one SEM across participants.
The dark red bars represent the task block (i.e., movement) and the lighter red bars
represent the jitter window.

Paired t-tests reveal significant differences between [HbO]−E and [HbO] averaged
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over the 0-8 s movement time widow in each hemisphere (p = 2 × 10−9, both hemi-

spheres) and significant differences between [HbR]−E and [HbR] averaged over the

10-15 s time window in each hemisphere (p = 2 × 10−10, both hemispheres). Our

results are thus in support of our hypothesis that neurovascular changes evoked by

transient events have a non-zero contribution to the measured hemodynamic response

over a unilateral motor task block design experiment. Figure 4.7 suggests that beta

events primarily contribute to the overall neurovascular response by decreasing [HbO]

back towards baseline levels during movement, and by decreasing [HbR] further from

baseline levels in the post-movement (10-15 s) time.

We find that subtracting the hemodynamic contribution of beta events appears

to remove the “initial dip” or “early response” in [HbO] prior to the onset of the

compensatory hemodynamic response. Upon further analysis however, we find that

this identified contribution of beta events may be misinformed due to insufficient time

between task blocks to allow [HbO] and [HbR] to return to baseline levels. As shown

in Figure 4.8, we convolved the grand average beta burst evoked HRF (as shown in

Figure 4.4) with each participant’s block average burst rate change (Figure 4.6 a,

beta). This plot shows that the [HbO] and [HbR] changes evoked from beta events

take about 20-30 s after the end of the task block to return to baseline levels. This

poses a problem when baselining the signal for the next task block, which starts only

8-10 s after the end of the previous task block. Thus, while we see that beta events

may contribute to the ”initial dip” in our measured hemodynamic changes over the

motor task, we hesitate to generalize this finding beyond this study.
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Figure 4.8: [HbO] and [HbR] changes generated by beta burst rate dynamics over
one task block. Each thin colored line is the grand average real beta burst evoked
HRF (Figure 4.4) convolved with the average beta burst sequence of the task block
for each participant (i.e., the colored lines for beta in Figure 4.6 a). Thicker black
line represents average across participants. Shaded area represents one standard error
of the mean. Note that the baseline region for the next task is any consecutive 2 s
segment within the indicated 6 s window (due to the jittering of the block duration).

4.5 Discussion

We report on simultaneous EEG and fNIRS measures in 26 healthy participants to

investigate the hemodynamic correlates of transient oscillatory events. Using resting-

state data and a conventional averaging approach, we extracted the transient burst-

evoked hemodynamic response function for transient events in the mu, beta, and

gamma frequency bands. We found that transient beta events evoke a significant

decrease in oxy-hemoglobin concentration and increase in deoxy-hemoglobin concen-

tration compared to a pre-event baseline, both peaking about 10 s after the burst

event. No significant changes were found for mu or gamma events at the 0.05 level,

although we found mu-evoked decrease in oxy-hemoglobin at the 0.1 significance level.

We then used data recorded throughout a unilateral finger tapping task to evaluate the

contribution of hemodynamic changes evoked by transient beta events to the overall

hemodynamic changes associated with the task. While our results may point towards

beta events contributing to the ”initial dip” of the overall hemodynamic response, we

also show that this is likely an artifact of insufficient rest time between task trials,
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thus pointing to an overall limitation of our experimental design. Although our inter-

pretations are limited, we find that beta events induce dynamics in [HbO] and [HbR]

at about 1/3 the magnitude of the overall task-related changes. Our results help to

explicitly identify one contributing factor to spontaneous and task related changes in

blood oxygenation. This work is an important step towards relating neural activity

to hemodynamic signals in the healthy human brain.

4.5.1 Beta Transients Evoke a Negative Hemodynamic Effect

We found that beta events evoke a decrease in [HbO] and smaller increase in [HbR]

relative to baseline levels (Figure 4.4). While it may be tempting to associate this

result with a simple deoxygenation from an increase in CMRO2 (akin to the initial dip

in the positive BOLD response, see Introduction), two factors of the result prevent

us from drawing this conclusion. First, the changes in [HbO] and [HbR] are not

balanced (i.e., equal and opposite), which one would expect from non-compensated

oxygen metabolism. Second, the changes in [HbO] and [HbR] peak about 10 s after the

occurrence of the beta event. Such a peak delay is much longer than the timescale of

oxygen metabolism and moreso on the timescale of the compensatory CBF mechanism

in the positive BOLD response (see Introduction).

