FACULTY OF ENGINEERING

DALHOUSIE

UNIVERSITY

Department of Industrial Engineering

Allocation and Distribution of Collection Equipment for CBS

Problem Definition

- Canadian Blood Services (CBS) manages the national supply of blood products across all provinces and territories, excluding Quebec.
- To maintain the desired blood collection target for each site. CBS currently stores an excess fleet of equipment spares to avoid any interruptions.
- Canadian Blood Services intent is to determine the optimal number of equipment that should be allocated, to maintain their operations and blood collection target without causing any disruptions.

Objectives

Provide CBS with set of tools to make decisions on:

- Required number of spares for each type of equipment
- Provide optimal uptime for a given service level
- Optimizing the distribution of excess and required equipment

Model 1: Identifying the Spares Why?

We chose finite machine repair (MMSN) because it considers failure rate, service rate, and service level to determine the optimal number of spares required, which ensures efficient use of resources and minimizes downtime for the equipment type.

Model 2: Determining the Uptime

Purpose: Is to validate the numbers obtained from model 1 and simulate the equipment behaviour to obtain overall uptime of a clinic.

How is it done?

EquipmentMaster ClinicList eqStrName: String clsEquipmentInstance eqSngMTTF: Single C_ClinicName: String eqSngMTTR: Single insStrName: String C_EquipName: String qIntMinimum: Integer insIntNum: Long C MTTF: Double insSngMTTF: Single eqIntMaximum: Integer - C_MTTR: Double · insLstEquipment: Collection insSngMTTR: Single C_EquipMaximum: Integer insIntNextFail: Integer insCounter: clsCounter C EquipMinimum: Integer insNextRepair: Integer · reqLstEquipment: Collection AddInstance(objInstance: clsEquipmentInstance): void Status(intDay: Integer): Integer + GetTotal(): Integer + AddEquipInfo(objInfo + GetAvailable(intDay: Integer): Integer + GetANewRepair(intDay: Integer): void EquipmentMaster): void + AnInstance(intListindex: Integer): clsEquipmentInstance + GenertaeInstance(Optional intNum As Integer = -1): void

Selection Panel

Final Thoughts

Impact

<u>Improved Methodology</u>	•
These set of tools provide CBS with a defined set of methods to	
make the required decisions, which leads to reduced randomness	
and promotes consistent decision-making.	
<u>Major Cost-Benefits</u>	
By re-defining the equipment fleet size, it will lead to reduction in	(
annual maintenance cost and capital acquisition cost.	

Acknowledgements: We would like to thank Dr. John Blake, Sandra MacAulay Thompson, Julie Bell, Evan Sharp, Brian Seidel, Ahmad Amidi and Tesni Thomas.

Details of Design

Inputs and Outputs :

Model 3: Optimizing the Distribution

Linear Programming Model

Goal : Minimize the cost of shipping equipment type k from region i to j **Constraint 1**: The number of equipment shipped from region i to j can not exceed the amount of

inventory available in region i. **Constraint 2** : Ensures that a fixed cost is incurred

whenever equipment type k is shipped from region i to j.

Equipments Shaker Complabs	Number of equipments 68 31	Weighted Arrival Rate 0.006 0.026	Weighted Service Rate 0.438 0.210	e Service Level 0.95 0.95	esi	JITS		
Carescape	31	0.009	0.306	0.95				
Timer	101	0.006	0.508	0.95				
Service Personnels	s 3	C Re-Cal	culate					
S.No	Date and Time	Equipment Name	Equipment in use	Number of servers	MTTF	Failure rate	Repair rate	Se
1	Apr 2,23 7:10 PM	Shaker	68	3	166.0	0.006	0.4375	
-		Complete	31	3	38.2	0.026	0.209677419	
2	Apr 2,23 7:10 PM	Compians		5				
2 3	Apr 2,23 7:10 PM Apr 2,23 7:10 PM	Carescape	31	3	114.8	0.009	0.306451613	
2 3 4	Apr 2,23 7:10 PM Apr 2,23 7:10 PM Apr 2,23 7:10 PM	Carescape Timer	31 101	3	114.8 163.0	0.009 0.006	0.306451613 0.507920792	
2 3 4	Apr 2,23 7:10 PM Apr 2,23 7:10 PM Apr 2,23 7:10 PM	Carescape	31 101 Simulation Results:	3 3	114.8 163.0	0.009 0.006	0.306451613 0.507920792	

Recommendations

- Ensure RAM database for equipment tracking is being updated properly.
- Utilize the "Bedding Model" to find the required number of equipment.
- Use the provided tools when acquiring new equipment.

Hillier, F. S., & Lieberman, G. J. (2015). Introduction to operations research (10th ed., pp. 318–356). Mcgraw-Hill.

Hillier, F. S., & Lieberman, G. J. (2015). Introduction to operations research (10th ed., pp. 706–708). Mcgraw-Hill.

Icon made by Freepik from www.flaticon.com

Distributio

000

References

4

St.John

e Level Utilization Fa

0.005

0.042

0.009

0.004

Up-Time

0.95

0.95

0.95

0.95

95.4%

11.6