

FACULTY OF ENGINEERING Department of Industrial Engineering

HALIFAX Improving the Project Management Process at HRM

1. Problem Definition

The increasing number, size and complexity of Transportation Design and Construction (TD&C) projects result in face several complexities in the separate phases of planning and execution leading to increased delays in the project timeline.

2. Project Objective

- Measure and analyze the current process.
- Identify the wasteful steps and root causes.
- Develop a resource planning model using IE tools to optimize resources.
- Propose a plan for D&C to optimize their process.

3. Data Collection

Survey Results

Consultation with other departments, stakeholder constraints on decision making, approval process.

- Data collection lists from clients
- Capacity planning draft
- Project and task list
- Process map

Goal: Identify and visualize different stages in AT, Design, Technical, and Construction Dept, and label outliers for upcoming analysis

Yuchen Ding Hitarth Chhaniara

4. Data Measurement & Analysis

General analysis of the number and frequency of projects

Pareto Diagram: Identify time-consuming steps and the percentage Timing for design engineers to complete a new sidewalk project

Lack of No Parking sig

No resource allocation mod

Management

Issue with final desig

Lack of efficient comm

Bad weather conditions

Environment

Cannot track project

Unintentional mistake

Delay of raw materials/

Materials

No model to assign pe ocate resource Lack of project tra Delay of response between and stakeholders Lack of measurem c control plan

Delay of

TD&C

Project

PERT Analysis

HRM-Design and Construction/Public Works

• Measure the expect time to complete D&C projects

• Calculate the probability that design engineers finish project

Standard Normal Distribution	
$AT \le 150 = P[Z \le (150 - 163.5)/6.17) =$	1.5%
P(AT>170) = P(Z>170-163.5)/6.17) = P(Z>1.05) = 1 - P(Z<=1.05) =	14.7%

• Proposal of solutions according the existing problems analyzed from fishbone diagram

S	Departments	Solution
ople and all	Design, Tech, Construction	Resource Planning Model
cking syste	AT, Design, Tech, Constructio n	Resource Planning Model
departments	AT, Design, Tech, Constructio n	Resource Planning Model
ent of traffi	Construction	Traffic Control Plan outlin e

5. Solution and Evaluation

Traffic Control Plan Outline:

To measure traff

Traffic Control Plan C

Information of Project	
Site Address:	
Project Type:	
Tender Number:	
Contractor:	
Inspected by:	
Traffic Co-Ordinator:	
Time of construction	
Start Date/Time:	Finish Date/
Equipment:	
Traffic Impacts:	
Planned duration of work:	

Resource Planning

	Actual Work	Remaining Work —	Baseline Work	
	Employee 1	Team 1	Team 2	
0 hrs —	•			0%
50 hrs —				10%
TOO UL2				20%
100 hrs —				40%
150 hrs				50%
200 hrs				60%
250 115				70%
250 hrs —				80%
300 hrs –				90%

Benefit:

- Visualize resources
- Monitoring and tracking of project progress

Evaluation: Failure Modes and Effect Analysis

Process function	Potential Failure mode	RPN	Change	RPN after change
Tracking project	Different departments working togeth er on different projects, low communicatio n	378	Use the same project planning tool to communicate between different employees and departments	140
Gathering survey data	Ineffective communication on site between stakeholders and different groups	336	Use a better means of channel, and better communication by planning out the talks	168
CAD Drawings	CAD drawings taking longer than usual because of availability of employees	324	Cross-train employees	75
Tracking projects	Late response from stakeholders	300	Set up meeting with stakeholders in advance	40

To measure traffic control	l plans provided by contractors
Traffic Control Plan Outline	Site Traffic Plan Provide a layout plan of project, this is to include items such as: • Overhead lines • Speed limits • Parking areas • Traffic flow direction
ation of Project dress: Date: Type:	 Hazardous areas Storage/ loading and unloading areas Site entrance(s) (pedestrian and vehicle) Recommended safe route to access the project and alternative where available Areas to segregate pedestrians and vehicles Areas to segregate light and heavy vehicle areas No go areas such as sensitive community, environmental or heritage areas
Number:	Hazardous Areas and Specific Controls Provide a description any project specific hazards, this is to include items such as: • Creek crossings
tor: Phone:	Road damage areas
ed by: Phone:	 Steep slope requiring low gear selection High risk pedestrian areas Heavy vehicle operation areas High risk wildlife grass
Co-Ordinator: Phone:	 High risk wildlife areas High risk security areas
f construction	 Dust areas and actions to take to avoid Adverse weather procedures. i.e., "go/no go" criteria for abnormal road conditions (e.g., snow, high winds, rain, creek, and river crossings.) Parking and Vehicle Security Requirements
ent:	Example: When a vehicle is left unattended: • The engine must be switched off • The park brake must be fully applied
impacts:	 The vehicle must be left in first or reverse gear If on a slope the wheels must be chocked and turned so that the vehicle will roll into the kerb or embankment
duration of work:	
esource Planning Model –	MS Project
RESOLINCE OVERVIEW	

	90%			
	80%			
	70%			
	60%			
	50%			
	40%			
	30%			
	20%			
	10%			
	0%			
Team 2		Employee 1	Team 1	Team 2
-Baseline Work			% Work Complete	

Understand bandwidth used and available