Instead, the larger decrease in [HbO] compared to the increase in [HbR] following a

beta event is indicative of a negative BOLD response. A negative BOLD response is a

stimulus/task-related decrease in the fMRI BOLD signal below pre-stimulus baseline

levels. Negative BOLD responses have been observed in the human occipital (Tootell

et al., 1998; Shmuel et al., 2002; Smith et al., 2004) and sensorimotor cortices (Alli-

son et al., 2000; Klingner et al., 2010; Kastrup et al., 2008). The electrophysiological

correlates of the negative BOLD response are not as well understood as the electro-

physiological corelates of the positive BOLD response (described in the introduction).

While several hypotheses exist to explain the origin of the negative BOLD response

(ex. the vascular steal hypothesis (Harel et al., 2002)), the neural inhibition hy-

pothesis, which describes how a reduction in CBF and CMRO2 in response to either

decreased excitatory activity or increased inhibitory neural activity, is one of the most

supported (Sten et al., 2017; Fracasso et al., 2021; Mullinger et al., 2014) and is of

particular relevance for this work. Sten et al. (2017) developed a physiological-based
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model of fMRI data where both excitatory and inhibitory activity affect feedforward

neurovascular signaling. The model describes how the balance between glutamate

and GABA release at the time of the stimulus determines the polarity (i.e., positive

or negative with respect to baseline) of the BOLD response. In short, the BOLD

response is positive when glutamate release is dominant while the BOLD response is

negative when GABA release is dominant. Recall also that the beta transients model

from Law et al. (2022) suggests that the driver of beta event generation also recruits

slow (∼300 ms) inhibitory GABA synaptic currents. These models provide a possible

explanation why we observe a negative hemodynamic effect after the occurrence of

transient beta events. We suggest that the GABA release over the ∼300 ms timespan

following the beta event determines the negative polarity of the hemodynamic re-

sponse. Following from the computational model from Sten et al. (2017), the GABA

recruitment post beta event decreases the inflow of Ca2+ to astrocytes which in turn

decreases their release of vasoactive substances. The reduction in local vasoactive

substances reduces blood flow and thus decreases local blood oxygenation (See Sten

et al. (2017) for more details on these biochemical pathways). Thus, in combining

the beta event generation model from Law et al. (2022) with the fMRI BOLD model

from Sten et al. (2017), we have suggested a neuro-biological pathway that accounts

for the beta event evoked oxy-hemoglobin decrease (and deoxy-hemoglobin increase)

observed here (Figure 4.4).

4.5.2 No Gamma Event HRF But Maybe a Mu Event HRF

One of the central findings of this work is the frequency specificity of the transient

burst evoked hemodynamic response. Namely, we found that transient beta events

evoke statistically significant changes in [HbO] and [HbR] whereas no significant ef-

fects were found for transient mu or gamma events. The lack of gamma event HRF is

particularly surprising given that gamma LFPs tend to correlate the closest with the

BOLD signal across species (see introduction) (Logothetis et al., 2001; Mateo et al.,

2017; Niessing et al., 2005; Mukamel et al., 2005; Lachaux et al., 2007). Notably,

Mateo et al. (2017) found that ultra-slow fluctuations (∼ 0.1 Hz) in the gamma-band

power envelope entrains fluctuations in arteriole diameter in the mouse cortex, which

in turn links to the BOLD signal. These gamma power envelope modulations are
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substantially slower than the gamma burst rate found in this work (> 2 Hz). The

gamma event sequence analyzed here thus likely reflects power dynamics that are

too fast to demonstrate an observable fluctuation in the hemodynamic signal in this

dataset.

The hemodynamic response ([HbO] change) associated with transient mu events

is not significant at the 0.05 significance level but is significant at the 0.1 significance

level (Figure 3.4). While the observed mu event HRF may partially be a consequence

of some temporal overlap with transient beta events (Figure 3.5), it is important to

acknowledge that mu events may couple to measurable hemodynamic effects and our

result lacks the SNR to report it with strong statistical power. Interestingly, Yin

et al. (2016) found that (HRF-convolved) slow modulations (∼ 0.5-1 Hz) in the mu

oscillation amplitude envelope in the sensorimotor cortex correlate negatively with

the fMRI BOLD response. Unlike the gamma events discussed above, these slow

modulations are on the order of the mu transient burst rate found in this work (∼ 0.9

Hz). It thus follows that we do observe evidence of a potential negative hemodynamic

response correlated to the occurrence of transient mu events. One potential source

of low SNR for the mu event HRF may stem from the mu burst rate topography

shown in Figure 4.3 (b). This topography shows that the majority of mu events are

detected in the most posterior electrode in each hemisphere. Thus, averaging the mu

HRF over all virtual electrodes results in low SNR. As discussed below, this could

be avoided using a weighted average across electrodes based on shown in Figure 4.3

(b) when calculating the HRF. This would also likely increase the SNR for beta and

gamma events.

