BRIDGE BROS Engineering Inc.
roup Members: Will Nelson Ryan Power Omar Yousef Cedric Rosemond

PENHORN LAKE PEDESTRIAN ARCH BRIDGE

카 DALHOUSIE UNIVERSITY

INTRODUCTION

The Penhorn Lake Area Trail Association has a long-term greenway plan to upgrade their trail located in Dartmouth, Nova Scotia. Integral to this long-term greenway plan is a connection crossing NS Highway 111 to the Russell Lake area. The solution is a pedestrian arch bridge that will sp: The project scope involves:
The proiect scope invoives:

- Establishing bridge dimensions
Selecting structural materials.
Completing a detailed design of all structural components of the bridge. components of the bridge.

PROJECT LOGATION

CONSTRAINTS

Bridge was designed such that accommodates pedestrians and bicycle riders, and is wheelchair accessible. Bridge must include a structural
element for aesthetic purposes. element for aesthetic purposes.
Top 4 meters of soil is unsuitable for Top 4 meters of soil is
supporting foundations.

BRIDGE DIMENSIONS

50 meter span was required to cross the four-lane, two-way divided highway
3.1 meter deck width was
chosen to match width of Penhorn L
$\mathbf{5 . 3}$ meter deck height 5.3 meter deck height accommodates large vehicles passing under deck on highway.
7 meter arch height was chosen 7 meter arch height was chosen
by modeling various arch heights by modeling various arch heights
in S-frame and choosing one that in S-irame and choosing one that steel members.

S-FRAME MODEL

Moment diagram for $1.25 \mathrm{D}+1.5 \mathrm{~L}+1.0$

Deflection model. Maximum deflection is 37.5 mm under specified live load.

CONNECTION DETAILS
The arch and girder will be split into 5 segments, as circular HSS is only available in lengths up to 12 meters.
600 millimeters was determined for the column diameter taking due to the column's length.

Cables spaced every 2.5 meters transfer force in to the arch.

Bridge footings will be buried 4 meters underground. Footing dimensions satisfy shear and soil bearing capacity.

W460x82 wide flange beams are used for the
girders. W shapes girders. W shapes for resisting bending.

CLOSING SUMMARY

A tied arch bridge configuration was chosen to reduce the lateral loads transferred to the earth, thus reducing size of piers. The arch superstructure was modeled in S-Frame, where the calculated design loads were applied to the model to determine which steel members were strong enough to resist all load effects.

The steel arch members of the bridge will be fabricated in shop and transported to site by truck. They will be assembled on the side of the highway and then installed atop the concrete piers by crane. NS Highway 111 will be closed at night while bridge elements are installed using a crane. All concrete footings and columns will be cast-in-place. Hollow-core slabs will be used for the deck. The ramp will be precast and installed on-site.
PROJECT COST = \$2.38 Million (CLASS D ESTIMATE)
ESTIMATED CONSTRUCTION TIME = $3-6$ months

REFERENCES

- Autodesk AutoCAD-(2016)-

CSA B651-12 Accessible Design for the

Built Environment
CSA S6-14 Canadian Highway Bridge Design Code
CSA S16-14 - Handbook of Stee Construction
Geometric Design Guide for Canadian Roads, Chapter 5: Bicycle Integrated Design. Transportation Association of Canada
National Building Code of Canada 2015 National Building Code of Canada
S-Frame Software Version 2017.0.8

