DALHOUSIE UNIVERSITY

Problem Definition

Production planning is a historical and manual process, susceptible to risk when the Plant Manager is away
There is currently no way to evaluate alternate production scenarios, which is an aim of the client

Project Scope

Determine the maximum number of machines that can be used per shift and their production rates
Design an Excel tool that will optimally schedule all machines for production based on demand
Create an interface that allows the user to easily test alternate scenarios by modifying constraints

Current Production Planning Process

 \section*{

 \section*{
 \section*{\section*{Model Formulation

 Decision Variables:

 Decision Variables:

 Decision Variables:

 Decision Variables:

 - To start machine i to produce bottle j

 - To start machine i to produce bottle j

 - To start machine i to produce bottle j

 - To start machine i to produce bottle j at time k for / hours

 Constraints:

 - The number of machines scheduled

 - The number of machines scheduled

 - The number of machines scheduled

 - The number of machines scheduled in a shift must be within the client's capabilities capabilities capabilities capabilities

 A machine cannot be scheduled to

 A machine cannot be scheduled to

 A machine cannot be scheduled to

 A machine cannot be scheduled to produce different bottle types at the same time same time same time same time

 The number of bottles produced of

 The number of bottles produced of

 The number of bottles produced of

 The number of bottles produced of each type must be greater than demand and safety stock required

 Objective Function:

 Minimize $Z=X_{j k k}{ }^{*} t$ hours into the

 Minimize $Z=X_{j k k}{ }^{*} t$ hours into the

 Minimize $Z=X_{j k k}{ }^{*} t$ hours into the

 Minimize $Z=X_{j k k}{ }^{*} t$ hours into the week} week} week} week}

A REAL WEEK OF PRODUCTION PLANNING WITH OUR TOOL

The Problem

Plant Manager was on vacation
Second biggest machine was down
A holiday on Friday
Unsure if they would be able to meet demand

What our Tool Provided

Allowed the client to test three different production scenarios

1. Regular working hours
2. Regular working hours with shifts on Sunday
3. Regular working hours with night shifts

The Results

Revealed that regular working hours would not be enough Produced an optimal schedule for both other scenarios Client chose their preferred schedule
The schedule was used for the entire week
Accurately estimated inventory 8 days out
Completed all of this in <5 minutes!