4.5.3 Next Steps

See below recommended future directions/changes that could increase the scientific

impact of this work. Several of these changes were originally suggested by Dr. Jed

Meltzer, the external reviewer of this thesis.

• Deconvolution approach for looking at ∆[HbO] and ∆[HbR] across the

motor task paradigm. For the motor task paradigm, we found that the [HbO]

and [HbR] time courses do not return to baseline before the start of the next

task block. This is a common problem in fMRI and can be solved via a basic
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deconvolution approach. This could be done before and after subtracting the

contribution from the beta events (i.e., re-generate Figures 4.6 b and 4.7 using

deconvolution instead of conventional averaging). See AFNI’s 3dDeconvolve.

Deconvolution would also solve the problem with the ‘jitter window’ in all the

trial-averaged plots.

• Calculate the transient event evoked HRF using a weighted average

across virtual electrodes. Base the weights on the burst rate topographies

as shown in Figure 4.3 (b). This may significantly increase the SNR of the mu

and beta event HRFs.

• Re-analyze EEG data using a bipolar montage. We detected transient

events using TFRs generated at ‘virtual electrode’ locations so that the transient

events were detected at approximately the same topographical locations as the

effective fNIRS sensors. These TFRs were generated by averaging TFRs of

neighboring EEG electrodes. Instead, we could look at the voltage difference

between the two electrodes that have the effective fNIRS channel location in

between. This would result in a more spatially specific EEG signal as well, with

less contribution from more distant sources.

• Search for times of statistical significance in the burst-evoked HRFs.

In testing the statistical significance in the burst-evoked HRFs (Figure 4.4), we

first identified a time-window in which the HRF appears maximal and then used

that time window to test its significance via permutation testing. This may give

an inflated significance compared to searching the time course in an unbiased

way. Instead we could search through the timepoints of the HRF to find which

deviate significantly from zero. This could be accomplished using something like

the cluster analysis routines in FieldTrip that allow one to search for a significant

cluster of values across multiple timepoints, sensors, and/or frequencies.

• Better relate the burst-evoked HRFs with a more traditional anal-

ysis of BOLD signal changes with modulations in rhythm ampli-

tude/power. As referenced in the introduction, this work is similar to a large

number of studies done with simultaneous EEG-fMRI in the 2000’s, i.e. (Lo-

gothetis et al., 2001). This trend from the 2000’s seems to have petered out
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lately, perhaps because most of the questions that that technique was ideal for

have been answered. Our approach differs in two ways: (1) we look at transient

events while they look at fluctuations in spectral power, and (2) we look at

∆[HbO] and ∆[HbR] while they look at the BOLD signal. Our work would

become more well-rounded if we could more directly compare our results to this

earlier work. This would start by expanding the introduction to include more

background on why its advantageous to consider [HbO] and [HbR] separately

rather than the single BOLD signal (what can [HbO] and [HbR] tell us that

BOLD can’t?). In terms of methods/results, we could start by cross correlat-

ing [HbO] and [HbR] time courses with fluctuations in mu, beta, and gamma

rhythm power (in a similar fashion to those EEG-fMRI papers from the early

2000s). What is the time lag of the cross correlation? Does this match time

lags for those EEG-fMRI papers? Does that time lag correspond to the peak in

burst-evoked HRFs found in Figure 4.4 (around 10s)? In terms of discussion,

now that we have a more direct comparison with these previous papers, do we

learn anything new by quantifying ∆[HbO] and ∆[HbR] rather than the BOLD

signal? Stress the insights that we have gained over those papers from the early

2000s?

• Use a deconvolution-based method to extract the burst evoked HRFs.

Deconvolution-based approaches are commonly used in the functional MRI lit-

erature (Wu et al., 2021) to separate out and extract HRFs that overlap in

time due to closely spaced stimuli. In this case, the ”stimuli” are the tran-

sient events, though these are more closely spaced in time (i.e., hundreds of

milliseconds) compared to conventional stimuli paradigms where deconvolution

methods are typically used (i.e., seconds to 10s of seconds). Further, some a

priori knowledge of the functional form of the HRF is required for deconvolution

methods (i.e., initial fitting parameters), which in this case can come from the

HRFs obtained via conventional averaging. Note that this is likely very difficult

considering how closely the transient events are in time to one another.
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Discussion

5.1 Summary of This Work

This thesis explores sensorimotor transient beta events in non-invasive human neu-

rophysiological recordings in terms of how they change with movement and with

healthy aging, and in terms of their coupling to neurovascular dynamics. This thesis

is comprised of 3 projects:

Project 1 investigated beta burst characteristics and their age-related changes

using MEG data from the Cam-CAN dataset (n=596, ages 18-88). We found that

the beta burst rate is the main influencer of beta rhythm power and the predominant

factor related to age-related changes in the amplitude of the induced beta rhythm

responses associated with a button press task.

