

## Acquiring <sup>2</sup>H NMR Spectra

Mike Lumsden Coordinator, NMR-3 August 16, 2021: version 2.00

## Before Beginning, Please Take Note of the Following...

- Solvent: Use non-deuterated solvents to avoid a <sup>2</sup>H spectrum where the solvent signal towers over (and possibly obscures) your solute signals.
- Locking & Shimming: <sup>2</sup>H NMR experiments must be acquired unlocked. In addition, a change in shimming procedure is required (instructions below).
- Chemical Shift Referencing: Since <sup>2</sup>H NMR must be acquired unlocked, chemical shift referencing cannot be performed in the traditional manner. Options for referencing your <sup>2</sup>H spectra include:
  - Use the Solvent <sup>2</sup>H Signal: Use the natural abundance <sup>2</sup>H signal or add a small amount of deuterated solvent to your protio solvent (~5%) for referencing purposes. The figure on the right shows the <sup>2</sup>H spectrum obtained from tap water in 32 scans. This signal is from the isotopomer <sup>1</sup>H<sup>16</sup>O<sup>2</sup>H (calculated concentration of 311 ppm or 16.3 mM).



- Use the <sup>1</sup>H Signal of TMS from a previously recorded proton spectrum: an au program exists making this approach trivial.
- Use a separate NMR sample containing the deuterated version of your protio solvent.

## Instructions for <sup>2</sup>H NMR Experiments

- (1) **\*\***OPTIONAL**\*\*** If you have a sample containing deuterated solvent for chemical shift referencing purposes, insert this sample first and lock. Once the instrument is locked, eject the sample.
- (2) Enter the command "**lockoff.ml**" to disable the lock channel. When complete (~ 10 s), an information window appears stating that the lock is off.
- (3) Insert your NMR sample in the magnet.

## \*\*\*\*CAUTION\*\*\*\*

Do not LOCK, SHIM or TUNE the PROBE while running <sup>2</sup>H NMR Experiments!

- (4) Click NEW EXP in the button panel to create a new dataset for your <sup>2</sup>H NMR experiment. Select "**1d\_2H**" from the experiment drop-down list.
- (5) Shim by typing the command "**lctshim.ml**". This program will automatically perform a topshim using the most intense proton signal in your sample (usually from the solvent).
- (6) Change "ns" if desired (64 is the default).
- (7) Type "gpro" to ensure both the deuterium pulse width and power are up to date.
- (8) Click START in the button panel to acquire the <sup>2</sup>H NMR data.
- (9) \*\*OPTIONAL\*\* Reference your spectrum using the <sup>1</sup>H resonance frequency of TMS by typing the command "**xref.ml**".
- (10) **\*\***OPTIONAL**\*\*** If you have another sample for <sup>2</sup>H NMR, return to step 3 above.
- (11) Eject your NMR sample from the magnet.
- (12) **\*\*IMPORTANT FINAL STEP\*\*** enter the command "lockon.ml" before finishing. This returns the lock channel back to the default configuration for the next user.