
ML-Mediated Remote Audio Call StationsDepartment of Electrical and Computer Engineering

Introduction

The ML-Mediated Remote audio call station project is

an art installation that capitalizes on the use of

machine learning algorithm to manipulate the playback

of an audio input. The manipulated audio should create

an echo chamber effect where less pronounced sounds

in an audio input become amplified. On full scale,

multiple stations, set up in various locations would

achieve communication via the system.

Project Deliverables

The project being a prototype had the following

requirements:

• A single call station as proof of concept.

• Efficient ML pipeline for processing.

• Communication between established components of

the project. (Client, server and cloud).

References

[1]Abu-El-Haija, Sami, et al. "Youtube-8m: A large-scale video classification
benchmark." arXiv preprint arXiv:1609.08675 (2016).

[2]Fonseca, Eduardo, Manoj Plakal, Frederic Font, Daniel P. W. Ellis,
Xavier Favory, Jordi Pons, Xavier Serra. "General-purpose Tagging
of Freesound Audio with AudioSet Labels: Task Description, Dataset, and
Baseline". Proceedings of the DCASE 2018 Workshop (2018).

[3]Hassan, Muneeb. “VGG16 – Convolutional Network for Classification and
Detection” (2018).

[4]Salamon, J., C. Jacoby and J. P. Bello. "A Dataset and Taxonomy for Urban
Sound Research." 22nd ACM International Conference on Multimedia, Orlando
USA (2014).

Ahmed Merdan
Finlay Miller
Ibrahim Fatungase

Details of Design

• Physical Station Requirements

• The components required for a physical box were very rudimentary. They include

Raspberry Pi zero, soundcard, OTG cable and microphone. Written software saved

on the Pi uploads audio to the cloud.

• Android Application Development

• The second option for user interaction for the client component used an Android

application to achieve functionality.

Android Application Activities and Firebase Data File Hierarchy

• Server

• The pretrained classification models are designed for image and video recognition,

therefore preprocessing must be achieved on input audio to convert to

spectrograms.

Input and Output of Preprocessing Pipeline

• The Machine learning pipeline uses the VGGish pretrained audio classification

model as well as the YouTube 8M dataset to build its embeddings and classes

VGGish[3] & YouTube 8M[1]

Results

Data Set Classifications

Class Identification

Urban 8K sounds classes[4]

Embedding Identification

Freesound database classes[2]

Conclusion and Recommendations

Despite the project not being fully completed, the research done, and

steps taken to ensure the eventual completion of the project were

successful. The students were able to apply a pretrained model to

identify sounds and find the KNN. A more user-friendly application

experience is in order, including making it a standalone app.

Sageev Oore

Design Process

The structure of each components of the project were

design individually while considering that a merge would

still be possible.

• Client:

• Physical and software call stations to ensure user

interaction.

• Users can manipulate the playback via the call

stations.

• Server:

• Machine Learning Pipeline used for processing uses

2 pretrained models.

• Classes obtained from ML pipeline are

postprocessed to ensure similar sounds are grouped

together using the K nearest neighbor algorithm.

• Cloud:

• Storage of audio files are completed of a cloud

database.

• Central system where ML pipeline resides is
retrieved using cloud functions.

- 512 different identified classes

- Real life classes (readable)

- Depend on the interpretation

- The sounds of a “TV”

can be many different

classes

- Forced to use a large vector

- 128 floating point embeddings

- Based on the physical

attributes of the signal

- Finds sounds the “sound” the

same as obsessed to related

- Uses arbitrary vectors, i.e. Cant

be understood by humans,

- Gives more accurate results.

- Less computationally

demanding in real time

systems