Project 2 presented a novel transient burst detection algorithm called the peri-

odic/aperiodic parametrization of transient oscillations (PAPTO). We showed that

PAPTO is more sensitive to neocortical transient beta rhythms compared to more

conventional transient event detection algorithms and captures more variance in the

resting-state occurrence rate of beta events across participants. Using PAPTO, we

found an age-related increase in the sensorimotor resting-state beta burst rate in the

Cam-CAN dataset.

Project 3 explored the hemodynamic changes coupled to the occurrence of tran-

sient events using simultaneous EEG-fNIRS recordings from healthy participants

(n=26). We found that transient beta events evoke a significant (p<0.05) decrease

in oxy-hemoglobin concentration and increase in deoxy-hemoglobin concentration.

We also found that transient beta burst evoked hemodynamic changes contribute a

significant portion to the overall measured hemodynamic changes over a motor task.

121
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5.2 Chapter 2 and 3 Findings in the Context of the Status-Quo

Hypothesis and the Basal Ganglia-Thalamo-Cortical Network

The status-quo hypothesis suggests that sensorimotor beta rhythms represent an ac-

tive top-down process that maintains the existing state of the sensorimotor network

by inhibiting the processing of incoming information and inhibiting unwanted move-

ments (Engel and Fries, 2010). Changes in the sensorimotor state are driven by

endogenous modulations in the sensorimotor beta rhythm power. For example, the

sensorimotor beta power decreases below baseline levels to release inhibition and allow

the initiation and execution of a motor plan (i.e., beta ERD in a movement state). In

the post-movement state, beta rhythm power briefly increases above baseline levels

(i.e., PMBR), and there is growing evidence that the PMBR is an indicator of move-

ment outcome processing. The findings in this thesis show that the beta burst rate

(number of beta events per second) is the direct influencer of beta power and that

changes in the beta burst rate are evident of changes in the sensorimotor/cognitive

state. Specifically, as shown in Chapter 2, changes in the beta burst rate underlie

beta ERD and the PMBR. In Chapter 3, with improved sensitivity to the cortical

activity emerging from the BTC network offered by PAPTO, a strong correlation

between resting state beta burst rate and resting beta power is shown. Age-related

changes in burst rate found in both Chapters underlie previously reported age-related

changes in resting-state beta power and beta ERD/PMBR. This thesis then points to

sensorimotor cortical beta bursting as a more direct expression of the active top-down

process that maintains the status-quo of the sensorimotor network.

In comparing the main findings of this thesis with a recent report from Law et al.

(2022), a possible thalamocortical mechanism in which the rate of cortical beta burst-

ing modulates the state of the sensorimotor network is identified. Law et al. (2022)

found that neocortical beta events in S1 may be generated in a top-down manner

initiated by excitatory drive originating in nonlemniscal thalamus. They suggest that

interneurons are also targeted by this excitatory drive, which recruits slow GABA

inhibition and suppresses information relay throughout the cortical microcircuit. It

is this inhibition via interneurons that dominates the overall behaviour of the cortical

microcircuit. See Figure 1.3 for a depiction of this beta event generative mechanism
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in the BCT network. This finding from Law et al. (2022) aligns well with the inter-

pretation of beta events in the context of the status-quo hypothesis presented here.

At rest, a baseline beta burst rate is evident of top-down thalamic drive to sufficiently

inhibit incoming sensory information and unwanted movements as to maintain the

status-quo of the BCT network. In a voluntary movement state, the beta burst rate

decreases below baseline levels which is evident of reduced excitatory drive to interneu-

rons and reduced inhibition of the cortical microcircuits. This permits sensorimotor

processing throughout the BCT network, allowing for activation of the thalamus via

Go-pathways in the basal ganglia and ultimately the generation of efferent motor

commands.

5.3 Chapter 4 Establishes a Neurophysiological Phenomenon to be

Investigated Further

In Chapter 4 of this thesis, we began to investigate the correlations between cortical

bursting and changes in blood oxygenation. Unlike Chapters 2 and 3, Chapter 4

describes a research direction in the developmental phase. With that said, we have

already found a significant decrease in the concentration of oxy-hemoglobin and an

increase in the concentration of deoxy-hemoglobin correlated to the occurrence of

transient beta events. As discussed in Chapter 4, this result may suggest that the

occurrence of a single transient beta event metabolizes some oxygen but not enough

to initiate a compensatory hemodynamic response. An interpretation of this finding

in the context of the status-quo hypothesis could be that the beta event evoked HRF

is evident of a top-down control of metabolic resources available for sensorimotor

processing working on slow (10s of seconds) timescale. At rest, cortical beta burst-

ing could maintain the status-quo not only through the recruitment of GABAergic

inhibition (as discussed previously), but also through the continuous suppression of

local oxy-hemoglobin concentration. This could serve as an energy conservation ef-

fort, making more metabolic resources available to other parts of the brain when they

aren’t needed in the sensorimotor cortex. The decrease in burst rate prior to and

during movement could facilitate sensorimotor processing via lifting the suppression

of oxy-hemoglobin concentration, thereby making local metabolic resources available

for processing. While this interpretation is purely speculative, it will be useful to
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keep in mind as the next steps of this research direction (discussed in Chapter 4) are

explored.

5.4 Future Directions: Computational Modeling of the Age-Related

Changes in Chapters 2 and 3

The results presented in this thesis stem from a direct analysis of neurophysiological

signals. While this thesis takes a qualitative reasoning approach to discuss and in-

terpret these results, the true utility of this work can be best recognized by bringing

these findings into the space of computational neuroscience and quantitative systems

biology, where computational models are used to describe neurophysiological pro-

cesses. The underlying mechanics of these computational models are informed from

experimental data like those analyzed in this thesis. Well-informed neurophysiological

computational models can ultimately be used to explore the processes that underlie

not only the healthy human brain but also the diseased brain, and thus be used to

investigate possible therapeutic approaches before testing on human or animal par-

ticipants. The proposed future research directions described below detail potential

approaches to bring the results presented in this thesis to the space of computational

neuroscience.

In Chapters 2 and 3, we observed age-related changes predominantly in the burst

rate and peak frequency of transient beta events. In summary:

• Age-related increase in the resting-state beta burst rate (Chapter 3). Note that

this is opposite to the age-related decrease in the resting-state beta burst rate

observed in Chapter 2. This difference is a good example of the applicability of

the PAPTO algorithm to disambiguate changes in the periodic and aperiodic

activity.

• Age-related increase in the pre-movement beta burst rate (Chapter 2)

• Age-related decrease in the post-movement beta burst rate (Chapter 2)

• Age-related decrease in the movement beta burst rate (Chapter 2).

• Age-related decrease in the peak frequency of beta events (Chapters 2 & 3)
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These age-related changes in sensorimotor beta event characteristics imply age-

related changes in the upstream mechanisms involved in beta event generation. As

discussed by Law et al. (2022), the occurrence of a somatosensory beta event is

thought to be dictated by a strong distal drive to the apical dendrites of neocortical

pyramidal neurons generated by a surge of excitatory inputs (i.e., a surge of driving

spikes) originating from the thalamus. The surge of driving spikes is thought to last

about 50 ms, giving rise to a beta frequency oscillation. An age-related change in beta

burst rate may then suggest a corresponding change in the occurrence rate of this

thalamic signalling (i.e., more/less frequent surges could result in higher/lower burst

rate, respectively). Alternatively, an age-related change in beta burst rate could stem

from a change in the fraction of surges that have sufficient amplitude to generate

strong distal currents, which may be driven by changes in neural population size

and/or pathway conductance. The age-related decrease of the peak frequency of beta

events may originate from an increase in the temporal spread thalamic driving spikes

within a single surge (i.e., an increase in the standard deviation of the surge in the

time domain).

Computational modeling can be used to further investigate the origins of the ob-

served age-related changes in beta burst characteristics. In particular, the Human

Neocortical Neurosolver (HNN) (Neymotin et al., 2020) is an available software tool

that simulates the electrical activity of the neocortical cells and circuits that generate

the primary electrical currents underlying EEG/MEG recordings. A next step fol-

lowing projects 2 and 3 in this thesis could be to reproduce the observed age-related

changes in beta event characteristics using the HNN. The modeling parameters used

to simulate transient beta events in Law et al. (2022) (see the associated supplemen-

tary information) could be used as a starting point for this work. Note that the HNN

and Law et al. (2022) came out of the same research group (the Stephanie Jones

group at Brown University). Replicating the age-related changes observed in Chap-

ters 2 and 3 would involve changing the modeling parameters of the HNN until the

correct change in the current dipole is found. A reasonable approach would be to start

with the parameters speculated in the paragraph above. For example, to replicate

the decrease in peak frequency, one could manually change the standard deviation

(measured in ms) of the distal drive, as this is one of the adjustable model parameters
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set in Law et al. (2022). The aim of this process would be to change the anatomical

and neurophysiological modeling parameters such that the changes are realistic and

can simultaneously replicate the age-related changes in all of the investigated burst

characteristics (including those that show no age-related changes). If successful, this

project could be a valuable addition to the growing list of work published by our

group focused on investigating neurophysiological changes with healthy ageing (Bar-

douille and Bailey, 2019; Brady et al., 2020; Power and Bardouille, 2021; Brady and

Bardouille, 2022).

5.5 Limitations of Amplitude-Thresholding Transient Events

In this work, transient events were detected as local maxima in single-trial spectro-

grams with signal power that exceeded a pre-defined threshold. This approach is

generally referred to as an amplitude threshold method to define transient events.

Shin et al. (2017) used an amplitude threshold calculated as a multiple of the median

signal power to detect transient events when they found that the occurrence rate of

transient beta events underlies tactile perception. For this reason, we employed the

same method (i.e., the med-norm method) to detect transient events in Chapter 2.

In Chapter 3, we show that calculating the threshold multiple based on the median

power results in a loss of information about the signal which can be recovered by

calculating the threshold as a multiple of the modeled aperiodic activity instead (i.e.,

PAPTO). We used PAPTO to detect transient events in Chapter 4.

While amplitude thresholding to detect transient events has proven fruitful in this

thesis as well as in several reports in the literature (Feingold et al., 2015; Lundqvist

et al., 2016; Sherman et al., 2016; Shin et al., 2017; Little et al., 2019; Power and Bar-

douille, 2021), the choice of the amplitude threshold will always be arbitrary and thus

amplitude thresholding is a fundamentally arbitrary way to define transient events.

From a biological perspective, the amplitude of a transient event reflects the size of

the underlying synchronous neural population. An amplitude threshold then says

that any cortical activity happening within a neural population size below a certain

threshold is unimportant. Sub-threshold transient events likely contain neurophysio-

logically meaningful information but are ignored by amplitude thresholding methods.

The amplitude thresholds used in this thesis were based on a threshold selection
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method from Shin et al. (2017) (described in section 3.4.7) however, admittedly, this

method is somewhat circular in reasoning (i.e., the threshold is selected such that the

thresholded data best matches the raw data).

Several algorithms have recently emerged in the literature that detect and char-

acterize transient states in neurophysiological data. These algorithms, which include

Convolutional Sparse Coding (CSC) (La Tour et al., 2018) and Hidden Markov Mod-

eling (HMM) (Quinn et al., 2019), are generally considered to be “more sophisticated”

versions of traditional amplitude thresholding-based methods. These algorithms con-

sider transient states as repeating data segments with a characteristic timecourse (i.e.,

waveform), spectral composition (i.e., power spectrum), and spatial distribution (i.e.,

topography). Transient state detection algorithms are data-driven and thus do not

rely on an arbitrary pre-specified amplitude threshold and pre-specified frequency

bands. Further, these methods simultaneously consider multi-channel data rather

than treating each channel independently like amplitude thresholding methods.

Transient states, as detected via detection algorithms like CSC and HMM, un-

doubtedly provide a more complete description of transient neurophysiological data

compared to traditional transient events (detected by amplitude thresholding meth-

ods). It is important however to highlight that transient states and transient events

are neurophysiologically different things that provide different information. A tran-

sient event is a bout of frequency-specific high-power oscillation in a particular cortical

patch which represents a traditional burst of oscillatory activity. A transient state is

a particular waveform, power spectrum, and topography that is found to repeat in the

data. In any given analysis, one should consider whether transient events or transient

states are best suited to serve that specific purpose. For example, in Chapter 4 of

this thesis, where we discuss the coupling between electrophysiology and neurovas-

culature, it makes more sense to consider transient events because the temporal and

spatial localization of transient events is necessary to correlate them to hemodynamic

measures. In Chapters 2 and 3, investigating age-related changes in transient event

characteristics has provided unique insight into the age-related changes in neurophys-

iology at the cortical micro-circuit level, however investigating age-related changes

in transient states may provide more insights into overall network changes. Overall,

transient states represent a new conceptualization of the transient events framework
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which provides a more complete description of transient neurophysiological data while

requiring fewer a priori specifications. For these reasons, I expect to see many publi-

cations in the coming months/years correlating transient states and their properties

to behaviour, ageing, and disease.

5.6 Limitations of a Cross-Sectional Ageing Study

The age-related changes in beta events characteristics investigated using the cross-

sectional Cam-CAN dataset (Chapters 2 and 3 of this thesis) should be considered

with the generic limitations of cross-sectional ageing research. Primarily, the scat-

terplots shown in Figures 2.4 and 3.7 show high variance. This is primarily because

there are several sources of variance in these data other than participant age. For

example, participant sex, handedness, etc. are all sources that may contribute to

the variance seen in these scatterplots. While most of these sources of variance are

likely not correlated with age (participant sex is not correlated with age, see Figure

1 in (Bardouille and Bailey, 2019)) and thus introduce only random noise into to the

data, some sources of variance may in fact correlate with age. Thus, the age-related

trends observed in this work may be part epiphenomenon. For example, consider

the possibility that progress/improvement in dental care over the last 50 years could

impact neurophysiology in an age-dependent manner. In fact, markers of poor oral

health are associated with impaired cognition and higher risk of Alzheimer’s disease

(Merchant et al., 2022). Thus, the older participants analyzed in this work may

have different neurophysiology compared to the younger participants, simply based

on the differences and quality of the dental care received throughout their respec-

tive lifetimes. Contributions from epiphenomenon like this may falsely enhance or

diminish the statistical significance of the age-related changes. Ultimately, due to the

high variance observed, these age-related changes have little predictive power (i.e.,

an average burst characteristic for a participant cannot be used to predict their age).

Furthermore, as discussed in more detail at the end of section 3.6.1, there is also a

potential non-participation bias in the Cam-CAN dataset. In short, older individuals

who are still mobile/active are more likely to participate in the study than those

who are less mobile/active. This is particularly important to consider for a study

of age-related changes motor-related responses as ageing is known to correlate with
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a decline of motor performance. It is also important to acknowledge the Cam-CAN

dataset is not a representative dataset of the global human population. It was col-

lected in Cambridge in the UK and recruited mostly local participants. The data

are thus likely biased towards genetic and environmental factors specific to that part

of the world. While the Cam-CAN cross-sectional dataset is an effective substrate

for studying age-related changes, considering the discussed nuances of cross-sectional

data, care must be taken to not overgeneralize the observed trends.

5.7 Conclusion

This thesis presents 3 projects focused on exploring sensorimotor transient bursts in

healthy populations using non-invasive neuroimaging. Projects 1 and 2 show that beta

burst rate is the major influencer of sensorimotor beta power and point to sensorimo-

tor cortical beta bursting as a direct expression of an active top-down process that

maintains the current state of the sensorimotor network, in line with the status-quo

hypothesis of sensorimotor processing. This finding helps to consolidate our under-

standing of the role of beta rhythms in sensorimotor processing. Projects 1 and 2

also investigate age-related changes in sensorimotor beta event characteristics which

are evident of age-related changes in the underlying network mechanisms and can be

used to inform computational neural models. Furthermore, the PAPTO algorithm

has been made open-access and is applicable in a wide variety of research contexts

beyond studying age-related changes. Project 3 investigates the relationship between

transient burst events and neurovasculature. Preliminary results show that transient

beta events evoke a measurable change in oxy- and deoxy-hemoglobin concentration,

and that these burst-evoked changes contribute significantly to the overall hemody-

namic changes in response to a motor task. This work provides novel insights into

the neuro-biological mechanisms surrounding the occurrence of transient events and

helps to explicitly identify one contributing factor to spontaneous and task related

changes in blood oxygenation. This thesis consists of several important contributions

to the scientific literature all towards a better understanding of the healthy human

brain.
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Appendices

Appendix A: Chapter 2 Supplementary Information

Figure A.1 shows age-related changes in beta burst characteristics for each phase

of the button press response and for the resting state for the sensor ROI analysis

method. Table A.1 shows the model statistics for all plots in Figure A.1. Figure A.2

shows age-related changes in beta burst characteristics for each phase of the button

press response and for the resting state for the source analysis method. Table A.2

shows the model statistics for all plots in Figure A.2.
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Figure A.1: Age-related changes in transient burst characteristics for all burst charac-
teristics for each interval of the button press response and for the resting state. Only
sensor ROI results are shown. Each plot is fit with the model, either linear (green)
or quadratic (orange), that was deemed most appropriate via chi-square comparison.
Stars indicate statistically relevant age-related trends. The shaded region around the
line of best fit represents the 95% confidence interval.
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Table A.1: Modeling parameters of sensor ROI calculated burst characteristics with
age. Parameters are given for the linear and quadratic models. Bolded rows indicate
statistical significance.
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Figure A.2: Age-related changes in transient burst characteristics for all burst charac-
teristics for each interval of the button press response and for the resting state. Only
source-level results are shown. Each plot is fit with the model, either linear (green)
or quadratic (orange), that was deemed most appropriate via chi-square comparison.
Stars indicate statistically relevant age-related trends. The shaded region around the
line of best fit represents the 95% confidence interval.
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Table A.2: Modeling parameters of source calculated burst characteristics with age.
Parameters are given for the linear and quadratic models. Bolded rows indicate
statistical significance.
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Appendix B: Chapter 3 Supplementary Information

Figure B.1: Analyzing motor task data to validate resting state timecourses localized
to four sensorimotor ROIs. (a) grand-average task-phase time frequency response
plots centered on the button press at t = 0 s showing beta event related desynchro-
nization (ERD) and post-movement beta rebound (PMBR) for each anatomical ROI.
Signal power is shown as the log ratio relative to the baseline interval (-1.0 to -0.5 s).
(b) bar plots showing average the value of the beta ERD and PMBR for each ROI.
Error bars show 95% C.I. across participants. Both responses are left lateralized.
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Figure B.2: Goodness of fit analysis for fooof modeling on Cam-CAN data. (a) An
example PSD (generated from entire left S1 210 s resting-state timecourse) with fitted
fooof model (top left) for one participant. The absolute error of the fooof model for
each sensorimotor ROI (top right) for the same example participant. The average
absolute error across all Cam-CAN participants (shaded areas represent 95% C.I.)
for each sensorimotor ROI (bottom four panels). (b) same as a but PSD generated
from one 12 s bootstrap segment instead of full 210 s resting state timecourse. (c)
the absolute error of the fooof model (PSD generated from entire 210 s timecourse)
average across subsets of the Cam-CAN cohort (each subset n = 100) according to
participant age reveals no age-related effect. (d) mean absolute error for each Cam-
CAN participant (PSD generated from full 210 s timecourse) assessed according to
participant age. (e) R2 for each Cam-CAN participant (PSD generated from full 210
s timecourse) assessed according to participant age.
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Figure B.3: Defining amplitude thresholds for med-norm and PAPTO transient
events. Correlation coefficient between average resting state beta power and per-
cent of spectrogram pixels with power above cutoff value, as a function of cutoff
value. Each curve shown is the average across all Cam-CAN participants. Shaded
areas represent 95% C.I. Peaks in correlation occur around 8X the aperiodic activity
for PAPTO events in each anatomical ROI (beta and mu). Peaks in correlation occur
around 5X the median power for med-norm events in each anatomical ROI (beta and
mu).
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Figure B.4: Right hemisphere S1: Resting-state sensorimotor transient beta events
show significant age-related changes. Each individual parameter of transient beta
events evaluated for age-related changes. (a)-(f) scatterplots showing participant-
average beta event parameters (occurrence rate, peak frequency, frequency span, event
duration, event peak times, and event peak amplitudes, respectively) as a function of
participant age (one point represents one participant) with linear or quadratic fitted
ageing models. Stars indicate statistically significant (p<0.05, Bonferroni corrected
for multiple comparisons) non-zero age related changes.
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Table B.1: Right hemisphere S1: Modeling age-related changes of resting-state senso-
rimotor transient beta events. Ageing model fit parameters for each event character-
istics. Model selection (linear vs quadratic) based on an F-test for each characteristic.
Bolded rows indicate statistically significant (p<0.05, Bonferroni corrected for multi-
ple comparisons) non-zero age related changes.
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Figure B.5: Left hemisphere M1: Resting-state sensorimotor transient beta events
show significant age-related changes. Each individual parameter of transient beta
events evaluated for age-related changes. (a)-(f) scatterplots showing participant-
average beta event parameters (occurrence rate, peak frequency, frequency span, event
duration, event peak times, and event peak amplitudes, respectively) as a function of
participant age (one point represents one participant) with linear or quadratic fitted
ageing models. Stars indicate statistically significant (p<0.05, Bonferroni corrected
for multiple comparisons) non-zero age related changes.



157

Figure B.6: Left hemisphere M1: Modeling age-related changes of resting-state senso-
rimotor transient beta events. Ageing model fit parameters for each event character-
istics. Model selection (linear vs quadratic) based on an F-test for each characteristic.
Bolded rows indicate statistically significant (p<0.05, Bonferroni corrected for multi-
ple comparisons) non-zero age related changes.
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Figure B.7: Right hemisphere M1: Resting-state sensorimotor transient beta events
show significant age-related changes. Each individual parameter of transient beta
events evaluated for age-related changes. (a)-(f) scatterplots showing participant-
average beta event parameters (occurrence rate, peak frequency, frequency span, event
duration, event peak times, and event peak amplitudes, respectively) as a function of
participant age (one point represents one participant) with linear or quadratic fitted
ageing models. Stars indicate statistically significant (p<0.05, Bonferroni corrected
for multiple comparisons) non-zero age related changes.
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Figure B.8: Right hemisphere M1: Modeling age-related changes of resting-state
sensorimotor transient beta events. Ageing model fit parameters for each event char-
acteristics. Model selection (linear vs quadratic) based on an F-test for each charac-
teristic. Bolded rows indicate statistically significant (p<0.05, Bonferroni corrected
for multiple comparisons) non-zero age related changes.
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Appendix C: Copyright Permissions

Chapters 2 and 3 of this thesis were each published through Elsevier in the journal

NeuroImage. As the author of these articles, I have the right to include them in my

thesis. Letters of permissions are not required. For more information, see

https://www.elsevier.com/about/policies/copyright#Author-rights
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